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hence v„(r), is unknown. We have found, in fact,
that agreement with the experimental phonon spec-
trum of copper is improved if the parameter y in

Eq. (37) is increased from 8. 43 to 13.4. This cor-
responds to increasing the magnitude of dv„/dr and

has the effect of deepening the first minimum in

v, «(r) in Fig. 3. It also moves the calculated
binding energy closer to the experimental value and

moves the fcc curve in Fig. 8 downward with re-
spect to the hcp curve, although not significantly
in either case.

We finally point out that the separation of overlap

energy from the band-structure energy here is
really an artifact of the overlapping atomic d states.
In the general theory given in Paper II, the d states
are arbitrary as long as they are orthogonal to the
core states. The need to calculate v. ,(r) could be
eliminated by artif ically constructing nonoverlap-

ping d states. This is an attractive idea, but itdoes
introduce a whole new series of problems related
to the construction of such states. It remains to
be seen whether or not such an approach can lead
to simplified pseudopotential calculations of the
total energy for d-band metals.
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An approximate method for obtaining the pair and higher-order correlation functions speci-
fying the site-occupancy correlations in disordered substitutional binary alloys of arbitrary
composition is described. The method is easily generalized from the usual pairwise inter-
action model to alloys with multi-site interactions. The value of 1/z, where z is the number
of sites interacting with a given site, is used as a parameter of smallness to obtain a set of
quasilinear equations which may be solved numerically for the correlation functions. The
long range of the interatomic interactions found in many alloys would make 1/z seem a good
expansion parameter. The validity of the solution is discussed. We use the method in a nu-
merical analysis to investigate the effect of three-site interactions in a disordered face-
centered-cubicbinary alloy with a nearest-neighbor pair interaction and a "nearest-neighbor-
triangle" triplet interaction. A simple analytic solution for a corresponding idealized mean-
field situation is also carried out. An enlightening result is that the mean-field solution and
the more realistic computer solution have siniilar general features. %'e also compare our
solution with others for a choice of parameters in which comparison is possible.

I. INTRODUCTION

The equilibrium arrangement of the atoms in a
substitutional binary alloy at a given temperature

depends on the part of the Hamiltonian which
changes when the atoms of the alloy are rearranged
on the crystal lattice, which in this paper is taken
to be rigid. The most commonly used model
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= —2m& for a B atom on site i . (2)

The respective mole fractions of A and B atoms
in the alloy are m& and m& so that m&+m~ = 1.
The pairwise interaction is given by

V~g= g (Vg +Vg 2V~y )

in which, for example, V&& is the energy of inter-
action between an A atom at site i and B atom at
site j. See Ref. 1 for a more detailed discussion
of the formulation of the pairwise model.

There are, however, contributions to H which
are almost certainly present in binary alloys and
which cannot be described in terms of the pairwise
model. For example, the displacement of atoms
from the average lattice sites which is due to the
size discrepancy of the two kinds of atoms (size
effect) makes the interatomic vector connecting
two atoms different from the corresponding intex-
site vector by a difference vector which depends
on the environment of the sites in question. Con-
sequently, one expects that the mutual potential
energy of the two sites depends not only on their
occupancy, but also on that of neighboring sites.
This is a multi-site effect. It has been shown

(see, for example, pp. 50-55 of Ref. 2) that to
second order in perturbation theory the effect of
the conduction electrons may be represented by a
contribution to the pair interaction V&&. Higher
orders in perturbation theory contribute to higher-
order (three-site, four-site, ~ ~ ~ ) interactions. A

third example is an alloy in which the component
atoms have a tendency to form covalently bonded
molecules; these covalent forces are often many
body in character. See Clapp' for a review of the
validity of the central-pairwise -interaction model
of an alloy. For simplicity, our attention is con-
fined to disordered binary alloys with Hamiltonian

a((oj) = —'Z V&&o&o&+ '& Z lV&& o&o&o&
0 fgk

The interaction energies may depend on tempera-
ture and composition, but not configuration. The
extension to interactions of higher order than the
third is straightforward but tedious.

A useful formal restriction on many-site inter-
actions is that an interaction is zero if two or more
of its subscripts coincide. It is easily shown that,
for example, the effect of W,&&

can be lumped with

V&& and a configuration-independent term, so that
S'&&& might as well be zero. This often simplifies

Hamiltonian is the pairwise one:

H([(7]') = g Z V( y
0'(oy,

fj

where o, is an occupation operator which specifies
the occupancy of site i:

0; = 2m& for an A atom on site i

calculations considerably. We tacitly assume this
property of the interactions in the remainder of
this paper. Interactions also have permutational
and translational symmetry [see properties (ii)
and (iii) below].

If one investigates an alloy by an experimental
technique which yields information about the atoms
on a microscopic scale (such as x-ray, neutron,
or electron diffraction), then the relevant param-
eters with which to characterize the equilibrium
configuration of the alloy are the correlation func-
tions. A correlation function is an ensemble aver-
age of products of the occupation operators in (2).
Notice that (o, &=0 for alii because the composition
is m& .ma. See Ref. 4 for the connection between
correlation functions (defined slightly differently
in this reference) and experimentally measured
x-ray or neutron scattering intensities.

The correlation functions have some important
formal properties.

(i) Whenever two or more sites in a correlation
function coincide, it may be expressed in terms of
lower -order correlations. These expressions are
called "reduction relations" and are obtained by
application of the identity

&
&
=&n+ Bn&& ~

where

(4c)

(ii) Correlation functions are invariant under
permutation of site indices, e. g. , &o, o&a, &

= &o~o~o&&

~ ~ ~

(iii) Correlation functions are invariant under
translation by a lattice vector, and one site index
may always be chosen as the origin, e. g. , (o,o&o~&

(iv) When the following replacements are made,
m~ » m+, V, &

- V,&, W„&- —S',&&, then correla-
tions among an even number of sites are invariant,
and correlations among an odd number of sites
change sign but have the same magnitude, i.e. ,
&o,o,&-&o,o(&, &o,(r, o, &- -&o,o,o, &, ~ ~ ~ . This is
easily shown by realizing that the replacement
m~- m& is equivalent to interchanging the signs
in (2). To reobtain the same physical alloy, this
sign change must be accompanied by one in 5',»,
but not V,& [see Eq. (3)]. Since the physical
Hamiltonian is unchanged, we must have exactly
the same arrangement of atoms, but each o is
changed in sign so the result follows. In the spe-
cial case m& = m& and S',» = 0, this shows that all
odd-order correlations vanish, a result first shown

by Clapp. '
So far most studies of short-range order in dis-

ordered binary alloys have concentrated on the
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theoretical' and experimental determination of
pair correlation functions. However, the work of
Cowley' and Cowley and Murray' as well as the
field-ion-microscopy experiments of Gold and
Machlin" seem to indicate that it is possible to
experimentally detect the effects of higher-order
correlations. For this reason it appears that the
inclusion of higher-order correlations into the
description of an alloy should be investigated. We
shall use only pair, triplet, and quadruplet cor-
relations, because the inclusion of higher-order
correlations is a straightforward extension.

The theoretical problem with which we deal in
this paper is the statistical mechanical evaluation
of the various correlation functions, given the
Hamiltonian (3). We are to evaluate the ensemble
average of functions of configuration, E((o}). In
the present application E is always a product of
occupation operators. The ensemble average of
E is defined as

(5)
{e} (e}

The average is taken over a grand canonical en-
semble in which we admit fluctuations in composi-
tion. This means that we can write (N= number
of sites in the crystal)

Z=Z Z Z,
e1~~ e2*~ eN=+

where each summation over the two possible
values of each occuyation operator is done inde-
pendently. The coristraint on composition is ob-
tained by determining the chemical potential, A. in
the grand canonical density operator

((O}) H
BH(b}&+RE(s(- (6)

by the condition &o,) = 0. P=1/kT, where k is the
Boltzmann constant and T is the absolute tempera-
ture. An exact solution to the problem in hand
would involve an evaluation of the sums in (5) in
the thermodynamic limit (N ~). This is a problem
of the first magnitude even for a pairwise Hamil-
tonian since it is equivalent to the unsolved Ising
theory of a three-dimensional ferromagnet in an
external magnetic field. 'B Although there is no
exact solution to the three-dimensional pairwise
alloy, there are quite a number of approximate
solutions, '~ 3 the most important of which, from
our point of view, are due to Clapp and Moss' and
Tahir-Eheli. All of these solutions have been for
pairwise interactions and correlations, although
Tahir-Kheli's method yieMs the high-temyerature
expansions of higher-order correlations as a by-
product. " We show that Tahir-Kheli's work is
quite easily extended to higher-order interactions.
The work of Tahir-Kheli and the present paper are
related. The essential difference is thatin the for-

mer, P is used as a parameter of smallness,
whereas in the latter 1/H is used. H is the number
of sites interacting with a given site. This follows
the spirit of Brout's work. 6 The characteristi-
cally long-range nature of the interactions in many
alloys, principally due to the conduction-electron
contribution to the configurational Hamiltonian'7
would make I/g seem an excellent expansion pa-
rameter for alloys. The complication which arises
in the case where an oscillatory interaction is
present is discussed in Sec. IV.

II. SYSTEM OF EQUATIONS FOR THE CORRELATION
FUNCTIONS

An infinite set of equations which may be solved
for the correlation functions is obtained by what is,
in essence, an expansion of (5) in powers of P, in
which E is successively put equal to cr„cr,o„and
so on. To facilitate this we first prove a theorem
which is a simple generalization of that in the Ap-
pendix of Ref. 1.

We define the following average of G((o j):
&G&(= & Gp/& p

eg=+ e]=+

The summation is only over the possible values of
o, so that &G), depends on all o's except o, . The
theorem is that for two functions of configuration,
E((a})and G((o}),

& EG) -=&E &G » , (7)

provided E does not have cr, as one of its arguments.
The proof is as follows: Using the definition (5) we
have

&E&G», Z p=Z' Z E&G&,p,
(e} (e} e]~

where the prime indicates omission of the sum over
Ois 1~ e. ,

Z=Z' Z
(e} (e} e~~k

Since neither E nor (G&, depend on o„we may write
the right-hand side as

E E&G&, Z p=Z E( Z Gp/Z p) Z p
(e} e) + (e} e] + eg a e]~a

=Z E Z Gp=Z EGp=&EG&Zp.
{e} e,= ~ (e} (e }

&O & g BH+LL(s( / g -BH+XE(s(-
eo=+ eo=+

= Z o, exp[- yP(Z vgcrg+Z w, ~ a~ B) o,Bo
eo=+ g jA

For our particular purpose we consider a special
case of (7), namely G = o, and i = o. First we need
(o,&,. From the definition of &G&, and (6) we have
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in which all parts not containing the operator o,
have been cancelled from numerator and denomina-
tor. Evaluating the sums, one finds

&(r, &,= tanh(pE, + X) + (mB -m„),
where

Do= tanhA, —(mA r—nB),

Stanh( X+ X)

X=O

1 Sk[tanh(X+ X)]
8X& X=O

Dk= —', (-3tanh A. +4tanh A, —1),

(1la)

(lib)

(11c)
(lid)

1 ~Eo= —X ~ ~ofOf -X~ ~'ofg&f&, ~

f ff
(8)

& .&= & D. &(eE.) "&,
n~0

(loa)

&~.o, &
= »„&(PE.)"~,&

n=0
(i &o), (lob)

&= ~ D.&(PE.)" & (o
a~0

etc. , in which

E, is the effective field which an atom at a given
site sees due to the configuration of the neighboring
atoms. The special case of (7) is therefore written

&cr, E &
=

& [tanh(PE, + X) + (m -m„) ]E&, (9)

where I' does not depend on 0,. This is an identity.
To find the required set of equations, (9) is ex-

panded in powers of PE, and E is set successively
to 1, o&, O, cr&, ~ ~ '. Therefore, the set of equations
is

etc. An infinite set of equations in terms of the
correlation functions and the various interaction
energies is obtained when (8) is substituted into
(10) and the arbitrary subscripts on the left-hand
sides of (10) are allowed to range over all permitted
sites. The set of equations is linear in the correla-
tion functions. The procedure is to find the solution
for &a, &, f &o,o(& $, (&(r,a(crj&], etc. , asfunctions of
the two parameters, tanhX and P. For a given P,
the solution which has the value of tanhA. such that
(o, &=0 is the required one.

In effect, Tahir-Kheli has used the set of equa-
tions, with the E, appropriate to pairwise interac-
tions only, for generating high-temperature expan-
sions for correlation functions. The extension of
Tahir-Kbeli's method to higher -order interactions

simply a matter of modifying E, [see Eq. (4. 6) m

Ref. 8) appropriately and carrying the analysis
through. 4 Although it is not central to the present
paper, we have used Tahir-Eheli's method and

present the results to O(Pk):

&(r,(r(& = 8mAm-BV, (p+ [16mAmBZ Voj«V6+4mAmB(mB -mA)Z (Voj+ Vij) W„j + 8mAmB(mB -mA) V, (
f f

+128m„mBZ W,«W(jo+128mA'mB(mB -mA) g W,j(]p +O(p)
fE

(i »), (12)

&'(roof(rj &
= -64 m„'mB W„j p+ [32mAmB (mB mA)(V-„V„+ V,.(V(j + V(V(j) + 1 28mAmB(mB ™A)

x(V(i+ V,(+ V,j)W,(j+128mAm((Z (VofW(jf + VjjW (f+V(f Wojf)+ 256mAmB(mB ™A)W (j
f

+512mAmB(mB ™A)Zj(Wo(jW(jj+ WojjW(jj+ Wo(jW, jj)]P +O(P) (o x z xj e o), (13)

&(r,(r((rj(rk& = [64m„mB(V,(V„+V„V„+V,„V„)+256(m, -m„)mAm, (V,(W(j, + V,jW(jk+ V.k W(jk
4' 4 4 4

+ V(k Wo(j + Vjk Wo(j + V(jWojk + Vik Wojk + Vjk Wo(k + V (j Wo(k + Voi Wojk + Voj Wo ik + Vok Wo( j)

+1024mAmB(mB mA) (W (jW(jk+ W (kW(jk+ WojkW(jk+ Wo(jWo(k+ Wo((Wojk+ WojkWo(k)

+1024mAmBZj(Wo(jWjkj+ WojjW(kj+ W,kjW(jj)] p +O(p ) (no coincidences) . (14)

Our use of the set of equations differs from that
of Tahir-Kheli in that we use several criteria [in-
cluding the O(1/z) criterion]. to truncate the system
of equations. This truncated set of equations i.s
then solved self-consistently. This procedure has
the advantage that, apart from the complications to

be discussed in Sec. IV, it yields solutions good to
a chosen order in 1/B for all T ~ T„where T, is the
characteristic disordering temper ature. Apart
from this, the O(1/B) classification scheme seems
a natural and potentially useful way to classify
correlation functions in disordered alloys.
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IH. TRUNCATION OF THE SYSTEM OF EQUATIONS

Consider a clustering alloy (i.e. , V„, 8',» & 0
for m„& ms and all noncoincident i, j, h) in which z
sites interact with a given site through the energy
term V,&, and z' through 8',». When we remem-
ber the physical interpretation of (8), we see that
the average configuration energy of a site is given
by

(o~E & 2 Zp V f((7 (Tf&+ g Zf lV f ((7 Ofo)

For a clustering alloy, T, occurs when the thermal
energy per site is comparable with the minimum-
possible configuration energy per site. Thus, we
have

», =
I
(-&o.E.&).„I

pl .~l&"&+-.~p, l .~, l&o. &

= 2mgmszg+4mgms(ms -m~)g ' m, (15)

where we have defined the average potentials by

~=.- Z, l v., l
..d ~ =(. )- Z„ l Iv.„l .

This definition will also hold for potentials which

may oscillate in sign. Physically, it seems unlike-
ly that 'VP will have much more than comparable
strength withe (comparable when z' ~ = z'U).

Given this, the upper and lower bounds on 2 Pu for
0 &'()v & V/z are of the same order, and we may
write conservatively,

—,8O= —O . ),P 1
(16a)

P, .4m~mes

. zpzz- —0 z ), (168)
4mgmsz'

where we have replaced z and z' by the smaller of
the two and relabeled it z. Notice that for very
dilute alloys (16) will lead to failure of the scheme
to be derived below, but this is not a severe re-
striction. With the understanding that we are not
dealing with very dilute alloys we ~ay leave out
the composition-dependent parts of (16) when using
them below.

The correlation functions may be classified ac-
cording to powers of I/z. To see this, use (16) in
(12) and note that each summation contributes a
factor of z. We get, for j& o, but I r,&

I less than
the interaction range:

(z zz) = 4mzm (1O/ )(z8/8( +lO)+((8,(m —m„)+ 8m„m + (m -mz) /2m„m ]O(l/z)

+8(mz -m„)'O(1/z'))(8/8, )'+(O(1)+ )(8/8 )'+ ) .

(o' ~ o, &
= O(z ") (17)

where

The series in the large parenthesis is expected to
have finite sum of order unity at P = P, (cf. the
exact curve labeled FS in Fig. 6). At P= P, we may
therefore write (o,o&& = 4m„msO(1/z) for j 88 o and

Ir,&
I within the interaction range. Naturally (o,o&&

can be less than this depending on temperature and
intersite separation, but the right-hand side is a
conservative upper bound for (o,o~) in the ranges
P&P, and I r,~l&~. Similarly, from Eqs. (13) and
(14) we expect that at iI = P„(o,o(o& &

= O(1/x ), and

(o,o, o&o„& = O(1/x ). Given these classifications
and the fact that correlation functions decouple
when groups of sites are moved to infinity, it is
possible to find the classification of higher-order
correlations. For example, (oooooo&- (oo&(oo&(oo&
= O(1/z ). We always choose the decoupling which
gives the lowest order in I/g. A likely classifica-
tion scheme at P= P, can, therefore, be seen to be

v= 2[r+1+y(r+I)]

y(x) =1 (x odd)

=0 (x ev(.n) .
The right-hand side of (17) may be interpretea

as an upper bound on all possible (r+ 1)th-order
correlation functi, )ns in the range P& P,. In Appen-
dix A we show the consistency of this scheme. It
is probably also optimal. It should be noted that
this classification depends on the property of the p

operators that (o) = 0.
We can now meaningfully truncate the infinite set

of equations (10) and choose the correlation func-
tions with which to characterize the alloy. The
criteria are the following.

a. The order of the solution in I/e. In Appendix
A it is shown that an upper bound to the leading
order in 1/x of terms arising from Eqs. (10) when
(8) is substituted is given, at P„by

P
m+n n m t/1 m r

C Tl Tl' TJ/) TT I fit
~64+n ~ && "of(p) Jl ""og(q)))(q) PL +f(p) LL op(q)o))(q) pl (( ) oqO(x )

&f,t, &) P~f e f paf qsf g f
(18)
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where each site index is summed over the whole
lattice and where

ur= g [r+n+ 2m+ /(r +n+2m)] .

For n+ 2m ~ 2z the equality in (18) holds. The in-
equality (18) may be regarded as an upper bound

in the range P~ P, for terms arising from Eqs.
(10). Notice from Eq. (10a) with (o) = 0 that Do
= O(l/g) so that the order in 1/z of the Do terms
(n+m = 0) is greater by one than given by (18) with

n+ 2m = 0. If we use (18) to write out Eqs. (10)
with all terms which can be at most O(1/gs) in the
range P~ P, discarded, we obtain

((r, ) =Do —y pD, (Z V,r&(rg)+Z W,rg&(ry(r, &)+ —,
'

p D2(Z VrVg(vq(r~) + 2Z V,r W,gg&grggvg&
f

+ Z W,rgW, „,&gj(rgg„g()) —
g p Dg (Z YorYogV, r( &grvgg„)+3 Z VorVogWO(a(vr(rgv r(g()')'

fghl fgh fghl

+ ig P D4 Z Y, rV, gV, r V, r( grggvgv(), (19a)
fghl

(g,g() =D(r&g;) —
2 pD((Z Vr&vrg()+Z Wrg&grvgv(&) + ~ p Dg(Z VrV g&grggg()+ 2Z VrWgg(v~ggv„v())

f fE A fsh

—
g P D3Z V,rV,gV,„&vrggggv(), i&o (19b)

frh

&vov(gr ) 0(g(gy ) fpD((Z Ygf('vfg(gj) +Z W fg&o~ggv(v& ))+ 4 p D2Z V rV g&vrvgv(v~ ), o &i &j & o
f

(19c)

&gov(vjgQ) 2 pL $Z V f((7fg(gyvrr &, o, i, j, k noncoincident
f

(19d)

When i, j, k are allowed to range over the entire
lattice we see that we have an infinite dimensional
set of linear equations to solve for the correlation
functions of up to the fourth order. A very con-
siderable simplification of this set of equations is
obtained by use of the relation

&o,v;o, c,) =&o,v, ) &v, v, )+&v,v, ) &v;v,&

+(g,v„)&g, g,) + O(1/g'), (20)

which holds at P,. This is proved in Appendix B.
Thus, pair and triplet correlation functions com-
pletely characterize the system to O(1/z ) because
we can substitute (20) for quadruplet correlation
functions whenever they occur in (19). This makes
the equations nonlinear, but convergence is rapid
because (vv) is only needed to O(l/z) in (20), but to
O(1/z) pair correlations do not depend on qua-
druplet correlations.

b. Spatial truncation. To make the set (19)
finite, a spatial truncation is needed so that only
a finite number of correlation functions of each
order appears in the system of equations. For
the O(1/z ) truncation the "boundary conditions"
are sixnple because all pair and triplet correla-
tion functions with one or more intersite vectors
exceeding a certain length are assigned the value

zero, For example, as site k moves away from
sites i andj, &v, g&vg& - ( , v&&g(cr~) = 0. For higher-
order truncations the boundary conditions are less
simple because, for example, a possibility is that

(v(gqv„vr& -&v, v~)(ggv, & as sites k, l together move

away from i, j. Spatial truncation effects are ex-
pected to be greatest near T„since the correla-
tion range is longer there.

c. Symmetry. The number of order parameters
which one needs can be considerably reduced by
taking symmetries into account. For example,
when the pair interaction between any two sites is
the same, then we expect all pair correlatio~
functions except the self-correlation (o, ) to have
the same value (mean-fieM case). When the pair-
wise interaction in a pairwise model is isotropic
then each shell of sites has a distinct correlation
function. In general correlation functions with

"scaffoldings" of intersite vectors related by the
point operations of the lattice are symmetrically
equivalent. Correlation functions are also sym-
metric under permutation of site indices, which
means that in the (N —l)(N —2) equations (19c)
each order parameter occurs on the left-hand side
six times. The three distinct occurrences may
be combined to give one permutationally symmet-
ric equation for each correlation function:

&gog(gg ) = 3 Do( &v(v)& +&goo() +&goo))) —
(r pD( (Q~Y~r [(vrv(v)) + &grg ((7) () + &(T~g r)g)](

+ Qr, W,, [(grv v((r~& +&vg(rgv (gg (&+&(r~ggv, g(, )]]
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+~ p'Dzgy, yoryoe[(grgeg, gs) +(grg, g, g, ()+(grgeg, g,.,)] ~ o&i&&to .

Note that Eqs. (19a), (19b), and (20) are already
, permutationally symmetric. Solution of permuta-
tionally symmetric equations will automatically
yield solutions with the correct permutational
symmetry.

S(k)=C[1+2m„m, PV(k)] ',
where

C = (4mzma) v„j d k[1+ 2m~maPV(k)]

(22)

IV. VALIDITY OF THE SOLUTION

The derivation of Eqs. (19) assumed that all
interactions favor clustering (i.e. , V„, 8'„r & 0
for all i, j and m„&ma). Since alloys do not in
general satisfy this restriction, it is necessary
to examine the domain of validity of Eqs. (19) for
general interactions. We shall also consider the
so-called "excluded-volume" effects which make
our classification scheme fail near T,.

To discuss general interactions, we introduce
the notion of a conjugate alloy. The alloy conjugate
to a given alloy has every pair interaction replaced
by the negative of its absolute value (for all m~),
and every three-site interaction changed to the
negative of its absolute value if m& &m& or to the
positive if m& &m&. The conjugate alloy has every
interaction favoring clustering, so that it may be
discussed in the manner of Sec. III. If the conju-
gate alloy has critical temperature T,' then (16)
gives z P'U =(P/P,')O(1/z) and z PVP —(P/P,')O(1/z ).
If T, is the critical temperature of the original
alloy, then T,'~ T,. This is easily shown for the
O(1/z) truncation (see below) in which ATo = 2mzma
x I V(k„)I, where V(k„) is the absolute minimum
of the function

in which the integration is over a Brillouin zone
of volume v„and where

S(k) =Jr(g, gr) e e&" &or '.

It would seem that this is the complete O(1/z) so-
lution but the cumulative effect of higher-order
terms in (19b) makes a significant modification in
the region of T, . Brout" shows that for the com-
plete O(1/z) solution (at least for m„= —,') (22) is
modified to

S(k) =4m„ma [y+ 2m„ma PV(k)] ',
where p is determined by

1= vr,
' f d k[a+2m„ma PV(k)] '.

This is known as the spherical-model result.
We have attempted to incorporate some of the

excluded-volume effects by including terms which
arise by the application of the reduction relations
to higher-order terms in (19b). Of these higher-
order terms we have taken all terms which are of
O(p6) or less in the case W= 0, so that a term like

P D4(4B4yot~ Vox(g&gr))
fbi

which occurs in

y(k) Q y earls
~ ror

Clearly

»', = 2m.m. ~r l V., l and
I y(k. ) I-'~, I y.r I

so that the required inequality holds. For P& P,'
terms of high order in 1/z cannot be greater in
absolute magnitude than those of low order, but
for P,' & P & P, we have P/P,' &1 so that the order of
a, term in P becomes of importance. Thus, in the
range P,' & P & P, the 1/z classification is no longer
a criterion of smallness and we cannot gauge the
validity of the solution.

In the region of T,' terms of higher order in 1/z
than have been explicitly displayed in Eqs. (19)
begin to have appreciable effect. This corresponds
to the excluded-volume effect discussed by Brout.
If we write down the O(1/z) truncation of (19) we
obtain the original Clapp-Moss equation

(g,g() = —2m~maP Zr V,r(gag()+C5, )

to salve. The term C5„removes the i =o restric-
tion. Solving by Fourier transformation we get

1g P D4 Q Voe Vof Voe Voh (gigegrggGh)
efgh

is classified O(P~) and is included in our solution.
These extra terms begin to matter for P& P, .

It seems that, apart from spatial truncation ef-
fects, our solution is good to the desired order in
z ' down to about P,. The failure of the O(1/z)
criterion for p, & p& p, and the excluded-volume
effects are shortcomings of our approach which
deserve closer study. " The former is especial-
ly so because many alloys seem to have long-
range oscillating pair interactions.

V. SOLUTION OF THE SYSTEM OF EQUATIONS

To solve the set of equations (19a)-(19c)with
the relation (20) and the extra terms mentioned
in Sec. IV it is necessary to use symmetries to
pick out distinct correlation functions, and to em-
ploy spatial truncation to make the set finite. We
denote the mth-distinct nth-order correlation
function by I""(m). It is also necessary to ex-
plicitly decompose correlation functions with
coincident sites in the various summations by
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using the reduction relations.
In the computer program described below for a

fcc binary alloy we used a spatial truncation in
which pair and triplet correlation functions with
one or more intersite vectors exceeding the tenth-
neighbor distance were discarded. Thus, there
were ten distinct pair correlations and 74 distinct
triplet correlations included, so that an 85~ 85
set of equations was solved. The n = 1 correlationI' = (0,) was also included.

In the numerical solution of the truncated sys-
tem of equations it is necessary to constrain 1"'
to vanish. This is the composition constraint.
At a given temperature one chooses a starting
value for tanhX, obtained in general from bvo pre-
vious solutions at slightly higher temperatures.
This defines all the D„, so that Eqs. (19a)-(19c)
may be solved by the standard technique, modified
to account for the small amount of nonlinearity in-
troduced by (20) . This gives a value for I" ' which
may be used in a regula falsi procedure to give a
better estimate for tanhX. The new value of tanh~
is used in another solution of the set of equations,
and the cycle is repeated until 1'=9 to within re-
quired limits. The values for the correlation
functions corresponding to I' = 0 are the required
solution at the given temperature. The procedure
is carried out at successiVe closely spaced tem-
peratures starting from P = 0 (where tanh&= m„
—ms), and continuing until the determinant of the
85 x 85 matrix (without the nonlinear part) vanishes
or the solution becomes uninteresting.

The techniques of this paper are even more easi-
ly applied to the Ising ferromagnet problem than
to the alloy problem because the magnetization
(analogous to I') is determined by the applied
magnetic field (related to A) rather than vice versa
as for an alloy.

In Figs. 1-4 we have plotted the nearest-neigh-
bor pair correlation I'~(1) and the "equilateral-
nearest-neighbor-triangle" triplet correlation I'3(1)
as a function of P for several choices of input
parameters (V, W, m„) in a fcc alloy with nearest-
neighbor pair interactions of strength V=+1 and
equilateral-nearest-neighbor-triangle triplet in-
teractions of strength W. When W=0. 1, it has
an effect comparable with that of V. On each of
the graphs we indicate P, given by (15) with W= 0.
Nonvanishing W makes little difference to P, for
the values of W considered. This value of p, is
also the value predicted by the Clapp-Moss equa-
tion (22) for a clustering alloy. The lower tem-
perature limit for validity of our solution is about
T,. On the graphs, a dot indicates termination
of the solution due to a vanishing determinant, and
an arrowhead indicates that the solution continues.

Some of the major features of the above solution
may be interpreted in terms of a relatively simple

analytical "mean-f ield" solution. The mean-field
alloy has V„=-'U, 5;,&

—=for all i, j except coin-
cident sites.

The Hamiltonian is
I

H= 4 0 Q (TIO'(+6 %"Q O(Og(T~'~
fJk

where the primes indicate omission of terms for
which sites coincide. Let us define

Thus, y"= O(1) and all correlation functions of a
given order are symmetrically equivalent. For
an O(1/N~) truncation this symmetry reduces
Eqs. (19) to 4 x 4 and obviates spatial truncation.
It is easy, but messy, to write out Eqs. (19) for
this mean-field case, but to simplify things we
shall truncate each equation in (19) to leading
order in 1/N, rather than to O(l/N~). In Eq.
(19a) we truncate to O(1/N), not O(1), because the
condition y'= 0 makes the O(1) parts vanish.

The set of equations (19) may be written

Gy= 5,
where the elements of the matrix G are

0.2

0.1

- 0.2
.05

-OA

-0.6 0.05 0.10
IVI

0.15 0.20

FIG. 1. Plots of 1 (1) and 1" (1) for V=-1, m~= 2, and
various values of 8'. P~ =0.167 is marked.

m=N %"and e=N'U.

By symmetry, the characteristic order parameters
are

11 y1

(o,o,) —= I"~=y /N for i W&,

(o,oIo&) =I'~ =ys/N for otic to,
(o,o,o&ag -=I' = y'/N -no coincidences, etc.
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APPENDIX A

Consider a general term on the right-hand side
of Eqs. (10) at P= P, :

+ Voto» + ~o (» & &

fj,g, h} p=1 q=l

All the indices f, g, h are summed over (floating),
but t(1) ~ ~ t(r) are fixed and uncontracted. For
Eq. (10a) r=0, for (10b) r=1, etc. No contrac-
tions can occur among indices on the same W
[e.g. , o wg(s) xh(s) 0 0]. Various special cases in
the summations corresponding to different con-
tractions of indices contribute to different orders
in 1/z, and we seek an upper bound on the leading-
order contribution from the general term.

For our purposes it is sufficient to specify an
over-all contraction arrangement by (S,), where
St is the number of t-fold contractions. For a
given (S,j the number of distinct sites in the lowest-
order correlation function in the expression for the
reduced (by contraction) (r+ n+ 2m)th-order corre-
lation function appearing in the general term is

u= r+ n+ 2m —P tS, .
t&2

(Al)

We have used Eqs. (4). Thus, assuming the
scheme (17), the lowest-order correlation func-
tion arising from the contraction is O(z~), where

P = —,
' [u+ P(u)]. (A2)

The number of summations in the general term
will be reduced from n+ 2' by contractions. A
t-fold contraction among floating sites reduces

the difference is 20% of our estimate of I'(1).
This temperature is well. above T, and I'~(10) is
small enough that spatial truncation effects can
be ignored. The criteria of validity of our solu-
tion seem to be well satisfied so that Clapp's solu-
tion is probably in error. This suggests that the
effect of varying the cluster size in Clapp's method
for determining the higher-order correlation func-
tions should be investigated.

ACKNOWLEDGMENTS

the number of summations by t-1. A t-fold con-
traction can include one (but no more) fixed site,
and when it does, t-1 summations are eliminated.
If there are St t-fold contractions, among floating
or fixed and floating sites, then S,(t- 1) summa-
tions are eliminated. The total number of summa™
tions is therefore q where

q = n+ 2m —Q, S,(t —1) . (A3)

In this we need a lower bound for the value of
L (t —2)S,. Now (t —2)S, ~0 sop, (t-2)S,], =0.
When this lower bound (lb) can actually occur,
g, S,t is even, so from (Al), &t&(u) = gr+n+2m).
For n+2m&2z, the condition q&z-s coupled with

(AS) implies that this lower bound on g, (t —2)S,
wiB not actually be achieved, but in any case we
may always write a lower bound on sv as

w = —,'[r+ n+ 2m+ P(r+ n+ 2m)], (A4)

which is the desired result. The lower bound on
so is attained for n+ 2m& 2z.

To show the consistency of the classification
scheme (17) we compare the order in 1/z of the
left- and right-hand sides of an arbitrary equa-
tion (arbitrary r) in the set of equations (10).
The left-hand side is O(z ") where v= ,' [r+1—
+ &t (r+ 1)] and a general term on the right-hand
side is O(z ), where w = —,

' [r+n+2m+ P(r+n
+ 2m)]+ 5~,„0provided that n+ 2m & 2z. The Kron-
ecker 6 is added to account for the fact that Do
= O(1/z). It is easy to show that

v —u = —,'[(n+ 2m —1)+ (-1)"'&t&(n+ 2m —1)]+ &, ,„,0.
(A5)

I1y inspection of (A5) with r+1 odd or even we see
that (i) v —w ~ 0, (ii) there exist values of n+ 2m

(0, 1 or 2) which are less than approximately 2z

(24 for fcc) for which v —w = 0. This means that
for each equation (10), the leading order in 1/z
ot the right-hand side is the same as the }.eft-hand
side. Therefore, the scheme (17) is consistent.

In these q summations coincidences must be
avoided, for otherwise we would be considering a
term arising from another contraction. If there
are s fixed sites among the z sites within the in-
teraction range then the q summations actually
contribute a factor of (z —s)(z —s -1) ~ ~ ~ (z —s —q
—1) & z '. We shall use the upper bound, z '.
Notice also that q&z —s, since for q&z —sfloating
site coincidences are unavoidable.

With —,
'

p, z = O(1/z) and —,
'

p, 'vv = O(1/za) an up-
per bound to the lowest-order contribution from
the general term is O(z ), where

u&= p —q+ n+ 2m= 2[r+n+ 2m++, (t —2) S,+ &t&(u) ].
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APPENDIX B

%e wish to show that when no sites coincide and

CP

(o,o,okot) = (o,or)(oko, )+ (o,og(op, )

+ (o,o,)(o,op+ O(1/z') .
Proof. To O(l/za) the function

G~skr = (o~o&okor) (odor)(okor)

—(o(og(o, o,) —(o, cr,)(o,ag
satisfies

1
G„yk —-

a PD, +rV,r Gr)gk

(none o& 0, i,j, k coincident~„

because to O(1/z },
(o 0)oro») = —'a PDt Qr V r(0'ro'(orok)

( o. oi)( orok) = —a pD& Zr V,r(oro, )(o,o„), etc.

Now, we have

l) ( r)( k r) 2( I k)(of l)

=&a(ok r)++a( a kor) &a(okor) 2(o&ok)(o)or)

=O(1/z ) at P= P, ,

so

= O(1/z ) O(Go~gk} ~

—
a Pc» + V.rGrrrk

fÃ, g, k

G, rg »O(1/z ) at p= p„Q.E.D.

where we have used (4). Therefore, at P= P, ,

1G,o»= —
a P,Dt(V, r Gr gyk+ V,r Ggok+ V~ Gk)sk}
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