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A unified study is presented of the infrared behavior of the second-order electric suscepti-
bilities X' in semiconducting compounds for both longitudinal and transverse fields. The mo-
lecular model used previously for the calculation of X' for frequencies above the lattice reso-
nances is extended and applied to the calculation of y' for frequencies below the lattice reso-
nances as well. An ab initio calculation of the different contributions is given and the local-
field corrections are taken into account in a semiempirical way, consistentwith the macroscopic
infrared properties of these materials. In particular, the Raman, electro-optic, optical recti-
fication, and far-infrared frequency mixing coefficients are explicitly considered for the seven
semiconductors InSb, InAs, InP, GaSb, GaAs, GaP, and AlSb. The agreement with experiment
is good. The relation between the ionic part of X and the phonon-damping mechanisms in
these compounds is also discussed and a generalization of the Lyddane-Sachs-Teller relation
to the nonlinear regime is presented. Further, the relation of the different terms in X' to
the covalent character of the bonds in these compounds is briefly discussed in terms of the
exactly soluble unidimensional p-function-bond model. This latter approach combined with the
recent phenomenological descriptions of the bonding in tetrahedral covalent compounds can also
be extended for the calculation of X for the II-VI compounds.

I. INTRODUCTION

The formal quantum-mechanical expression of
the second-order susceptibility y, '+(~„u&2), which
relates the Fourier component P' '(~, + ~2) of the
second-order polarization to the Fourier components
E(&u,) and E(&uz) of the applied electric field, has
been derived by different authors. ' In applying
these formulas to a particular crystal one must
take into account the specific physical and geomet-
rical characteristics of the medium as mell as the
frequencies of the incident and created fieMs with
respect to the eigenstates of the crystal. These
fall into two distinct regions, the low-frequency
region due to lattice collective vibrations and the
high-frequency region due to the onset of electronic
transitions. For perfect crystalline dielectrics
these regions are well separated and depending on
the positions of the incident and created frequencies
different mechanisms contribute to X' '. For these
crystals, along with X' ' it is convenient to intro-
duce also the macroscopic second-order polariz-
ability per unit cell P, defined formally through
the relation

gl jk(&1, M2) = (I/V)

pig's(N1~

&2),

where n is the volume of the unit cell.
The expression of P, containing explicitly the

different contributions, has been derived within
the Born-Oppenheimer approximation for a system
of charges contained in a volume element of dimen-
sions small compared to the wavelengths of the in-
volved fields. Apart from some formal discus-
sions' or calculations with simple models, how-

ever, no detailed study of the over-all infrared be-
havior of P has been performed compa, rable to the
one that exists for the region of optical transpar-
ency. Despite the good agreement obtained by
some of these models, their g priori justification
is not clear and a more systematic treatment of the
infrared behavior of I3 is required. The study of the
infrared dispersion of p, furthermore, is closely
related to some problems concerning electron-
optic-phonon and optic-phonon-optic-phonon inter-
action in dielectrics and includes as special cases
the linear electro-optic effect, the optical rectifi-
cation effect, and the mixing of two frequencies in
the near- and far-infrared frequency spectrum.

Here me present a unified study of the infrared
behavior of g' ', for frequencies below the onset of
electronic transitions but above the elastic reso-
nances of the sample, for the simplest case of
crystals possessing a nonzero p' ', namely, the
family of the III-V compounds with 43m symmetry.
These compounds are cubic with two atoms per
unit cell and they consequently have a threefold-
degenerate infrared-active long-wavelength optic
mode which, due to long-range electric field ef-
fects is split into a doubly degenerate transverse
mode and a longitudinal mode. In this wavelength
region the linear susceptibility behaves as a scalar
and g'3' has only one independent component X~,'.
When all the three frequencies, ~q, cuz, and ~&+co&,
are in the optical transparency region of the crystal
above ~&, p' ' mas well accounted for by assum-
ing ' that only the dipoles connected with the re-
distribution of the valence electron density by the
electric fields give rise to polarizations; the
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movement of the nuclei and their tightly bound core
electrons was disregarded in their calculation.
When, however, one or more of the frequencies
fall below co&, additional processes will come into
play giving rise to contributions in P which show a
dispersion characteristic of the lattice. ' These
additional contributions in the nonlinear polariza-
tion arise from cross terms between the different
lattice modes and between electric fields and lattice
modes and can be understood only if allowance is
made of electron-phonon and phonon-phonon inter-
action in the medium. In the frequency range con-
sidered only long-wavelength phonons come into
play; hence the nuclear displacements are uniform
throughout a volume of dimensions smaller than the
wavelengths. This allows us to reduce effectively
the study of the lattice vibration modes and their
interaction with the electrons to those of a unit
cell"; again only the redistribution of the electron
density by the fields and the displacements will be
involved. The use, then, of localized orbitals for
the electrons as in Ref. 8 and the approaches of
Huang' and Szigeti to treat long-wavelength lattice
waves are justified and one may consider a unit cell
separated from the rest of the crystal and described
by a Born-Opyenheimer wave function. This de-
scription is discussed in Sec. II. Microscopically,
then, the total polarization in the crystal arises
from the dipole moments induced in each unit cell
by electric fields and short- and long-range lattice-
deformation forces. These dipole moments can be
expressed in terms of microscopic polarizabilities.
However, the relation between these microscopic
polarizabilities and the macroscopic ones is com-
plicated by the fact that the electric fields acting on
the electrons and ions of a unit cell are not the
macroscopic ones. This problem will be treated
in a semiempirical way consistent with the macro-
scopic optical properties of the crystal. The ex-
pressions of y'" and g' ' in terms of microscopic
polarizabilities and local field corrections will be
given in Sec. III and their numerical calculation is
presented in Sec. IV. In Sec. V we present a brief
discussion of our results in terms of a simple and
exactly soluble model for a unidimensional bond'4'
which allows us to single out the important param-
eters which determine g' '. This, combined with
the phenomenological description of the bonding in
the tetrahedral compounds proposed recently by
Phillips" and van Vechten, "can be used to compute
g' ' in a simple way for a larger class of tetrahe-
drally bonded crystals.

II. INFRARED OPTICAL PROPERTIES AND MOLECULAR
MODEL

The III-V compounds possessing the zinc-blende
structure are of cubic symmetry (point group 43m)
with two different atoms per unit cell, each species

forming face -centered cubic sublattices parallel to
each other and the one displaced by a vector R= a(—„
—,', —,') along the diagonal of the other, where a is the
lattice constant. Being diatomic these compounds

possess three acoustic and three optic modes. In
the frequency range considered the electromagnetic
fields couple only with the optical modes of wave-
length much larger than the cell dimensions; these
modes correspond to a uniform displacement of one
atom against the other within a unit cell while their
center of gravity remains fixed. This leads to
drastic simylifications in the description of the
linear optical properties of cubic crystals in the
frequency range below the onset of electronic tran-
sitions and Huang" has shown that these can be de-
scribed simply in terms of macroscopic equations.
Introducing an appropriate parameter w, the rela-
tive displacement of the atoms multiplied by the
root square of the effective mass of the unit cell,
these macroscopic equations are4

~ ~

w= b~qw+ b»E, (2. 1a)

(1)P = b@w+ b+E, (2. lb)

o-
1-(a/n, )' ' (2. 2a)

since c = &0 when 0- 0 and E = E when 0- ~, where

&0 and E„are the static and high-frequency dielec-
tric constants, by ~ in the following we understand
a frequency iri the transparency region of the crys-
tal. One obtains, then bn = —Qa b@ = bg2= [(&0
-e„)/4m]'~ 00 and b22= (e„—1)/4v. We also define
formally the linear susceptibility p' ' by the relation

~ = 1+4~X"'. (2. 2b)

Using the charge neutrality condition 7' ~ D= 0, one

can show '6 that the eigenfrequencies of the optic
modes which can exist in the crystal in the absence
of any applied electric fields can be divided uniquely
into transverse and longitudinal; they will be re-
ferred to by subscripts T and L, respectively.

where P' ' and E are the linear polarization and the
electric field such as they appear in the Maxwell
equations w = (M/v)' (us —u„); u; is the displace-
ment of atom i =A, B from its equilibrium position
M '=M„'+M~'; M; is the mass of the atom i =A. , &;
and v is the unit-cell volume, or v=N ', where N

is the number of cells per unit volume. Huang"
shows that b»= b@. For monochromatic waves
which are exclusively considered here E = EDe '"',
w=woe ' ', and P' '= P' 'e '"'; substituting in

(2. la) eliminating w, solving for P' ', and using the
definition D'" = E+4mP "=&E, one obtains

e = 1+4mb~+
4mb» b~

11 2
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(2.4)

which constitutes the definition of the effective lon-
gitudinal macroscopic charge

ef =eg/&

The equation of motion (2. la) becomes

2 (1)
wz, = —Qpwz, —4m522PI.

(2. 5)

One can show' that no electric field accompanies
a transverse mode or Er = 0, and hence from (2. 1b),

P ' = Q&wq =Nez*uz, (2. 3)

where ur = (NM) 'wr; this relation also constitutes
the definition of the macroscopic transverse effec-
tive charge ef. The equation of motion (2. la) be-
comes

~J 2~up+ pug = 0 ~

where A& = Op is the frequency of the transverse
mode.

For a longitudinal mode one can show that a
macroscopic field El, = —4mPI, is set up, and hence
from (2. lb),

correlation of electronic polarization and lattice
displacements mentioned above. As a matter of
fact, besides its direct coupling with the electrons,
a low-frequency or static electric field also induces
displacements of the ions along the polar trans-
verse-optic mode of the crystal. The electronic
distribution being determined by the relative nu-
clear positions is deformed in the course of these
displacements. Accordingly, a change of the elec-
tric-field-induced electronic-dipole moments re-
sults from both short- and long-range deformation
fields set up by the lattice. Furthermore, this
same deformation of electron shells mediates inter-
action between phonons; together with the phonon
interaction provided through the anharmonic term
in the lattice potential, it modifies the lattice di-
pole moment and contributes nonlinear terms in the
total polarization.

A possible approach is to start with the complete
Hamiltonian of the crystal,

P2 p3 eR Zl e
Z2M Z2', Zl,-, F,I.ZIR, F

zz 2

+ Q ' ~
, (2 9)

1&g ) Ry -Rg I
'

~ 0

ling + AQUI = Q

where

0&= (eo ja„)Gz

(2. 6)

(2. 7)

is the frequency of the longitudinal-optic mode;
(2. 7) is the Lyddane-Sachs-Teller relation. ~

Taking into account (2. lb) and (2. 3) the linear
polarization induced by a transverse electromagnet-
ic field can be written

JP' '=Xe+e + —"—
4@

(2. 8)

The first term on the right-hand side arises from
the displacements of the atoms and, since 6& obeys
Eg. (2. 4), this term displays a dispersion charac-
teristic of the lattice; the second term in (2. 8)
arises from purely electronic contributions the lat-
tice being held fixed. However, the electrons con-
tribute substantially even in the first term through
their deformation by the atomic displacements.
This deformation follows the lattice displacements
adiabatically and is uniquely determined by the lat-
tice coordinates, hence the dipole moment connected
with it is part of the lattice dipole moment; this
accounts 3'6 for the actual values of the effective
charges e& which are different if only rigid motion
of ions is assumed to take place. Besides the pure-
ly electronic contribution the second-order suscep-
tibility also contains terms which in the infrared
show dispersion characteristic of the lattice. ' The
origin of these additional terms is the same inter-

and then use a band description for the electronic
density distribution, for an arbitrary nuclear con-
figuration, to derive the different contributions in
X"'; here (M, m), (R, r), and (P, p) are the mass-
es, positions, and moment, respectively, of the nu-
clei and electrons. However, since in a dielectric we
are only dealing with filled valence and core bands,
it is immaterial whether we use a determinant of
Bloch states or of localized orbitals to describe the
valence electron density. Finally since we are con-
cerned with matrix elements of one-particle oper-
ators, the determinant of the localized orbitals may
be replaced by its diagonal. This amounts to
regarding each electron as attached to a given cell
of equilibrium position Rp in the lattice; we call Hp

the corresponding effective Hamiltonian of such a
cell. It follows that the electronic distribution
within a unit cell depends mainly on the relative
positions of the ions in the cell and will be affected
by changes of these relative positions. Here we
assume that for each nuclear configuration R= Rp+u
the wave function of the unit cell is represented by
a Born-Oppenheimer function

~..(r, R)=X..(R)e.(r, R), (2. 10)

where r and R collectively denote the electronic
and nuclear positions, respectively. P, (r, R) is
the wave function of the electrons in the field of the
nuclei, which are held fixed in an arbitrary posi-
tion R, e being the corresponding quantum number
with eigenvalue E,(R), a function of R; X,„(R) rep-
resents a wave function for the nuclei moving in
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the effective potential E,(R), the corresponding
eigenvalues being e,„. We write the Hamiltonian of
this restricted system as

ap=r„+TE+V(r, R), (2. 11)

where T~ and T& are the kinetic-energy operators
for the nuclei and the electrons, respectively;
V(r, R) is the potential-energy operator of the in-
teractions between all the particles in the unit
cell. In the adiabatic approximation, then, the ei-
genvalue problem is split into the following:

[Te+V(r, R)]g,(r, R)=E,(R)g, (r, R), (2. 12a)

[T„+E,(R)]X,„(R)= e„X,„(R) . (2. 12b)

We restrict ourselves to the ground state of the
electronic system and we denote by Ep(R) the en-
ergy, a function of the nuclear configuration. We
assume that Ep(R) can be developed in powers of
u=R-Ro which, in the case of cubic crystals, is
directly proportional to the normal coordinate of
the long-wavelength optic mode. Hence

Ep(R) =Ep(Rp)+ p Ep ';, u(u;+ p Ep I;qu;u)u, (2. 13)

where we have limited the expansion up to third-
order terms. Ep(R) is a,ctually the cohesive energy
of the crystal in its ground state.

It is clear that the bonding electrons which re-
flect the structural characteristics of the crystal
will be most deformed by the displacement u, while
the deep-lying core electrons will follow essential-
ly undeformed the nuclear motion. We introduce
the simplification that for each nuclear configura-
tion P, (r, R) describes only the system of the eight
valence electrons per unit cell. These will be as-
sumed to form a system of separated electron
pairs accommodated in effectively localized bonds
between adjacent atoms. ' The core electrons, on

the other hand, are assumed to be unaffected by
the bonding and not coupled to the valence elec-
trons; they are rigidly bound to the nuclei, cancel-
ing part of their positive charge and leaving posi-
tive charges Z&e and Z&e on each nuclear position.
These will be taken pointlike and undeformed in the
course of the nuclear displacements. Their values
will be the valence charges 3 and 5, respectively,
for the group-III and -V atom. .

There are four equivalent tetrahedral bonds per
unit cell which, in the equilibrium nuclear configu-
ration Ro following Ref. 19, are described by or-
bitals of the form

(r' Rp) =K(Rp) [tf)g (r' Bp) + X(Rp)gp (r" Rp)],
(2. 14)

E is the normalization factor, Q~ and Qp are node-
less Slater-type sp' orbitals whose coefficients
for the equilibrium configuration Ao are deter-
mined by the Slater rules, and the parameter A. is
determined by the usual linear-combination-of-

Ep(R) = —Ae /A+npBe (2. 18)

which essentially implies a central force field and
consists of a long-range attractive part Cz, = —Ae /
8 and a short-range repulsive part C ~ =noBe
Intermediate-range electrostatic forces are not
explicitly included but will be assumed absorbed
in the two terms of (2.18); np = 4 is the number of
nearest neighbors around an atom, B measures the
strength, and p the range of the short-range repul-

atomic -orbitals (LCAO) method. Extending
this picture we assume that the LCAO-MO (molec-
ular-orbital) treatment can be used for each nu-
clear configuration R and we regard each bond AB
as an independent unit represented in its ground
state by two uncorrelated electrons with opposite
spin directions; each electron will be described by
an orbital of the form

P'P'(f, R) =K(R)[$„(r; R)+A(R)g. e(r; R)], (2. 15)

where Q& and ge have the same analytical form as
in (2. 14) but the parameters g, and A. become con-
tinuous functions of the bond distance, g, (R) and

X(R), respectively. More specifically, it will be
assumed that for small changes 5B of the internu-
clear distance one can write

(2. 16a)

(2. 16b)

(2. 17)

where &, and A. are the values of the parameters in

the undistorted lattice and p is the range over
which the undistorted electronic distribution around
each atom is expected to change appreciably; for
each bond p

' can be taken =~(g„+ge). These mean
values for the different compounds are actually
very nearly equal to an average value f,„and ac-
cordingly we will put p '=&„=1.4 a.u. We as-
sume, furthermore, that the properties of a bond
are affected only by the stretching of that bond and

are unaffected by the stretching of other bonds or
changes of bond orientations.

Finally we need the form of the lattice potential
C (8) =Ep(R); this also determines the cohesive en-
ergy of the crystal. Our knowledge of this quantity
for covalent crystals is poor. To be consistent
with the over-all electronic picture described
above, one should use the Hartree product of the

Q, (r, R) expressed in terms of (2. 15) and compute

Ep(R) from (2. 12a). This can be done along the
lines of the work of Coulson and Dogget or Korol
and Tolpygo. Such an approach which essential-
ly amounts to adopting a valence force field would

introduce short-range directional forces and long-
and intermediate-range electrostatic forces. Here
we shall assume that the lattice energy per unit
cell (pair of ions) can be written in the simple form
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The compressibility & of the crystal is defined by

1 d'C
=V

K dv

or, since v-R',

tR24( ( )9 0 ( s 0 2 R3
p

= r&o
~

)' (&0)+—(' ~ (&0))
,4/ I) 2

v( Ro

(2. 20)

(2. 2la)

and using the explicit form for (t) ~ one obtains

1 g 21 1 2 ~s
'v p Rp p' (2. 21b)

Then (2. 21b) determines B and (2. 19) determines z
if w is known; the latter can be determined experi-
mentally from the elastic constants e» and c» of
the crystal. As stated previously noncentral forces
are not explicitly considered here. These forces
are essentially three-body short-range forces and
their contribution to the compressibility z = 3/(cqq
+c,2) will be small since this quantity determines
uniform volume changes under hydrostatic pres-
sure; hence only bond lengths are changed under
this type of deformation while the angles remain
unchanged. The same can be anticipated to be the
ease for the quantities related to the long-wave-

sive potential. This arises from the extension of
the electronic distribution around the atoms and is
the same quantity as in (2. 16a), (2. 16b), and (2.17).
For the case of the III-V compounds it is deter-
mined by the ( coefficients in (2. 14); as stated
previously their values range around a value P„.
Taking p —-(,, the same for all compounds, one
finds Ro/p = 6. 5 while for ionic crystals one has4

R/p =10. The first term in (2. 18) is a Madelung-
type energy; clearly both the nuclei and the elec-
trons contribute, but since the charge distributions
as described by (2. 14) are rather extended and
easily yolarizable the calculation of A presents a
formidable task. In the present work we assume
that the long-range part in (2. 18) is obtained by
replacing the electronic charge distribution and the
nuclear charges with point charges ze and -ze lo-
cated at the sites A and B, respectively, so that
over-all charge neutrality is ensured; then A = n&

x(ze), where n„= 1.628, the Madelung constant
for the zinc-blende structure. The two parameters
z and B will be determined~ ' then by use of the
experimental values of the compressibility z to-
gether with the lattice equilibrium condition.

In order to eliminate z and B we proceed as fol-
lows. Since the lattice potential must have a mini-
mum at the equilibrium distance, the first deriva-
tive of (2. 18) must vanish or, putting 4z=nog~,

Ae /R() + no/ g (Ro) = 0 .

length optic mode, to be introduced below; these
arise mainly from distortions within the primitive
unit cell and the nearest-neighbor interactions will
be the dominant ones while noncentral forces in-
volve next-nearest-neighbor interactions which are
expected to be by an order of magnitude weaker.
However, these forces are necessary in order to
partially account for the breakdown of the Cauchy
relations and for the stability of the lattice against
shear stresses as determined by the elastic con-
stant c44 and by c~& —c» in these crystals.

Having thus defined the Born-Oppenheimer wave
functions and energy states of our system, we can
apply the formulas of Appendix A to obtain the ex-
pressions of the polarizabilities of a unit cell. We
begin by reproducing the Huang relations which re-
fer to the linear polarization.

III. POLARIZABILITIES AND LOCAL-FIELD CORRECTIONS

The Huang equations (2. 1a) and (2. lb) and the
parameters eo, e, Qo introduced in (2. 2) are mac-
roscopic and independent of any specific assump-
tions concerning the nature of the electronic charge
distribution in the crystal. In this section we give
an interpretation of these parameters in terms of
the microscopic model described above and then
proceed to derive the expression of the second-
order susceptibility. First we derive expressions
of the microscopic yolarizabilities, as defined in
Appendix B, relating the dipole moment induced in
a unit cell to the effective field. Then we consider
the relation between effective and applied macro-
scopic field. Throughout the discussion we shall
assume that the fields are far from any resonances
so that the frequencies can be assumed either zero
or infinity depending on the cases. The frequency
dependence will be introduced subsequently using a
semiclassical approach.

A. Microscopic Polarizabilities

In Fig. 1, we show a group of four bonds cen-
tered around a group-III atom and the crystalline
axes EXFZ for the undistorted lattice. In this ref-
erence frame the bonds point along the principal
diagonals [111], [ill], [ill], and [ill]. Owing to
the 43m symmetry, all bonds are equivalent to
each other for the perfect lattice and can be ob-
tained from one another by successive application
of the group operations. In the same figure we
show a coordinate system fixed to the bond. The
z axis is oriented along the bond axis towards the
group-V atom and 0 is the geometric midpoint of
the bond. When the atoms are displaced according
to an optic mode by small displacements u = R Rp,
the lengths of the bonds change as do the angles
between the bonds distorting the tetrahedral sym-
metry and rendering the bonds unequivalent. We
single out such a bond in the presence of an arbi-
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(o)

pressions (Bl) and (B2) of the Appendix B. In the
present work, as in Ref. 8, we assume that the
bonds possess axial symmetry which is preserved
throughout the nuclear motion. Further, we as-
sume that the polarizability of one bond is affected
only by the stretching of that bond, and is unaffected
by the stretching of other bonds or the changes of
bond orientations. Expanding these quantities in
powers of u=u~ -u&, inserting the values of the
direction cosine for the undistorted lattice and
writing u„„=n~, n„= n„, P„„=P„and P„,= P„one
obtains

where

A ~~
=

3 (Qg+ 2')5gg, (3. 2)

P $ Jh 3 ~3 ( Pll 3PJ)~I». (3 3)

(b)

FIG. 1. (a) Four equivalent tetrahedral bonds in the
unit cell; B is the III atom and A is the V atom, The crys-
talline axis [111]and the corresponding bond axis O~z are
pointing from the III atom to the V atom of the BA& bond
and similarly for the other three bond directions. This
convention is the one adopted by H. C. Gatos and N. C.
Lavine, J. Electrochem. Soc. 107, 427 (1960) and is used
throughout the text of the present work. (b) Unit cell dis-
torted according to an optic mode of a particular polar-
ization.

trary electric field 8. The polarizabilities of dif-
ferent orders are then defined by the following ex-
pression:

W= Wo-p, 8, —y n„8,8, —3p, »h, 8,8„(3.1)

where W'0 is the bond ground energy; p is the per-
manent-bond dipole moment; n, &

and P,» are the
first- and second-order bond-polarizability ten-
sors. Their expressions are given by usual time-
independent perturbation theory. They depend
unique'y on the ground-electronic -state distribu-
tion which in the present model is represented by
the wave function (2. 15). Accordingly they are
continuous functions of the bond distance and can
be expanded in powers of the change of the inter-
nuclear distance 5B which is linearly related to u.

For an arbitrary nuclear configuration R= Ro+u
the polarizabilities of a unit cell are given in terms
of the polarizabilities of the four bonds by the ex-

p(R) = F(R)+ e(Z~ -4)R~+e(Zs -4)Rs, (3.5)

where m(R) is the permanent electronic dipole mo-
ment of a unit cell for an arbitrary internuclear
configuration; its expression is given in Appendix
B, Eq. (B6). The quantity (3. 5) being a continuous
function of R can be expanded in powers of ii= R -Rp
and one obtains

p(R) = p
'" ~ u+ 2 u"':uu,

where the constant term is zero for the 43m point-
group symmetry,

u+ e(Z„—4)u + e(Z —4)u

and

4 BQ„Bcyz 2
3W BR R 8

(3.4)
where 5,&

and &,» are the Kronecker and Levi-
Civita tensors, respectively.

The first two quantities are the conventional
linear and second-order polarizabilities per unit
cell for uniform electric fields and their expres-
sions were derived in Ref. 8; n'" is the micro-
scopic Raman polarizability tensor for a unit cell.

Following Appendix B, we define the lattice di-
pole moment for a unit cell by

p(R) = f Q, (r, R)( —eZ, rg+eZgRg+eZsRs)

x @,(r, R)dr,
a function of the nuclear coordinates; i runs over
the eight valence electrons per unit cell and eZ,
are positive point charges. This quantity can be
written
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~f jk +j~k ~fjk ~ j+0 ~
(2) (2) (3.V)

The expressions of m
' and m' ' are given in Appen-

dix B; we define the quantities Z~ and („by

and

-eZB/4=- P, /R, (3.8)

(3 9)

QA e(~A 4 3 ~E)

QB e('+B 4+ 3 ~B) y

3 ~ed~

(3. 11)

(3.12}

(3. 13)

p.
"' behaves as a scalar; we define the microscopic

effective charge per unit cell e& by the relation
(1) (S. 14)

or

eg = (II2+M(QBIMB —QA/MA) ~ (3.15)

The quantities (I)A and QB refer to ch'arges which
are defined for the undistorted nuclear configura-
tion while Q2 is a charge arising from the redistri-
bution of the electronic density by the change of
the bond length.

The coefficient p,
' ' of the second-order dipole of

a unit cell has a single independent component; in-
serting (B9) in (3.V) one has

(2) (2)~ 4 8 P 1 SPB s Pl)
l Uk OUk 3'~3 sB2 ft g sft2)) i jk t

(3. 16)
it is to be noted that p.

' ' arises only from the elec-
tronic part of the dipole moment (3.5).

Finally we need the expressions of the shori-
range oscillator strength M&u, =-(t&',~) and the coeffi-
cient QI~k) of the third-order anharmonic potential
appropriate to the oscillation of the two interpene-
trating sublattices against each other. These quan-
tities are defined by the expansion in Taylor series
of the lattice potential (2. 13), and their expressions
are derived in Appendix B; (t)'2) behaves as a scalar
and (t)' ' has a single independent component. The
contribution to &)))

'2) from the long-range part of P
reduces to zero by symmetry4 2'; hence (t)(2) is de-
termined solely by the short-range part of (t), or

(2) 4 2 ()4'B s'43
5

3 It3 sB. sB2 (3. 1V)

only interactions with the four nearest neighbors

For an optic mode the center of gravity of the two
atoms in a unit cell stays fixed, or M&u&+M&6& =0.
Then inserting the expression (B8) for 7)' ' in (3.5)
one obtains after some rearrangement of the terms

p.
"'

~ u= Q„u+M(QB/MB —QA/MA) u, (S. 10)

where

were taken into account. Comparing (3.1V) and

(2. 21a) one obtains

3 v 1
M

(S. 18)

The coefficient (t)(&3k) on the other hand contains
contributions both from the long- and short-range
part of (2. 18). Further, atoms more distant than
nearest neighbors contribute in the long-range part.
The expression of ()))") is derived in Appendix B;
one has

373 BA A B sR ()R j

+15(ze) Z nB B7 K(Jk, (3.19)RgR qR3

In using the localized model and trying to relate
the microscopic polarizabilities to the macroscopic
ones, one is faced with the problem of the field
acting on the charges in a unit cell. These polar-
izable charges within a unit cell do not respond to
the externally applied field E but rather to the ef-
fective field S. This is different from the macro-
scopic one and also contains the electric-field-in-
duced interactions between the charges. These in-
teractions between the more or less localized
charge distributions are always present and modify
mutually the wave functions and energies of the re-
stricted Hamiltonians Ho The origin of these inter-
actions is in the terms neglected in attempting to
reduce the complete Hamiltonian H to a sum of unit
cell Hamiltonians Ho. These are long-range Cou-
lomb and exchange forces. For well-localized and
well-separated charge distributions the dipolar
term in a multipole expansion of the Coulomb terms
would be sufficient and the Lorentz field would ap-
ply. For uniform charge distribution on the other
hand, all the higher multipoles are equally impor-
tant and have to be included, reducing the field to
the macroscopic one. For intermediate charge dis-
tributions these extreme cases do not apply; 8

where in the term on the right-hand side the sum-
mation now is understood to extend over all atoms
except the four nearest neighbors (see Appendix B).
The first term contains the contribution from the
four nearest neighbors while the second term con-
tains the long-range interactions with the more
distant atoms; in (3. 19), g = —(ze) /B+ Be " ' and
the derivatives are evaluated at R =Ra.

We have now derived in terms of known quantities
the expressions of all the coefficients needed to de-
termine the microscopic polarizabilities of a unit
cell. Our next step is to derive the expressions of
the corresponding macroscopic polarizabilities.

B. Macroscopic Transverse Polarizabilities and Local-Field
Corrections
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varies strongly over the unit cell and has a very
complex functiona1. dependency preventing any sim-
ple a priori calculations of this quantity. Following
Ref. 8 we assume that for a cubic lattice we can
write

&(&u) = K(&d) +L P(~), (3. 20)

+Nf (~1+ &2)P(~1, ~2)f(~1)f(~a): E(~1)E(~2),

(3. 21b)

where L is a scalar and P is the total polarization.
A second simplification is that 8 is constant over
the polarizable unit and equal to some appropriate
average value. The second term on the right-hand
side of (3. 20) is the material component of the ef-
fective field which includes the interactions between
the charges. ~ The total polarization P is the sum
of all dipoles per unit volume induced by the effec-
tive field in each unit cell.

In deriving the expression of the macroscopic
second-order yolarizability one has to obtain the
expression of the total polarization of frequency
co~+ M2. This 1s

P((dl+ hla) =Nn((ul y ada) [P(ldl+ &Ala}+LP((dl+(da}]

+Ãp((u„ala):[E((d, ) +L P((u, ) ][X(~2)+LP(~2)];
(3.21a)

n and P are given by the expressions (A13) and

(A14), respectively. Further, we assume that the
frequencies cog, cuq, and (op+ u)2 are far from reso-
nances. ~

Rearranging the terms in (3.21a), taking into
account that n behaves as a scalar and keeping
throughout terms up to the second order in the elec-
tric fields, one obtains

P((d, + (ra) = Nf ((d, + ld 2) n ((u, + (u 2)
' E (ld, + (ca)

~(+1) ~2) f(+1+ +2) ~(+1~ +2)f(~1)f(~2) (3»)

and the linear polarization

P' '(ur) = Nfn E(cu),

where
1

[1 -(L/f)(e -1)/411]

(3.26)

(3.27)

(e„—1}/4w = Nfn (3.26)

For a field E(Q) where « ~r, then both terms
in (A13) contribute and the corresponding total
linear macroscopic polarizability is

n = fo(eP/M &u, + n )

The macroscopic quantities of interest for us are
the second-order polarizabilities for transverse
fields. But before deriving their expressions we
shall give an interpretation of the Huang equations
for the linear polarization in terms of the present
model and, in particular, obtain the expressions of
e„, eo, sr~, and +. As it was mentioned in the be-
ginning of this section in using expressions (A13)
and (A14) the frequencies will be assumed zero or
infinity depending on whether they are larger or
smaller than the lattice frequency ~&, respective-
ly.

The expression of the linear microscopic polar-
izability per unit cell is given in Appendix A. For
a field E(&u) where &u is much higher than the lattice
resonance only the first term o. , due to the va-
lence electrons, contributes, and the linear macro-
scopic polarizability a™ is

na= fn g

where

1
1 LN ()'- (3.22)

P'1'(0) = Nfa(ez

2/Mazda+

n ) E(Q),

where

(3.29)

Formally, one has 1 ffaei'
1-NL(e~ /M&u +na) +ÃL

M 2 . (3.30)

with

P(All+ (da) =P (ldl+ (da}+ P ((dl + (da), (3. 23) After some rearrangement of the terms in (3.29)
one obtains

&Il'(~) = XI'j'(~) El(~) -=N n„(~)E,(~) p"&(n}=N-fa " +fn' E(il)= ' E(a)
M co, 4m

(3.31)
or, ta.king into account (3.28),

(~1 + ada) = Xi1a(~l& 'ada) E1(ldl) Ea(&2)

=NK12('dl ~2) Es(tdl) Ea(~2)

where n and P are the macroscopic linear and sec-
ond-order polarizabilities per unit cell. Compar-
ing (3. 23) with (3. 21b) one obtains

eo —6 ffae~ er+8 +3

43 M40s M(d

where

ef = fe~,

~$ = (f/fo)~.'

(3.32)

(3.33a)

(3.33b)

nil(~) = f(~) n&1(~), (3. 24) The last assignments are actually consistent with



1272 C. F LYTZANIS

the equation of movement of the ionic displacement
uT which is written

~ p

MuT +M(d, u T = e) [E(fl)+I P '(II)];

since

P' )((d)=NefuT +
" E((d),
4m

one gets
~ ~

))pfuT+ M((d, -NI eTez/M) uT =fePE((d)
Xzo) —-N(PE+ 2

(2' ) e &*/M(dT) . (3. s8)

arises whether this tensor is actually the same as
the one conventionally defined through the third-
order susceptibility X'". This is indeed the case
and it is shown in Appendix C.

The susceptibility corresponding to (3.36) is
actually the coefficient which describes" the linear
electro-optic effect (EO) and will be denoted by

(2)
XEp)

or
~ 0

Mur + M(druT = epE(0),

(3.34) It is convenient to write gap in the form

Xzo = Xz '(1+Cl), (s. 39)

which is identical with (2. la) if the relations (3.33a)
and (3.33b) hold. This concludes also the interpre-
tation of the Huang relations in terms of the pararn-
eters of our microscopic picture of a III-Vcom-
pound. As it can be seen from (3.34), (dT is deter-
mined by the competition of the short- and long-
range polarization forces. The latter are expressed
in terms of the effective field factor f. Lacking
any other evidence about the actual value of this
quantity in the III-V compounds we determine f as
in Ref. 8 by requiring that the value of E as cal-
culated from (3. 28) be equal to its experimental
value.

We proceed now to derive the expression of P for
the different frequency regions with respect to ~T.

(a) When (dl, (d2, and (d, + (d2 are in the transpar-
ency region above (dT then f((d;) = f and from (814),
P= P; the second-order macroscopic polarizability

ls

&z =f'Ps

and the corresponding susceptibility

~(2) ~f 2pz (s. s5)

which is the expression obtained in Ref. 8. This
quantity des cribes the second-harmonic generation
and the frequency mixing in the transparency region
of the crystal.

(b) When (d„(d, +(d2&(dT &(d2 then from (A14),
p= p +ep(2'"/2M(d„and denoting by pzo the cor-
responding 'macroscopic polarizability one has
from (3. 25)

where

Cl ——(2( ' eg/2pzM(dT (s. 40)

p f (ps~ p ~tu
pp p ~k~(1) er

(s. 41)
which is identical to (3. 36). This coefficient is
closely related to the optical rectification (OR)
coefficient g'" which indeed is equal to Xmp as
can be expected by the generalized symmetry rela-
tions' of X,",.„'(~„~2).

(c) Consider now the case (dip (d2&(dT & (dl+ (d2 p

then from (814) and (3.25)

2M 2M
z 1 es (1) 1 es (1)

2M+, 2 M(t),

or

(2) es es
M(d M(dS 8

1 -(1) eT 1 ™(1)eT
~M' PE+2+ M~+2+ M 2

MuT M CuT

(3.42a)

measures the ratio of the lattice-induced contribu-
tion over the purely electronic contribution in pEp.

The relation between this coefficient and the con-
ventional electro-optic coefficient r,» which mea-
sures" the change of the dielectric constant c
caused by a static electric field is

T= -(4z/~')Xzo .
Similarly, one can treat the case where ~1, —~~

&(dT, but (d, +(d2«d» denoting by p» the corre-
sponding polarizability one has from (814) and

(s. 25)

or, after some rearrangement of the terms in the
last expression and use of (3.30), one gets

~EO p z+ 2 + eT/M~T1 (1) g 2

where

~(1) f2((2(l) + 2~I e pc pz)

(3. s6)

(3.3'7)

is the macroscopic Haman polarizability tensor~ of
a unit cell for transverse phonons. The question

1 -(a) eT eT
M M coT (dT

where

p =[p i+NLe+d( )+XI eT"(2p NI eT*+(2 ')p
(3.43)

is the macroscopic coefficient of the lattice second-
order dipole moment.

(d) Finally, we consider the case of (dl, (d2, (dl

+(d2&(dT. One obtains from (3.25) and (813) after
some reshuffling of the terms
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1 (1) eT 1 (1) eT 1 ™(1)e T 1 (g) eT eTfH'' ~2+2+
M

2+2+
M 2+Y+

M 2+2' M 2 M 2
MCOT MeT MCOT MCOT M(dT

1 (2) T T + (2) eT eT 1 ( ) eT T T (3 42+ 2W M~2 M~2 + Y ~ M~2 M~2 Y 0 M~2 M~2 M~2(dT COT (d T COT (d T CENT

where

NL-ef p,
' ' NL-ef(p, ' '+NLeg(2'" )

NL-eflux'2'+NLepc('
'+NLep(& '+ 2NLef p )]"f. (3.44)

In analogy with (S.40) it is convenient to intro-
duce also the quantities

(3.46a)

j(3& g )3
2 PH M(dT j

(3.46b)

The susceptibilities corresponding to (3.42a) and
(3.42b) can then be written

X'„' = X2 '(1 + 2C1+ C2),

X„).= XH '(1+SC1+SC2+C3),

(3.46a)

(3.46b)

XH'( 1) 2) 1 D( )+D( ) +g)( )
XH

(3.48a)
1 1

'(D(~i)&( 8 &( i+~,)&(~ )

+
( ) ( g

XH (3, 48b)(a)

1
N ( 1) 2) 3 D((d )g)(~ )D(~ (d ) E

respectively. These two coefficients describe two
different cases of frequency mixing in the infrared.
However, due to the finite linewidth of the phonons
it is experimentally difficult to measure the first
one.

This concludes the derivation of the expression
of the macroscopic second-order polarizability in
the different regions of the infrared spectrum of the
crystal.

The expressions for X' ' derived above are only
valid for frequencies ~&,

'

~2, and co&+~2not in the
neighborhood of coT. The actual frequency-depen-
dent expression of X'2)((()1, (d2) can be obtained most
conveniently using the semiclassical approach out-
lined in Appendix D. Introducing also phonon damp-
ing one obtains

X (~» (d2)=XH +XH (&1, &2)+XH"(~» (d2)

+XN (())1) ())2) ) (3 47)

where the different terms are

and I is a phenomenological phonon relaxation
time. For frequencies far from ~T it is easily
verified that this expression of X' ' reduces to the
different frequency-independent expressions derived
previously.

The two mechanisms that are responsible for the
contributions (3.48b) and (3.48c) in X' ), namely,
the phonon interaction through the second-order
lattice dipole moment and through the anharmonic
potential, respectively, also determine the phonon
relaxation time 7 = I' ' and the energy loss per unity
time &ue" (u&) in the infrared in these crystals. The
infrared spectra of these crystals besides the broad
main absorption peak at the fundamental frequency
~T also show somewhat weaker two-phonon absorp-
tion peaks corresponding to the different combina-
tion frequencies at the critical points of the optic
and acoustic modes. The broadening of the main
peak, as measured by I', is caused3 by the (I)(3)

me chanism but the origin of the two -phonon side-
bands, below and above ~T, is due to both the p.

' '

and the (t)'" mechanism and the total energy losS is
most conveniently expressed' in terms of ~& (&u),

where 2 (&u) is the imaginary part of the linear di-
electric constant. The two pertinent quantities I
and (da ((d) are actually frequency and temperature
dependent and formal expressions for the case of
cubic crystals have been derived by different au-
thors ' with different assumptions. The most
detailed analysis is the one presented by Szigeti. "
This author uses perturbation theory to derive the
expression for &ue (&u). The final expression con-
tains thermal averages and summations over the
whole Brillouin zone and over all phonon branches.
His treatment is in principle only valid for frequen-
cies not in the immediate neighborhood of coT. Fur-
ther, the theory has to be reconsidered36 for the
covalent crystals like the III-V compounds studied
here. However, for a qualitative discussion we
reproduce here the expression of &ue ((d) derived in
Ref. 33. In the high-temperature limit, above the
Debye temperature, one has

(ue" ((u) d(d = 2 3p,
(2)—

36v M &uT —&u2

with

D((d() =1 —(u, j(uT)2-3(O(r/(JT2,

(S.48c)

MN ~ 3 49)
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where the summation goes over all the pairs of the
phonon branches, v and ~ in the k space such that
(u, + &u, , or ~, —~,. lie in the interval (&, (u+d~);
T stands for the transverse-optic mode at 4™0
while P~2' and /~2' are the appropriate second-or-
der dipole moment and anharmonic potential coef-
ficients, respectively.

Taking into account (3.45a) and (3.45b) the quan-
tity inside the curly brackets in (3.49) is essential-
ly -3C2+ C2 which as it can be seen from (3.48a)
and (3.48b) also determines g„'2'. +g'„@. Hence the
knowledge of the latter quantity will allow one to
determine which mechanism is the dominant one in
(3.49). In particular, it is easy to see from
(3.48a), (3.48b), and (3.49) that both gH A+ y „'~ and
~e (~) will vanish for a frequency either above or
below &uz, depending upon whether P 'eg/M&ur p.

' '

&0 or &0, respectively. However, there is a fun-
damental difference between-the two quantities in
that while in (3.48a) and (3.48b) strictly long-wave-
length infrared-active modes come into play this is
not the case for the quantity cue (&u) where phonons
in different branches (optic and acoustic) and points
of the Brillouin zone contribute the only restrictions
being the wave-vector and energy-conservation and
the crystal-symmetry requirements. In fact the
occurrence of the critical points is crucial in the
case of &oe (~) and accounts for the familiar sub-
structure of the infrared-absorption profile while
these critical points are irrelevant in g' '. From
(3.49) one can also obtain the integrated infrared
absorption coefficient

2
I

g (cu)ir-
W CO

(s. 5o)

a dimensionless quantity.
Because of the presence of the resonant term

(~r - &u ) in (3.49), the anharmonic potential is
the dominant mechanism near ~& and determines
the broadening of the main peak at ~&. Here we
shall only give a rough estimate of the broadening—
parameter 1" using Mitskevich's expression. "
There it is shown that the complex dielectric con-
stant of h cubic crystal has the following form:

e((u)= s((u) i+a "(~)=~ (&)+g2' g2 .", , Il2,

where 02 = ~r, 0„=&or+ &(&u), and &(&u) is a fre-
quency-independent shift, and

var
M(d z

where 82(&u) is a dimensionless frequency-dependent
form factor which contains summations over the 0
space and over the phonon branches. Replacing the
different quantities in 82(&u) by averages over the
Brillouin zone, for the case of the zinc-blende
structure one obtains the following expression for

war( "')' (s. 51)

After rearranging the terms one obtains

f(~i+~2)-
PL((dg+(d2) =N, n ((dg+ (u2) E((u~+(d2)

E((dy+ (d2

(s. 52)
where f(~,)/e(~, ) is either f/e„or f2/e2 depending
on whether (d, & (d& or ~, &~~, respectively. For-
mally one has

PL((u, + u) 2) = PL"((u, + (u2) + PL"(&u, + (u2), (3.53)

where 8 is a quantity of the order of unity.
In view of the uncertainties concerning the actual

temperature and frequency dependence of the differ-
ent quantities the numerical use of (3.51) is bound

to be only an order-of-magnitude estimation of I .
A detailed study of phonon relaxation in covalent
crystals will be given elsewhere. '

C. Macroscopic Longitudinal Polarizabilities

The previously derived expressions for P actually
refer to transverse yolarization. One can analo-
gously define the corresponding quantities referring
to the longitudinal polarization. We shall discuss
explicitly only two cases, but before doing so for
the nonlinear polarization we consider the linear
longitudinal polarization and derive the expressions
of the corresponding linear macroscopic polariza-
bilities. The microscopic yolarizabilities pre-
viously defined are actually independent on whether
the fields are longitudinal or transverse; the
macroscopic polarizabilities, on the other hand,
have different expressions for the two polariza-
tions. ' ' ' This is due to the macroscopic field
—4zPI, that is present when the polarization is
longitudinal, while it is absent when the polariza-
tion is transverse. The derivation of the expres-
sion of the longitudinal yolarization mill proceed
as in the case of the transverse polarization with
the additional inclusion of the macroscopic field
-4m'&. %'e shall consider only the case where all
fields are longitudinal and the corresponding quan-
tities will be distinguished with the subscript L .

Following the pattern of Sec. III B, the total lon-
gitudinal polarization at the frequency ~, + ~~ is the
sum of all unit-cell dipoles induced in a unit volume
or

L( 1+ 2) ( 1+ 2)'I E(+1++2) +~PL( 1+ 2)

,-42PL((u, + (u2)] + NP(&g, &2): [E((u,)+I.PL((o,)

-4 P ( )]IE( )+~P ( )-4 P ( )]
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where

P", L(u)) = Nu „L((d)E,((u),

PL (~1+~2) +PI(&.1+ +2) E(+I) (+2)y

(s. 54)

(s. 55)

where uI, and pI, are the linear and second-order
macroscopic longitudinal polarizabilities, respec-
tively. Comparing (3.53) with (3.52), one has

u1I, L(~) = IA~')I&(~)]u;I(~), (s. 56)

f(~1+~d
@ „)f(~1) f(~2)

&((O, + &u2) — " ' a((u, ) e(~2)
(s. 57)

We consider first the linear polarizability. For
&u well above &uL, u(Id)= u and consequently

Raman tensor coefficient for longitudinal phonons

-(1.) -(1) &O

Cq
(3. 62)

+piIL"& ', ', , (3. 64a)
M&L M&L

and C1 is the quantity defined by (3.38). Expression
(S. 61) simplifies further and can be written

PEo L = (I/&o &'.) P~(I + C1) = (I/&o~-') P Eo (3 63)

(c) For the third case, the one corresponding to
(3.42a), one obtains

1 1 a," eL+ 1 aL eL+

uI. =(f/& )u = uE, I,
'~-

For (u, &(uL, u((u)=uE+u" and

(s. 58) where
2 ~Hl- (2) - (2) 4 g% +(j ~~ ~C ~o

)
uI, = eL /M(VL+ uE, Ly (s. 59)

where e~L =ef/e„and ~L = (e2/c„)&or; the last rela-
tion is the Lyddane-Sachs- Teller relation" for the
linear case.

The expressions (3.58) and (S.59) are the lon-
gitudinal counterpart to (3. 21) and (3.26), respec-
tively. In a similar way one derives the second-
order longitudinal polarizabilities corresponding to
the different cases of transverse polarization (3.32),
(3. 34), etc. Here we consider explicitly only the
two cases that correspond to (3.32) and (3.34), re
spectively; for the other two we only give the re-
sults.

(a) In the first case where only the electrons con-
tribute one has

Expression (S.64a) also simpbfies to
(s. 65)

] '' e* 1 aL" eL* 1 G")
MRL 2 t MIdL 2 E M(dL

(2) eg 8 g 1 p
(2)

2 q„M(dL M(t)L 2 q„MOrL MWL

1 &ILL
' eI EL 1 (3& eI* eI eI

+ 2 2 I 2 2 22 t M(d I M(dL 2 M(OL M&dL M(dL

P&I I=(1/&-. &1&) PE(1 +2C1+ C2) = (I/~-~»)PN ~

(s. 66)
(d) Finally for the fourth case, one has

&L -=&E, I, = (I/&.)'P', (s. 60)

which defines formally the second-order longitudinal
electronic polarizability PE L.

(b) Similarly for the second case where P= P
+ 2 (ez~/M&d, )u' ' one has from (3. 57)

P =—P = —~ —P + — uf f f E 1 eI*, (1&f
Eo, L ~ q q 2 ~ 2

or since

where

C — C-' =go 1-s" '-~C.S(" '- ~C

EC2 '( t C2

t'E'o —E'

C3

Expression (3.64b) can also be written

(3. 64b)

(s. 67)

L e+2
=—+ 4m' —-1

6o 4P M CuL

i...=
~,
—')'I..4.~(,—)*(,—' i)' *, p*

+ —— nf ~' EL

and using (3.27) one obtains finally

l 1 - 1 eL -(x) 1
~so I I~ PE+2M 2 uL y (3.61)

which, in analogy to (S. 36), defines the macroscopic

PE ~, L =(I/~2) PE(1+SC1+SC2+C)=(1/~O)PE" ~

(3. 68)
In general as it can be inferred from the previous
derivations of (3.60), (3. 63), (3.66), and (3.68)
the relations between the longitudinal and trans-
verse polarizabilities can be simply expressed in
terms of purely macroscopic coefficients.

Expressions (3.62), (3.65), (3. 67), and similar
ones are the generalizations of (2. 05) and (2.07)
and can be considered as the Lyddane-Sachs-Teller
relations for the nonjinear case. Here they are
derived for the long-wavelength region (k= 0); their
generalization for k 4 0 is given in Ref. 36. These
relations determine the relative intensities of the
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different tmo-phonon sidebands in the infrared ab-
sorption spectra in these crystals as described by
(3.48).

In the case of the nonlinear polarization one can
also have mixed transverse-longitudinal second-
order yolarizabilities. Their expressions which
will not be given here can be easily derived along
the lines of the procedure already followed to de-
rive the expressions or the purely longitudinal
polarizabilities. Their relationship to the latter
quantities and the transverse ones can be ex-
pressed in terms of purely macroscopic quantities.

One can also derive the frequency behavior of
these longitudinal and longitudinal-transverse sec-
ond-order susceptibilities. The equation-of-mo-
tion approach (see Appendix D) used previously to
derive the frequency behavior of the transverse
susceptibilities [expressions (3.4V) and (3.48a)-
(3.48c)J can be extended to apply for longitudinal
fields as mell. One only needs to introduce the
additional electric field —4&P~ and replace E by
E —4&P~ whenever necessary; otherwise the meth-
od is the same as for the case of transverse fields.
The expressions will not be reproduced. In analo-
gy to (3.4V) all these susceptibilities can be written
in the form

(3) r & (2) C)
Xpp'p' ' ((( 1) +2) Xpp'p' ', E+ Xpp'p' ~, 8' (&1 r &2)

(2) ( i (2)+ Xpp' p' ~ H" (~) ~ &2 I + Xpp p ~, r))(~1 ~ (d a ) ~

where p, p', and p" stand for T or L and the dif-
ferent y~~,'~„,. are given by expressions of the form
(3.48a)-(3. 48c) with the transverse quantities re-
placed by the appropriate ones whenever necessary.
In particular the purely transverse and longitudinal
susceptibilities previously considered are re-
covered simply by taking p =p' =p" = T and p = p'
=p" = L, respectively. Here we stress only the
fact that the purely longitudinal susceptibilities thus
obtained will disperse with the frequency &I, in-
stead of wr [compare (D4) with (D5)]; the mixed
transverse-longitudinal ones, on the other hand,
will show both types of frequency behavior.

The complete class of the purely transverse,
purely longitudinal, and mixed transverse-longi-
tudinal second-order susceptibilities considered
here are the 1imiting values on the different branch-
es of the polariton curve of a generalized second-
order susceptibility where time retardation is ex-
plicitly taken into account. In the present work
these limiting expressions were obtained by the
explicit introduction of the additional field —4''~
for the longitudinal fields which is a consequence
of Maxwell's equations. 4 Clearly an alternative and
more complete approach is to simultaneously con-
sider the Marvell equations and the equation of
motion of the phonon mode with nonlinear terms
explicitly included.

In this section we present the numerical calcula-
tion of the susceptibilities in terms of the primary
quantities of the system, namely, the coefficients
n P o.'" p'" p,

s' ~ and P's'. The calcu-
lation of n and p~ in terms of the corresponding
bond polarizabilities ()(„, p„and p„, p„respec-
tively, was extensively discussed in Ref. 8.
There, using the variational perturbation technique
as proposed by Dalgarno and Lewis3~ and by
Schmartz, ' it was shown that the linear and sec-
ond-order bond polarizabilities are given by

—4e (y(0)
1
eF1 y(0) )

II

(4. la)

n, =4e
S

(g(0)
1
xF1(I)s) ),

82

P = 3e,Sa (0' '1 ~~F
I (I

' '),
II

82
p, =2e,S,S (g 'IFxFly' ')

(4. lb)

(4. 2a)

82
+e,S.&s")lF ~FIC")&. (4. »)

Here account was taken of the fact that there are
two electrons per bond; z = z —((I)( ) Iz I(I) ') and F
satisfies the differential equation

v[ p(r)vF] = (2m/m') (H'-
&t

"'I H'I y"'
&) p(~),

(4. 3)
or, equivalently, it minimizes the functional

«F) = &C")1»(H'-&q(0) IHI y(o)
&

—(K /2m)vFvF I
(C) & (4 4)

where H' = —exS, —ezS „and (S„0 S
~
) is the uni-

form electric field 8 expressed in the bond coor-
dinate system; p(r) =P( )(r)(I)( )(r) is the ground-
state electronic density.

The crucial point of this technique is that it
shows that the bond polarizabilities are uniquely
determined by the electronic ground-state density
distribution. In Ref. 8, the values of the bond po-
larizabilities were obtained only for the equilib-
rium internuclear distance Ao. This same tech-
nique, however, can be used to calculate the polar-
izabilities for different internuclear distances R
and obtain n„(R) and ()(,(R) as functions of R. For
small changes gB of Si', around the equilibrium val-

For very low frequencies a further complication
occurs, namely, the different macroscopic polariz-
abilities are shape dependent. Although this also
can be treated straightforwardly, as in the linear
case, we do not give further attention to this prob-
lem. A very careful discussion of this question
for the linear case can be found in Szigeti's paper. '

IV. CALCULATION AND RESULTS
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ue Ro one can then develop a(R) in powers of BR
=R —Ro, and obtain

a, (R)=a + BR+ ~ ~ ~
9 G()

II j.

8Gg
a„(R)= a, + BR+ ~ ~ .

BR

or using the explicit expression of a(R),

=6. 5 for all the compounds considered. The main
contribution comes from the short-range poten-
tial. To the long-range contribution, only inter-
actions of one atom with its four nearest neighbors
are important; in fact the contributions of succes-
sive layers of more distant atoms have alternate
signs and cancel each other to some extent.
Neglecting then in (3.19) tl™contributions from in-
teractions of an atom with more distant atoms
than nearest neighbors and making use of (2. 19)
and (2. 18) one obtains

'=4e
g ()C "'(R)

~
xZ~ g &0)(R) ), (4. sb) N) 4 B $ 3 (1 B&t) B $

393 BR R&) ),Ro BR BRO

where g &0)(R) is the bond wave function for an in-
ternuclear distance R. The microscopic Baman
tensor a"' is then calculated from (3.4).

Similarly, the electronic bond dipole moment
for an internuclear distance R, defined by

f (R) =2e (&I ")(R)~z~q")(R)), (4.6)

can be calculated for different R and then its de-
rivatives can be obtained from a Taylor expansion

p(R) =P, +-,„BR+-,„,(BR)'+ ~ ~ ~ .

From the values of these derivatives of p the unit-
cell dipole moments p, "'=-ez and p,

' can be cal-
culated from (3.15) and (3.16), respectively.

The quantities a„(R), a, (R), and p(R) were cal-
culated for nine different values of R around the
equilibrium distance Ro and subsequently their de-
rivatives were obtained by polynomial fitting pro-
cedure. For the calculation of a„(R) and a, (R) the
variational procedure as described in Ref. 8 was
performed for every value of R; only trial func-
tions of F with (4, 4}parameters were used which
were determined by requiring that the functional
(4.4) be a minimum. The values of a and pe were
obtained from the values of a„, a„p„, and p, as
calculated in Bef. 8 with the same trial functions.

The wave functions of the form (2. 15) were used
where the R dependence was introduced into the
coefficients g and X as specified in expressions
(2. 16a), (2. 16b), and (2. 1V). No attempt was
made to obtain the R dependence of the coefficients
by repeating the LCAO-MO calculations of Coul-
son, Rddei, and Stocker' for every distance R.
For the equilibrium configuration the same values
for g, were used as in the calculation of Bef. 8.

Once the values of the derivatives of a„(R) and

a,(R) were obtained the corresponding unit-cell
coefficient a"' was calculated from (3.4).

Finally, the coefficients &t)
N' and &t)

o' of the lat-
tice potential were estimated. &t)

&~) or equivalently

w, was actually calculated from the experimental
values of the compressibility & using the relation
(3.18); &t)

+) was calculated from (3.19) where R/p

—,+—-+—/1- S
4 1 3 '1 1 ( n&)l

3V 3 p Ro p R&) ( a)&j p

(4. Va)

or using (2. 21b) one obtains

y
&S)

16 (I/p + (3/Ro)[1/p+ (1/Ro)(1 —5 no/ae)] 1

(1/Ro) (1/p —1/RD)

(4. Vb)

The sign of Q
& ) was found positive while that of

&t)
&~) was found negative. This is due to the fact

that both quantities are determined by the short-
range repulsive part of the potential (2. 18). As it
was mentioned previously in adopting this form
for the potential we have not taken into account ex-
plicitly intermediate-range electrostatic forces.
If such forces were included the simple relations
(3.18) and (4. Vb) would no longer hold. Due to the
complex form of these forces it is difficult to as-
certain their influence on the behavior of &t)

& ) and

However, even if such forces were explicit-
ly included one may assume that to a good approxi-
mation the potential can again be separated into
two monotonic functions of R, one increasing (at-
tractive) and the other decreasing (repulsive) with

R. Since Q' ' arises from energy changes it will
be dominated by the most rapidly changing part of
the potential and this is more likely to be the short-
er-range repulsive part of the potential. As a
matter of fact although the attractive part will give

by far the largest contribution to the cohesive en-
ergy (2. 13) the first derivatives of the two parts
must cancel each other, as it is required by the
equilibrium condition, and &t)

&') = M&o, must be posi-
tive reflecting the fact that the repulsive part
changes more rapidly with distance than the attrac-
tive part; one may expect that the same trend will
be followed by the third-order derivative. Hence
&t)

' ' will be negative. It is to be noted that this is
a fortiori true if the repulsive short-range forces
were represented by a R" law.

Once the microscopic unit-cell quantities were
calculated the corresponding macroscopic fre-
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TABLE I. Infrared and lattice data of III-V cubic
compound 8 ~

a b
COZ'

Compound (A) (cm ) (esu) e„' eo'
10i2 ~b

(barye «)

InSb
InAs
InP
GaSb
GaAs
GaP
Alsb

6.48 185
6.09 219
5.87 304
6.09 231
5.63 269
5.45 367
6.14 319

2.5
2.6
2.5
1.8
2.2
2.0
1.9

15.68
11.80
9.61

14.44
11.10
8.46
9.88

17.88
14.55
12.61
15.69
13O 13
10.18
11 21

2.132
1.727
1.45 ~

1.855
1.337
1.12
1.694

~G. Gieseche, in Semicondu, ctors and Semimetals,
edited by R. K. Willardson and A. C. Beer (Academic,
New York, 1966), Vol. 2, p. 63.

S. Mitra, in Optical Properties of Solids, edited by
L. Nudelman and S. Mitra (Plenum, New York, 1969),
p. 333.

M. Haas, in Ref. a.
F. S. Hickernell and W. R. Gayton, J. Appl. Phys.

37, 462 (1966); the compressibility value was calculated
from the measured values of the elastic constants given
in this reference.

'R. Weil and W. O. Groves, J. Appl. Phys. ~39 4049
(1968).

quency co~, effective charge e~ and susceptibilities
were calculated from (3.33a), (3.33b), (3.39),
(3.46a), and (3.46b) where the value of the local-
field factor f was obtained as in Ref. 8, namely,
by requiring that e„calculated from (3. 28) will be
equal to its experimental value; the same values
of f obtained in Ref. 8 with the (4, 4}parameter
trial functions were used here too.

The values of the partial susceptibilities yH, ',

XH. ', , and y~@' or rather the ratios C» C3, and C3

are displayed in Table II along with the existing
experimental values. Although the signs of g' ' re-
quire to specify the axes conventions, the signs of
the ratios C, on the other hand, as it can be seen
from their definitions, are meaningful irrespective
of the conventions. The values of y~' as calcu-
lated in Ref. 8 with the (4.4) parameter trial func-
tions and the axes conventions of Fig. 1, the same
as in Ref. 8, were used throughout the calculation.

In Table III, we display for reference the calcu-
lated values of the effective charge e~, and the lat-
tice infrared frequency w~ which were used for the
calculation of the macroscopic susceptibilities y' '

and the ratios C, . In the same table we include for
comparison the values of qo —q„, the lattice con-
tribution to the linear dielectric constant qo. The
sign of e&*, the microscopic effective charge, and
consequently that of e~, was found negative with the
adopted conventions of Fig. 1; this amounts to
saying that during the displacements of the ions
according to the electric-field-induced optic mode
the static field sees a negative charge on ion III
and a positive charge on ion V or equivalently a
III-V bond is elongated when a static field is di-
rected from atom III to atom V of the bond.

In Table IV, we give the calculated values of the
macroscopic Raman tensor n"' for all the com-
pounds considered along with the existing experi-
mental values. For all the crystals this quantity
was found positive. A calculation of n"' was also
performed using the Unsold approximation as de-
scribed in Ref. 8. These values of n"' were
roughly equal to the values obtained with the (4, 4)

TABLE II. Lattice-induced contributions to the second-order susceptibilities of III-U cubic compounds.

Compound

InSb
InAs
InP

Gasbb

—0.66
—0.28
—0.14
—2.00
(-0.28)
—0.83

—0.37

Alsb" —l.97

Calc.
C2

0.06
'0.08
0.09
0.19
(0.03)
0.14

0.11

0.35

C3

—0.03
—0.03
—0.03
—0.09
(-0.01)
—0.07

—0.05

—0.11

3C, +C,

0.15
0.22
0.23
0.48
(0.08)
0.35

0.27

0.93

Expt.

—0 59 —0.51, —0.68

—0.53, —0.75~

1.15
0.39
0.92
0.28

See Ref. 43. The values of 3C2+C3 were extracted from the measured values of Xz given in this reference by using
the values of C& given in Ref. 42 (GaAs) and Ref. 10 (GaP) and the measured values of y+~ given in.Ref. 43. Since the sign of y&&

,is not known two values of 3C&+ C3 are obtained; the upper value corresponds to assuming Xz & 0 and the lower value to ~ ' &0.
"See Text. The values of the C& for GaSb inside the parentheses were obtained by using the experimental values of e~

(Tables I and III) and X& I,ef. 45, Xz ~=30' 10 esu for GaSb).
cSee Ref 4
~See Ref. 41.
'See Ref. 43; this value of C& was obtained from the measured values of rz2~ and Xz2o~ and the relation C& = (Xzo —r@ )/

(2)
XE

See Ref. 10.
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TABLE III. Calculated effective charges and infrared
lattice frequencies of III-V cubic compounds.

Calc. Expt. ~
gbez (dZ e~ co~

Compound (esu) (cm ) &0-q„(esu) (cm )

InSb
InAs
InP
GaSb
Gai
AlSb

-3.1 175
20 7 217

—2. 2 325
-2.6 213
-2.0 382
—1.6 328

3.83 2.5 185
3.01 2.6 219
1.89 2.5 304
3.00 1.8 231
1.55 2.0 367
0.92 1.9 319

2. 20
2.75
3.00
1.25
1.74
1.33

~See Table I.
"For the sign of e~ see text.
Only the absolute value of ez* is measured experimen-

tally.

parameter variational functions, but since the Un-
sold approximation underestimates p by almost
an order of magnitude, the resulting value of C&

was less than —1; hence a negative value for the
total electro-optic coefficient yE~oI

= g~N'(1+ C,).
In Table V, we give the values of p,

s' and Q
' '.

With the axis conventions of Fig. 1 the sign of
JIJ.

' ' was found positive for all compounds consid-
ered, the same sign as its microscopic counter-
pa.rt g'. The sign of &f&@' was found negative,
the same sign as its microscopic counterpart P'~'.
As it can be seen from (3.43) and (3.45) besides
p,

' ' and Pi', both Ps' and &f&', respectively, con-
tain contributions which have their origin to polar-
ization effects.

It is clear from (3.47) that y'2' and yH2', + ~N' will
vanish for some frequencies whose values with
respect to &~ will be determined by the signs of
C~3 as one can see from TaMe II the C, 's alternate

in sign. These frequencies where y' ' vanishes
are simply obtained by solving algebraic equations
of order not higher than third whose coefficients
are simple expressions of the C,'s. Accordingly,
their roots will be expressed in terms of the C,'s.
The relations (3.62), (S. 65), (3.67), and similar
ones, then, can be reexpressed in terms of these
roots. This is analogous to the alternative way of
deriving the Lyddane-Sachs-Teller relation in the
linear case, namely, by finding the frequency for
which & given by (2. 2a) vanishes.

In Table V, we give for comparison an estima-
tion of I' using the approximate expression (S.51)
and assuming 7= 3{jo'K. The order-of-magnitude
agreement with the existing experimental estima-
tions seems satisfactory although this does not
lead one to any conclusions concerning the adequacy
of this simple model; in fact I' is frequency and
temperature dependent. Further, since ega~'/
M&u~~p.

s' &0 expression (3. 52) vanishes for a value
of Q7 & Q)z ~

Taking into account the relationship that exists
between yHNA + y~+' and arg" (+), we conclude from
the calculated values of C& and Cs that the two-
phonon sidebands in the infrared spectra of the
III-V compounds arise mainly through the second-
order dipole moment. In the pa,st quantitative ar-
guments were given34 supporting the assumption that
the third-order potential is the dominant mecha-
nism in the III-V compounds and in particular in
GaP. This was based on the fact that in Si the in-
tegrated absorption coefficient in the infrared,
which, as it can be seen from (S. 50) with er*=0, is
due to the second-order dipole moment only, is by
at least an order of magnitude smaller than in
GaP, where both P ' and Q

o' contribute, and on
the assumption that the same p™@)processes con-

TABLE IV. Calculated Raman tensors for III-V cubic
compounds ~

TABLE V. Calculated optic-phonon interaction and
damping coefficients of the III-V cubic compounds.

Compound

InSb
InAs
InP
GaSb
GaAs
GaP
Alsb

Calc.
10 o

(cm2)

206
84
41

169
84
43
77

Expt.
10"n")

(cm2)

61 a53 b73 c31d
40 3p

InSb
InAs
InP
GaSb
GaAs
GaP
AlSb

-4.5
—7 5

—13.5
—7.8

—12
—21
—15

10-12 p(3)

Compound (erg/cms)

Calc.
1p p(2) a

(esu/cm)

1.40
2.48
2.89
1.66
1.77
2.33
2.50

F/COz

(3oo'K)

P. 002
0, 004
0, 009
0. 004
P. 005
0. 013
0. 016

Expt. '
I'/+& (temp)

0.007 ' (helium)
0.007 c (helium)
P.04' (room)
0.007 ' (helium)
p. 007 (helium)
O. 01 ~ (room)
p. 02 c (room)

Value obtained from the measured values of Xz and

XEo of Ref. 43 and the infrared data (Table I).
'Value obtained from the measured values of Xz (Ref.

43) and C& (Ref. 42) and the infrared data (Table I).
'Value obtained from the measured values of Xz Qef.

45) and C& (Ref. 42) and the infrared data (Table I).
~See Ref. 41.
Value obtained from the measured values of g'@ (Ref.

43) and C~ (Ref. 10) and the infrared data (Table I).

The axis conventions of Fig. 1 are used.
"No direct measurement of I' exists for any of the

studied compounds. The values given below were obtained
by fitting the experimental results of reflectivity with an
expression of the type (3.49).

M. Haas and B. W. Henvis, J. Phys. Chem. Solids
23 1099 (1962).

~See Ref. 10.
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tribute in GaP as well as in Si since both crystals
have tetrahedral symmetry. The latter, however,
is not the case. In the calculation of p,

' ' per-
formed above for the GI-V compounds the bonds
were assumed to possess axial symmetry; hence
the electronic bond dipole moment y was taken to
have only an axial component p along the z-bond
axis or p= (0, 0, p) and the nonaxial (transverse)
components were neglected. For an homopolar
bond like the Si-Si bond in Si, however, the axial
component p and its derivatives vanish identically
and a nonzero p,

( ' will be obtained only if the non-
axial components are also taken into account. The
nonaxial components contribute roughly by the same
amount a1so in GaP but with a different order of
magnitude than the axial components; the former
aiise from three-body interactions while the latter
arise from two-body nearest-neighbors interaction.
The fact that experimentally one finds much small-
er values for a„ in Si than in GaP indicates that
this is the case and that the former are almost by
an order of magnitude smaller than the latter and
can be disregarded in a first approximation.
Clearly, the nonaxiality of the bonds is related to
the noncentral forces. The above discussion then
indicates that the short-range noncentral forces
contribute in the long-wavelength optic modes al-
most by an order of magnitude less than short-
range central forces.

V. EFFECTIVE-BOND MODEL

The previous calculation shows that in the final
analysis it is primarily the knowledge of some ma-
trix elements and of their dependence on some few
structural parameters that is required to calculate

In order to exhibit this in a simpler but only
qualitative way it is of some interest to consider
the g-function-bond model. ' A short account of

the model is given in Appendix E. This model can
be solved exactly and the expressions of & and P
can be obtained in explicit form; here we shall use
the expressions of these quantities obtained by the
Unsold approximation; they are given in Appendix
E along with the moments (z" ) of the electronic
density distribution of the bond. For the potential
we adopt Lippincott's prescriptions (see Appendix
E). Although the model is unidimensional, for our
purposes this is not a serious drawback since, as
we have seen, as far as the nonlinear properties
are concerned the bonds of the III-V compounds
behave as unidimensional. It is sufficient then to
derive the expressions of the quantities ep, sp/BR,
s'p/aR, so/sR, and s'p/eR since they complete-
ly determine the second-order yo1.arizability per
unit cell and consequently y' '. In this qualitative
discussion we disregard local-field corrections.

Differentiating (E1)-(ES)and keeping terms up to
e '"o (cRO&1) one obtains

28c () ) cg 1 —P' -2'=C = —
2 e

8& e ao p,

(2) 2C g 1 ~ -2czo
2 2 2

8A e ao

8X (g) 1 —p= —c e
8R 2p

2
~(2) 2 2

—JI" -ceo
8R 2p,

2czo

The first two are analogous to (2. 16) while the fol-
lowing two are analogous to (2. 1V). Using now the
explicit expressions of p, u, and P given by (E5),
(E6), and (E9), respectively, one obtains succes-
sively

~=-e & (1 —x')+cR(1 —Z') " — ~+2(1+cR,) e-~"0 +cR, - e-' 0 ~—
8A e p, c 2p, 2p,

(5. 1)

8P f ~ 1
N

1 ~2 N 1 W 1 W 41 ~ 1
(5. 2)

Ba g Bz 2 N 4', N,
~)+

8A e ao CAo c 3 c
4cA 1 —p, N iV2

3 2P C C

(5.8)

8 (f& 2nD,
sR Ro

while from (E8) and (5. 1) one obtains

ey*= (z~- l)q — ( „1)q+sR
B A

(5.4)

(5. 5)

As it can be seen from (E7), (5. 2), and (5.3),
ps, eo/sR, and s p/sR are positive while 83$/sR
is negative. This is in qualitative agreement with
the results obtained previously through the de-
tailed orbital description of the bonds. By prop-
er choice of the parameters one can obtain numeri-
cal values from the above expressions. s This will
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not be pursued any further.
This simple g-function-bond model illustrates

in particular the transition from the orbital de-
scription of the bonds adopted here to the effective-
bond model defined through the moments of the
electronic density distribution; these later can be
fitted, for instance, from experimental data. Such
a phenomenological description of the bonding in
III-V and II-VI compounds has been presented by
Phillips and van Vechten and has been used3 for
the calculation of p~. To extend this approach to
calculate the additional contributions required in
the infrared dispersion, one must introduce as-
sumptions concerning the change with intrabond
distance of the different parameters of the model.
The main difficulty arises in finding an expression
of p, the bond electronic dipole moment, in terms
of the parameters of the model and in calculating
the derivatives sp/sR and & pj&R~. Clearly, this
quantity must vanish for the two limiting cases of
zero (united atoms) and infinite interatomic separa-
tion. A plausible assumption is to take p- RC»,
where C» is a measure of the charge transfer
that takes place within a bond. "'3' After some
simple approximations, this can be written

where g ~ is a Fermi-Thomas screening length;
p can be determined by fitting e&, as given by
(3.33a) and (3. 15), to the experimental values with
the additional assumption that f=1. On the other
hand, the expression (2. 18) of the lattice potential
or a similar one can still be used. Such an ap-
proach can be used for both III-V and II-VI com-
pounds of zinc blende as well as wurzite structure.
The numerical application of this approach will
not be given here.

VI. DISCUSSION

A. Comparison with Experiment

Experimental determination of the second-order
partial susceptibilities yH~, ', yH. ', , and y~' is still
very scarce. This is in contrast to what the situa-
tion is for the purely electronic contribution y~'
where rather accurate experimental values exist
for a fairly large class of materials. Since the
pure electronic contribution y~' is always present
in any measurement of y

~' in the infrared-fre-
quency region, it is convenient instead of the bare
partial second-order susceptibilities to consider
the ratios C„C~, and C3, respectively.

The most accurate determination of C& is the
one performed by Faust and Henry' for GaP.
These authors studied the dispersion of the second-
order susceptibility y@'(&, —il) when 0 is near the
reststrahlen frequency Q~ of this compound while
~ and w —Q are well above Q~ and they were able

to fit their experimental results with a curve of
the form

&2& g 8) s;)
where I ' is a phenomenological phonon lifetime.
For Q well below the lattice frequency Q~, one ob-
tains y~N'(1+ C) which is to be compared with the
expression (S.39). The agreement between the ex-
perimental and the calculated values of C& for GaP
as can be seen from Table II is satisfactory both
in magnitude and sign. For the other compounds
there is no similar study. The measured values of
C for GaAs were obtained by comparing the ex-
perimental values of g~o and gs(' and through mea-
surement of the absolute efficiencies of Baman
scattering by longitudinal and transverse modes.
Apart from some frequency and temperature fac-
tors the latter are determined" by (S.37) and
(3.62), respectively, and hence their ratio gives a
direct measurement of C. There are two slightly
different values of C for GaAs by Moradian and
McWorther~~ and by Kaminow and Johnston. Here
again the agreement is satisfactory both in sign and
magnitude. Another experimental determination of
C is provided through the measurement of y~@' and
yE@o. Using the data of Bef. 43 for y~' and XEo the
values of C for GaAs and GaP thus obtained are
again negative but somewhat larger in absolute
magnitude than the ones given in Befs. 42 and 10,
respectively.

The calculation gives that C, is negative for all
III-V compounds. This seems to be the case also
for the II-VI cubic compounds as it can be seen
from the simplified effective-bond model dis-
cussed in Sec. V. The absolute magnitude of the
calculated value of C& for GaP seems to be some-
what underestimated due to the overestimatione of
y~' while that of GaAs is somewhat overestimated
due to the overestimation of n"' (see Table IV).

From the experimental values of g~@', C (or
yEso' ), and the infrared data, one can obtain the
value of the Baman tensor n' ' for these com-
pounds; these values are given in Table IV. Due
to the lack of accurate experimental values for
y~

' and C (or ~ENo') as it can be seen from Table IV
the values of n"' thus obtair. ed are uncertain. The
agreement is satisfactory for the two compounds
GaAs and GaP. The value of n"' for GaAs given
in Ref. 41 is probably low. In general the present
calculation somewhat overestimates z' '.

Recently, Boyd et al. have measured y„+' for
GaP and GaAs in the microwave region; co&, ~&,
~&+co2& co~. In this frequency region all four con-
tributions in g@' are present and their results have
to be compared with the ones obtained by (3.46a);
by substracting the pure electronic and first-hy-
brid contributions, y~' and yH', ', respectively, one
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should be able to obtain g~, ', + gN@'. However, only
the absolute magnitude of y„'-' was determined in
these measurements; lacking the sign of y~

' and an
estimation of the experimental error one cannot
unambiguously extract from their values of ~„'3'

either the sign or the magnitude of ~„',', +~„' ' or
equivalently those of 3C, + Cs. Since C, = —0. 5
the experimental results seem to be consistent with
either SC&+ C3 being positive and smaller than unity
(if g„'2'& 0) or positive and of the order of unity
(if g~@' & 0) although the possibility of 3C, + C, being
negative and small in absolute magnitude compared
to unity cannot be altogether ruled out.

With the adopted lattice potential (3.18) our cal-
culation gives that Cz is negative while C2 is posi-
tive and 3C2+ C3 is positive and smaller than unity
thus favoring y„''&0. The experimental results
of Ref. 43 do not permit one to determine the two
contributions C& and C3 separately and draw any
conclusions about their magnitudes relative to each
other. There is very little independent evidence
concerning their relative magnitudes. The satis-
factory order-of-magnitude agreement obtained
for &(see Table V), where one of the coefficients
enters, does not lead to any conclusions either.
The experimental investigation of Geick shows
that the two coefficients are of comparable mag-
nitude.

In general the calculated values of C, given in
Table II are affected both by the genuinely nonlin-
ear coefficients y~', etc. , as well as by the linear
ones e~ and (u~. The abnormally high values of Cq

for GaSb and AlSb clearly are due to the underesti-

mationn

of y &
' by almost an order of magnitudes and the

overestimation of the magnitude of eg by almost 50%.
In fact if the experimental values of y~2' and e~ are
used to calculate C, for GaSb one obtains values
showing the same trend as for the other III-V com-
pounds studied here. The experimental value of
g~' for AlSb is not known but the same situation is
expected here too. On the other hand, the values
of C, for InP are probably underestimated for the
inverse reasons. From the values of C, given in
Table II one can estimate y„'2'. With the axes con-
ventions of Fig. 1 one finds that y~@' is negative
for GaAs the main contribution being the hybrid
term 3Cjy~'. The same is certainly the case for
GaP although due to the underestimation of C, in
our calculation the values of C, of Table II would
rather give the opposite sign. Probably the same
is happening with all the other compounds.

B. General Remarks

The general expression of g( ' in the infrared-
frequency region was also derived by Genkin, Fain,
and Yaschin using a phenomenological approach

but no attempt was made either to derive it from a
microscopic picture or to estimate the different
contributions. The same remark applies for the
more recent work of Garrett. s

A calculation of C& for the IO-V compounds was
performed in Hef. 7 adopting a method different
from the one used in the present work. The ap-
proach used there amounts to replacing the short-
range deformation mechanism that gives rise to
n"' and &~ by an equivalent electrostatic one.
More specifically it was argued there that since
e&~ originates from a deformation of the electrons
by the lattice displacements u~, the correspond-
ing dipole moment &~u can be written formally as
n C~E„, where C~E„ is an equivalent electric field
that has the same effect on the valence electrons as
the lattice-induced deformation. This same field
then together with E„was assumed to give rise to
y~, ' in the same way as y ~'is induced by E„and
E„the lattice being held fixed; C~, which is a
measure of the change of the electron-lattice po-
tential, was calculated at a point using a particular
choice of potentials and assuming point charges.
Good agreement with experiment was obtained.
These assumptions, however, do not take into ac-
count fully the essential characteristics of the bond
which are its charge extension and asymmetry.
Further, the replacement of the essentially non-
uniform electric field is rather drastic. However,
such an approach, when the above simplifications
are replaced by more realistic assumptions, is of
much value to the study of the lattice dynamics in
these compounds. The above-described calcula-
tion predicts that C& =-0.5 for all III-V and II-VI
cubic compounds while for CuCl it predicts C~

2
Kelly ~ also performed a calculation of the elec-

tro-optic coefficient yE~ for ZnS and CuCl using
an ionic model for the electronic distribution in
these compounds. He attributes the deformation of
the electronic distribution to quadruyolar terms in
the electron-lattice potential. This author predicts
that C, is positive and larger than unity for both
compounds.

Recently, Swanson and Maradudin4 have per-
formed a calculation of Q.

' ' for some diamond and
zinc-blende crystals using the pseudopotential ap-
proach in band theory. The agreement is satis-
factory.

In the present work the bond picture was used
throughout the calculation. The dependence of the
susceptibilities on the structural parameters of the
electronic distribution within aunit cell and on the
local-field corrections was clearly exhibited. In
particular the microscopic picture adopted is con-
sistent with the description of the linear properties
of the crystal. However, some simylications and
the approximate character of the wave functions



INFRARED DISPERSION OF SECOND-ORDER ELECTRIC. . . 1283

used should be borne in mind. In particular the
electron correlation is not taken into account ad-
equately nor are any d states included and the lo-
cal-field corrections were treated in a semiempir-
ical way. As it can be seen from the expressions
of y' ' in the different spectral regions the latter
corrections are present in all the contributions and
affect substantially their magnitude. Further, the
lattice potential was not derived consistently from
the assumed electronic distribution of the bonds.
In particular any directional effects arising from
bond-bond interaction were altogether neglected.
In covalent crystals like the ones considered here
such effects can be important and probably account
for the breakdown of the Cauchy relations observed
in these crystals; their contribution, however, to
the compressibility and to quantities related to the
long-wavelength optic modes is relatively small.
Intermediate electrostatic forces were not included
explicitly although part of their effect was taken
into account in the coefficients A and B in the terms
in (3.44) originating from the local-field correc-
tions. In general these forces are difficult to esti-
mate although a clue is given by the work of Coul-
son and Doggett. A study of the sign of X' ' in the
whole infrared region could be of much value to
determine some features of the internuclear yoten-
tial and in particular the relative strength of the
different parts in the potential. Further, it will
give more insight into the relative magnitude of
the two principal phonon-relaxation mechanisms.
Apart from the experimental study of Geick for
GaAs, there is no independent evidence concerning
the relative importance of these two mechanisms.
In view of our results the experimental values of
X„' ' rather favor the fact that the second-order
dipole-moment mechanism is slightly stronger than
the anharmonie one; the electrons, especially
the valence electrons, are easily deformable in
III-V compounds and this is more strongly re-
flected in p,

s' than in P O'. On the other hand for
ionic crystals the anharmonic mechanism prevails.
This could be the case of some II-VI compounds
which were not considered here. In fact from the
measured values' of ZnO (wurzite) and CdS
(wurzite) given in Ref. 43 there is some evidence
that at least I 3C2+ C, I is large and (3 Ca+ C, )y~~'

probably negative~ for these compounds. This can
be accounted for in terms of the adopted potential
(2. 18). In fact these compounds are rather ionic
and the potential is more realistic in this case than
it is for the III-V compounds considered here.
Further, it is more likely that R/p & 10 in this case
and as it can be seen from (4.7b) this enhances
the value of the coefficient P

N' compared to what
its value is for the covalent compounds while the
other quantities p~, n' ', and JIL@'are smaller, the
crystals being rather ionic; hence X„' ' will be nega-

tive" reflecting the sign of P N' which is dominated
by the short-range potential.

The interplay between long- and short-range
forces mentioned previously is certainly crucial in
order to account for the abnormally high values
of y~@' measured for the ferroelectrics. Such high
values probably arise from the effective-field
catastrophe" or equivalently from an infrared-ac-
tive mode becoming soft, i.e. , &~-0. In fact as
it can be seen from (3.34), &or is in general ex-
pressed as the difference of two positive terms
and when they become roughly equal, &~ tends
to zero, and fo, the local-field factor given by
(3.30), becomes large T.his effect enhances the
values of the contributions in y' ' that display a
disper sion characteristic of the lattice. Clearly,
the ones associated with the soft mode will be the
dominant ones and the crystal will behave effec-
tively as a one-mode crystal like the III-V com-
pounds. Further y„'' will be dominated by g„' or
y„' ' -—y„''= P@'(eg/M~r)~, where T refers now to
the soft mode. The quantity g„=g~"/[(qo —q„)/4v]s
then will only depend on P~' but not on &or~. Since
P o' arises from higher ord-er derivatives than the
ones occurring in w~, the near cancellation of the
different parts occurring in the latter will not
necessarily occur in the former too. Rather one
of the contributions, either the short range or the
long range, will become the dominant one and

hence one expects values for g~ of the same order
of magnitude as for the semiconductors. This is
indeed the case for the oxygen-bonded ferroelec-
tries while for the hydrogen-bonded ones the
small values of 5„ indicate a small Q'3'. This
simplified discussion permits one to extract the
right order of magnitude of y~@' for the ferroelec-
trics but not the sign and other finer details which

require one to carefully take into account the crys-
tal symmetry and the lattice potential. 3 Although
the ferroelectrics have drastically different polar-
ization properties from the cubic semiconductors,
the approach outlined in the present work seems to
be that most indicated to account for y' ' in the
former class of crystals. In particular any attempt
to calculate y~' must proceed through a reproduc-
tion of the linear dielectric properties in these
crystals.

Note added in Proof After the pr. esent work was
sent in for publication our attention was called to
the work of M. A. Pollack and E. H. Turner,
Phys. Rev. B 4, 4578 (1971). These authors have
determined the sign of g~ and found it positive(s&

with the axes convention of Fig. 1. This confirms
our prediction concerning the sign of y„'. (See
Sec. VI A; in the last column of Table II the low-
er value of 3 C, + Cs corresponds to y~

' & 0. ) The
author is indebted to Dr. G. D. Boyd and Dr. M.
A. Pollack for calling his attention to this work.
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g =q (X)y.(x, z), (Al)

where x and X denote collectively the electronic
and nuclear coordinates, respectively; P, (x, X) is
the wave function of the electrons in the field of
the nuclei which are held fixed in an arbitrary posi-
tion X, e being the corresponding quantum number
with eigenvalue E,(X) a function of X; y„(X) repre-
sents a wave function for the nuclei moving in the
effective potential E,(X) the corresponding eigen-
values being e . We denote by Ep(X) the energy
of the ground electronic state and by Xo the equilib-
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APPENDIX A: MICROSCOPIC POLARIZABILITIES

(3)1
+ ~ @~nfl ga I Qfygfyl gfyl 2 ~

Cf 2 fy ~ fy

(A2)

The dipole moment operator of the system is

M(x, X)= —Zl ex, +Z„eZ„X2, (As)

where i runs over the electrons, jp over the nuclei,
and Z, is the charge of nucleus jp. We define also
the lattice dipole moment for the ground elec;tronic
state

M(X) = fP, (x, X)(-Z, ex, +Z, eZ,X,) P,(x, X)dx,

which for small displacements of the nuclei from
their equilibrium positions can also be expanded
in powers of the normal coordinates or

M(X) = M(Xp) +Z M' 'q, + 2 Z M ' q,q,. (A4)

The quantum-mechanical expressions of the 1inear
and second-order polarizabilities for the ground
electronic state of the above described system are

rium nuclear configuration obtained by the require-
ment that Ep(X) must have a minimum; then Ep(X)
can be expanded in power series in the deviations
I= X —Xo from this equilibrium position. Intro-
ducing the normal coordinates q, this expansion can
be written

Ep(X) = E()(X())+—,Z (d, q,q,

Plea(&l &2) = 2 &2

t'(epvplM, (x, X)1 ev, ) (ev, IM;(x, X) I epvp), (epvpIMl(x X)l'ev, ) (ev, lM, (x, X) I'epvp)I
(E —E, „. —|t(p)

(A5)

ppp (epvvp~i pe (x, X) Ie'v . ) (e'v„)pep(x, x) t e"v .) (e "ve v
1 p(l(x X)~l epv )

)[E,,„,E. -a.(,+ 2)J(E.„.„-E. -a 2)

(A8)

where 83 means summation over all possible per-
mutationsof thepairs (i, —&ol —&pa), (j, (d, ), and (&,
&oa) and M = M- (0 I M I'0) and p„' '. are the density
matrix elements of the vibrational modes for the
ground state.

With respect to the two infinite summations over
the intermediate states le') Iv, .)'and le") I v, "), P
can be split into three parts or

Plea((dl & p)2) PL~la((dl s (()2) + P(la((()1 s (da) + Ply'((dl & (da)

(AV)
that correspond to the following three cases:
(a) le') and I'e" ) are different from the ground
electronic state I ep); (b) I e') = Iep) but I'e" )& I'ep)
and vice versa; and (c) I ep) =

I
e') = Ie" ). Then

the detailed analysis of Ref. 3 shows that the first
case gives

Pl&a(('dl p)2) =Plea

1 p (elm, I'e') (e'I'ml Ie") (e"Im2Ie)
(E, E )(E „E)

(A8)

where m = —Q ex&, m = m —(e p I m I e p); in (A8) only
moments and states of the electronic system ap-
pear, the lattice being held fixed in its equilibrium
position Xoand the frequencies were assumed well
below the onset of electronic transitions, w& «E,
—Eo. The second case gives

Plia(~l ~2) = Pl~.(», ~2)

,m fW"'(o)cIla'(e) iifg"( ) 'e(o)e
(P), —(&l+&2)

2+ 2 3

where again the frequencies were neglected with
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Pigk(~l & ida) Pigk (~1 & +2) + Piik(&1 y ida) &

with

(Alo)

respect to electronic transition energies and o, i''(o)
is the Raman tensor of the system for the mode o.
Finally, the third case gives two terms or

arise from cross terms of the electronic and nu-
clear coordinates, and by P the purely ionic term.
However, even in this term the electronic contribu-
tion is substantial since (A2) contains electron in-
teractions as well.

A similar analysis of n, &(&d) gives that, for fre-
quencies below the onset of electronic transitions,

Pok (&» &2) =
2 ~

g, y' (&y idl)(hf~i ada)

, M,"'( o) M',"(
o, o') M„"'( o')

[id. —((dl + ida)'](id,', —ida)

M,"'(o)M&"'(o')MN'(o; o')
(0~ - (01+4)2 Q)g —(01

&ii(&) = &(g+ iris'(id),

where

and

(A12)

Piik(&1~ &2) =
2

Cyan 2 0 2~ (ea I m, I e ) (e I mi I ez)
g

+ Piik(&1~ &2) ~ (All)

M,"'(o)MP'(o')M,"'(o")
1++2 (d~ 1 + 2

Consequently the second-order polarizability for
frequencies well below the onset of electronic tran-
sitions can be written

E H' H"
Piik(idl & ida) Piyk+ Pok(idl t &2) + Pijk(idl y ida)

and the ionic and electronic contributions, respec-
tively. However, here too, the electronic con-
tribution is substantial even in the first term as it
can be seen from (A4).

For the case of the zinc-blende structure we have
a single mode which we denote by s. Using the no-
tations of the text, the expressions of the micro-
scopic polarizabilities i2 and p for a unit cell are

We have formally denoted' by P the purely elec-
tronic term, by p" and p" the hybrid terms which

(~ (1))2

M(QP —QP )M CO C01
(A13)

1 ~ (1) (1) (1) (1) (1) (1) 1 (2) (1) (1) (2) (1) (1)
P(id» ida) = P'+

2M idk —(Ml + ida) id& —&dl &dk
—

ada 2M [idk —(id 1+ Cda) j(idk. ida) [id+ (Q&1+ ida) ](&k idl)

(') (1) (1) (1) (1)~ (1)
+ 2 2 2 2 24 2 2 2 2 2 2 2 ( 14)

(id —idl)(id —ida) M [id —(idl + ida) j(id —(dl)(id —ida)

In the previous discussion we have not included
local-field corrections. These will renormalize
the different quantities which occur in (A14) (see
Sec. III) and in particular will modify &d, to &dr

which is the true lattice eigenfrequency.

APPENDIX B: MICROSCOPIC COEFFICIENTS

We derive here the expressions of the micro-
scopic coefficients for a unit cell required for the
determination of n and p (see Appendix A).

(a) The linear and second-order microscopic
polarizabilities per unit cell i'n terms of the cor-
responding bond polarizabilities are given by

K K
+$j ~K alma„ann ~

~K K K K
pi/2 ~e Pimtreilefmskk &

axes O~xyz with respect to the crystalline axes
KXYZ; i, j, p run over the crystallographic coor-
dinates X, Y, Zwhile l, m, n over the bond coor-
dinates g, y, z. Both the bond polarizabilities and
the direction cosines are functions of the nuclear
configuration. For small displacements of the
atoms from their equilibrium position Ro these
quantities can be developed in powers of u= R —Ro.
Here we need the zero- and first-order terms of
ia and the zero-order term of p. Expressing the
cosines in terms of the nuclear coordinates, as-
suming that the bonds are deformed only by stretch-
ing and inserting the numerical values of the direc-
tion cosines corresponding to the undistorted cell,
one obtains

E (1)
A]g = Q |ity + A EgyyQy + ' '

where g runs over the four bonds of the unit cell
and g,"& are the direction cosines of the y-bond P~ya=~ «yI+''' ~
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where

os=+s(o,„„+o,„„+o„),
4 80,, BQ„„2

3WS Bk ak k~ ' ) '

4

(B4)

(B5)

and g„- and q,~„are the Kronecker and Levi-Civita
tensors, respectively.

(b) Similarly the electronic dipole moment of
the unit cell for an arbitrary nuclear configuration
R is given in terms of the bond dipole moments by
the expression

K fC (B5)

Developirg in powers of the small displacements
u= 8 —R0 of the atoms from their equilibrium con-
figuration R0, one obtains to terms up to the second
order

(0) (1) I. (2)
7l'] =

7T~ +F(~ Qg + 2 1l'ggpQ~Qy y

where

tance than the short-range potential; further, the
number of atoms within a shell of radius R and
R+~R around any atom increases as R . Accord-
ingly, interactions of this atom with both nearest
and more distant neighbors must be included in the
calculation of P@& and Q

O'. To carry out the per-
tinent summations we need to specify the coordi-
nate system. ' ~ Using the conventions of Fig. 1,
we chose as origin a III atom. Then the other III
atoms lie on the sites of the corresponding face-
centered cubic sublattice. The face-centered sub-
lattice formed by the V atoms is displaced from the
previous one by an amount o.(—,', —,', —,'). lf there is a
V atom at lattice site (R„Rs, Ro), one can easily
see that there will be a layer of identical ions at
(R&, —Rs, —Ro), (- R&, —Ro, Ro), and (- R&, Ro,
—Rs), and eight more sites obtained from those
four by cyclic permutation of the indices; further,
one can show that in the case of uniform displace-
ments considered here interactions between atoms
of the same sublattice»"'. ll not contribute in the
sums. Straightforward use then of 43pyg point-
group symmetry operations gives

~")=07T]

u& &+2 5L
3 BR 0

(s& 4 8 p 1 &( ~ SP»' Ro '«o

(BV)
(0) I (2) L (3)

AIj 41 2 4&j I n&+j o Aijk, L+&Mdnk &

where

y,"& = n„y, (Ro) =-e, (Ro),

(2)

O) 2~ R1R2R3=+ 15(se) ~ nR 7 e&&k )

(B12)

(B13)

„e& 4

sled

2 sos
3 aR' R, sR (810)

P+ ~el

3W3 sR' R, R, eR sR

(B11)
The lang-range potential falls slower with dis-

where p0 is the nonzero component of the bond di-
pole moment along the bond axis.

(c) Finally we need the expressions of the coeffi-
cients Q„.& and p,@k&: For this purpose we have to
calculate the change of the potential P between an
atom and any other atom and sum over the lattice;
the sum of all P for the equilibrium configuration
is (2. 18). The potential P consists of two parts,
one long range and another short range or P = P~
+ Ps; we shall derive separately their contribu-
tions to P "& and PN&.

The short-range interactions are limited between
an atom and its four nearest neighbors; a straight-
forward application of symmetry operations gives

(0) 1 (2)4 s = 4's + k'tf'v, s +&ny+o 4'gk, s M&+&mk i

where

y "' = n,y, (R,) -=C,(R,),

y s&
y

(s& —
@ $&5

$j &

(3) (3) (3) (3)
&&jk= 4&jk, s +4&&k, s, =0 &uk .

(B14)

(B15)

All the derivatives are evaluated at R = R0.
For completeness we give also the formulas for

the case of intermediate-range electrostatic or
dispersion-type interactions which although not im-
portant at very large distances extend, however,
to atoms more distant than nearest neighbors and
accordingly their changes can be appreciable. De-
noting by Pi their contribution to P and assuming
this quantity to be a function of R, one has

g&

sR R BR R R BR

(s, S &f&g 3 S(f&g PPg RkRoR
t&R' R sR aR'

where nR is the number of atoms (generally 12) on
the layer of radius R around the origin and the sum-
mation is extended over all layers including the one
with nearest neighbors at distance R = R0 and in
which case pg~ =g0.

The unit-cell coefficients P' ' and P
o' are then

obtained by summing the two contributions or
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If in particular p1 = D/R", where m & 1, one obtains
x&(21 (», ~2, ~2) = (I/~)r(» ~2 ~2) (c2)

(2) ~ m+2 R]Ry
gif, ~g +lt g 2 g2 2)~i'

p&» 1= —m(m+2)(m+4)DZ n~ ~, 2 2„2,'(3) RqR2R3
Rm+

for D & 0 attractive intermediate-range forces,
their contributions will have the same sign as the
corresponding contributions of Q2 but opposite to
those of p2 Fo.r the more general case these
forces are, actually angle and direction dependent
and the corresponding formulas of P ' and P

o' are
slightly more complicated.

where e is the volume of the unit cell. For crys-
tals of the zinc-blende structure below the onset
of electronic transitions and not in the neighbor-
hood of the lattice resonance ~~, y has two inde-
pendent components y„„„„andy„, . Here we are
interested in the case where co, =(d3 and &2&0, with

(g~, —(o~&(g~, but (op+cop&co~ and all three fre-
quencies 2'&+ ~» (d» and —~2 are below the elec-
tronic gap. Then on purely phenomenological
grounds and symmetry reasons one can show 4 that

g
yx~x = yxx~

APPENDIX C: MACROSCOPIC RAMAN TENSOR

Here we show that the macroscopic Raman ten-
sor conventionally defined through the third-order
susceptibility x' ' is the same as the one derived
in (S.37). The third-order susceptibility is for-
mally defined 3 by

Pq (+1+(o2+(u2)=D2X&ygr(~1& &2y +2)I)( (3)

X Ey(~1) Eg(Q)2) E ((d&2) ~ (Cl)

where I»' (~1+&o2+~2) is the Fourier component at
frequency»+ (d2+ w3 of the induced third-order
polarization, D3 is equal to the number of distinct
permutations of (~1, &o2, ~2), and E(&d, ) are the ap-
plied fields. %e formally introduce the third-order
macroscopic polarizability per unit cell y by

(- 6&)2

SM[ ', —( + )'] ' (c4)

where y is the purely electronic third-order
macroscopic polarizability and n„'„' the macro-
scopic Raman tensor of a unit cell. Presently we

shall derive the expression of y from the micro-
scopic description and the assumptions concerning
the effective field adopted in the main text. More
specifically we are interested in the component

r„, and we shall neglect (»+ ~2) compared to &or.

For this purpose we take for convenience E(»)
along the y direction and E(&2) along the 2 direction
and we derive the expression of the g component

of P at frequency 2w, + w2 including terms up to the
third order on the fields. Taking into account the

positions of the involved frequencies with respect
to &~, one has

P„( (201(+o )2= Na[E„(2(o& + (o2) + LP„(2(o& + (u2)] +2'~ g[zy(ur&) + LPy (»)] [E ((ug1+)2&2L+P (mge1+)]2

+SN[r„„„+2(a"')'/M(o,'] [E,(~1)+LP, (~1)j [E„(~2) + LP(~2)] [Ey(&1)+LP, (&1)]

= P„"'(2~,+m2)+Pg"'(2~, +~2)+Pg '(2(o&+ &u2), (c5)

where

Pg (2~1+~2) 2N(P + ga ef /M~g)f Ey(~1)LPg (~1++2) + SN[ryygy + 3 (a ') /M~g]f Ey(~1)z„(&2)zy(+1)

and where r„y„y, is the purely electronic third-order
microscopic yolarizability of a unit.

Replacing P'(+»~2) by [compare (3.41)]

Pg '(&o, + &o2) = 2N(p + ,'a' '
e&*/M&u, )fez-y(a&1)zg(~2),

one obtains finally

Pg~ (2%1 M2)

finally

where

- (&) 0)
agyg agyg

3 M[~', - (»+~2)']

=4N (p + gau'ey*/M&@, )—f f2LEy(ur&)E„(&u2)zy(&e&)

+SN(r~„+ ', (a "&)2/M(o-',)f'E, (co,)z„((o2)z„((u&) .
(c6)

By straightforward algebra where use is made of
(3.27), (3.30), (3.33a), and (3.33b) one obtains

(&& (a(1& 2NL gp )f2

This last expression is identical with the one de-
rived in (3.37) as required.
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APPENDIX D: EQUATION-OF-MOTION APPROACH

The equation of motion of the relative displace-
ment coordinate u including nonlinear terms is

u( + (p»u( +»QPj»u(u» = eg*(E( + LP() + ~» I (~j»ux (E» + LP»)

+ 2n;, ~i(E + IP, )(E»+ LP») .
(Dl)

The total polarization, on the other hand, is

P( = N[8y u( +» p(s~»u~u» + n (E( + LP()

+ n,",.,'u, . (E, +LP, ) +2p,„(E,.+LP, )(E, +L. P,)j,

where E here is the total macroscopic field and the
different coefficients are defined in the text. Ex-
pression (D2) can also be written as follows:

N[e1~u( + 2fW(;»'~;u»+fn E; +fn,",u;(E„+LP»)

+2fp, ,,(z, +LP, )(E. ,+ LP. ,)] . (DS)

pfter substitution of this expression in (Dl) re-
arrangement of the terms and use of (3.33a),
(S.33b), '(S. 37), (3.43), and (3.44) one obtains

u;+(dru;+P;, ,u,u»=erz(+ p, ,»g&E»+ —, n, ,»E, E» . .I) {2) (1)

(D4)
If this equation is solved iteratively for each dif-
ferent Fourier component up to the second order
on the electric fields and its solution replaced in
(DS), one obtains

(1) (2)
&~ =X«E~+X~~aE&Ea ~

where ~,.',.»' is given by (3.47) and ~"' by (2. 2b). In
N.is yhenomenological approach the finite lifetime
of the yhonons can be taken into account by intro-
ducing a linear velocity-dependent term yu, in the
right-hand side of Eq. (Dl).

The previous discussion referred to the purely
transverse polarization. The same procedure can
be used for the longitudinal polarization; one only
needs to replace E by E —4wPi in (Dl)-(DS) when-
ever the field is longitudinal. For the case of all
fields and yolarizations being longitudinal the equa-
tion of motion for a longitudinal mode, then, be-
comes simply

2 (3)u( +(pt. u(+ Qz, y»ugu» = eJ E(+ (((g (g»/p )u E»

+,(, „„/~„) ,. E, E, (D5)
- (1) - (1) - - (1) (3)he e ni (~»= ni »(~» (L(i (~»=((i q(~», and p~,.»

(3.62), (3.65a), and (3.65b), respectively. We
note that it is the frequency of the longitudinal
mode vl, that now determines the dispersion.

APPENDIX E: 5-FUNCTION-BOND MODEL

The p-function-bond model' consists of a one-
electron unidimensional Schrodinger equation with

d
Hp= — ~ + V(e)

2m d-~

Nec»( cd + ye cf)

NeM!f( c»+gee»)

g„,= Ne '(e ' +he' ),

-~ & g& ——,'Ro region I

2 Ro &' p & 2Ro region II
1

o region III

with

1
c=2[g.+g»+[(g. +g»)'-4(1-e "P)g.g»1"') e&ge ao

=g[1+[( '+(1 —( ')e ""P1"'},p, ,

(1 e)g
)

v~

1
e I+A +2Xe '"p(1+czp)

(E2)

(ES)

where 2g=g, +g, and 2I[Lg=g, -gb with gb )ga
In the presence of an electric field with a com-

ponent E, along the bond, the perturbing potential
is

H' = —qzE8,

where q is the electronic charge in this model.
It was shown in Ref. 3 that the Dalgarno-Lewis

equation (4. 3) which solves the perturbation prob-
lem for (E4) can be solved exactly. The different
moments (z"') of the electronic distribution can be
obtained from

2
(»»

) c»d+ ~ (»-(+2~ -pet4cN
k +4c

kd coskd+ 2cd sinkd
kd

In particular the electronic bond dipole moment is

p = 2q(z ) = —qR(l —X )N /c . (E5)

In the Unsold approximation the linear and second-
order polarizabilities along the bond are

N
+—(1 —X')', (E6)c

V(z) = g 6($+»Hp) g»6(z »Ap),

where z is the coordinate of motion along the in-
ternuclear axis directed from A to B, Ro=2d is the
g-function spacing, g, and g, are the g-function
strengths for nucleus a and b, respectively, and

6(x) is the Dirac function.
The ground-state wave function is of the form

N((J(((+X()I„) and its explicit form is
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3 ( 'R' 2N2
P„=—)~ o(1 —X)

16 Ie ego c

2 N ~ Nx 1+,— 2cIte '" +—(1 —X')'
(cIt)' c c

(E~)
With the two strengths of the g functions, g, and
g„one can associate the nuclear charges Z„q and

Z~q defined by

Z&q=g and Z&q=g& .
The g, are obtained through the electronegativity
scale.

All the above expressions follow directly from
the knowledge of the exact wave function of the

y(It) D (1 c-n KR foR) (EQ)

where D, is the dissociation energy of the bond,
&B=R Ao and n=no(I/Io)~~ (I/Io)s, with (I/Io),
the ionization potential of i=A., B, relative to that
of the corresponding atom in the same row and
first column of the Periodic Table and zo is a con-
stant. Requiring that, at equilibrium, the first
derivative vanishes and that the second-order de-
rivative P"=0„ the stretching force constant of
the bond, one obtains

D, =A, Ro/n . (E10)

model. The potential, however, cannot be derived
from the latter without further assumptions. %e
adopt Lippincott's prescriptions' which amount to
assuming
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The Raman spectra of the 2H and 4H structures of ZnS have been measured between room
temperature and 60 K, and compared with the spectra from zinc blende ZnS. The observed
phonons in each case are in good agreement with those expected from the known structural
differences.

ZnS is known' to crystallize in many different
crystal structures belonging to the cubic, hex-
agonal, and rhombohedral space groups. All such
ZnS poiytypesi can be constructed from alternating
zinc and sulphur planes which are perpendicular to

the cubic [111]or hexagonal [0001]axis, with the
various polytypes being distinguished only by the
stacking sequence of the planes. The most impor-
tant characteristic which distinguishes one poly-
type from another is then the length c of the funda-


