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Kohn-Sham Self-Consistent Calculation of the Structure of Metallic Sodium~

B. Y. Tong
DePartment of Physics, University of Western Ontario, London, Ontario 72

(Received 21 June 1971)

The equilibrium lattice parameter, the compressibility, and the cohesive energy of metallic
sodium at O'K are calculated a Priori by the local-effective-potential approximation of the Kohn-

Sham scheme, inwhichall electron wave functions are brought into self-consistency. The re-
sults are in reasonably good agreement with the measured values.

I. INTRODUCTION

The local-effective-potential approximation of
the Kohn-Sham self-consistent scheme' 3 is used to
calculate the cohesive energy, the equilibrium lat-
tice parameter, and the compressibility of metal-
lic sodium. A preliminary report of our work was
published elsewhere. Since that time many self-
consistent calculations on band structures have
been reported. ' " In the preliminary report, a
parameter y, was introduced to facilitate the at-
tainment of self-consistency. The parameter z,
was chosen arbitrarily to be slightly smaller than
the equilibrium value y, . A full self-consistent cal-
culation was carried out at y, including all the core
electrons. In all other values of y, )z„ the core
wave functions were fixed to be the same as those
at y, , and only the valence-electron wave function
was allowed to vary until self-consistency was at-
tained. This was in a similar spirit to most self-
consistent calculations ' in which the core wave
functions are taken to be the atomic-core wave
functions. It should be better because y, was close
to the equilibrium lattice parameter y, . In this
previous work, only four points were calculated to
give the energy vs g, curve. It was not quite suf-
ficient to produce accurate second derivatives
which give us the compressiblity. Even so, the
calculated quantities were in reasonably good
agreement with experimental values. This is in
contrast to the statement made by Liberman on
the Kohn-Sham exchange applied to the band-struc-
ture calculation for lithium. '

In the present work, the calculation has been
repeated with greater accuracy on a CDC 6600
computer. Each r, calculation is carried out in
full self-consistency with all the electrons. The
extra parameter y, is not introduced. Ten points
on the energy vs z, curve are obtained. The small
differences of the results reported here from those
in the preliminary report are mainly due to the
accuracy in the self-consistency and in the interpo-
lation differentiation.

The equilibrium lattice parameter, cohesive en-

ergy, and compressibility of metals can be studied

using the model of a uniformly interacting electron

gas. Good values have been obtained from such
calculations, for example, those by Raich and
Good'3 and by Cutler. ' One undesirable feature
of such a model is the introduction of extra param-
eters to take care of the core electrons. The more
fundamental approach is, of course, to calculate
the band structure in full. The first successful
attempt from this approach to estimate the metal-
lic binding was made by Wigner and Seitz.~5 ~6

They used an effective potential fitted to spectro-
scopic data for sodium by Prokofjew. ~~ Bardeen'8
repeated the calculation using the k p perturba-
tion method and obtained values in good agreement
with the measured ones. Since then many authors
repeated the calculation using information obtained
from measured quantities, e.g. , Kuhn and Van
Vleck, the quantum-defect method by Ham and
Segall ' ' and Brooks and Ham, and pseudopo-
tential theory. Recently many first-principle cal-
culations of compressibility and other related quan-
tities using fixed atomic-core wave functions have
been reported, e.g. , the augmented-plane-wave
(APW) calculation of lithium by Rudge, 8 of alumin-
um by Boss and Johnson, and the orthogonalized-
plane-wave (OPW) calculation of aluminum by
Scofield. ' Here we have carried out an a priori
calculation for sodium in which the only parameter
input to the full self-consistent computation is the
total number of electrons per ion: Z=11.

II. METHOD

%e shall not describe the Kohn-Sham scheme in
detail, since it has been adequately reviewed else-
where, ~ ~ nor discuss the so-called Kohn-Sham-
Gaspax exchange potential which has been studied
by many authors.

As suggested by signer and Seitz, "we divide the
metallic sodium into cells and use their spherical
approximation. This assumes that to a first ap-
proximation the energy of a sodium atom in the
metal depends only on the atomic volume, and not
on the coordination number. This is supported by
the experimental fact that energy remains prac-
tically unchanged in the Martensitic phase trans-
formation of sodium from body-centered-cubic to
the hexagonal-close-packed structure, and the
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validity of the Vegard's rule in alloying metals. "
Theoretical study on sodium by Hughes and Calla-
way, taking into consideration the small change
in such transition, found that within the accuracy
of the calculation, the Fermi energy and effective
mass are the same in the two structures. The
cells are neutral because the ground state of a
many-electron system does not allow an excess
accumulation of charges in a particular cell.

The Kohn-Sham self-consistent scheme can be
summarized by the following equations (in a. u. ).
Taking the nucleus at the center of the Wigner
sphere, the energy functional is given by

under the appropriate boundary conditions. As
emphasized before, ' the nature of the single-par-
ticle equation (3) is somewhat different from the
conventional Hartree-Fock picture. Here we also
speak of the "core" electrons (indexed by o. ) and
the "valence" electron (indexed by k), but always
in the sense defined by the eigenvalues and eigen-
functions of Eq. (3). The values of these quantities
are close enough to the conventional Hartree-Fock
values that we can identify them by the conventional
terminology. The effective potential in Eq. (3) is
given by

"ff( )= +
~ ir- r i

dr +& (it(r))
n(r')

+2
I I

' —
I

dr'dr+E„, [tt], (1)
1

i ~

n(r')n(r)

where E is now the total energy of all the electrons
in a single cell, and Z =11 for sodium. E„,[n] is
the exchange and correlation energy functional of
the interacting electron gas. In the local-effective-
potential approximation, it is given by

where

is the exchange and correlation parts of the chemi-
cal potential of a uniform gas at density n. From
our knowledge of a homogeneous, interacting elec-
tron gas, we can split p„ into the exchange and
correlation parts:

E„,[n]= f t-„,(n(r)) n(r) dr, (2) v„,(tt) = v. (tt) + v, (it),

where e„,(n(r)) is the exchange and correlation en-
ergy per electron of a uniform electron gas of den-
sity n. All integrations in Eqs. (1) and (2) are
limited to the cell. T, [n] is the single-particle
kinetic-energy functional of the homogeneous elec-
tron gas in an effective potential v,«, satisfying
the Schrodinger equation

(3)

where

p„(n) = —(3n/v)" ',
and g, (n) is obtained from an interpolation between
the low-density signer correlation formula and the
high-density expression of Gell-Mann and Brueck-
ner. s~ The interpolation curve for p,, as a function
of density n and a detailed discussion on this is
given in Fig. 1 of Ref. 3, and in Ref. 40.
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FIG. 1. Total energy 8 as a func-
tion of ~„ the radius of the Wigner-
Seitz cell. The units of r~ are ex-
pressed in terms of Herman-Skill-
man mesh points: 259=3.6544544a~,
and each step increases by
0. 063 694 195@~. The minimum of
E is at r, =3.982a~, which is equiv-
alent to a lattice constant of 4. 28 A.
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TABLE I, Equilibrium lattice constant, compressibil-
ity, and cohesive energy of metallic sodium at 0 K.

Author

1 Experiment

Lattice
constant

4. 225
(at r=5 K)

4. 22

Cohesive
Compressibility energy

(10 ' cm /dyn) (kcal/mole)

11.7 26. 0

1S.8'

2 Kohn-Sham scheme
(present calculation)

4. 28 10.3 (32. 0)

3 Kohn-Sham scheme with 4. 11
free-ion core (Ref. 4)

11.5 (32.2)

4 signer and Seitz'

5 Fuchs

6 Bardeeng

7 Kuhn and Van Vleck"

8 Brooks'

4. 75

4.53

4. 14

4. 26

ll. 4

12.1

13.0

16.2
(at 7=2. 93'K)

23. 2

23, 0

25. 9

26. 3

The solutions of Eq. (3) give us the new total
electron density n(r), i.e. , sum of the core and

valence densities represented by n, (r) and n„(r),
respectively:

n(r) =n, (r)+n„(r), (7)

(3)

(9)

Here n runs over all the core levels, and n, is the
valence density obtained by summing over all the
k values below the Fermi surface. The new den-
sity n(r) obtained is used to construct a new effec-
tive potential for the second cycle of the self-con-
sistent calculation. This continues until the total
energy E [Eg. (1)J has reached the accuracy we
want.

For the valence electron, the solution of Eq. (3)
is found by solving the periodic-boundary-value
problem using a variational method of Kohn. ' De-
tails of this method are described in the Appendix.
In this methodthe , electron wave function g, of a
general wave vector k is expanded in terms of
spherical harmonics. The coefficients are deter-
mined from a secular equation obtained from a
variational principle. Summing over all the k
points in the Fermi sea, we obtain the valence-
electron density n„(r) [Eq. (A11)].

'Quoted by C. S. Barret, Acta Cryst. g, S7] (ig5S).
Quoted by K. Fuchs, Proc. Roy. Soc. (London) A&57,

444 (1936).
'C. A. Swenson, Phys. Rev. 99, 423 (1955).
From Eq. (5) of R. I. Beecroft and C. A. Swenson, J.

Phys. Chem. Solids ~18 329 (1961).
'E. Wigner and F. Seitz, Phys. Rev. ~46 509 (1934).
K. Fuchs, Proc. Roy. Soc. (London) A157, 444 (1936).

sJ. Bardeen, J. Chem. . Phys. 6, 367 (1938).
T. S. Kahn and J. H. Van Vleck, Phys. Rev. 79, 382

(1950).
H. Brooks, Phys. Rev. 91, 1027 (1953).

The boundary condition for the core electrons is
g„(r)~„., =0, for all o.. This is consistent with
the observation that the core wave functions die
down long before they see the Wigner-Seitz cell
boundary. It has been commented before' that this
boundary condition does not give rise to essential
errors in the values of E, but it may imply a more
"rigid" core, leading to a smaller compressibility.
It is not clear whether this is in fact one of the
contributing factors to the present estimate in com-
pressibility which is a little too small (see the re-
sults below).

For each Wigner-Seitz cell of radius y„we
evaluate a value for E. Values of E for ten values
of y, near the equilibrium lattice y, are calculated.
The equilibrium lattice parameter z, is obtained
from the condition

8E
8&s r,=~',

and the compressibility p is given by

1 1 eE
p 12m, gr,

in the spherical approximation.

(10)

III. RESULTS AND DISCUSSIONS

Each cycle in producing a new improved poten-
tial involves solving nearly 100 Schrodinger equa-
tions. Most of these are related to finding the
A-dependent valence solutions, with various bound-
ary-condition tests, determinant evaluations, and
various interpolations. The program was built on
the skeleton of the Herman and Skillman program,
with various modifications, accuracy refinements,
and with additional subroutines to determine the
valence-electron wave function. The success of
this computation owes a lot to the Herman and
Skillman program which is fast, accurate, and easy
to modify.

Ten points were calculated to nine significant
figures. The E vs x, curve (Fig. 1) is very
smooth. Differentiation can be carried out direct-
ly, or we can first make a least-squares fit to an
inverse power series in y, (see Bardeen' and
Callaway 3) and then differentiate. (The latter
method is used. ) The results of the full self-con-
sistent calculation are listed in line 2 of Table I.
In line 3, we also list a previous calculation with
the ion core fixed to be the same as the atomic-core
wave functions of the Kohn-Sham scheme. Experi-
mental values and values obtained by other authors
are also listed for comparison.

The calculated equilibrium lattice constant of the
Kohn-Sham scheme compares very favorably with
experiment values. Compressibility is a bit low
compared to the new measurement of Swenson
and Beecroft and Swenson. The compressibility-
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periodic boundary condition in a metallic solid.
Potentials in different cells must join smoothly at
the cell boundary. V,«satisfies this naturally.
Several calculations after 1933introduced artificial-
ly flattened potentials, e.g. , the muffin-tin poten-
tial used by Ham. Further criticisms on this sub-
ject can be found in Bienenstock and Brooks.
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APPENDIX: THE VALENCE ELECTRON

FIG. 2. Compressibility is plotted against the volume
deformation — &V/ Vo.

volume relationship is shown in Fig. 2. The theo-
retical curve (Kohn-Sham) runs parallel to the old
Brjdgman data18, 46 and dif fers somewhat to the
fitted linear relation of Eq. (5) of Beecroft and
Swenson. " Cohesive energies from our calcula-
tions are put in brackets because they are less de-
pendable numbers. They are obtained by subtract-
ing the total energy of the isolated atom from the
total energy per atom of metallic sodium. These
are two very large numbers and are calculated
from different computer programs. Besides, the
theory involves approximations which may not
yield an accurate difference. On the whole the re-
sults are satisfactory.

The final v,« in Eq. (4) is a crystal potential
obtained from the g pyzoyz calculation. It has in-
cluded in it correlation effects not only of the va-
lence electrons but also of all the electrons present
in the solid. In Table II, we list, as a function of
radial distance, (a) the bare Coulombic potential
of Z= ll, (b) v«of the full Kohn-Sham self-con-
sistent calculation of this work, (c) the effective
potential V«of a previous Kohn-Sham self-consis-
tent calculation in which the core wave functions
were fixed to be the core wave functions of the free
sodium tamo, aBnd (d) the empirical potential of
Prokofjew, V~. It is seen that v,«, V«, and V„
are quite close, and differ quite a bit from the
bare Coulombic potential Vc,„, which is strongly
screened by the core electrons. Screening by
other conduction electrons has not been included
in V„.

In the fitted potentials like that of Prokofjew, '7

the potential varies as l/r near the Wigner-Seitz
cell boundary. This feature is also present in the
quantum-defect method and in most pseudopoten-
tial theories. ' This is in contradiction to the true

where r, is the radius of the signer-Seitz sphere,

TABLE II. Crystal potentials (in a. u. ) as a function of
radial distances R(in a~). Vc,„& is the bare Coulombic po-
tential of Z=ll. ; v@g is the Kohn-Sham local effective po-
tential of the full self-consistent calculation; Vzc is Kohn-
Sham local effective potential of a self-consistent calcu-
lation in which the core wave functions are fixed to be the
core wave functions of the free sodium atom (Ref. 3); and
Vz is the fitted potential of Prokofjew.

~Coul

0. 08957 —245. 62

Vetf

—196.26

~Ac

—196.19 —204. 0

0. 11943
0.27866
0.43790
0.59713

—184.21
—78. 949
—50.240
-36.843

—137.43
—42. 438
-20. 1.90
—11.275

—137.36
-42.381
—20. 143
—11.238

—139.9
—39.92
—20. 19
—12.22

0.91.560
l.2341
1.5526
1.8710
2. 1895
2. 5080
2. 8264
3.1449
3.4638
3.7818

—24. 028
—17.827
—14. 170
—ll, 758
-10.048
—8. 772 1.

—7. 7837
-6.9955
—6.3522
-5.8173

-4.6604
—2. 467 1
—1.506 0
—1.0071
—0. 73133
—0. 579 43
—0. 493 64
—0. 443 17
—0.414 34
—0.401 00

-4.640 8
—2. 456 9
—1.4997
—1.0022
—0.727 56
—0.577 55
—0.493 33
—0.443 72
—0.41522
—0.401 61

-5
2 ~

—1
—1
—0.
—0
—0
—0
—0
—0.

321
554
601
214
9788
8238
7160
6377
5783
5294

3.8455
3.9092
3.9729

—5.7209
—5.6277
—5.5375

—0.399 87
—0.399 22
—0.399 01

0 40053
—0.399 89
—0, 39969

—0
—0.
—0

5206
5121
5038

In studying the solutions of the Schrodinger equa-
tion in a periodic potential, Kohn ' developed a gen-
eral variational principle. In the spherical approx-
imation, the most convenient form is that used by
Kohn. " We find the method particularly suitable
to be incorporated into the self-consistent scheme.

The boundary-value problem of a valence elec-
tron in the spherical approximation (with a spheri-
cally, symmetric potential) can be written as

[- 2V +u,ff(r) —e„]y,(r)=0, x~y,

(r) —e 2 tkrz casey ( r)

s4a(r) g„„...e s4,(- r)
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jg is the magnitude of the wave vector assumed in
the z direction, and 8 is the angle between k and r.
Assume that g~(r) can be expanded in terms of
spherical harmonics:

g, (r) =Z, g, C, P,, (cos8)[B, ,(r)/r], (A4)

where g, is defined as

1, E even

g, l odd

~ -=det lain. (I i+ L,.)~~. l
= 0,

where

dR, I t

(Bg dr r] „„

I, = f' e """-""P, (cos8) P (cos8)

x P (cos8) sin8 d8 .

(AV)

(A9)

and where the C, are real.
The variational principle states that the C, are

determined by the condition that the surface inte-
gral

Here the index j'p is suppressed.
The valence-electron density is then given by

taking the sum over all k points up to the Fermi
level,

Z-=I ' g*(-r)e + &~' sin8d8 (A6)
st!~,(r)

be stationary. Substituting Eq. (A4) into this and

normalizing so that R, ,(r, ) = r„we get the secular
equation

n„(r) =Z„- lq, (r)l'.
Kith

f tf»*(r )ga (r ) dr = 1,
we get

(A10)

7r 7r p p
+ 2)+ 1 (A11)

e„,= (3/krs) J, e, k'dk . (A12)

I, =I!! e ""P,()()P,(y)dy
].

Since the valence band of sodium is nearly a
parabola, , we find it quite sufficient to evaluate only
seven 4 points equally spaced from 0 to 4~. r,k~
= (9v/4)~~~=1. 919158. This means that I, , which

depends on the product &,k only, can be evaluated
once for all r, . Numerical integration with a
variable number of mesh points is used (to avoid

the appearance of nodal points in the integrand at
a mesh point) giving values accurate up to nine

significant figures. They can be checked against
the values obtained by using tables of the 3-j sym-
bols (Rotenberg et al. ):

coefficients of the s and p functions. These facts
have been indicated by many authors, e.g. ,
Kjeldaas and Kohn, s~ and are also known from cal-
culations of transport properties in metals.

To find the correct solution of Eg. (Al) satisfy-
ing the condition (AV), we use the following itera-
tive interpolation. For a given potential v,«, we
take three trial values of q~. q„& q~ & q~. Their
corresponding solutions for Eq. (Al) are found by
numerical integration, each giving a value of ~.
From these, we interpolate q, to ~=0, giving us
an improved value of q~ . New values of q~' and

&~ are generated close to this new q, in a pre-
scribed way. Numerical solutions for these new
&~'s are again obtained by integration, and the ~
interpolation is repeated. This iteration is con-
tinued until the old and the new ~~ differ by not
more than 10 ~ Ry. As a check that the latter is
the correct solution &, satisfying the boundary
conditions (A2) and (AS), we follow the method
suggested by Kohn of testing in ten different di-
rections 8 the condition

00

=22(2I I)(-.)'j, (p), , ', , p=2k ..
t-0

(A18)
In practice the expansion (A4) in I is terminated

at l = 6. Test calculations using the sodium-ion
potential shows that this truncation is sufficient to
guarantee that &~(l= 6) be the same as q~(l ) of a
higher E to at least seven decimal places. The
rapid convergence can be seen from the dominating

C(P)(cos8) + CBPg(cos8) + ~ ~ ~

COPO(cos8) + CgP~(cos8) + ~ ~
tan(kr, cos8) = 1.

(A14)
This process to find q„ is repeated for each Q

value. Finally, the g»'s and &~'s are summed IEgs.
(All) and (A12)] to give n (r) and q . Adding n (r)
to the calculated core density n, (r) described in the
main text, we are now ready to calculate a new

v,«, and start a new cycle.
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