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The pseudopotential theory of d-band metals discussed by the author in a previous paper is
used to consider the total energy of the noble metals. The theoretical total-energy calculation
is completed by adding to the total electronic energy the direct electrostatic repulsion between
ions and subtracting from it an energy equal to the electron-electron interaction. The result
is expressed as a sum of four quantities: a free-electron energy, a band-structure energy, an
electrostatic (or Ewald) energy, and an overlap energy. The first three are directly analogous
to the usual quantities found in the simple-metal total energy. The fourth contribution enters
as a result of overlapping atomic d states and is most conveniently expressed in terms of a
repulsive pair potential. Energy-wave-number characteristics are evaluated for copper, sil-
ver, and gold by the numerical procedures previously used to calculate the form factors of
these metals. Two improvements relating to exchange approximations are introduced, how-
ever. The most important of these involves a modification of the Kohn-Sham conduction-core,
d exchange potential in a manner suggested by Lindgren. This removes the spurious behavior
otherwise obtained at long wavelengths in both the form factor and the energy-wave-number
characteristic. The overlap potential for each metal is evaluated as a function of the separa-
tion between two ions in the metal and then fitted to a simple analytic form. Applications to
the calculation of the binding energies, the low-temperature stable phases, and the phonon
spectra of the noble metals are described. All three metals are calculated to be most stable
in an hcp structure, rather than in the observed fcc structure. Reasonable phonon spectra are
obtained, although large Kohn anomalies, which have not been reported experimentally, are
seen in copper.

I. INTRODUCTION

One of the more appealing features of the pseudo-
potential theory of metals is that it permits calcu-
lation of the total energy as an analytic function of
the configuration of the individual ions. This
greatly facilitates the study of the many physical
properties which depend upon the change in the
total energy when the ions are rearranged at con-
stant volume. In the past ten years or so, there
has been steady progress in understanding such
things as the lattice dynamics and phase stability
of simple (free-electron-like) metals through use
of the pseudopotential method. '~ Recent advances
in pseudopotential theory ' have permitted analy-
tic calculation of the total energy for d-band metals
as well. In the generalized pseudopotential meth-
od, it is recognized that the atomic d states cp„- are
not good eigenstates of the crystal Hamiltonian of
a d-band metal and that they give rise to bands
which hybridize with the free-electron™like conduc-
tion band. This hybridization is taken into account
through a potential ~, which is a simple linear
function of the extra potential —5 V, seen by a d
electron in the metal. The total energy is then
calculable as a systematic expansion in both ~ and
an ordinary pseudopotential uo.

In the category of d-band metals we include the
alkaline earths, the transition metals, and the
noble metals, which have empty, partially filled,
and filled d bands, respectively. In this paper we

shall focus our attention on the total energy of the
noble metals. Numerical calculations of the
pseudopotential form factors for copper, silver,
and gold have already been discussed in a previous
paper (hereafter referred to as Paper I). These
calculations provide the necessary foundation we
shall need to quantitatively evaluate the total en-
ergy. The extension of the numerical procedures
used in Paper I to the total energy calculation is
discussed in Sec. IG.

Our total energy calculation is based on the self-
consistent-field approximation. In such a calcula-
tion there are always two main steps. The first
is to sum the one-electron energies of the oc-
cupied states. This sum is the total electronic
energy, and the general result for a metal with a
filled d band has been given in another previous
paper' (hereafter referred to as Paper II). The
second part of the total energy calculation involves
addition of the direct electrostatic repulsion be-
tween ions and subtraction of an energy equal to
the electron-electron interaction, which has been
counted twice in the total electronic energy. tIt)te

first discuss these amendments in Sec. II before
proceeding to a quantitative evaluation of the total
energy in Sec. ID, and various applications in
Sec. IV.

II. TOTAL ENERGY OF A d-BAND METAL

The total energy to be considered is that of the
valence electrons in the presence of compensating
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nuclear charges. The energy associated with the
core electrons is assumed to add only a constant to
the total energy of the metal and need not be con-
sidered. The total electronic energy E„ofthe
valence electrons of a d-band metal can be written

fe ~bs Eol' 9

where Eg' Eb and E
y

are the free-electron en-
ergy, band-structure energy, and overlap energy,
respectively, as defined in Paper II. The quanti-
ties E'„and Eb, are directly analogous to the free-
electron-energy and band- structure-energy terms
found in simple-metal pseudopotential theory. The
energy E,", , on the other hand, enters as a result
of the overlap of the yd centered on neighboring
ion sites in the metal. The calculation of E„was
carried out in Paper II to second order in both the
pseudopotential uo and the square of the hybridiza-
tion parameter ~. As emphasized there, the de-
pendence of E,y on the ion configuration first ap-
pears in that order. For the same reason, the
electrostatic corrections to the total energy will
be included to second order in these variables.

In order to incorporate the two electrostatic
terms into the total energy, it is necessary to do
some bookkeeping with respect to charge densities
and potentials. %e identify seven charge densities
of interest: the charge density of the ions, the
valence charge density of the nuclei, the uniform
electron density, the orthogonalization hole den-
sity, the screening electron density, the electron
density of filled core (or d) states, and the elec-
tron density of filled d states. The charge density
of the ions includes the electron density of filled
core and d states plus the nuclear density of all
the protons. The valence charge density corre-
sponds to Z protons centered on each ion site.
(For the noble metals Z= l. ) Within the small-
core approximation, it is not necessary to dis-
tinguish between these two densities. However, in
the present case we do not wish to apply this ap-
proximation to the d states, so we shall retain the
distinction. The uniform electron density is
Z*/Qo, where Z* is the usual effective valence
and Qo is the atomic volume of the metal. The
orthogonalization hole density depletes (Ze —Z)
electrons from around each ion site, while the
total screening charge in the metal is exactly zero.
The sum of the uniform, orthogonalization hole, and
screening densities corresponds to Z electrons per
ion.

The electrostatic energy of a given charge dis-
tribution is just equal to one-half the integral of
the charge density times the potential arising from
that charge distribution. The potentials arising from
the above charge densities v e write as V'", V ",
V"", V'", V", V, and V", respectively. If
we denote the single-ion contributions to our seven

h „-= @'a'/2m,

E.= &V. II+Vle. &,

P= ~ I~.&(v. l
.

Q= Cod

(8)

The notation is exactly the same as that used in
Paper I. The plane waves Ik+q) and Ik) are
normalized in the atomic volume Qo; k~ is the
free-electron Fermi wave number. The quantity
T is the kinetic energy operator, while v is the
contribution to the total self-consistent potential
(V) associated with a single ion site. The y, are
localized core states and the sums in the above
equations run over states on a single ion site.

One can write out the terms (k!v lk ), E„and
E exactly. The quantity (kl v lk& is just the
average potential in the metal:

-care, d + ( /Ze)(Vval + Vaalf+ Vch) (8)

where z'""d is the average potential arising from

charge densities as n, 0„9 sag 9 1zQQgf9 nob9 &Sc9 &e9
and nd, respectively, then the total energy per ion
of a metal with lions can be written

E„„,= N 'E„+—,'(n„,—na)(V'" —V )'

——,'(n, f+n,h+n„+n~)(V"" + V'"+ V"+ V ),
(2)

where the volume integrations are implicitly un-
derstood and where the prime means that the self-
energy term involving the interaction of a given
ion with itself is to be excluded. Note that gd has
been subtracted from g„,because the electrostatic
interaction between d electrons has already been
included in the total electronic energy.

The final two electrostatic terms in Eq. (2) can
be combined in a simple way in terms in E,", . Us-
ing Eq. (V8) of Paper II, one can write (1/N)E,",
in the form

-'E;.= Z (S-„.&kI.,Ik)).ZE„
N '

a&A+ d

g (yg I n I k ) (k I s I ya )
0&ky d ~k Ed

r (r(r Z""""""'"")
d' ~h

(8)
where the pseudopotential zoo has been taken in the
optimized form used in Paper I:

&k+qI ~olk &
= &k+qI v Ik &

+ Q ($h+ (kI oIk& —E )(k+qI q ) (y Ik)
s=cgd

+Q ((k+qI nI y, ) (y„Ik&+c.c. ) (4)
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Zion ((p l
T+Vianl ~ ) (lo)

The potential v'" is that arising from the single ion
on which y„is centered. Similarly, we have

Zian+ ( Vion)& + (Vunif + Vch+ Vsc)

Zion+ ( oh+Vsc) ( /Z)Vunif

—[n,„/(Z*—Z)](V'"+ V'"+ V")'+ C . , (11)

l

the filled core and d states of a single ion and com-
pensating nuclear charges. In writing the last
series of terms in Eil. (8), we have used the fact
that the uniform electron density is just a con-
stant. Also, we have noted that n„,«V" vanishes
identically, since the total screening charge in the
metal is zero.

The fiuantity Zs may be written

z, = &q, l
7'+(v'-+ v "+v'"+ v-)ly, &

Zion+( Vion)&+ (Vunif+ Voh. + Vsc)

where

where

C =[n +(n, /Z. )] V" +(n +n,„)(V +V +V )' .
(»)

The quantities v'" and v" are, respectively, the
potentials arising from the n,„andn„associated
with the ion on which y is centered. We have
written Z in the form (11) so as to take advantage
of the fact that this quantity need be computed only
to first order in calculating the total energy to
second order. The second term in C is essential-
ly negligible since n - —n,„/(Z*—Z) outside any
given core region.

Using Eels. (3), (8), (9), and (11) and the formal
definition of the magnitude of the orthogonalization
hole to second order,

(RI'PI%&
1 —(kl'Plk)

one can recombine the various terms in the total
energy and obtain

Zf,f,i=nZhh~+Z*v'"" —~s, h'vh n, h"v-+2 [ 5 (S„-Z,' —n v'"-n, v"- C ) (y lk&()f. ly )
A&A~ 0f~ c,g

~ (&~.l~lk& &&l~, &".')](I- &klPlk&) '- ~ ~ (~'
d k&ky' d k

+ k I' k — ' ' + 2 ni„+n,h V"'+ V'" '+ Z* Z g„,i~V
(p~ I a lk & kl al y, , &

mrs d'

+ ,'n„„,V""' —~.,V—-}+(I/X)(Z,+Z'.,')+Z'-, (14)

where we have set

Zion P Zion i S
2 d

In arriving at the quantity in curly brackets in Eq.
(14), one uses the fact that any one part of the
charge density can be formally interchanged with
the potential arising from another part and still
provide the same answer. Also note that the term
E'" is essentially just the contribution of the d
electrons to the total energy of the free ion (or
atom). Since such a term contributes only a con-
stant to the total energy of the metal, it may be
dropped from future considerations.

The last step is to redivide E„„,into its four
separate contributions:

Ee.ta —Ef. + Ebs+ E..+E.r ~

It is convenient to define the components on the
right-hand side of Eil. (16) in such a way that they
are analogous to those which make up the simyle-
metal total energy. To do this, it is first neces-
sary to point out that the effects of exchange and
correlation among the conduction electrons

+im +&1 ++D t (18)

where n~ represents the electron density n~ plus
compensating positive charges at the nuclei, the
electrostatic or Ewald energy per ion of %point
ions of charge Z*e immersed in a compensating

l

(n «, n,„,and n„),as calculated in the spirit of
the Hubbard-Sham method, can be inserted direct-
ly into Et. t. ] if proper interpretations of the vari-
ous terms are made. This has been demonstrated
in detail by Shaw for the case of simple metals,
and the generalization to the present case is di-
rect. Specifically, a term like n,„V'"can be
broken up into a Hartree or Coulomb (Coul) term
and an exchange-correlation (xc) term. If the
n„V"term and the exchange-correlation part of
the n, „V'"term are added to E~„oneobtains the
generalized band-structure energy per ion:

Z„=(I/&)Zh". -!n,.V-+ s (n.„V'")„..
In the limit a-O, Eq. (1V) reduces to Shaw' s
simyle-metal result. s

If one now replaces n,„by[(Z*-Z)/Z]n, .~ for
the remaining term in E„,~ and, further, sets
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uniform background can be extracted from Eq.
(14):

l(zg/Z)2( Vvai)i + (~/Z) Vanif

+ 2(~..if V )co.i ~

The extra terms involving &AD and V can be ab-
sorbed into a generalized overlap energy per ion:

E„=N E,", +(Z*/Z)(g„~V )'+ ~(nDV )' . (20)

The term (Z*/Z)(n, ~ V )' represents the electro-
static energy per ion of the two-body interactions
between the nD from one ion and a point charge
Z*e on another ion site. The quantity 2(nDV )' is
the electrostatic energy per ion of all pairs of
overlapping d shells. In the limit that the y~ be-
come (nonoverlapping) core states, E„vanishes
identically.

Finally, the remaining terms in E„gg can be
combined to form a generalized free-electron en-
ergy per ion:

E..=-'«.;+Z*v""'--.*(~..v'")c.~ + ~ [».(k)(~. lk& &kl ~. &+~ ((~. I
~lk & &kl ~~ &+c c )]

0&k~ e»-c, d

„[1+(kl~lk&]i g g (&,lal )( lalq, & 1+(klPlk& g (P~ I&1k&( Inly, . &'I+-'( „V""'i) (21)
0 &kg d Sg -z~ 8-„-z~ )

'"-"

where

T (k)= h„-—Z'- —(n v'"),.„,
—([n, +n'"/(Z" —Z)]v'"].„.,

—[n„+n'"/(Z+ —Z)] v- —C. . (22)

The free-electron energy is unique in that it does
not depend on the ion configuration (to second or-
der) but only on the atomic volume Ao.

III. STRUCTURE-INDEPENDENT QUANTITIES

to ta1

As we have divided up the total energy, it con-
sists of three contributions which depend explicitly
on the ion configuration and one which does not.
Our principal concern is with the structure-depen-
dent terms, although we shall also discuss an ap-
proximate evaluation of the structure-independent
free-electron energy. As for simple metals, the
configuration dependence of the band-structure en-
ergy is easily isolated in reciprocal space in the
form of a structure factor,

S(q) = (1/N)Z, e- "'i, (23)

where the sum is over all ion sites r, The addi-
tional energy-wave-number characteristic Il(q) is
a function of only the atomic volume. The overlap
energy, on the other hand, is most conveniently
written as a double sum over a pair potential g„,
which also may be calculated as a function of QQ.

Below we consider the evaluation of E,„E(q),and

g„for the noble metals. The evaluation of the
rema. ining electrostatic energy is a standard prob-
lem and is adequately discussed elsewhere. '

A. Free-Electron Energy

It is a reasonably straightforward rnatter to com-
pute E„asgiven by Eq. (21). One can reduce the

computational effort required, however, by intro-
ducing some simplifying approximations. To do
this, we first gather up all the exchange-correla-
tion terms in E„andapproximate them by the
standard uniform gas result

E„,= —Z(0 916/x. , + 0 115—.0.031 inr, ), (24)

where r, = (30o/4vZ) ~ . Equation (24) is written
in the atomic units 5 = 2m =

2 e = 1, which will be
used in the remainder of this paper. In these
units energies are in rydbergs and distances are
in Bohr radii. Also, we neglect the difference be-
tween n„and —n, /(Z* —Z) and write Eq. (22) as

T (k)=0' —E'- —&q, lv""'+v'"l q

= y~ —E"'I+ (q& l

v' —v""i —v'"l p ) (25)

The second form of Eq. (25) is appropriate to our
evaluation procedure, in which we take the y 's and

the term values E"' from the Herman-Skillman
tables for the free atom. ' The potential e' is cal-
culated as that arising from the valence g-electron
density in the free atom. The final three potential
terms on the right-hand side of Eq. (25) are equal
to g V as calculated in Paper I. This form of g V is
used to compute the matrix element (kl b, I y, ).

The particular advantage in making the above
approximations is that all the quantities now needed
to evaluate E„arenecessarily computed in eval-
uating the energy-wave-number characteristic.
Numerical values of Ef, for the noble metals are
given in Sec. IV in connection with the binding
energy.

B. Energy-Wave-Number Characteristic

We now turn to the evaluation of Eq. (1V) for
the band-structure energy. First note that one
can write
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,'n—„V*'= [Z S(q)nge'~' ] [Z S(q') v~'e'
"

]d r
iv

= -,'n, Z'
l s(q) l'np v-

ga

=+
l
s(q)l' (47r&Q/q') [1 —G(q)] lns l',

(26)
where the prime on the summations means that
the q =0 term is to be omitted. The Fourier trans-
form of the screening electron density n&' is given

I

by Eq. (12) of Paper I. The quantity G(q) is the
exchange-correlation function, which is also dis-
cussed in Paper I.

The term —,'(n,„V'")„,in Eq. (17) can be handled
similarly, so that by using Eq. (85) of Paper II for
Z„"„onecan finally write

z„.=Z,' ls(q)l'F(q),

where the energy-wave-number characteristic is
given by

( )
20, l g„-I'(k+qlw()lk)l' 200

( g- 1
(27r)'.I,(, O' —Ik+q I' (2w)' f, , k' —Ik+q, l'

(k~lc~l(c, )((c,~lc~lkci()(k+i(~lccc~lk)cc. c. p (k~lc~lc, )((c,~lc~lk+i()

)k —F-d k —Ed

— ", ' [(I-G(q)) lnrl'+G(q)lnfl']. (26)

-4& [(3/6 )( „,„+,)]"'—[(3/8 ),]"'],
where n, is just (n «+n, „+n„).In pseudopoten-
tial jargon, n, is the pseudoatom electron density,
and we approximate it in Eq. (29) by the valence
s-electron density from the free atom. Note that
inside the core region g„„d»pg, and the Kohn-
Sham potential is recovered; outside the core
n, » n, d and the potential goes rapidly to zero,
as desired.

(29)

The quantity n&" is the Fourier transform of ortho-
gonalization hole density [Eq. (10) of Paper I].

All the quantities needed to evaluate E(q) for the
noble metals have already been discussed in detail
in Paper I. We have found it desirable, however,
to reconsider the calculation of (%+ql wol'k ).
Specifically, the Kohn-Sham free-electron-ex-
change approximation used in Paper I to calculate
the conduction-core, d exchange contribution to
wo does very poorly at long wavelengths (q& k~) .
The reason why is now fairly clear. The free-
electron-exchange potential, as applied to a single
ion, is only reasonable where the electron density
(n„„~)is large, i.e. , well inside the core region.
Outside the core region, where n

„„

is small,
the free-electron-exchange approximation consid-
erably overestimates the potential because of the
(n„„~)dependence. We have found a simple
way to correct this problem. Lindgren has pointed
out that the free-electron-exchange approximation
really applies to the toggE electron density in a
system. " If we isolate the self-exchange among
conduction electrons [as we do through G(q)], the
remaining part of the potential is more properly
given by

The quantitative significance of the new ex-
change approximation (29) can be appreciated by
examining its effect on the form factor,

(k+ql wlk)= (k+ql wolk)

g (k+ql al q), ) (q), l'alk)
d

O' —E„
where lk+ql = lkt'=k&. In Fig. 1 we haveplotted
the form factor for copper calculated both with the
Kohn-Sham potential and with the Lindgren poten-
tial, Eq. (29). Note that the difference is fairly
large at small q, but by the time q = 2k~ the differ-
ence has almost disappeared. This is in line with
our qualitative reasoning above. Figure 1 also
serves to resolve a puzzle with regard to the cal-
culation of physical properties. Specifically, it
was previously noted, in using the Kohn-Sham po-
tential, that reasonable results could be obtained in
any calculation which did not depend sensitively
on either (k+ql wlk) or E(q) at small q. For this
reason, the resistivity of the liquid metal (which
was considered in Paper I) is affected at most by
only a few percent by use of the Lindgren exchange
potential. On the other hand, for the longitudinal
modes of the phonon spectrum, which do depend
sensitively on F(q) at small q, the correct behavior
is critical. In fact, the Kohn-Sham potential leads
to imaginary longitudinal phonon frequencies for
copper. 4

In calculating the energy-wave-number charac-
teristics for the noble metals, we have introduced
one further refinement. This involves the ex-
change-correlation function G(q), which has re-
ceived a considerable amount of attention in the
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literature in the past few years. ' ' Instead of
the exchange-only form used in Paper I, we now

employ the most recent interpolation formula of
Slngwl gt gi

2
(q) ~(I e B (q/Ay ) ) {31)

+(q) = —(4 &*/floq )+„(q), (32)

for copper, silver, and gold from @=0 to @=5k~

where A and 8 are functions of y, . At metallic
densities, G(q) goes approximately to 1 as q- ~
to properly account for correlation effects among
the electrons.

Using Eqs. (29) and (31), we have calculated the
normalized energy-wave-number characteristic
E„(q),defined by the equation

C. Overlap Potential

As indicated above, the overlap energy can be
written in the general form

E„=(I/2N)Z v„(r,—r,.), (33)

where the sums on g and j are over all ion posi-
tions r, and r, . Using Eq. (86) of Paper 1I for
E,", and Eg. (20), one obtains

at intervals of 0.1k„.The results are listed in
Table I together with the appropriate values of Qo
and Z*. Also listed in Table I are new values of
the form factors for the noble metals. In Fig. 2
we have plotted F„(q)for copper, silver, and
gold.

v., {r,-r.;)=~ &q, lq, &&q, IAIDO, &-&q. lq;& ~ [(~'-E) &q, k&&klan &+(&q, lk&&kl~lq, &+c c )]
d, d' k( kp

q', , lnlk&&klan, lq )
&

l l & g & lk&&kl & g &A. lk)&klalq' )+c.c.
k —E + CPd. Q CP~ Pd. k k Pd

k —Ek &kg d k &'ky k'&kg- b

+ "", , "'
)

+L. t:.
I

—2Z g'(r", —i, )+ rPrm, (r — ) (i r— rU,.), (34)

where y„is centered on r, and yd, on r, , and where
is the potential arising from the electron den-

sity nD. Since the d states are localized, it is
clear that the magnitude of v„must decrease
rapidly as Ir, —r,. l increases. The sign of the
potential, however, is not obvious from Eg. (34).
It turns out that for the noble metals E,", is posi-
tive and dominates the negative electrostatic
terms. Hence p„is a repulsive potential.

In principle, it is a straightforward matter to
evaluate Eg. (34) as a function of {r,—r&). In
practice, however, the problem is very greatly
complicated by the two-center geometry involved.
Especially difficult is an accurate evaluation of
the matrix element &cp~, I b, I' cp~&, where the correct
variation in potential in the interstitial region be-
tween the two ion centers i and j is needed. The
spherical average for g V used in calculating
&k I n I y~ ) is no longer appropriate. An approxi-
mate but adequate improvement in p V can be made
by replacing the constant potential contribution
from the neighboring ion in question by the actual
yotential associated with that ion. Also, note that
in a noble-metal free-atom v' is exactly cancelled
at large distances from the nucleus, since the po-
tential must go as e /r. If the coordinates are cen-
tered on ion i, one can thus write a new 5V' as fol-
lows:

6V'(r)=6V(r)- v'(r)-v' (r -r, )

—v'"(r —rj)+ const . (35)

We have chosen the constant in Eq. (35) such that
6V'(0) =6 V(0) and have calculated &y,, I sly, ) ac-
cording to the formula

Note that the approximations (35) and (36) make
g„afunction of I'r, —r~ I only.

Even using Egs. (35) and (36), it is a difficult
computational problem to evaluate g„from Eq.
(34), and considerable computer time is needed.
%e have found it desirable, therefore, to fit g„to
a simplified analytic form. In the region of the
nearest-neighbor distance y„in the metal, Kq.
(34) is adequately represented by

v„(~)=m[1+I(p —I)+PI'(p —I)']e "" ", (3'I)

where p=z/r„. The constants n, R, y, and I are
determined by calculating v„and its first and sec-
ond derivatives at y;, and g„atthe second-nearest-
neighbor distance with Eq. (34). The values so
determined for the noble metals are given in Ta-
ble II.

D. Effective Interaction between Ions

In calculating physical properties, the recipro-
cal-space treatment of the band-structure energy
and the real-space treatment of the overlap energy
are the most useful for reasons of convergence.
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tion of the first and second nearest neighbors. (As
discussed in Sec. V, the minimum for copper
should probably be deep, like that for silver and
gold. ) This qualitative feature is also observed'4
in the simple metalslithium, sodium, and potassi-
um, which, like the noble metals, are all mono-
valent. The position and strength of this mini-
mum are inevitably related to the structural stabil-
ity of the metal.

Note also that e,«oscillates about zero. At
large y these are just the familiar Friedel oscilla-
tions, which result from the sharp cutoff of the
electron distribution function at k~. The inclusion
of hybridization here has modified the amplitude
but not the form of the oscillations.

E. Quantitative Effect of Hybridization

—0.2

-0.3 SHAM

-0.4

FIG. 1. Form factor for copper computed both with
the Kohn-Sham exchange potential and with the Lindgren
exchange potential, Eq. (29).

It is worth noting, however, that just as in simple-
metal pseudopotential theory, one can formally
write the total energy in terms of a two-body ef-
fective interaction potential between ions:

E,.t.i = Eo(&o)+-'~'v..f(lr~ —r~l ),
f, j

(33)

where Eo depends only on the atomic volume 00.
There are three contributions to the effective
interaction potential v„,. One contribution comes
from the electrostatic energy and is simply the
direct Coulomb repulsion between ions of charge
Z*e. The band-structure-energy contribution is
just the Fourier transform of the energy-wave-
number characteristic. The final contribution is,
of course, the overlap potential discussed above.
One thus has

2&* 4&*
I

sinqrv„,(r) = —
I

F„(q) dq+v. , (r) .
7T qx

0
(39)

Using Eqs. (37) and (39), we have calculated v,«
for copper, silver, and gold and have plotted the
results in Fig. 3. The curves show several inter-
esting features. Note that the first distinct mini-
mum in v,« for each metal lies between the posi-

I.O

-I
x IO

0.8

0.6

0.4

0.2

00

q/k

FIG. 2. Normalized energy —wave-number characteristics
for copper, silver, and gold. .

The quantitative effect of hybridization on the
above quantities can be exemplified by computing
the form factor and the energy-wave-number
characteristic with 6 set equal to zero. We have
done this for copper, and in Figs. 4 and 5 we have
plotted, respectively, (k+q I co I k ) and F„(q)both
with and without hybridization. The effect of hy-
bridization is clearly most pronounced in the in-
termediate q region (l & q/k «r3). This region of

q space is extremely important in many calcula-
tions. For example, neglecting hybridization re-
duces the calculated resistivity of liquid copper
by a factor of 4.

It is quite interesting to move one step to the
right in the Periodic Table and to repeat the above
calculation for zinc. In Fig. 6 we have plotted the
form factor for zinc computed both with and with-
out hybridization. Note that the effect of hybridiza-
tion has been dramatically reduced. On the sur-
face, this result would support the usual practice
of treating zinc as a simple metal in pseudopoten-
tial calculations. The calculational evidence, "
however, suggests that hybridization may still be
important in understanding many of the physical
properties of zinc, as well as of cadmium and
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mercury.
The magnitude of the hybridization texpns in the

total energy is determined by the quantities E~ and
It is of direct interest then to ask how well we

calculate these quantities for the noble metals. In
band-theory language Zs is (to lowest order) the
position of the d resonance in the metal and, as
calculated in Paper I, it corresponds to the mean

TABLE I. Form factors and normalized energy-@rave-number characteristics for the noble meta s in a.u. {For
q ~ 2k+ in (k+ jisv)R), % and%+ad are on the free-electron Fermi sphere. For q& 2k+, k is on the Fermi sphere and k
and q are antiparallel. )

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
l.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2. 50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80
3.90
4.00
4.10
4.20
4.30
4.40
4.50
4.60
4.70
4.80
4.90
5.00

—0.3316
—0.3317
—0.3306
—0.3311
—0.3290
—0.3275
—0, 3229
—0.3178
—0.3095
—0.2994
—0.2861
—0.2696
—0.2493
—0.2238
—0.1926
—0.1528
—0.1035
—0.0413
+0.0357

0.1311
0.2492
0.2545
0.2493
0.2374
0.2218
0.2049
0.1889
0, 1749
0.1634
0.1540
0.1462
0.1391
0.1319
0.1240
0.1152
0.1055
0.0953
0.0850
0.0753
0.0664
0.0587
0.0521
0.0465
0.0417
0.0371
0.0327
0.0281
0.0234
0.0186
0.0139
0.0096

1.000 00
0.992 32
G. 969 59
0.932 12
0.881 68
0.818 89
0.747 77
0.668 99
0.588 01
0.505 24
0.425 07
0.348 34
0.276 08
0.21140
0.152 86
0.106 24
0.071 51
0.054 68
0.059 85
0.085 97
0.088 52
0.062 47
0.058 04
0.053 52
0.049 89
0.046 75
0.043 58
0.040 55
0.037 25
0.034 00
0.030 64
0.027 30
0.024 18
0.021 22
0.018 53
0.016 12
0.013 96
0.01210
0.010 45
0.008 98
0.007 74
0.006 62
0.005 65
0.004 83
0.00413
0.003 53
0.003 04
0.002 65
0.002 31
0.002 03
0.001 81

Cu

{n,= 79.68, Z* =1.1937)
(tt+ ql so IR) F„(q)

{0()= 115
(%+glculR)

—0.2540
—0.2535
-0.2507
—0.2486
—0.2427
—0.2369
—0.2274
—0.2171
—0.2035
—0.1888
—0.1717
—0.152S
—0.1318
—0.1090
—0.0843
—0.0568
—0.0263
+0.0086

0.0483
0.0948
0.1499
0.1586
0.1624
0.1629
0.1608
0.1568
0.1514
0.1447
0.1372
0.1291
0.1207
0.1121
0.1036
0.0953
0.0872
0.0793
0.'0718
0.0645
0.0576
0.0511
0.0450
0.0393
0.0341
0.0293
0.0249
0.0209
0.0172
0.0139
0.0109
0.0083
0.0059

Ag
.1, Z+ = 1.2345)

+~{@)

1.000 00
0.99185
0.967 68
0.927 64
0.873 49
0.805 38
0.727 52
0.640 31
0.549 63
0.456 14
0.365 30
0.279 56
0.202 52
0.135 83
0.081 31
0.041 41
0.01635
0.007 02
0.013 85
0.031 95
0.043 56
0.038 31
0.039 63
0.040 24
0.040 05
Q. 039 09
0.037 37
0.035 21
0.032 62
0.429 86
0.027 00
0.024 15
0.021 42
0.018 81
0.016 39
0.01418
0.012 18
0.010 41
0.008 85
0.007 49
0.006 32
0.005 32
0.004 48
0.003 77
0.003 18
0, 002 68
0.002 28
0.001 95
0.001 67
0.001 45
0.001 26

—0.2380
—0.2378
—0.2352
—0.2354
—0.2304
—0.2273
—0.2193
—0.2115
—0.1999
—0.1878
—0.1733
—0.1567
—0.1373
—0.1155
—0.0906
—0.0608
—0.0258
+0.0167

0.0681
0.1309
0.2083
0.2157
0.2170
0.2143
0.2086
0.2007
0.1912
0.1805
0.1693
0.1576
G. 1460
0.1345
0.1233
0.1125
0.1021
0.0922
0.0829
0.0740
0.0657
0.0581
0.0510
0.0445
0.0385
0.0331
0.0282
0.0238
0.0200
0.0165
0.0135
0.0109
0.0086

1.000 00
0.99134
0.965 77
0.923 24
0.866 29
0.794 25
0.713 31
0.622 71
0.530 30
0.435 35
0.343 77
0.258 92
0.183 83
0.11931
0.067 26
0.030 78
0.010 41
0.007 47
0.024 83
0.055 60
0.072 13
0.059 32
0.058 34
0.056 76
0.054 51
0.051 61
0.048 08
0.044 30
0.040 23
0.036 20
0.032 25
0.028 48
0.024 97
0.021 71
0.018 77
0.01612
0.013 78
0.01174
0.009 96
0.008 43
0.007 13
0.006 02
0.005 09
0.004 31,
0.003 65
0.003 10
0.002 55
0.002 27
0.001 96
0.001 69
0.001 47

Au

{Qo= 114.4, Z+ = l.2971)
(R+jtllk) F„(q)
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FIG. 5. Normalized energy-wave-number character-
istic for copper computed both with and without hybrid-
z ation.

ver. Our value for gold, however, is undoubtedly
too large. The color of the noble metals suggests
(from elementary optical absorption considera-
tions) that E~ —E„for gold lies between the values
for copper and silver, as is found in the band-
structure calculations.

The corresponding width of the resonance 8'„is
calculable from the one-electron potential used to
generate a band structure. This quantity is also
related to (k!Al ya) by the simple equation4'5

~„=2~o (40

where E„=k~ and

(ka
~

A
~ pa) = —4mI'3„(ka) b,a

FIG. 3. Effective interaction potentials for copper,
silver, and gold.

position of the d band. In Table III we have listed
our values of E~ —E~ and also those estimated di-
rectly from band-structure calculations. Note that
there is fairly good agreement for copper and sil-

(41)
0.3—

In Table III the value of Wa obtained from Eq. (40)
for copper may be compared with that calculated
directly from the Chodorow potential and also with
that found in fitting the band structure generated
by this potential with a model Hamiltonian. The
agreement is quite satisfying since it is generally
accepted that the Chodorow potential gives a good
band structure for copper.

0.2—
COPPER

O. l

IV. APPLICATIONS

A. Binding Energy
2.0

A

&~ -OI-
)+
V

As defined in Sec. II, E„«,is just the binding
energy of the metal. The value of E„t„for a
noble metal in its observed fcc lattice structure is
rather easily determined. The structure factor
is unity at reciprocal-lattice vectors qo and zero
otherwise, so the band-structure energy, Eg. (27),
reduces to

-0.2—

—03—

TABLE II. Parameters in voy(r) [Eq. (37)] for the noble
metals in a.u.WITH HYBRIDIZATION-04—

WITHOUT HYBRIDIZATION Element

4.83
5.46
5.45

0.750 6.20
0.772 4. 90
0.741 3.73

0.006 70 8.43
0.005 16 10.95
0.01109 9.80

Cu

AuFIG. 4. Form factor for copper computed both with and
without hybridization.

TOTAL ENERGY OF COPPER, SILVER, AND GOLD
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TABLE III. Position and width of the d resonance for the
noble metals in Ry.

Present work

Estimate from
band calculations

Ez-Ea
0.188

0.2

0.429

0.4"

Au

0.452

0 3c

Present work

Other work

0.0276

0.024~
0.0284'

Eo, = —Q (4oz* /qo Qo) Fii(iso), (42)
cp

where the qo= 0 term is to be omitted from the

0.2

ZINC

O.I—

2.0

lL

p, -O. l

)cr
+

—0.2
V

—0.3

G. A. Burdick, Phys. Rev. 129, 138 (1968); B.
Segall, ibid. 125, 109 (1962); and E. C. Snow, ibid. 171,
785 {1968).

bB. Segall (unpublished); and E. C. Snow, Phys. Rev.
172, 708 (1968).

cH. Schlosser, Phys. Rev. B 1, 491 (1970).
V. Heine, Phys. Rev. 153, 673 (1967). This value

was calculated directly from the Chodorow potential.
D. G. Pettifor, Phys. Rev. B ~2 3025 (1970). This

value was obtained by fitting Burdick's band structure
{which was generated from the Chodorow potential) with
a model Hamiltonian.

sum, Vfe have found it necessary to sum over
approximately 500 reciprocal-lattice vectors in

Eq. (42) to obtain adequate convergence for the
noble metals. For values of qo greater than 5k~,
we have extrapolated F„(q)with a decaying ex-
ponential,

The overlap energy is computed with Eqs. (33)
and (37):

1E lo= & ~i V lo(ti) i (43)

where the x& = 0 term is to be excluded from the
sum. Convergence is very rapid for the noble
metals; we have carried the sum in Eq. (43) over
approximately the 50 closest neighbors in our
calculations.

The evaluation of the electrostatic energy for
simple crystalline structures is well known. One
can write Eq. (19) in the form

Z.,= —n„Z*'/[(3/4~) go]'i ', (44)

TABLE IV. Binding energy of the noble metals in Ry.
Values in parentheses are those calculated in the simple-
metal limit of no hybridization.

where & is a dimensionless geometrical coeffi-
cient. The values of &„for various structures
are tabulated elsewhere. '

The values of the binding energy and its four
components for the noble metals are listed in
Table IV. Also given there are the experimental
binding energies and the theoretical values of E„,
E~, and E„calculated in the simple-metal limit
of no hybridization (i. e. , L= 0 and y„=core state).
There are several points which should be made
about these results. Note that the agreement be-
tween theory and experiment is good for copper
but rather poor for silver and gold. The disagree-
ment for silver and gold is not necessarily serious,
however. As we have divided up the total energy,
the calculation of the free-electron energy is the
most crucial in obtaining the correct binding ener-
gy. But E„is a quantity we have treated quite
approximately since it is independent of structure
and is of secondary interest. Moreover, E„is
somewhat sensitive to the details of its calculation.

Also, note from Table IV that hybridization
decreases the magnitude of the calculated binding
energy in each case. This finding can be explained

-04
IZATION

R ID I ZATI ON

Experiment~
Theory
Ef
E
Eol

CU

-0.826
—0.800(- 0.812)

0.176(0.177)
—0.069(-0.033)

o.o49(o.o)
-0.956

Ag

-0.775
-0.649(- 0.691)

0.273 (0.254)-0.049(—0.040)
0.032(0.0)

-0.905

Au

—O. 957
—O. 652(-O. 741)

O. 351(O.316)
—0.074(- O. 056)

o.o7o(o.o)
—1.001

-0.5
FIG. 6. Form factor for zinc computed both with and

without hybridization.

Experimental binding energy is equal in magnitude to
the cohesive energy plus the first ionization energy of
the free atom.
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FIG. 7. Total energy of copper as a function of lattice
structure computed without hybridization.

FIG. 9. Total energy of silver as a function of lattice
s tructure.
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FIG. 8. Total energy of copper as a function of lattice
structure.

as follows. The quantities E~-E, and hence the
repulsive part of the pseudopotential, decrease
when one sets 6= 0; in silver and gold, at least,
this effect seems to govern the sign and magnitude
of the change in E&, rather than the vanishing of the
hybridization terms involving matrix elements of

Furthermore, note that hybridization always
increases the magnitude of the (negative) band-
structure energy, as would be expected from Fig.
5, but that this is more than offset by the appear-

ance of the overlap energy.

B. Phase Stability

One of the more interesting calculations that the
pseudopotential method facilitates is that of the
total energy of a metal as a function of crystal
structure. Comparisons can be made at a fixed
volume by considering only the structure-depen-
dent terms in the total energy. In principle, the
lattice structure which leads to the lowest total
energy should be the one which is most stable at
a given volume (at zero temperature).

We have sought to predict the stable structures
of the noble metals by calculating E„„E„,and
F.

„

for nine different structures: face-centered
cubic (fcc); body-centered cubic (bcc); and hexag-
onal close-packed (hcp) at c/a axial ratios of 1.5,
1.6, 1.63 (ideal), 1. V, 1.8, 1.9, and 2. 0. Figure
V shows graphically the result obtained for copper
in the simple-metal limit of no hybridization. We
see that the fcc, bcc, and ideal hcp structures are
almost degenerate. The same qualitative results
are obtained for silver and gold. When we include
hybridization, the degeneracy is lifted for all three
metals, as is shown in Figs. 8-10. The experi-
mentally observed fcc structure is now clearly
favored over the bcc structure in each case, but
there is always at least one range of axial ratio for
which the hcp structure has the lowest otal energy
of all.

Let us account for these findings in more detail.
The electrostatic energy favors the fcc structure
over the others, but only slightly over the bcc and

ideal hcp structure. The band-structure energy,
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FIG, 10. Total energy of gold as a function of lattice
structure.

on the other hand, tends to favor hcp structures
because their first few reciprocal-lattice vectors
are shorter than those of either the fcc or bcc
structures. The energy differences, however, are
clearly dependent on the exact shape of the energy-
wave-number characteristic. Finally, the overlap
energy again favors the fcc structure because of
the short-range nature of v„.But the energy
difference between the fcc and ideal hcp structures
is small because the number and distance of the
first and second nearest neighbors are the same
in each case. These tendencies qualitatively ex-
plain what we see in Figs. 7-10. If we neglect
hybridization, the electrostatic energy predomi-
nates over the band-structure energy and a result
like that shown in Fig. 7 emerges. Including hy-
bridization increases the magnitude of the band-
structure energy and adds the overlap energy. The
overlap energy separates the bcc from the fcc
structure, but the band- structure energy now dom-
inates (at least at certain axial ratios) and lowers
the hcp energy below that of the fcc structure.

It is not obvious why this calculation fails, but
there are a number of possible explanations. The
calculation is certainly a demanding one in that the
scale of energy differences among the various
structures is 10 Ry. It is possible that improve-
ments in our calculational techniques might alter
the result, but we do not consider this likely. We
have found for copper that the qualitative picture
is not changed by increasing or decreasing the
atomic volume at which the calculation is made nor
by altering the energy-wave-number characteristic
through the exchange-correlation function G(q) or
the position of the resonance E„.A more probable

COPPER
k

e L T g ~ e
2 e

~ e~

0
0 0.5

qa/2m

I.O 0.5 0 0.5

qa/2w ~2 qa/2w ~5
FIG. 11. Pinon frequencies of copper along principal

symmetry directions. The experimental points are from
Hef. 19.

explanation is that our method does not adequately
describe the hybridization. Specifically, we have
not included the effects of crystal-field splitting in

computing (k+q I&elk), F(q), or v„(r). As pointed
out in Paper I, this is a good approximation for the
noble metals, affecting these quantities by a few

percent at most. However, the crystal-field split-
ting does make these quantities structure dependent,
and on the energy scale of 10 Ry this is probably
not negligible.

C. Phonon Spectrum

Another interesting application of the pseudopo-
tential method is the calculation of the phonon spec-
trum. What is needed here is the change in the
total energy of the metal in the presence of a lattice
vibration of wave number q. This again requires
only a consideration of the structure-dependent
terms in Et t g. Harrison' has derived the appro-
priate formulas for the band-structure and electro-
static energy contributions to the phonon spectrum.
The former involves summations of F„~q)over
reciprocal-lattice vectors, which can be carried
out as above'. The overlap energy contribution to
the phonon spectrum is again most conveniently
handled in real space; the necessary formula has
been given by Squires' in terms of atomic force
constants. The force constants are easily calcula-
ble from Eq. (37). For the noble metals one needs

only to consider nearest- and next-nearest-neigh-
bor interactions.

We have calculated phonon frequencies v(q) for
the noble metals along the three principal symme-
try directions. The results are plotted in Figs.
13.-13 for copper, silver, and gold, respectively.
For copper and silver a direct comparison with
the experimentally measured frequencies is possi-
ble. Note that the agreement is fairly good for
silver and, except for the strong Kohn anomalies,
is reasonable for copper. An experimental phonon
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qa/Zw jS
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L

Kohn anomaly in the lower transverse branch in
the [110]direction at the very spot where we find
it. (This anomaly corresponds to electronic transi-
tions across the "belly" of the Fermi surface. )
They had previously seen such an anomaly in the
phonon spectrum of palladium, but found no evidence
of one in copper. Svensson et al. apparently did
not investigate the transverse branch in the [100]
direction nor the longitudinal branch in the [111]
direction, where we see the other Kohn anomalies.

V. CONCLUSIONS

FIG. 12. Phonon frequencies of silver along principal
symmetry directions. Experimental points are from W.
A. Kamitakahara and B. N. Brockhouse, Phys. Letters
29A, 639 (1969).

spectrum for gold has not been measured.
Figure 14 illustrates the effect of hybridization

on the phonon frequencies. The general trend is
for the hybridization to increase the frequencies
(except at the positions of the Kohn anomalies),
which for copper and silver improves agreement
with experiment.

The Kohn anomalies in copper deserve a few
additional comments. Figure 14 shows that hybrid-
ization is responsible for the strong anomalous
behavior we find in that metal. The origin of our
Kohn anomalies can be traced to the hybridization
terms in E„(q)which result from principal-values
integrations over quantities like (0' —l%+ q I') '
(k3 —Ea) ' The firs.t factor provides the necessary
singular behavior at q = 2k~, while the second
apparently acts as an enhancement factor. Pre-
sumably, the almost complete disappearance of
the anomalies in silver and gold occurs because of
the larger values of E~-E„wefind in those metals.

No Kohn anomalies have been reported experi-
mentally in copper, although the phonon frequencies
have been measured by several groups' ' with
consistent results. To our knowledge, however,
only Svensson et a/. "have searched for anomalous
behavior in the phonon spectrum. It is interesting
to note that they speculated on the existence of a 8 I

COPPER SILVER GOLD

Just as for simple metals, there are many
additional physical properties one can conceivable
calculate by using the energy-wave-number char-
acteristics and overlap potentials given in Sec.
III. We anticipate that our results will be useful
in this regard. Weaver and DuCharme have al-
ready used our E„(q)and v„to calculate the acti-
vation energies for motion of vacancies and di-
vacancies in copper, obtaining reasonably good
agreement with experiment. On the other hand,
the phase stability calculation in Sec. IV indicates
that there is a limit on the success we can expect
in those calculations involving very small energy
differences (10 Ry or smaller).

We have made a reasonable attempt here to
minimize the approximations used in evaluating our
theoretical expressions, but uncertainties do exist
in several places nevertheless. Exchange and cor-
relation, for example, are incompletely understood
in the noble metals. Our use of the Lindgren con-
duction-core, d exchange represents an improve-
ment over the Kohn-Sham exchange, but it still
must be considered a somewhat uncertain approxi-
mation.

As indicated in Sec. III, there is reason to be-
lieve that we have calculated the hybridization con-
tribution to E„(q)reasonably well through the
matrix element (k I b I qa). On the other hand, the
reliability of our calculation of (pal
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FIG. 13. Phonon frequencies of gold along principal
symmetry directions.

qa/2w qa/2w qa/2m

FIG. 14. Phonon frequencies of copper, silver, and

gold along the (100) direction. The solid lines are the
results obtained with hybridization and the dashed lines

. are those obtained without hybridization.
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hence v„(r), is unknown. We have found, in fact,
that agreement with the experimental phonon spec-
trum of copper is improved if the parameter y in

Eq. (37) is increased from 8. 43 to 13.4. This cor-
responds to increasing the magnitude of dv„/dr and

has the effect of deepening the first minimum in

v, «(r) in Fig. 3. It also moves the calculated
binding energy closer to the experimental value and

moves the fcc curve in Fig. 8 downward with re-
spect to the hcp curve, although not significantly
in either case.

We finally point out that the separation of overlap

energy from the band-structure energy here is
really an artifact of the overlapping atomic d states.
In the general theory given in Paper II, the d states
are arbitrary as long as they are orthogonal to the
core states. The need to calculate v. ,(r) could be
eliminated by artif ically constructing nonoverlap-

ping d states. This is an attractive idea, but itdoes
introduce a whole new series of problems related
to the construction of such states. It remains to
be seen whether or not such an approach can lead
to simplified pseudopotential calculations of the
total energy for d-band metals.

4Work performed under the auspices of the U. S. AEC.
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An approximate method for obtaining the pair and higher-order correlation functions speci-
fying the site-occupancy correlations in disordered substitutional binary alloys of arbitrary
composition is described. The method is easily generalized from the usual pairwise inter-
action model to alloys with multi-site interactions. The value of 1/z, where z is the number
of sites interacting with a given site, is used as a parameter of smallness to obtain a set of
quasilinear equations which may be solved numerically for the correlation functions. The
long range of the interatomic interactions found in many alloys would make 1/z seem a good
expansion parameter. The validity of the solution is discussed. We use the method in a nu-
merical analysis to investigate the effect of three-site interactions in a disordered face-
centered-cubicbinary alloy with a nearest-neighbor pair interaction and a "nearest-neighbor-
triangle" triplet interaction. A simple analytic solution for a corresponding idealized mean-
field situation is also carried out. An enlightening result is that the mean-field solution and
the more realistic computer solution have siniilar general features. %'e also compare our
solution with others for a choice of parameters in which comparison is possible.

I. INTRODUCTION

The equilibrium arrangement of the atoms in a
substitutional binary alloy at a given temperature

depends on the part of the Hamiltonian which
changes when the atoms of the alloy are rearranged
on the crystal lattice, which in this paper is taken
to be rigid. The most commonly used model


