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Within the jellium model the zero wave vector, frequency-dependent conductivity is ex-
pressed in terms of a regular memory function. This quantity is calculated in lowest order
in the impurity concentration and the electron-phonon coupling, thus yielding a reasonable
approximation for the conductivity valid in the complete frequency regime. The standard re-
sults for the static conductivity including vertex corrections are reproduced. Deviations from
Drude's formula because of spin-flip scattering in a magnetic field, because of resonance
scattering, because of phonon creation at low temperatures, and because of breaking of the
screening cloud attached to charged impurities are discussed.

I. INTRODUCTION

Hecently a technique has been worked out' to cal-
culate approximately certain very simple response
functions of many-particle systems without being
restricted either to the hydrodynamic regime or to
the regime of high frequencies. In this paper we

want to apply this technique to the familiar prob-
lem of determining the homogeneous dynamical con-
ductivity of metals. To describe the metal we will
use the oversimplified jellium model.

Using a standard Boltzmann equation and approx-
imating the collision integral by a single collision
frequency (1/7) one arrivesz' at the classical
Drude formula for the dynamical conductivity o'(z).
These approximations are impossible if the effec-
tive relaxation time v becomes frequency depen-
dent or if the frequencies are too large.

In the low-frequency limit the conductivity has
been calculated from first principles by summing

up infinite sets of diagrams for the current cor-
relation function4' or by truncating the hierarchy
of equations of motion for the relevant Green's
function. The difficulties in a calculation of

o(z) are caused by its resonance structure. The
existence of a pole in o (z) near z = 0 does exclude
a finite-order-perturbation expansion. To over-
come these difficulties one can introduce the ra-
tio of external frequency z to the nonsecular fre-
quencies of the system as a small parameter; this
assumption, originally due to Bogoliubov, ' ex-
cludes an extension of the results to higher fre-
quencle s.

At high frequencies o (z) is regular and can be
obtained by perturbation theory. Much work has
been done in this direction in connection with dis-
cussions of light absorption or plasmon damping.
Yamada and Plakida have derived equations which

yield the correct resonance structure for small
frequencies and the correct perturbation results
for large frequencies. But a solution of their equa-
tions in the complete frequency range has not been
achieved.

We proceed by exactly expressing the response
function in terms of a holomorphic memory func-
tion. This has been suggested in another context"
and is quite similar to expressing particle prop-
agators in terms of a self-energy. The memory
function is frequency independent in the hydro-
dynamical regime and in first approximation can
be evaluated by perturbation expansion with re-
spect to small parameters (concentration of im-
purities, coupling constant, phonon density).
Again this is similar to approximating self-en-
ergies in order to get quasiparticle energy and

damping. Obviously, there is no difference in
principle between a resonance of a one-particle
Green's function (particle lifetime) and a reso-
nance of o(ur) (current lifetime). As a result we
obtain our approximation for the conductivity valid
in the whole frequency regime (Sec. III).

The general formulas will be studied under var-
ious additional simplifying assumptions. First
(Sec. IVA) the electron-impurity scattering is
treated in Born approximation. Drude's formula
turns out to be valid for frequencies & smaller than
the Fermi energy &~ and the relaxation time v is
given by the usual Boltzmann-equation expression.
Then (Sec. IV 8) spin-flip scattering is discussed
in lowest order within the s-d model. It turns out
that strong frequency dependence of the relaxation
can be produced by external magnetic fields. The
conditions under which remarkable deviations from
Drude's formula can be expected will be given. In
Sec. IV C the potential scattering of electrons is
treated to first order in the impurity concentration.
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We choose a description of metals known as the
"jellium" model, in which the conduction electrons
are assumed to move against a uniform positively
charged medium. The Hamiltonian of the system
reads

H=H +H +H'+Ho .

H, represents the free-band Hamiltonian of the
conduction electrons,

H, =+~ e(p)c~tc~, (2)

where c~, c& are the electron-creation and -annihi-
lation operators characterized by quantum numbers
p = (p, o) (o = +2 and p is a vector of the first Bril-
louin zone), obeying the usual anticommutation re-
lations. We assume that an external static mag-
netic field B is applied in the z direction, so that
the electron one-particle energies are split ac-
cording to the Zeeman effect, e(p o) = e~ —ob„where
&~ is the electron-band energy and h, =g, p~B. The
coupling of the electron orbital motion to the mag-
netic field is considered to be negligible and will
not be discussed in the following. H, describes the
Coulomb interaction of the electrons

H, = 2Z &(k)c;,g, et~|-„, cg...c;, ,

Drude's formula is valid provided that the energy
dependence of the electron-impurity-scattering
cross section can be neglected. Generally, the
conductivity is expressed in terms of the scatter-
ing or t matrix. For the special case of a simple
scattering resonance on the Fermi surface explicit
results for the deviations from Drude's formula
are given. Then (Sec. IVD) the electron-phonon
conductivity is discussed in lowest order of the
electron-phonon coupling. At zero frequency
Bloch's formula is recovered. At low tempera-
tures the effective relaxation time acquires a pro-
nounced frequency dependence, as predicted by
Holstein, ~2 due to phonon-creation processes. Fi-
nally (Sec. IVE), the problem of dynamical impu-
rity screening is discussed by treating the electron-
electron interaction in the random-phase approxi-
mation (RPA) and the electron-impurity scattering
in lowest order. For frequencies below the plas-
mon resonance &~ the deviations from Drude's for-
mula are small and the relaxation time T is given

by the Mott- Jones expression. For frequencies
above ~~ the conductivity is substantially larger
than one would expect from Drude's formula be-
cause screening of the impurities cannot be
achieved any more. For still higher frequencies
v drops below the classical value.

II. MODEI.

where the interaction with the uniform positively
charged jellium has been taken into account. The
term H' in the Hamiltonian is due to interaction of
the electrons with deviations from uniformity, such
as impurities and phonons,

H'= H~+ Ha+ Hs,

H, =N-'Z, (k~V,'~k') '„c„-.. .

(4a)

(4b)

H, =N-'Q, &k~ V', ~k')S,'et. , c'„c„.. . .

Here U& and U2 denote the pseudopotential for spin-
nonf lip and spin-flip scattering, respectively, by
the impurity at position r&,

(k~P~ ~k')=e' &
""

(k~ U ~k') .

(4c)

(4d)

S&0= Sf and S& = (S&+i Sf)/&2are the spin operators of
the impurity at r& obeying the usual commutation
relations. The sums on j run over N& impurity
sites and N, /N=c is the impurity concentration
(N is the number of lattice cells). Since the im-
purities are considered to be randomly distributed,
their positions will be averaged over in all physi-
cal quantities. A generalization to several types
of impurities is straightforward.

In Hs we shall incorporate the electron-phonon
interaction

D(q)=(2m, N(u, )
'I qC(q), q= ~q ~

(4f)

where m& is the ionic mass, ~, is a phonon fre-
quency, and C is a slowly varying function of q.
Having described by Egs. (4c) and (4e) the cou-
pling of electrons to time-dependent systems we
have to add to the Hamiltonian the appropriate
terms. Thus

Ho= Hq+ Hyh,

where

H~=AZ~S~, b= peg„B

(5a)

accounts for the time development of the impurity
spins in the external magnetic field B and

H,„=g u&, (btb, + —,') (5c)

represents the Hamiltonian of the phonons.
The linear response of an operator A due to a

perturbation coupled to an operator B can be ex-
pressed in terms of the correlation function"'

Hs=g[D(k —k')ct c„-, b„- „;+H. c.], (4e)

where b-, b- are creation and annihilation opera-
s 7

tors for phonons of momentum q. For simplicity
we consider only phonons of one polarization, say,
longitudinal. Then the electron-phonon matrix ele-
ment D may be specified further as~

with

V(k)= (4' /k ) (l —5f,o), (Sb)

Xm(e)= ((A;B)),= —i f e'" ([A(t), B(0)])dt .
(sa)

These functions are holomorphic for all nonreal
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z and decrease for large z like

X„(z)=&[ A, B]&/z for Iz (6b)

Furthermore, they obey the equations of motion

z «&;B»= &[&,B]&+ «[& ff]»&
= &[~,~]&- «4; [~,H]&&.

(6c)

(6d )

(Va)

where the spectral function X"(&u) is given by the
discontinuity across the real axis,

x(~ ~ io) = x'(~) ~ix"(~) .

In these equations A(t) is the Heisenberg repre-
sentation of operator 4, [A. , I3] denotes the com-
mutator, and ( ) abbreviates the thermodynamical
average at temperature T and the average over
the random impurity positions. Units are chosen
such that Planck's constant 5 and Boltzmann's
constant ko are equal to unity. X(z) can be rep-
resented as a spectral integral

X(z)= (I/o)fdic X (e)/(tu —z),

M(z) = zX(z)/[Xo —X(z)] (14)

with Xo given by Eq. (13). Because of the inequal-
ity (12) M(z) is a holomorphic function for all non-
real z, According to Eqs. (lla)-(llc), M(z) de-
creases asymptotically like 1/z and obeys the
symmetry relations M*(z) =M(z*) and M(z)
= -M(-z). Consequently, M(z) can be repre-
sented by a spectral integral

M(z) = (I/v) fd&uM" (&v)/(&u -z), (15a)

where

III. MEMORY FUNCTION

We want to determine the dynamical conductivity
by introducing first a representation of o(z) in
terms of a relaxation or memory function M(z).
The procedure will be carried out in complete
analogy to a recent calculation of the dynamical
magnetic susceptibility in dilute magnetic alloys. '
Let us consider the function

o(z) = —i(e /z) X(z)+i&~/(4') . (8)

We want to discuss the dynamical homogeneous
conductivity o(z) which is related to the current-
current correlation function ' x(z) by

M(~+i0)= M'(&u)+iM" (&u)

and M', M" are real functions satisfying

M'(~)= -M'(- ~),
M"(&u)=M"(- ~) .

(15b)

(16a)

(16b)
Here &u~~= 4meoN, /m is the plasma frequency
(N„m, e, are the electron density, mass,
charge; we consider a system of unit volume).
Furthermore,

—«A; jg»= 5~& X(z), i,i = 1, 2, 3

j,= ~v, (k) c„- c„-, (10)

with v, (k) = 9&~/sk„ the ith component of the elec-
tron velocity. In the usual way ' one verifies for
the susceptibility (9)

x(z) = x(-z),
X*(z) = x (z ) .

(11a)

(11b)

Thus X' and X" in Eq. (Vb) are real. Further-
more, "

X(z)=O(z ) for ~z ~- (11c)

~x"(~) -'o .

For all nonreal z one has the inequality'"

x(z) ~xo,

(11d)

(12)

where Xo is the static limit of X(z). Finally, we
assume our system to be a normal conductor, i. e. ,
the conductivity tends to a finite value as z ap-
proaches zero. Then we get from Eq. (8) for the
static limit

Xo -—N,/I .

~(z) = (i/4~) ~,'/[z+M(z)] . (17b)

The completely general and correct equations
(1V) provide a useful starting point for actual cal-
culations of y and a. As is well known, an evalua-
tion of response functions like X(z) by straightfor-
ward expansion in a small parameter like a cou-
pling constant or density usually fails because of
the singular character of these functions for small
frequencies z. On the other hand, ordinary hydro-
dynamics yield a simple description of linear re-
sponse for slowly varying disturbances and pro-
vides us with the resonance structure of the corre-
lation functions in the low-frequency regime. " In

microscopic theories the hydrodynamic resonances
are usually generated by deriving and solving in-
tegral equations like Boltzmann's equation or ver-
tex equations. In doing so one proves the validity
of hydrodynamic equations. Here we adopt the
view that occasionally one can avoid solving trans-
port equations by starting from a correct repre-
sentation of susceptibilities in terms of memory
functions such that the resonance structure is al-
ready built in. Evaluation of the memory func-

Solving Eq. (14) for X one obtains the representa-
tion of the susceptibility in terms of the memory
function M,

x( )=xoM( )/[ +M( )],
and with Eqs. (8) and (13) one finds for the conduc-
tivity
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tions by expanding in a small parameter then yields
a result for the susceptibility valid for all fre-
quencies including the hydrodynamical ones. If the
memory functions have been introduced in a proper
way they should tend to constants in the hydrody-
namic regime and vary moderately with frequency
in the nonhydrodynamic regime. This requirement
serves as a consistency test during the actual cal-
culations.

From Eqs. (15b) and (1Vb), one obtains

o (curio) = (e'NJm) (i[&u+M'(&e)] +M" (&u)]/

([~+M'(~)]'+M"(&)'). (»)
To get into contact with the ordinary theory let us
perform a Taylor expansion of M for small fre-
quencies,

Furthermore, from Eq. (6d) one obtains

&[A, i~]&=&&AiA)& =o (25)

Taking together Eqs. (21), (22), (24), (25), and

(9) one arrives at

XoM( )+O( ', D')= [«A;A)&. —&(A;A ».= ]/ .
(I)

Thus evaluations of the correlation function
&&4;A» in lowest order of the impurity concentra-
tion and electron-phonon coupling yield M(z) in
lowest order. Inserting Eqs. (4) into Eq. (21) we
decompose A as a sum of three operators in an
obvious way,

(24)

From Eqs. (22) and (24) atz = 0 and Eq. (13) we
have the identity

M(&u +i0) = +iM" (0)+ co —M'(u&) + O(aro),
9GO ~ p

(19)
where M" and M' are real according to the sym-
metry relations Eqs. (16). Substituting this into

Eq. (18) one finds

o'(v a i0) = (e n/m )a [i~a I/w]/[cu + (I/r) ],
(20a)

with

and define

Q o(z)= &(A;Ao»

where

A. = [ji,Ifn]

(27a)

(2Vb)

(27c)

a -1
a= 1+ —M' v

„o
1/7 = a M" (0) .

(20b)

(20c)

Explicitly

A, =Q)A~, o,'= 1, 2

with

(28a)

Equation (20a) is the usual Drude formula for the
dynamical conductivity ' with v being the relaxa-
tion time for charge transport and a denoting a
charge renormalization constant of value close to
unity. The classical result (20a) is thus valid,
whenever expansion (19) makes sense and

[SM'(&)/S~]o is small comPared to unity. Trivial-
ly, Eq. (20a) does not yield the correct high-fre-
quency behavior, since (19) is in contradiction to
the 1/z decrease of M(z) for large z. Thus inde-
pendent of the specific nature of the relaxation
mechanism which the electrons are subject to
there exists a limiting frequency above which the

Drude formula does not hold.
For vanishing impurity concentrations and elec-

tron-phonon coupling D the total current j is a con-
stant of motion; thus y(z) and M(z) vanish in this
case. Assuming a regular dependence of M on c
and D one can expand Eq. (1Va),

A, =N '2&k iUi ik' & [v, (k) —v, (k')]ct c „, (28b)

P o(z) = cN (&A; Aoo )), , n = 1, 2. (29)

For the phonon part of the operator A one finds

Ao=~ [vi(k) - »(k') ]

x[D(k —k')c;c „-, b-;, —H. c. ]. (28d)

Ao=& '2&k
~

~', ~k'& [v, (k) —v, (k')]S~s,', c~c;,,,
(28c)

Those contributions in Z, & «A';A~o&& with i Wj are
proportional to c2 and can be neglected in first ap-
proximation. Trivially, in first order in the con-
centration there are no correlation effects involv-
ing two or more impurities and all correlation
functions have to be evaluated for a system with
just one impurity, say at the origin, which we de-
note by (( )) . Then one obtains

zx(z)= yoM(z)+O(c, D ) .
On the other hand one finds from Eq. (6c),

z «il, jl»= (&A; jl»,
with

A = [j„e'].

(21)

(22)

(23)

In lowest order we can neglect nondiagonal ele-
ments of Q„o, which are due to interference of the
different scattering mechanisms. From Eq. (26)
we then arrive at

M(z) = [y(z) —y(z = 0)]/(zlzz, )+ O(c', D'&,

with
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~( )=»..()

x(p IU, lp')'(vi(p) —vi(p'))

x((ct c„-, ; cl c-, )) (31)

where the correlation function on the right-hand
side can be determined for the free-electron gas.
Thus,

&(z) = (2c/3~'N) ~
I

&k IU~ lk') I'(k- k')'
H'

x [f(ef, ) —f(ef)]/(z —ef + e~), (32)

where f(eg) denotes the Fermi function of energy
ef. Substituting p(z) into Eq. (30) one obtains for
the absorptive part of the memory function

M"(~)= .'v(N, /N. )m 'N -'Z I(klUlk-}I-'
N~

x(k k')' ~((u e„., p e,.)[f(e„)—f(e;, )]/~ (33)

This is the general final result for the memory
function. " The calculation of the conductivity of
the model system under consideration has been
reduced to the evaluation of correlation functions
of the electron gas in the presence of one impurity
or phonons. The achievement is that M(z) con-
trary to o(z) can be expanded in powers of impu-
rity concentration or coupling constants for z - 0.
Derivation of Eqs. (1V) and (30) corresponds to an
infinite partial summation of diagrams for the
conductivity including self-energy and vertex cor-
rections or to deriving and approximately solv-
ing a generalized Boltzmann equation.

IV. APPROXIMATIONS FOR MEMORY FUNCTION

Because of the Coulomb interaction and the im-
purity-spin dynamics as well as the phonon dy-
namics, evaluation of the memory function M is
a many-body problem and can be carried out only
approximately. The complications one has to face
depend on how realistic a model one wants to dis-
cuss. Since we have neglected band-structure ef-
fects from the very beginning it does not seem
worthwhile to work out all details of P(z). We
rather want to demonstrate how easy the known
results are reproduced and to indicate in which
respect our approach can yield some new results.

A. Free-Electron Gas with Lowest-Order Potential Scattering

To get a first impression of M(z) let us evaluate
Eq. (30) for a noninteracting electron gas scat-
tered by weak spin-independent impurity potentials.
Treating the electron-impurity interaction in the
Born approximation one finds from Eqs. (4d),
(28b), and (29),

y(z)=cN' P g (kIU, lk'}[v,(k) —v, (k')]:
Pz'fy

To simplify further we neglect the momentum de-
pendence of U and evaluate (33) for frequencies ~
less than the Fermi energy e~. Then M" turns
out to be frequency independent,

M" (&u) = —,v (N, /N, ) (Up~)' e~, (34)

where p~ denotes the density of states per volume
at the Fermi level. Thus the Drude formula Eq.
(20a) works well in this crude picture at least for

The energy dependence of the density of
states and the momentum dependence of the pseu
dopotential will yield variations of M" with &, but
these deviations from the Drude formula are so
small that it does not seem feasible to detect
them experimentally. Thus one can take a = 1
in Eq. (20b) and use the zero-frequency limit of
Eq. (33) to obtain

1/r=N, vz J' J'dna„(n) (1 —cosa), (35a)

where v„ is the Fermi velocity vz=0~/m and
o'„(0) is the differential scattering cross section
in the Born approximation,

u„(fl)=(~u„)'Ip„U(k, -k', )
"". (35b)

This is the well-known formula for the electron-
transport relaxation time v due to impurity scat-
tering. Qne realizes that our approach incorpo-
rates in a quite simple way what would be called
self-energy and vertex corrections in a diagram-
matic analysis of o(z).

B. Free-Electron Gas with Lowest-Order Spin-Flip Scattering

= cN Q Q,J„-,[vq(k) — q(k')] -.- [vi(p') —vi(p)]
yp I

x((cf s~~icg, , S
~ c, gs~r~c S )), (38)

where we changed to the conventional notation used
in the context of the s-d model in denoting the spin-
flip matrix element (kl U, tk'} by 7&&,. To calcu-
late P in lowest order of Z we have to evaluate the
correlation function on the right-hand side of (36)
for the noninteracting system, viz. ,

Let us proceed in this subsection with an analy-
sis of pure-spin-flip scattering in much the same
way as in Sec. IV A. In the absence of external
magnetic fields one expects the frequency depen-
dence of M to be the same as in. the nonmagnetic
case, at least: to lowest order in the scattering po-
tential. However, if a magnetic field is present,
spin-flip scattering is an inelastic process and
consequently at low temperatures the memory func-
tion develops a threshold at the Zeeman frequency
of the impurity spins. We want to demonstrate
how this threshold behavior leads to characteristic
deviations from Drude's formula. Using Eqs.
(28c) and (29), one finds
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4(z) = 4'o(z)+ 0+(z)+ 0-(z)

Qo(z)= o Z Imago, (k —k') so, , s...3m N gg.

and saturation value

M "(&u = ~) = Cs(s+ l ) .

For small h/T, M"(~) is practically constant,

(40b)

&Soo&
f'-f

(3m)
[z —f'+ 6]

Q, (z) = —
o Z

I
Jgf, . (k —k') s,', ,s.'..3mN

M o' (u&) = C (S"),
C =

~o (Ng/Ne) (JP~)

(38a)

(38b)

which is frequency independent, while spin-flip
scattering gives rise to frequency-dependent com-
ponents

M, (~) = —,
' c [s(s+ 1)—(s")

+ (So)coth(v wh)/2T](~ +h)/& . (38c)

Summarizing, the absorptive part of the memory
function is given by

co —kM" (&)= C S(s+ 1)+ o (So) coth

x
[(S'S' &(f-f') *&S' &f'(1 -f)]

z —&'+ &,A

Here e = e;, t'= ct,..., f=f(s), f'=f(e'). Obviously,
&f&,(Qo) describes spin- (non-) flip processes. Us-
ing Eq. (30) we find quantities Mo, M, by substitut-
ing expressions (37). Neglecting the momentum
dependence of J as well as the variation of the den-
sity of states with energy and restricting our-
selves to ~«e~, the integrals in Eq. (37) may be
easily done. Thus for the imaginary part of the
spin-nonf lip contribution M0 one finds similar to
the normal-scattering case,

M"(~)=CS(s+1) for h/T «1, (40c)

i. e. , the spin-flip-scattering threshold is washed
out completely by the thermal motion. Accordingly
the conductivity is given by Drude's formula with
Eqs. (40c), (39a), and (38b) inserted in Eq. (18).

On the other hand, for large h/T, M"(&u) shows
a frequency dependence

S(s+ 1)—Sh/ I &a I

if t~l &h

if l~l &h

for h/T»1, (40d)

which is quite in accordance with the threshold be-
havior one would expect for spin-flip scattering
at T= 0 on physical grounds. The pronounced vari-
ation of M" induces a sizable real part M' via dis-
persion relation Eq. (15a),

M'((o) = C(S/o) [(1+h/&u) ln
I
1+ ~/h

I

—(1 —h/or) lnI1 —~/h ) . (40e)

sM' ~
= (Svroh) ' for h/T» 1,

=o

where the bare relaxation time T0 is given by

(41a)

Thus in the limit of high field and/or low tempera-
ture a Drude description of the conductivity is not
valid and we have to resort to the general formula,
Eq. (18). However, some features of the dynamical
conductivity at low frequencies may be discussed
by employing the renormalized Drude formula, Eq.
(20a). From Eqs. (19), (39), and (40) we find

—(h--h) . (39) 1/wo=M"(0)=cso for h/T»1 . (41b)

M(z) is defined by its spectral density M" and

dispersion relation Eq. (7a). The function F(z)
= 2[M(z)/C —( S &] appeared to determine the im-
purity-spin relaxation in a calculation of the dy-
namical impurity-spin susceptibility. " In Ref.
16, F(z) has been given in closed form in terms of
digamma functions, and F'(ar) as well as F"(~)
are plotted for various values of h and T as a func-
tion of frequency. Here we want to discuss M(z)
by considering various limiting cases. Since M"
(M') is an even (odd) function of frequency by virtue
of Eqs. (16) and (39) we confine the discussion to
positive frequencies. One observes that M "(&o)

is a monotonically increasing function of minimum
value

M"(co= 0)=C S(S+1)—(S &
—hcoth0

&h 2T
(40a)

At low temperatures, 1/7o» T, and consequently
there exists a regime of A, values satisfying

T «h «1/7'o

such that [sM'(co)/s&u]„o as given by Eq. (41a) is
much larger than 1 and the renormalization con-
stant as defined by Eq. (20b) is to a good approxi-
mation a —= S7tv0 h. The renormalized relaxation
time ~ [Eq. (20c)] turns out to be independent of
the coupling constant

1/r = ash for T«h «1/~o . (41c)

Thus the real part of the conductivity, which is pre-
dicted to be a Lorentzian of width 1/vo by Drude's
formula, shrinks drastically to a width 1/7 inde-
pendent of the coupling strength, if a sufficiently
strong magnetic field is applied. Similarly, the
slope of the imaginary part of the conductivity at
the origin increases with decreasing magnetic
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field. In Figs. 1(a) and 1(b) the real and imaginary
parts of the conductivity, normalized to the static
value, are plotted as a function of ~~0 for two
values of magnetic field, as calculated from Eq.
(18), using M" and M' given by Eqs. (40d) and

(40e) and taking S= z. It is worth mentioning that
the sum rule on the real part of the conductivity
fd(u c'(~)= —,'(o~ is exactly fulfilled by any solution
of the form Eq. (18) following from the analyticity
requirements on y(z) and M(z). All other sum
rules are satisfied to lowest order.

For dilute alloys of Mn in Cu with concentrations
of about 0. 6 at. /q one expects [using the unitarity
limit for (p~J) and taking S= z] I/ro to be of the or-
der of 40 K. At temperatures well below 6 K a
magnetic field of 60 kG would produce a situation
sketched in Fig. 1(c).

If in addition to spin-flip scattering there is po-
tential scattering either by the same or by differ-
ent impurities, one has to add to (38c) a contribu-
tion given by Eq. (33). Then the anomalies will
be suppressed to some extent.

IC. Free-Electron Gas with Resonance Scattering

the equations

(z —~-)G-, (z)+Z &I IvIk")G„.„,,(z)= 6„.„, ,
g II

(43b)

bo

b

(a)

0.75

0.50

0.25

(z+ &f,)G-, (z) —Z (k" IU k)G-„(z)= 6„-~, .
g II

(43c)
The absorptive part of G(z), which is defined ac-
cording to Eq. (Vb), determines the thermal aver-

From the work of Plakida it is known that reso-
nance scattering of electrons by localized phonons
produces anomalies in the frequency dependence of
the conductivity. Let us examine a similar prob-
lem within the framework of our approach and
model. We consider a noninteracting electron gas
scattered by nonmagnetic impurities of dilute con-
centration, Contrary to Sec. IV A we drop the re-
striction to weak scattering potentials, so that
Born's approximation is no longer adequate and
multiple scattering by a single impurity has to be
taken into account. Then Eq. (31) is valid, but
the correlation function appearing on the right-
hand side of this equation has to be calculated for
a system with one impurity located, say, at the
origin. The evaluation of this function can be re-
duced to solving a one-electron scattering prob-
lem.

According to Eq. (6c) the correlation function

0
0

bo

b

0.50

0.25

0 —'
0

0.75

0.50

0.5

0.5

1.0

1.0 1.5

2.0 - "-~ ur, 2. 5

L. ..
20 —— '~r 2 5

(c)

R@,;;,(z)= «ctz„-, ; c~,c- )), (42a)

is determined by solving the equation of motion

(z —e„-,+ e&)R„-&,;;,(z) = 6„-,,- &ctc;) —6„-;&ct,c&, )

0.25

—~ &k'
I
& Ik" »;;-;; +& &k"

I ~lk) R„-'.„„-;

(42b)
Qn the other hand, the usual one-particle Green's
functions

G, (z)= (&c, ; ct. )). (43a)

[the subscript + indicates that the anticommutator
has to be used in the defining equation (6a)] obey

0-
0 O. I

I

02
J ~.... . . . .. ....A...

03 04 —— MT, 05

FIG. 1. Real part 0" and imaginary part 0 of the con-
dUctivity due to spin-flip scattering in a magnetic field
[Eqs. (18), (40d), and (40e)], vs frequency, for low tem-
peratures (T«h) and various values of magnetic field B.
1/&p=M (0) is the zero-frequency relaxation rate op is
the dc conductivity, and h= gp&B is the impurity Zeeman
energy. The dashed curves are according to Drude's
formula.
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ages on the right-hand side of Eq. (42b) by

(- 1/v) fd ~ G &'&, (~)f(&u) = (c-' c- ) . (4M)

where g abbreviates the free propagator

&ez (z)= 5;;./(z —z;) . (45b)

Furthermore,

(—1/m) fd ~ G'-'-, (~)= 5-., (43e)

The renormalized Green's function is then given
by

Using Eqs. (43a)-(43e) one verifies that the solu-
tion of Eq. (42b) is given by

8&&,;;,(z) = (1/v)' fd d dc'G„-",-,(et) G'-'„-(e)

x [f(z) —f(&') j/[z —e'+ e] . (44)

Hence R is expressed by one-electron propagators.
We want to eliminate the bare interactions every-
where by introducing the scattering matrix t, which
is defined in a standard fashion by

&kit(z) Ik'&= &klftlk'&+~ &kist 1k' &~„-,„. (z)
kkg'

x&k, lt()lk ), (46a)

Gee(z)=&a (')+ ~ g„-„- (z) &kilt(z) lkl&gf ff (z)
k~kg'

(45c)
Substitution of Eqs. (44) and (45) into (31) yields

Q(z) = cd ' fde' de F(e, e')

x[f(e)-f(")]/Iz -"+e], (46a)

Y(e, e')= q(Nm) [ g &k t"'(t') Ip)G!'.(z)k p

-~ &k I(«)"(")lp'& &p'l(tg)" (~) lk&k p'

-~ &k'I («)"(")Ip & &p I(«)"(z) Ik'&k'p
fry

+~ Gf - (")&p' t"t(e) lk'&k'p'j
R'y'

Here the factor of 2 is due to a sum on spins and an obvious matrix notation has been used. Let us evalu-
ate some of the discontinuities in Eq. (46b):

Y(E, t')= Fl(E, z')+ F2(f, z'),

Yi(e, ")= ——:v(Nm) '[~ «lt" (")lk)5(e- eg)k'+~ 5("—~;.) «' It"(z) Ik'&k' + v ~ &kit(e.')lp'& &p'lt(~ ) Ik)
k kl kye

x 5(e' —e-, ) 5(e —e&)k p'+ vrQ &k' It(e') Ip& &p It(e, ) lk') 5(e' —zz. ) 5(c —~;)k'p j, (47 )
kl y

F.(~, ")= —.'(Nm) 'I» p «It"(") p & &p I
&«)"(~) Ik)+.~ k'p' &k'l («g)"(")lp'& &p' t"(~) Ik'&

ky k'y'

—Z k p'[«It" (")g("-) p'& &p'I(«)"(e) Ik&+ &kit(e')g" (")lp'& &p'It" (e)~(') I» j

Q k 'p [(k I («) '(e') Ip) (p lg(e-) t"(e) Ik'&+ «' lg (e') t"("&
I
p & &p lg "(.) t(..) k') ]]' . (47c)

Py

The discontinuity of the f, matrix can be expressed
by means of the optical theorem

&kit (e) lk'&= «lt(')g "(e)t(z-) lk'&

= &kit(e-)g "(e)t(&.) Ik'&.

I

matrix.
Equations (47a)-(47e) are not very transparent

and therefore we consider two special cases in the
following. First, we evaluate the static limit for
zero temperature. Observing that

Here e, indicates that the upper or lower boundary
value of the t matrix in the complex energy plane
has to be taken.

Substitution of Eq. (46a) into Eq. (30) yields for
the absorptive part of the memory function

ivt" (~) = (N, /N, )m (1/z) fd e' d & F(e, ~')

Y2(0, 0) = 0

and using Eq. (47d), one arrives at

M"(0) = 1/r o= (N, /N, )(m/n) Y~(0, 0),

Yi(0, o) = l"(Nm) '~ I&kit(o-) lk'&I'

(48a)

(48b)

x5( +e —e')[f( ) —f( ')]/ (47 )

por a noninteracting-electron gas Eqs. (47a)-(47e)
are the exact linear in c expression for )VI"(&).
The calculation of the dynamical conductivity has
been reduced to the evaluation of some integrals
over products of the electron-impurity scattering

x (k —k')z 5(e„-)5(e&, ) . (48c)

Comparing Eqs. (48) with Eq. (33) we notice that
the bare interaction matrix element has been re-
placed by the scattering matrix at the Fermi ener-
gy. Thus Eq. (35) holds, where o„now denotes
the correct electron-impurity cross section.
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Second, let us assume a scattering resonance
for a certain angular momentum, which we want
to describe by a Breit-Wigner formula. The mo-
mentum dependence of the scattering matrix does
not seem to be important in this case and as a first
approximation we neglect it completely. Then the
first two terms of Eq. (4Vb) are the only contribu-
tions to F(e, e'). Again employing Eq. (4Vd), one
finds

(49b)

Here &p and I" denote position and width of the
resonance. Substituting these expressions into
Eq. (4Ve) one finds for low temperatures (T « I')

1 NT~ a 1 (&u —~0)~+ I'2

3m N, 2&v (&u+ eo) + I'

2 g Ep Eg+ 6p+ CO y Cp+ (d——tan —+ — tan

The real part is determined by the dispersion re-
lation Eq. (15a). There are anomalies near the
resonance energy Ep.

To simplify the discussion let us specialize Eq.
(49b) by assuming the resonance to occur at the
Fermi energy. Then

ilar to Figs. 2(a) and 2(b) have been ~nd in Ref.
17. There the Bloomfield-Hamann expression for
the t matrix in the s-d model has been used to
calculate v(~) by standard methods. Anomalies
of this kind have been observed recently in the
far-infrared surface resistance of CuFe. '

D. Free-Electron Gas &vith Phonon Scattering

It is well known from the work of Holstein' that
an ideally pure metal at zero temperature, al-
though possessing vanishing electrical resistance
in the static limit, shows some finite resistance
for finite frequencies. This is attributed to elec-
tron-phonon scattering processes in the bulk, in
which phonons are created. (There is also a con-
tribution from surface scattering which we wish
to discard here. ) Thus one may expect a strongly
frequency-dependent memory function in this case
and our approach proves to be very useful. Treat-
ing the electron-phonon interaction in the Born ap-
proximation, we find from Eqs. (2Vb) and (28d)

Q(z) = — Z [vs(k) —v, (k')] [v, (p) —v, (p')]

x [D(k —k')D*(p -p')

x ((c„'-, cf,,b„- „-, ; c'- c;,,b;;,))+ c. c. ] . (52)

In Eq. (52) the correlation function on the right-
hand side has to be evaluated in the absence of
electron-phonon interaction. Simplifying further
we drop the electron-electron interaction, too, and

using the equation of motion Eq. (6c), we obtain

M" (&d) = (2/3v) (N, /N, ) e~(I'/(u) tan '((o/I') .
(50)

Since Eq. (49b) cannot be taken literally anyway,
we replace M" by a more convenient function of a
similar w dependence and write

M(~+i0)= —(2/3m) (N, /N, ) ebb/(ur+i5), (51)

where 5 is close to l.
If the resonance width 5 is large compared to

the zero.-frequency relaxation rate M" (0) = 1/70,
the conductivity due to Eqs. (51) and (17b) agrees
well with Drude's formula. If, however, 7p~ is of
order one the real part of the conductivity is
larger than one would find from Drude's result
[see Fig. 2(a)]; the imaginary part is suppressed
and can be negative [see Fig. 2(b)]. For simple
metals with normal impurities one can hardly ex-
pect resonances sharp enough to test our results.
However, Eq. (51) might be an approximation for
dilute magnetic alloys under conditions where the
Kondo effect is present. In this case 5 will ap-
proximately be given by the Kondo temperature
and situations with ~p5 &1 can be realized. In-
deed, results for the dynamical conductivity sim-

x [f(1—f') (1+n) —(1 —f)f'n]

X[(E —6, —(d ",+Z) + (f„—E„,—CO) fe "—8) ]

(53a)
where f, f', (n) denotes the Fermi (Bose) function
of argument et;, &f, , (&of „-,). Substituting Eq. (53a)
into Eq. (30) one finds for the absorptive part of
the memory function

M" ((d)= —,'7r (mN, )
' Z ID(k —k')

I
(k —k')

K'

x (1 —f)f'n [(u (e "~ —1) 5 (ef, —eg, —~f f.+ &)

+ (terms with ru- —&u)] . (53b)

For (d « E'y we can carry out the k, k' sums in

standard fashion. Inserting expression (4f) for D

and observing that Ik I and ik' I are pinned to the
Fermi surface due to the presence of the Fermi
factors we do the &~, eg. integrations first. The
remaining angular integration is conventionally
formulated .in terms of the phonon wave vector
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q[q'= (k-

"( )= gm (mm, Nk~) 'pJ,( = ( g y py J dq q Ic(q)I (d

x (e""r-—1.) [(1—(d (d )(e —1)/ [e'" """e ~ —1]

+ (terms with ~-—~- —~) . (54a
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E. Weak-Potential Scattering and Interacting-Electron Gas

As final example we consider potential scatter-
ing of the interacting-electron gas by a small local
pseudopotential U(ci). From Egs. (28b) and (29),
one obtains

y(z) = —2 Z;(q /3m )
~

U(q)
~

y„(q, z), (55a)

where

xpp(a ~) =
&&P;; P-', &&, (55b)

happ

denotes the density -density correlation func-
tion of the interacting-electron gas without im-
purities. Xpp is related to the longitudinal dielec-
tric constant by

substituted into Eg. (18), gives rise to strong de-
viations from the Drude behavior of the conduc-
tivity. These deviations have been detected ex-
perimentally in the far-infrared absorptivity of
lead. ' '+ A theoretical explanation of these ex-
periments based on Holstein's electron-phonon
Boltzmann equation has been given. ' The re-
sults of Ref. 22 reduce to ours in the weak-cou-
pling limit and for q= 0. In Ref. 23 a discussion
of the frequency-dependent conductivity of elec-
tron-phonon systems is given, which appears to
be very similar to ours. However, due to the fact
that the quantity 1/7(a&) in Ref. 23, which corre-
sponds to M(z) in this paper, is taken to be real,
the resulting expression for o(~) fails to satisfy
analyticity requirements, as was pointed out in
Ref. 24,

2
M(z)= —— 'g ~', '

(2 )s ~
Q(q) I

e-'(q, o) —e '(q, z)
(55e)~

A formula of this type for the high-frequency re-
laxation has been obtained earlier in another con-
text. ' K (55e) Q abbreviates the quotient of the
pseudopotential U and the Coulomb potential

Q(q) = U(q) q'/4ne' . (55f)

The zero-frequency limit of M(z) is found by ex-
ploiting the expansion of E for small ~

~(q, &+f0) =1+ q,
' i w (q.'/q')(u

q' (qv~)
~ ~ ~

y

(58a)
where v~ = k~/m denotes the Fermi velocity and

q, is the screening wave vector. Hence,

M(+ fo) =+ i-,'P(X,./X, )(q,'~', /3~,') (&J~',)

(4me /q )yp (q z)
1 —(4ve'/q')X', .(q, z)

(5Va)

xf 'dqq'~ q(q) ~'/( q+ q)'. (58b)

In the Thomas-Fermi approximation for the
screening wave vector, q, = 3&@~/vz and replacing
U(q) by the bare Coulomb potential for charge
Z(i. e. , @=2) in Eg. (55e) one recovers the Mott-
Jones formula for the electron-relaxation fre-
quency 1/v.

To discuss the frequency dependence of M(z) in

detail, we set Q = 1 and use the RPA expression for

(q, z) in the right-hand side of EZ. (55e), viz. ,

e '(q, z) = 1+ (4ve'/q') X„(q, z) . (55d)

Substituting these results into Eq. (30) one ar-
rives at a formula for the memory function M,

with happ abbreviating the density correlation func-
tion for the noninteracting-electron gas. Then one
finds at zero temperature

0.5—

FIG. 3. Beal part M' and imagi-
nary part M" of the relaxation func-
tion in jRPA IKqs. (57) t, normalized
to A =2M" (0), vs frequency. ez
denotes the Fermi energy, and the
electron-gas density has been chosen
such that the plasmon resonance ~&
occurs at 2&@,
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FIG. 4. Real part of the
conductivity with relaxation
function in RPA. Parameters
as in Fig. 3o 00 denotes the
dc conductivity and the dashed
curve represents Drude's for-
mula.

IO

X[F(x/e, ) —F(0)]
z/e~

(5Vb)

F(y) = f dx x'f(x, y)/[x'+ f(x, y) ],
with f(x, y) denoting the Lindhard function

f(x, y) = —,'x,'(1+ (2x) '([(y+ x')' —(2x)']

(5Vc)

x ln[(y+ x' —2x)/(y+ x'+ 2x)]

+[terms with y- -y]]) (5Vd)

xo = q,/n~ = (&up/eI, ) (-,')'",

A= (-', ) (X,/X, )x,'&, .

The integrand in Eq. (5Vc) exhibits a pole at the
plasmon frequency, giving rise to a square-root-
type singularity of E(y). Using the asymptotic
expansion of f(x, y) for x/y «1, one finds for x
close to u

[M(x) —M(&u )] = ——,
'

vA(5&v /6e )'"[((u, —z)/e ]'+ .
(5Ve)

In Fig. 3 the real and imaginary parts of the mem-

ory function M are plotted as calculated from Eqs.
(5Va)-(5Ve). For frequencies below &u~ the absorp-
tive part M increases very slowly only. At the
plasma resonance the screening breaks down, the
electrons feel the bare Coulomb potential and M
increases by a factor of 2. For very large fre-
quencies M' tends to zero as 1/&u . The real part
M shows a peak near ~. The conductivity accord-
ing to Eq. (18) is plotted in Fig. 4. For frequen-
cies below e„(or &o~) deviations from Drude's for-
mula are not larger than 5-10%. At u&~, however,
the breakdown of the screening of the charged im-
purities affects the real part of the conductivity
quite drastically. Indeed, as may be seen from
Fig. 4, cr" increases by V0% in the vicinity of ~~
and falls off as 1/&4 for increasing ~. Since M /
EF is a small quantity, the imaginary part o is not
much influenced. We suggest to investigate these
predicted anomalies by measuring the light absorp-
tion of thin films of metals with charged impurities
for frequencies above ~~. Since ~ is always very
much larger than 1/7, the anomalies described
above can be obtained by applying standard pertur-
bation theory. '
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