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The order-parameter variation and the electric current about the normal core of a fluxoid
in high-speed motion in clean superconductors in the low-magnetic-field and low-temperature
region are discussed on the basis of a time-dependent Ginzburg-Landau equation and a classi-
cal equation of motion for the core electrons. It is found that the normal current flow along
the core electric field tends to a constant when the fluxoid velocity exceeds ($p/'7)(1+ Q)~1 ),
where $() is the coherence length, 7 is the transport relaxation time, and u~ is the cyclotron
frequency. Expressions of the strain field associated with high-speed fluxoids are derived by
the use of a modified elastic-wave equation with superconductivity parameters and are used to
investigate the fluxoid velocity dependence of the flux-pinning effect. It is shown that the
supersonically accelerated fluxoids radiate elastic shock wave, and that flux pinning by inter-
nal strain sources like dislocations is expected to disappear. A wave radiation and lowering
of the pinning are also found when fluxoids are subjected to a high-frequency vibration.

I. INTRODUCTION

There have been a number of experiments' as-
sociated with the motion of fluxoids in the mixed
state of type-II superconductors. The flux-flow
phenomena have been theoretically treated in semi-
phenomenological ways or withthe help of time-
dependent Ginzhurg-Landau (TDGL) equations. '-"
However, the fluxoid motion in the low-tempera-
ture (T-O'K) and the low-field (H~H„) region has

only been dealt with semiphenomenol. ogically and
for slowly moving fluxoids (the distance a fluxoid
moves in the electron relaxation time 7 is much
smaller with the core radius of fluxoids). Most
of the semiphenomenol. ogical theories investigate
the mixed state using a two-fluid model and hydro-
dynamic assumptions. The approach cannot de-
scribe consistently the properties of fluxoids in
high-speed motion. In Sec. II we consider the
variation of the order parameter around the core
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of a moving fluxoid with the help of a TDGL equa-
tion which is adequate in the low-field region and
near T= 0 'K, and discuss the motion of the nor-
mal excitations in the core when the fluxoid's veloc-
ity exceeds the core radius divided by the electron
relaxation time.

In real type-II superconductors, the fluxoids in
motion are known to suffer the flux-pinning force
besides the viscous-drag force due to the power
dissipation of the core electrons. Therefore, the
pinning force plays an important role in the de-
scription of the flux-flow characteristics. ' Be-
cause of its metallurgical structure sensitivity,
the pinning effect is regarded as due primarily
to the interaction of fluxoids with various lattice
defects. The interaction has been discussed by
many authors '7 who considered the interaction
energy between the lattice deformation associated
with fluxoids and the localized strain fields of the
elastic defects. Since these theories deal with
only the static interaction, it is necessary to study
the dynamic aspect of the interaction in order to
elucidate the pinning effect for moving fluxoids.
In Sec. III expressions for the elastic fields as-
sociated with uniformly moving or harmonically
vibrating fluxoids are derived on the basis of the
modified elastic-wave equation with superconduc-
tivity parameters. By use of the result, the
fluxoid velocity dependence of the pinning effect
is discussed.

II. ORDER-PARAMETER VARIATION AND ELECTRIC
CURRENT FLOP( ABOUT THE NORMAL CORE OF A

MOVING FLUXOID

We treat here the moving fluxoid in a pure and
extreme type-II superconductor in the low-field
(H~H„) and the low-temperature (T«T,) region,
assuming that (a) the fluxoids are not subjected to
pinning forces, (b) the distance between fluxoids is
much larger than the coherence length, and (c)
there are practically no normal electrons outside
the core of each isolated fluxoid.

The properties of moving fluxoids have mostly
been discussed either on the basis of a local model~'6

or by the use of the linearized TDGL equation of
the diffusion type. '" Abrahams and Tsuneto'
found that the TDGL equations exist near absolute
zero and near the transition temperature: In the
former case it has a wavelike character, and in
the latter case it is of the diffusion type. We in-
vestigate the fluxoid motion withthe help of awave-
type TDGL equation, ' ' which may be appropriate
within the limit of our discussion. The equation
is

2ze
A

8 2ze
~ 3 1

where g is the order parameter; p is the scalar
potential; A is the vector potential; vo is the Fermi
velocity divided by v 3; (o is the coherence length;
and $0 = (2N) ~, where N is the total electron den-
sity. We choose a frame such that the magnetic
field is in the z direction and the vortex state moves
in the x direction with velocity vr. Then the order
parameter and the electromagnetic potentials are
expressible as functions of x-v~t and y, character-
ized by the relations

8 8

8t ~ 8x (2)

and so on. We assume a homogeneous "Lorentz-
like" transformation for a frame X fixed to the lat-
tice and a formally given frame X which moves
along the x axis with the velocity v~ relative to X.
The transformatior. relates the space-time coordi-
nates (r, f) and the electromagnetic potentials
(A, p) of X to the coordinates (r, f ) and potentials
(A, p ) of X as follows:

I Ix +v~t + (vt /v ()) x
(3)

8 viA„0

we get A„=gA„by putting

p —vgA„/e=gp = O.

Then Eq. (1) reduces to

2ze I, „p

In the case of an extreme type-II superconductor,
we can assume the magnetic field about the core
region to be uniform:

8x 8g 8x 8$

where II, is a constant. Therefore a simple ex-
pression for A is A (r ) l~ inthe cylindrical coordi-
nates (r, 8 ) in the frame X, where r = (x +y )'
and 18, is the unit vector in the 8 direction. To ob-
tain a solution of the form g=f (r ) e", we insert
this expression for g into Eq. (6), and, using Eq. (7),
arrive at

A„'+ (ev~/v~o) p' I p'+ (v~/c) A„'
X g 0 g gP

(4)
where g= (1 —v~~/vo)'~ . Thistransformationleaves
the form of the TDGL equation (1) invariant. From
Eqs. (2) and (3) we see that g, X, and y are in-
dependent of f . We look for the solution of Eq. (1)
near the core of the fluxoid, where the variation of
the order parameter is large. Assuming that the
electric field has only a y component there or



MASANGRI SUGAHARA

2+ —, —
2 + 4' I-—2 f=o (8)gdr" r' dr'

with

.
)

2vrr A (r ) (f
dx gH,

Ac/2e „I g

where f0= (,'N)—'/2 and $0 is the flux quantum. Al-
though we may put a(r ) =1 in the core region, it
is difficult to find an analytical solution of Eq. (8).
We recognize, however, that

f 2 -1/2

=q q'+ 7/ '+ —,(q'+1) (9)

with

q=r /7)0 (10)

E,—(v LH, /c)
lx xr lx (i 2 / 2)l/2 r1 —V~(C

H, —(VL F,/c).
lz (1 v2 /c2)1/2

(12)

(12')

Considering the condition v I, «v~ «c, we get from
Eqs. (11), (12), and (12') the electromagnetic fields
around the core

H„= H, (1 —VL/c')'/'=H, .

This means that in X, the core electrons stand still,
feeling no electromagnetic force insofar as they
are not scattered by the electron-lattice interaction.
On the other hand, these electrons move with the
fluxoid velocity in the frame X. This behavior
agrees with the result of the theoretical investiga-
tion of fluxoid motion in a perfect crystal by
Nozieres and linen.

Strictly speaking, however, the individual normal
electron is not at rest in the frame X, but is re-
garded to be moving with velocity about v&. There-
fore the electromagnetic force acting on the core
electrons in a superconductor of a perfect crystal

is a good approximate solution. Equations (9) and

(10) display the "I.orentz-like contraction" of the
variation pattern of the order -parameter amplitude
around the core by the factor g. The core electric
field is given from Eqs. (5) and (7) as

~Ay ~ cp vl Bg
Eq = —c —vg

8X 8g C

In the following we discuss the behavior of the
normal electrons in the core region assuming the
existence of a sharply bounded core with radius $0.
It is convenient to work always in the frame X,which
moves with the fluxoid velocity vL, . The electro-
magnetic fields E and H in the frame X fixed to the
lattice are transformed into the fields E& and II& in
X1, respectively, with the help of the usual formula
of uniform Lorentz transformation:

dvy1 V@1+ V„1H,dt 7 wc

(13)

where vl= (v», v») is the mean value of the electron
velocity. The term (v„+VL)/w includes the friction
force acting on the electrons by lattice scattering.
Solving Eq. (13) we get

vgV.l(t) = — 1, (~ )2

x [1+e ' '(0/, T sin&, t —cosa, t)j,
Vl, ~cT

»( ) I (10 7.)2

(14)

x [&,w(1 —e '/'cos&, t) —e '/'sine, t],
where ~,=eH, /mc is the cyclotron frequency. In
the derivation of Eq. (14), we assumed the initial
velocity of the electrons to be zero.

Since the electrons are subjected to the scatter-
ing only in the core region, it is natural to assume
that the scattering characteristics vary according
to the relative length of the transport relaxation
time T in comparison with the mean stay time t,
of the electrons in the core. When t, »7, all core
electrons are considered as having undergone
several scatterings. Putting e ' ' «1, we find
from Eq. (14) an averaged velocity

v„l = —vL /(1+ ~, z ),
V» = vL &,1/(I+ &', v ) .

The stay time is estimated as

$0/( xl + V») (V /VL)zT y

(15)

with v, = $0/~. Thus, the condition t, » 1 is re-
written as VL/v, «1.

When t, «T and , t, «1, we have another aver-
aged velocity

—vt tscos &

s

~vy1 Vg ts Sin&~ts
V&1-

~t s
t ts T

(18)

The stay time is estimated as t,- (v, /vL) 7, and
the conditions t, «T and &,t, «1 are rewritten
vL/v, »1+ (0,~) .

does not vanish there. Actually the electronic
properties in the normal core are observed as mean
values over all electrons on the Fermi surface, and
we may treat the averaged electronic motion in-
stead of investigating the behavior of the individual
core electron.

When the scattering of the core electrons is taken
into consideration, the equation of motion of the
electrons in the frame X& is given by

d v„, + v~ e
+ v 1II, ,dt T IC
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If t, «7 and ~, t, »1, the time-averaged velocity
may be obtained by putting sin~, t = cos~, t = 0 in
Eq. (14), because the cyclotron motion which the
electrons are supposed to experience may be ne-
glected for the time-averaged process. Then we
have the same expression for the velocity as Eq.
(15), and the conditions t, «7 and &d, t, » 1 give
1«vz/v, «& v.

In the lattice frame X, the mean velocity of the
core electrons v= (4I„, v, ) is found as v= v&+ v~.
Therefore from Eqs. (15) and (16) the electric
current that flows inside the core is obtained as
follows:

10

Nevi &,i

(1+ &, r )
when «1 and 1« —«cucq-

Vi vt
vc VC

= Nev, &,~ when — ~
VC

&)1+& &2

10
Nevz, ( cTc

2
VtJ, = o'2' when «1 and 1«v I/v, «(u, T1 + &c7 vc

v
= A'ev~ 1—

vg j
Vg

when && 1+ R
v C

C

FIG. 2. Fluxoid velocity dependence of the normal-
current density J& perpendicular to the electric field (Jjo
=kiev ).
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FIG. 1. Fluxoid velocity dependence of the normal-
current density J„along the electric field (ac= &0/T, J),0

=kiev u v).

(18)
where J)) and J, are the normal-current compo-
nents parallel and perpendicular to the core elec-
tric field, respectively, and N is the electron den-
sity. Figures 1 and 2 represent the fluxoid veloc-
ity dependence of the core current densities
given by Eqs. (17) and (18).

It must be emphasized that, when v~/v, «1
+ &, 7. , J, reduces markedly as &,7 becomes lar-2 2

ger than unity, and that J„ tends to a constant
New, ~,7 when vl /v, »1+ ~, ~ . These character-
istics may be important in view of the realization
of the high-speed acceleration of fluxoids because
they show the possibility of the reduction of the
power dissipation J„E in pure specimens. A nu-
merical example of the threshold velocity v, is
2xl0 cm/sec for the values go= 20 A and ~= 10"

sec. The velocity is less than that of sound in
metals.

III. ELASTIC FIELD ABOUT A HIGH-SPEED FLUXOID

In this section we investigate the elastic-field
distribution around a fluxoid in motion by solving
a modified elastic-wave equation with supercon-
ductivity parameters, and we discuss the fluxoid
velocity dependence of the flux-pinning effect.
The wave equation is a generalization of the mod-
ified elastic equation' ' ~ which is obtained by a
variational method from the Ginzburg-Landau free
energy with appropriate phenomenological param-
eters. We treat our problem with the following
assumptions. (a) The crystal is treated as an
isotropic elastic continuum. (b) All the surface
effects are negligible. (c) The elastic modulus
and the lattice density are constant. '

(d) Space
and time variations of lattice displacements occur
only over distances greater than the coherence
length $o and over times greater than h/hoT, ,
where koT, is the critical temperature. (e) We in-

vestigate extreme type-II superconductor in low
magnetic field (H ~H„). The modified wave equa-
tion is given by

82
p, [(1 —2v) ' T(V ~ u)+ 7 u] —p Bt2

H'- g
o b g

4' Va —— —,(19)
4o 2 4o

with a = & InH, o/&c and b = & Inz /&e, where u is the
displacement vector, p. is the modulus of rigidity,
v is Poisson's ratio, p is the mass density of



MASANQRI SUGAHARA

u), = —i' e '"~"z'/(k„g + k,),
with

(a —3b) (H, /8z) fo vt
s vs

2 (1 —v )!L

(1 —2v) p

(20)

and wave vector k= k„1„+k,1„, where l„and
1, are the unit vectors in the x and y direction,
respectively. To derive Pq. (20), we use the as-
sumption Ik I & $o and a simplified expression of
the variation of the order-parameter amplitude'

l)I)/(oI = ri/')T'"&o when 0&re & z ~o

when m'

where x, = I(x —vent) +y ]' . The reverse trans-
form of Eg. (20) obtained by excecuting the inte-
gration in the complex k„and k„plane becomes

the lattice, II, is the critical field at zero strain,
& is the strain, It; is the Ginzburg-Landau param-
eter, and II,2 is the upper c.itical field.

As was discussed in Sec. II, in a pure super-
conductor in which &,~ » 1 is satisfied, the power
dissipation P in the normal core of a moving flux-
oid may be small. The viscous-drag force f„,
which nearly amounts to p/vt, is also smallthere.
We treat this pure case neglecting the lattice de-
formation by f„, though the effect of the deforma-
tion is easily taken into consideration by including
in Eq. (19) the term of the drag force.

We solve Eq. (19) when the fluxoid velocity is in
the neighborhood of or less than the sound velocity
v„where the Lorentz-like contraction of the vari-
ation pattern of le) I near the core is negligible, as
seen from Egs. (9) and (10). We may consider
our problem in two dimensions, since the strain
field about the fluxoid lacks an axial component. '

We choose the frame X with the magnetic field in

the z direction.
At first we suppose a uniform motion of fluxoid

in the x direction with a velocity vi. From Eq.
(19) the Fourier transform of the displacement
vector u becomes

We see from Eq. (21) that the displacement field
associated with a subsonic fluxoid is localized
around it. Since the flux pinning is caused by the
interaction betwen this localized strain field and
those of lattice defects, a subsonic fluxoid must
experience essentially the same kind of pinning
effects as a static fluxoid does. A supersonically
accelerated fluxoid, however, does not carry a
localized field but radiates an elastic shock wave,
as shown in Eq. (22). This phenomenon is analo-

'V

gous to the Cerenkov radiation, which is observed
when a high-energy charged particle moves through
a medium at velocities exceeding the local speed
of light in the medium.

It is well known that the fluxoids moving in an

actual superconducting material are always sub-
jected to the drag force by the pinning effect. ' The
disappearance of the pinning effect for supersonic
fluxoids may result in a jump of the fluxoid ve-
locity or macroscopic electric field, when we ac-
celerate the fluxoids over the sound velocity by
increasing the driving force with applied conduction
current.

Now we discuss the elastic field associated with
a fluxoid vibrating in a superconductor. It is well
known that circularly polarized vibration modes
can propagate along fluxoids. Since a circularly
polarized vibration is decomposed into two linearly
polarized modes, we can deal with one of the de-
composed modes instead of investigating the cir-
cular mode directly. Assuming a linear harmonic
oscillation of a fluxoid along the x axis w.ith a con-
dition fvidt= —df cos&t, we get from Eg. (19) the
following Fourier-transformed expression of the
displacernent vector:

d, )d, d) ~ i'd, )d, d)cos ted)
k i=i k -l &u/v,

where 4, (z) is the lth-order Bessel function. By
assuming o)d/v, «1 or the subsonic fluxoid velocity,
the reverse transform is obtained as

l

u 2o'K —2m% P cos l &ut/1, !
g+1 Vs

l

X JO X2+ F21/2
2' (x —vent) 1„+g~y 1,
g (x —vtt) +g y

when 0&vI &v, ; and for v~ )v,

(21)
with r=x1„+yl„X=lo)x/v, , and F= hd)y/v, . Ne-
glecting the terms t ~ 2 and using formulas

u = (2vr K) 5 (x —vz t+ g+ ly I ) Ig, ' &, + (y/I y I
) 1„],

(22)
with g, = (vi/v, —1) and x —vent &0. If we keep
in mind the assumption I& I & (o, the 6 function in
Eq. (22) may be better expressed by

sin[(x —vz t+g„!y!)/$o]
z(x —vi t+g, ly I )

9
2 —Z„(z)=Z„,(z) -Z„,(z),

2n ~.(z) =~.-~(z)+~ i(z),

we get

r wd' ~ x —yu = 2)7TK 2 + 2 Jp 2 J2
Us vs
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~+ „go (l„cosset+ l„sinvt)

CO'P—J2 —[1„cos(2g—~t) + 1,sin(2g —u&t)]
S

(24)
with g =tan '(y/x). The static term of Eq. (24)
corresponds to Eq. (21) with v~ = 0 and shows the
localized strain field around the fluxoid. The
elastic energy density brought about the static
strain decreases by ~ '. For large r, Eq. (24)
reduces to

p cos —4 7T

x cos(vt —g)(l„cosg+ 1,, sing) .
This expression denotes that the total energy den-
sity due to the oscillatory terms in Eq. (24) is
proportional to y ' for large y. These terms ex-
press an elastic-field radiation since they contrib-
ute to the net-energy flow through a cyclindrical
surface of infinite radius.

Comparing the static term and the oscillatory
ones in Eq. (24), we see that the static localized
elastic field near the fluxoid core suffers a con-
siderable disturbance from the oscillatory field
when

m~'d/v, "-1/~«„,= 1/$» (25)

where z„„is the core radius. Then we may say
that the vibrating fluxoid which happens to be pinned
by a localized elastic source easily finds the op-
portunity to get over them insofar as the vibration
satisfies the condition (25). Thus the flux pinning
is expected to be ineffective for fluxoids moving at
high frequency with subsonic velocity. If we
choose numerical values v, =3x10' cm/sec, &ud

= 0. 2v„and fo = 20 -100 A, the threshold frequency
is found to be 8 x10' -4&&10" Hz.

On the other hand, the localized strain field may
vanish for a fluxoid vibrating with supersonic ve-
locity, which is easily deduced from the properties
of the elastic field for a supersonic fluxoid in uni-
form motion. Therefore the disappearance of flux
pinning is also expected when

2xyx
~

~

&, —
~ Jz 1 cosru&} (23)vs) i vs

In order to obtain the displacement field associated
with the circularly polarized vibration, we combine
Eq. (23) with the elastic field due to a fluxoid which
is linearly vibrating along the y axis with —,m phase
difference. The resultant expression is

+d &v~ ~ (26)
The threshold frequency becomes about 5&&10 Hz
in this case for the vibration amplitude d = 1 p, m.

It has been observed that a,t microwave frequen-
cies, type-II specimens exhibit full flux-flow re-
sistivity even though the microwave current density
induced in the specimen is several orders of mag-
nitude lower than the critical current density
needed for the dc and low-frequency flux-flow state.
This fluxoid-depinning phenomenon can be explain-
able on the basis of the ideas discussed above.
Cape et al. observed the depinning of fluxoids by
superimposing a small longitudinal oscillatory field
b(t) on the transverse dc magnetic field J3,. They
found that the depinning threshold of the oscillatory
field b, (t) follows a relation

(27)

This proportionality seems to be explainable if we
assume that the vibration velocity of fluxoids
reaches the sound velocity in the threshold state,
and that the fluxoid velocity is proportiovpk to the
oscillatory component of magnetic pressure gra-
dient. Then we have

~
Vb, (t)

~

= const x v~, v~ = v, ,

and with the conservation equation of the fluxoid
number V (vzb, ) = —Sb, /gt, we arrive at Eq. (27).

IV. CONCLUSION

We have seen that in type-II superconductors at
low temperature in low-magnetic -fieM region, sev-
eral nonlinear effects are expected for the moving
fluxoids in the high-speed flow state. When the fluxoid
velocity vz, exceeds the coherence length $0 divided
by the electron relaxation time v', the characteris-
tics of the normal-excitation current inside the
fluxoid core show a considerable velocity depen-
dence. The saturation of the current component
along the core electric field is found when vq &($o/w)
x (1+ ~mr ~). A remarkable velocity dependence
is also expected about the flux-pinning effect
which is caused by the interaction between the lo-
calized elastic field associated with the fluxoids and
that of lattice defects. Though a subsonic fluxoid
is accompanied with a localized elastic field, a
supersonically accelerated fluxoid radiates elastic
shock wave. So that the flux pinning is expected to
disappear when the fluxoid velocity exceeds the
sound velocity. The elastic-wave radiation and
lowering of the pinning force are also expected for
a vibrating fluxoid. In this case the phenomena are
found even for the fluxoid moving with a subsonic
velocity.
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The technique of electron tunneling has been used to obtain the effective phonon spectra,
n (m)E(~), and the parameters defining the superconductivity for dilute Pb-In alloys by solv-
ing the Eliashberg equations. These quantities were extracted from the measured energy gap
of the alloy films and the measured normalized conductance of the thin-film tunnel junctions of
the form Al-Al203-Pb-In. All the measurements were carried out around 1 K, at which tem-
perature both the aluminum and the alloy films were in the superconducting state. The nor-
mal-state data were taken by raising the temperature above the transition temperature of both
the films. A band of frequencies, the so-called impurity band, appeared beyond the high-fre-
quency cutoff of the phonon spectrum of pure Pb. For all the alloys studied the impurity band
was found to consist of at least two peaks which are attributed to the vibrations of isolated
indium atoms and the vibrations of the pairs of indium atoms, both surrounded by the host lead
atoms. The position of the first peak has been found to be constant (9.57 + 0.03 meV), and its
width has been found to vary linearly with concentration of indium. The position of the second
peak remains constant up to 2-at. % indium but increases with the further addition of indium.
The width of the second peak also varies linearly with the indium concentration. The fraction
of modes in the impurity band has been found to be a factor 1.5-2.0 less than the concentra-
tion of indium. A determination of the ratio of the energy gap to the superconducting transi-
tion temperature for the alloy films shows that the electron-phonon interaction remains nearly
constant for all the alloys studied.

I. INTRODUCTION

The problem of the disordered lattice has been
of considerable interest for some time. This is
due to the large effects of imperfections on the
properties of the solids and to the fact that imper-
fections are always present. Although a number of
theoretical methods have been developed for the
study of the disordered lattice, the problem still
remains, at least in regard to the phonon spec-
trum, not solved rigorously. The most recent

extensive work on such phonon spectra has been
done by Dean on one- and two-dimensional dis-
ordered lattices and by Payton and Visscher on
one-, two-, and three-dimensional lattices. All
these calculations are for limited-size lattice only.
The central result of these calculations is that
when light impurities are added to the heavy host
lattice, a number of peaks appear beyond the high-
frequency cutoff of the phonon spectrum of the host
lattice. Dean has attributed these peaks to the
vibrational modes of impurity clusters of different


