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We present a simple approach to the calculation of localization lengths of electronic states
in a one-dimensional tight-binding model with nearest-neighbor interactions only. Monte

Carlo calculations for a binary alloy with diagonal randomness only show longer-ranged states
at energies which are allowed for both constituents and shorter-ranged states in the tails.
The length of the longest-ranged states decreases continuously with increasing randomness,
without any sharp transition. These results are compared with transmission calculations, and

a simple physical interpretation is obtained thereby.

I. INTRODUCTION

It is well known that electronic states, which are
infinitely extended in pure crystals, are not al-
ways so extended in disordered materials. In two
or three dimensions there are ranges of energy
in which the states are extended, and other ranges
in which the states are localized. The energies
at which the transition takes place are called mo-
bility edges. ' The positions of these mobility
edges have been estimated to be E,S (E~ —I"~)'~3

by Economou and Cohen5 for an Anderson model
with Lorentzian distribution of diagonal energies,
where 1 is the half-width of the Lorentzian dis-
tribution and E, is the half-bandwidth of the un-
perturbed potential E, = Z V. Economou,
Kirkpatrick, Cohen, and Eggarter have also done
some calculations for binary alloys. Their re-
sults show that the mobility edges lie close to the
edges of the coherent pote-ntial appr-oximation (CPA)
density of states, especially in the majority sub-
band. They do not give, however, any estimate of
the energy dependence of the localization length
outside the band. Some estimates of the localization
length L(E) have been made by Mott
[L(E)~ [E, —El ~ I], by Freed [L(E)~ IE, -E I ],
and by Lukes [L(E)~ ( E, —E i

3 ~ ] .
:Because of its importance in characterizing local-

ized states, we need more information about L(E)
than this, so we shall turn to the simplest case,
that of a one-dimensional binary alloy, first. The
one-dimensional problem has been investigated by
several authors. They generally agree that all
states in the infinite chain are localized, but a
completely general and rigorous proof has not
been given. ' It is a simple enough matter to cal-
culate numerically the detailed dependence of the
localization length on energy and randomness, al-
though general analytic expressions have not yet
been devised. Yet we should not assume that these
results are completely irrelevant to the real world.
Borland has shown ~ that the localization length and

phase coherence length are the same in one dimen-
sion, whereas in three dimensions the phase co-
herence length is the mean free path for the in-
finitely extended states. Thus, the localization
length in one dimension may give information about
the phase coherence length in the extended region
of the band, and may give information directly
about the localization lengths of the states in the
band tails of localized states. In addition, most
approximations to the solution of the three-dimen-
sional problem can also be calculated in one dimen-
sion, so these results provide a test for those approxi-
mations. Finally, Bloch, Weisman, and Varma~v
have identified a large number of materials which
ac t like one-dimensional disordered conduc tors.
For these reasons we have calculated the localiza-
tion lengths for a particularly simple model.

II. MODEL AND NUMERICAL METHOD

Consid~+ the tight-binding Hamiltonian in one
dimension:

n)&nI+~„Z V„„m)&n

where the states ln) are (orthonormal) Wannier
functions. In our calculations the diagonal ele-
ments &„ of the Hamiltonian are random variables.
For most of our calculations we chose a binary
alloy e„= & with probability x, and c„=0with
probability l —x, where x is the concentration of
impurity potentials. The method can be general-
ized trivially to almost any form of diagonal ran-
domness. We shall only consider nearest-neigh-
bor interactions, i. e. , V =0 unless m=n+1.
We have used V„„,& = V„„z=V= const, although
generalization to off-diagonal randomness would
not be difficult.

The wave functions are also linear combinations
of Wannier functions:

We are interested in computing the coefficients a„
as functions of the energy E, impurity concentration
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x, and impurity diagonal energy 5, in order to ob-
tain a measure of the localization length. We de-
fine the "localization length" to be that distance
over which the wave function increases, on the
average, by a factor of e. That is, we are looking
for a quantity L such that a„ fluctuates minimally
about

y ~n/L+f'yn
n (3)

(n —eoa„=A exp(~ +(4 (n))L

For n» ~0, it is

(5)

a„=A exp +i n

For n= no, it is

n (7)

i. e. , we are allowing the possibility that there is
a region around the center of localization in which
the wave function does not decay exponentially in
either direction. Our method of calculating the
localization length does not determine whether such
a region exists or how long it is, but is simply
concerned with the growth and decay of the tails.
The wave function described by Eqs. (5)-(7) is a
normalized (by proper choice of A) eigenfunction
of the Hamiltonian (1). If we are considering only
a finite chain, such a wave function must satisfy
particular boundary conditions at the ends; an ar-
bitrary choice of boundary conditions will not lead,
as a rule, to a normalized eigenfunction. In addi-
tion, the chain of length N (i.e. , with N sites) has
exactly X eigenfunctions, and at most N distinct
eigenvalues of energy. Any arbitrary energy, not
an eigenvalue, is not likely to lead to a normaliz-
able solution.

It has, in fact been shown, "'~ ' '" that a wave
function P, which satisfies Schrodinger's equation
for an arbitrary energy E with arbitrary boundary
conditions (i. e. , arbitrary phase) at a point zp,
will increase exponentially in either direction from
zp with probability 1. That this should occur is
not particularly surprising, for if

(((((x) = Ce""+De "",

where &f&„ is a phase factor which we have not cal-
culated. This definition agrees (apart from factors
of the order of 2) with that of Borland, '~ Rubin, ~

Tong, Minami and Hori, Matsuda and Ishii,
and Reading and Sigel. '

For our simple Hamiltonian, Schrodinger's equa-
tion reduces to

a ~= [(E—e„)/V]a„—a„, .
A wave function localized around the site no is

one which for n«no is of the form

there is always an x&& 0 large enough that
p(x& x,)-Ce"", unless C = 0 exactly, andsimilarly,
there is always anxp& Ofor which/(x& xm)-De ""
=De"'" unlessD=O; i.e. , with probability 1, Q grows
in either direction. Similarly, by analogy, in this
case, the wave-function amplitude changes at the
impurities, and it would be a rare event indeed
if the average effect of the impurities were to
cause a decrease in the amplitude (for a more care-
ful statement of this property, see Ref. 13).

A nor malizable eigenfunction could be cons true ted
for a chain of length N by starting simultaneously
at ~= 0 and at n=N with exponentially growing solu-
tions and making them match at some point in
between. This matching of amplitude and phase
can only be done at eigenvalues of the energy, and
the details of the procedure are described else-.
where. ' ' The extreme difficulty in finding an
eigenfunction is pointed out by Roberts and Mak-
inson, 3o who calculated wave functions for various
values of E near eigenvalues for a short chain.
All their wave functions are growing exponentially
at the right end of the chain, even those which had
grown to a peak and decreased earlier in the chain.
Roberts and Makinson estimate that the energy
would have to be accurate to one part in 10 to give
a good approximation to the eigenfunction for 500
sites. Their graphs shown distinctly that the rate
of growth of the wave function is the same when ap-
proaching the point of localization as it is in the
exponential runaway at the right end of the chain.
This lends credence to our method of calculating
localization lengths, as will be seen below.

Our method of calculation of the localization
length is quite straightforward. We chose values
for the energy E, the impurity diagonal energy 5,
and the impurity concentration x. We programmed
a computer to produce a sample chain of randomly
placed host and impurity potentials and to compute
a wave function of the from (2) by using Schroding-
er's equation (4) and two arbitrary constants, here
taken to be ao and a&. Then, in order to be certain
that Q„[defined in (3) above] satisfied le '~~(=+ 1, we
selected only certain sites n& and coefficients a„,.
We chose various "critical amplitudes" A &, and
selected n& and a„, if v~ was the smallest n for which
la„I~A &. By doing this we are assured that we

have eliminated the effect of the oscillations of the
wave function. Having found m values of n and a„
in this way, we approximated the graph of n& vs
ln la„, I to a straight line, by at least-squares fit
(see Fig. 1). The slope of this graph is the aver-
age of L, the localization length for that particular
sample. We repeated the process many times, and,
in so doing, averaged L over different samples.
This ensemble average of L is our computed value
of the localization length.

This localization length as so defined is remark-
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FIG. 1. Distance n vs lnla„l, for g= V, x=0.10, E

=0.10 V. The slope of the line is the localization length,
computed by least-squares fit to the data.

ably constant, for a given E, &, x. We checked
this by varying the other parameters we have
available, the initial conditions ao and a&, the
critical amplitudes A;, and the chains in the en-
semble. As a rule, we chose for our critical
amplitudes the even powers of 8 from 4 to 42 (i.e. ,
20 points) but in the initial testing we occasionally
chose e for A, and e ' for A without causing any
significant change in the localization length. Thus
I- appears to be well defined. We also varied the
initial conditions (e.g. , choosing a, = 0, ao= 1 in-

stead of vice versa, or choosing a
&
= ao= 1, etc. )

without producing any effect on I-. %'e found that
the average over 20 points per chain only justified
the use of 15 chains. Averaging over more chains
did not improve the statistics.

III. NUMERICAL RESULTS

I (x, 6) = 9. 36 sites&& [x(l —x)(6/V)2] ~. (9)

This equation is certainly reasonable since it pre-
dicts L ~- ~ as x- 0, x- 1, or &-0, all of which
correspond to a perfect lattice; the sign of the im-
purity diagonal energy does not affect the value ofL, and x and 1-x appear symmetrically-it
does not matter which constituent is labeled "im-
purity. " Thus we see that there is no "phase tran-
sition" as there is in two or three dimensions, at
least not in the range we have investigated; that

As we expected, all the states are localized, al-
though the range of localization found was about
three orders of magnitude (see Figs. 2-5). For
small impurity concentrations (x & 0. 1) those states
whose energy is in the range +2V&F-& 2V+ & are
very short (L& 2 sites). Those states in the host
band (- 2V& E & 2V) are considerably longer.
There is no single characteristic length for the
longer states, which have a localization length as
long as 200 sites for the center of the x=0. 05,
&= V case or as short as 16 sites for x=0. 1, &=3V.
There is a simple empirical relation among all
these lengths. If we plot the maximum localization
length from each spectrum against the product
[x(1 —x)6 ] ' we get a straight line (Fig. 6). The
equation for this is

2IO-

I80-

I

& Single Barrier
~ Double Barrier
& WavQunction growth

Density of states
(arbitrary units)

C3

C3

C3

C)

l20—

60-
'b

50-

FIG. 2. Localization length and ap-
proximate density of states vs energy,
for I5 = V, &=0.05. The localization
length was cal, culated by three methods,
described in Secs. II and IV. The error
bars indicate one standard deviation.
from the mean of 15 samples. Other
points with similar localization lengths
have similar standard deviations.

b
I

-2 0
I

-I 0
I ~«A

2.0
b
I

5.0



LOCALIZATION I ENGTHS OF EI ECTRONIC STATES IN. . . 1185

l20-

cr 80-

60-

e
0

4
4

g'0 000 4
0

4

40

o Single Barrier
~ Double Barrier' Wave(unction growth

Density of states
(arbitrary units)

FIG. 3. Localization length and
approximate density of states vs
energy, for &=V, g =0.10.

C)

C3

C3

CO

40-
4

zo-:&
4

I

-2.0
I

—I.O 0

Energy (V j

I

I.O

bb
d ~04

2.0 5.0

is, the maximum localization length goes smoothly
from infinity to zero as a function of x and &.

Economou and Cohens~ predicted a rapid change in
the localization length as a function of energy, near
the band edges, based on numerical results of
Williams and Matthews. This is clearly borne
out by these results. Although there can be no
true mobility edges in this model (all the states
arelocalized), if we view the inflection points of
the graph of I- vs E as a transition between the
shorter and longer states, i. e. , as a pseudomo-

bility edge, we observe that these points move
closer together as the randomness is increased.
(Note especially the x = 0. 5, & = V case, Fig. 4. )

There is also an interesting anomaly near & = 0
on Figs. 2 and 3. L(&) appears to jump by a finite
amount in crossing this energy. A likely reason
for this will be proposed in Sec. IV. Economou
and Papatriantafillou~4 have also calculated local-
ization lengths by a completely independent method.
At all points where we both have data, the results
are in very good agreement.
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where tt)N is the wave function at site N correspond-
ing to a "plane wave" incident on site 0 with ampli-
tude l){)aI, 7, and T), are the transmission coeffi-
cients of type (a) and (b) boundaries, respectively,
and n(N) is the number of type (a) or type (b)
boundaries occurring in N sites. The —,

' in the ex-
ponent occurs because the transmission coefficient
relates probabilities, rather than wave-function

IV. TRANSMISSION AND REFLECTION
COEFFICIENTS

As a check on our method and to interpret our
results physically, we considered this problem to
be a barrier-transmission problem, similar to
those treated in any elementary text on quantum
mechanics. We shall only discuss binary alloys
in this section for reasons of algebraic complexity,
which will shortly become obvious. Consider first
a single boundary between host atoms (H) and im-
purity atoms (I):

(a) ~ HHHIII ~ ~, (b) ~ ~ ~ IIIHH ~ ~ ~ .
We can consider our chain of potentials as a series
of boundaries, with forms (a) and (b) occurring al-
ternately. As a zero-order approximation to the
transmission coefficient of the chain, we could
compute the transmission coefficient of each bound-
ary and multiply them together. This is, of course,
only a poor approximation, because it ignores all
multiple reflections and interference effects, but
is justified in view of the randomness. If we make
this approximation, then we write

amplitudes. In a completely random binary alloy,
in which each site is independent of all others,
the number of boundaries is given by

n(N) = x(l —x)N,

since the number of boundaries in a length N is the
product of the number of sites (N) and the probabil-
ity of a boundary occurring at a site. This prob-
ability for a type (a) boundary is the probability
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FIG. 6. Maximum localization length vs [x(l -x)(6/V)~) ).
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lnT, =in(1-R, )= —R, . (13)

of a II atom at site j —1 multiplied by the probabil-
ity of an I atom at site j, i. e. , x(1 —x). As we
want to compare this to a localization length, we
rewrite it in the form of an exponential:

ale»[lx(1 x}N(l"T +1nT~)]

Tf the reflection coefficient, R—= 1 —&, is small, we
may expand tne logarithm to first order in R:

to the longest:

where T„ is the transmission coefficient for a bar-
rier of the type (c) or (d} and P„(N) is the number
of such barriers in N consecutive sites. Again,
P„(N) is the probability of the next n+ 2 sites form-
ing such a barrier after a particular site, multiplied
by the number of such sites available. The number
of barriers of type (c) is then

The reflection coefficients 8, and Rb are both
given by

P„(N) = (1 —x)2x"N . (20)

where

1 —cos(k —q)
1 —cos(k+q} '

cosk = E/2V, cosq = (E —6)/2V;

(14)
We then write (19) in the form of an exponential:

I
«» =

I
&(0)

I
e»[-'N(i —x)'Z„x"inT„]. (20')

From this we identify

k(q) is the Bloch wave vector of a wave of energy
E traveling to the right in a pure H(I) lattice.
In the limit in which k and q are both small, we
may expand the sinq sink to first nonvanishing
order, giving

R = 6'[16V'- (2E —6)']-'. (16)

we may obtain results for 2V&E& 2V+ &. As be-
fore,

I
t(N)

I =(T„, T&„)"'I$(0)I, (16)

where T~~& is the transmission coefficient of the
ith barrier. Since the T~&& are numbers, we may
commute them, and order them from the shortest

R clearly has a minimum value of 6 /16V at
E = —,

' &. This corresponds to a maximum localiza-
tion length [we have combined Eqs. (12), (13),
and (16), and noticed that 1/I is the coefficient of
—N in the exponent] of

L = 16 sites && [x(1-x)(6/ V}2] ',
which compares reasonably well, considering the
crudeness of this approximation, with our previous
result (9).

To improve the approximation, and consider
some double reflections, let us consider configura. —

tions of the form

(c) ~ ~ ~ HI HI ~ ~

This is abarrier-penetration problem, and the
methods for treating it are similar to those just
described. This method, however, does not re-
quire that the states be wavelike in the impurity
region, but only in the host region. We may there-
fore expect reasonable results for all energies in
the host band, —2V&E& 2V. Also by considering
barriers of the form

(d) ~ IH HI ~ ~

i/L = ——,'(1 —x)'Z„x"lnT„ (21)

(recall that T„& 1, so I. is positive).
The calculation of the T„(E,6} is straightforward,

and the result is

sin qsin k
sin'q sin k+(&'/4V2)sin'qn (22}

for —2V+«E& 2V, where q and k are defined
by (15). Similar expressions can be calculated
for —2V& E & —2V+ &, 2V& E & 2V+ ~. When these
transmission coefficients are computed and inserted
into (21), the localization lengths computed agree
very well with those of the previous method for
low concentrations (Figs. 2—5), but the agreement
is not as good for high impurity concentrations
(Fig. 4). For these concentrations, multiple re-
flections between barriers, which are of course
closer together, become more important, and
simply do not, average to zero.

We then considered the possibility af reflections
between consecutive barriers, by treating con-
figurations of the form

(e) HI IH HI IH
m n

for which equation (19) reduces to

1/L = ——,'-(1 —x) Z(Z~„x""(1—x)"lnT, „,
(23)

where T, „is the transmission coefficient of the
configuration (e). The algebra of calculating T, „
is much more tedious, but no more difficult, than
that which led to Eq. (22). This procedure leads
to values of L which are also shown in Figs. 2-5.
We see a significant improvement in the case of
50% concentration, and little change in the others.

Higher-order approximations can be made in
similar fashion, and the results should be more
accurate. Rubin~ has done some calculations for
the phonon problem and reports similar results—
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in the limit of low concentrations the effect of n
barriers is just n. times the effect of one.

The jump at E=O in Figs. 2 and 3 can be ex-
plained in terms of these double-barrier-trans-
mission coefficients. The effect is not observed
at all in the results of the single-barrier calcula-
tion, but is quite pronounced in the results of the
double-barrier program. We discover that con-
figurations of the form

(I) ~ ~ ~ HIHH ~ HHIIH

even number

are perfectly transmitting for 8=0, &= V. Thus

they do not contribute to the localization length.
The other configurations transmit more on the

positive side than on the negative side, giving the

asymmetric form to this energy region.

V. CONCLUSIONS

A quantity called localization length is well de-
fined for electron states in one-dimensional random
systems, and the various methods of calculating
these lengths agree. There are many areas for
further work in this field. Off-diagonal random-
ness may be introduced, the existence of a region
near the center of localization where the wave func-
tion is neither decaying nor growing should be in-
vestigated, and the question of localization of the
second-neighbor interaction Hamiltonian should
be inves tigated.
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