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We have calculated the effect of the anisotropy in the electron-phonon interaction on the
temperature dependence of the Hall constant in the alkali metals. We find that the effective
number of carriers n* decreases with temperature in qualitative agreement with experiment.
At low ter.;peratures, we find a minimum in n*.

I. INTRODUCTION

Robinson and Dow' have computed the Hall coef-
ficient for the alkali metals at room temperature.
They employed Heine-Abarenkov ~ pseudopotentials
for the electron-ion form factor and took the phonons
from inelastic-neutron-scattering data. From this
information they compute the scattering times for

electrons at three points of high symmetry on the
Fermi surface. These scattering times are then
averaged in an appropriate way to get the Hall coef-
ficient. In this paper we report on new and more
extensive calculations of the Hall coefficient in the
alkali metals. The improvements over the previous
work are several. We are able to compute scat-
tering times at a large number of points on the ir-
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FIG. 1. Electron-phonon "trans-
port frequency distribution"
&t, z()Ey(~) for k in three high-sym-
metry directions. The curves refer
to Na. The function G'2«g()Ey(~) is
dimensionless and the frequency u is
in units of 10 2 cps.
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HALL COEFFICIENTS IN THE ALKALI METALS

reducible ~48 of the Fermi surface. By formulating

the theory in terms of a "transport frequency dis-
tribution, " instead of the overlap of a temperature-
dependent structure factor and a pseudopotential,
it is possible to extend the calculations to all tem-
peratures with no added difficulty. This is important

since, experimentally, the effective number of car-
riers per atom is observed to decrease with de-
creasing temperature. In potassium we carry out

calculations for several commonly used pseudo-
potentials so as to determine the sensitivity of our
results to this quantity. Since the form factor is
found to be of quantitative although not qualitative
importance, we carry out all further calculations

using the form factor previously developed by us~

for the alkalis. These pseudopotentials are known

to fit very well the resistivity of the solid over a
wide temperature range. The resistivity is, of

course, closely related to the Hall coefficient.

In Sec. II, we give the formula for the Hall coef-
ficient and discuss the ingredients needed for its
evaluation. Section III describes our calculations
and presents intermediate results while in Sec. IV,
we present and discuss our results for the effective
number of charge carriers as a function of tem-
perature. In Sec. V we draw conclusions.

II. FORMALISM

The Hall coefficient 8 can be written in terms of
an effective density of charge carriers n~,

1
n~) e) c

where 8 is the electron charge and c the velocity of

light. Following, for example, Robinson and Dow, '
we write

n~ (v(k, T)) (2)
(~'(k, T))

l.p sec T=74 K
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T4 l54 K FIG. 2. Scattering time v(k, T) for
three different temperatures in Na as
a function of position on the irreducible
48 th of the Fermi surface. For k
=—(8, Q, k~), the results for the three
arcs Q =0, 222' and 45 are to be
distinguished as follows: , Q =0';
x, P = 222, 4, f =45'. The results
are normalized to the value of ~ at
8 = 0 and Q = 0. For each temperature,
7(0, 0) is entered on the graph.
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where g is the number of free electrons per unit
volume and v (k, T) is the scattering time for an
electron in the state I k) at temperature T. The
average indicated in (2) by the brackets ( ) is over
the Fermi surface which we will take to be a sphere.
Hayman and Carbotte~ have shown how, at least for
certain purposes, the ordinary formula for the
electrical resistivity can be rewritten in a more
convenient way in terms of a transport frequency
distribution which they denote by n a(~)E(~). The
variable is a phonon frequency. Once this quan-
tity is known, the resistivity at any temperature
follows by a simple quadrature over thermal factors
and o'. a(~)F(&u). Allen, s in his discussion of the in-
frared properties of metals, has also introduced an
effective frequency distribution which he denotes
by o.'„(&u)E(~). To within a multiplicative constant,
o."„(~)E(~)is equal to o. '(&u)E(~)/~. In what fol-
lows, we will employ Allen's notation because, as

he has it defined, o.'~, (&o)F(&o) has the convenient
property of being a dimensionless quantity. Here,
tr stands for transport.

The quantity of central importance in our work
is a directional n„, (&u)E(~) which we will denote by
o' „f, (&)Fp (&). Averaging over the Fermi sphere
gives the average quantity, i. e. ,

= f (dQ-„/4 m) o',„.„(&u)E-„(~),

where the angular average dA.„ is on the Fermi
sphere. The formula for o. „f,(~)E; ((u) is~'~

@No'„&( )E;( )=- . Z(g'-, (k-k')'

&«(~- ~,(k-k'))), (3)

where N(0) is the single-spin density of states at the
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FIG. 3. Electron-phonon "transport
frequency distribution"' &t~y(~) Fg(&) forI~

k in three high-symmetry directions.
The curves refer to Li. The function
&t~z(~)&q() is dimensionless and the
frequency is in units of 10' cps.
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HALL COE F FICIENTS IN THE ALKALI ME TALS

with N the number of ions per unit volume; M, the
ion mass; e„(k—k ), the phonon polarization vector;
and W(k —k ), the pseudopotential form factor.

The scattering time r(k, T) for the state ik) is
given by

&(k, T) ~ D (e"~" —1)(1—e ~"") (5)

where m is the electron mass and P
' =ksT wit-h ks,

Fermi level, per unit volume, PF is the Fermi
momentum and gp„.~ is the electron-phonon coupling
for scattering from ~k) to ) k ). The index X de-
notes the phonon polarization branches and &~(k)
is the frequency of the k Xth mode. Finally, 5 is
Planck's constant over 2m. The electron-phonon
coupling can be written

j. /2,

g1P„=—z -i (k-k') &), (k-k )
2~,(k - k )MN

xW(k-k), (4)

the Boltzmann constant and T, the absolute tem-
perature. 4 It should be clear from (5) that having
computed the transport frequency distribution
n „"„(&u)E~(~) as a function of frequency for a large
number of points on the irreducible ~48 of the Fermi
surface, there is no difficulty in determining from
this information r (k, T) at any temperature. We
turn now to an eval. uation of this function.

m. CAr.CULAmONS

To evaluate (3), we need to know the pseudo-
potential form factor W(q) for scattering from one
point of the Fermi sphere to another, i.e. , for
momentum transfer qe(0, 2k~). Besides this, in-
formation about the l.attice dynamics is needed.
This latter information can be taken from the in-
elastic-neutron-scattering data on the phonons
which are usually analyzed on a Born-von Karman
model to yield the interatomic force constants.
These force constants completely determine the
phonon frequencies and polarization vectors.
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FIG. 4. Scattering time &(k, T) for

three different temperatures in Li as
a function of position on the irreducible
1
48th of the Fermi surface. For k
=(~, Q, k~), the results for the three
arcs Q =0', 222', and 45' are to be
distinguished as follows: , / =0' x,
Q =222', o, Q =45'. The results are
normalized to the value of v at 8 = 0
and Q =0. For each temperature,
~(0, 0) is entered on the graph.
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FIG, 5. Electron-phonon "transport frequency dis-
tribution" e~&(co)FI,() for k in the [001j direction. Re-
sults for the four different pseudopotentials discussed in
the text are compared. The function &2q~z(w)E&(&) is
dimensionless and the frequency u is in units of 10 cps.

From this, (3) can easily be evaluated on a com-
puter. The technique is now well established'-7
and it would be repetitive to give more details. It
is sufficient to present results.

In Fig. 1, we compare nEt, I(&u)FE(&d) for k in the
[001], [011], and [111]directions. A considerable
amount of anisotropy is displayed in these figures.
The plots are for Na. The pseudopotential used is
the Ashcroft form developed in Ref. 2 and the
Born-von Karman force constants are from Woods
et al. s In Fig. 2, we show the variation in v(k, T)
as a function of position on the irreducible ~48 of the
Fermi surface, which results from integrating (5)
at three different temperatures. We see that at
the lowest temperature considered, the variation
is greatest while the variation tends to be reduced
with increasing T. This is not unexpected. For
fairly low temperatures (T =7 'K) the thermal
factors in (5) are fairly sharply peaked around
w= O. This implies that the low-frequency part
of the "transport frequency distribution" will be
the most important. We note that, at those fre-

Iluencies where IE„.„(I'd)Ff(~) becomes significant
in Fig. I, the differences between the three direc-
tions shown are quite marked. As the temperature
is increased, these differences are emphasized
much less as more of the entire distribution is
sampled in (5).

The distributions obtained for Li are distinctively
different from those in Na. They are shown in
Fig. 3 for the same three high-symmetry direc-
tions. ' We note that for the [011]and [111]distri-
butions, there is considerable weight at the l.ow
frequency as opposed to what is found in Na. In
Fig. 4 we show scattering times as a function of
position on the irreducible ~48 th of the Fermi
surface. The amount of anisotropy that remains
even for T= 300 'K is not unexpected considering
the distributions of Fig. 3.

It is of some interest and importance to know
how sensitive the transport frequency distribution
is to the form of the electron-ion pseudopotential.
In Fig. 5, we compare results for four pseudo-
potentials. One is the Lee-Falicov' '" form, which
is obtained from a fit to the Fermi-surface data;
another is the Bardeen matrix element'~ and the
others are two Ashcroft forms developed by Hay-
man and Carbotte. Only the distributions in the
[001]direction are compared Diffe. rences are
certainly evident in this figure. In particular,
the l.ow-frequency end of the distribution is very
much more important for the Ashcroft form with
R,= 1.275 A. The Bardeen matrix element also
gives considerable weight to this region. A more
striking way of presenting the differences is to
show v'(k, T). In Fig. 6 we present results for
7'(k, T) for T=4 'K and for the four different forms
mentioned for the electron-ion pseudopotential. The
four form factors are compared in Fig. 7. The
lower Lee-Falicov, the Bardeen, and the Ashcroft
forms with R,= 1.0353 L are all similar. The
Ashcroft form with R, = I.2753 A is considerably
different. It has a node for a momentum transfer
before 1.0, in units of 2k~, and is quite large
around 2k~. This implies that umklapp processes
will be emphasized more in this case. This leads
to the relatively greater importance of the low-fre-
quency end in the "transport frequency distribution, "
which was previously noted (Fig. 5). It also leads
to the greatest amount of anisotropy in r(k, T) at
T=4 'K, as can be seen in Fig. 6. It is clear from
this figure that the form of the pseudopotential is
of considerable importance in determining the
variation of 7' on the Fermi surface. Also, the
absolute value of the scattering times can be strong-
ly affected.

IV. RESULTS AND DISCUSSION

Once the scattering times are known at a large
number of points on the irreducible ~48 th of the
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Fermi surface, it is not difficult to compute the

averages indicated in Eq. (2) to obtain n~/n. We

begin by showing results for K, for which case
several different pseudopotentials were considered.
Potassium was singled out for this purpose because
of the considerable amount of recent activity related
to its low-temperature resistivity. ' '" In Fig. 8,
we have plotted n~/n as a function of temperature
in the most interesting range below =20 K.
Curve 1 is obtained from the Ashcroft form with a
core-radius value of R,= 1.035 A. This value of

R, leads to very good results for the temperature
variation of the resistivity in K.2 Curve 2 applies
for the Lee-Falicov pseudopotential while curve 3
is for the Bardeen form factor as described by
Trofimenkoff and Ekin, ' with reference to a dis-
cussion of the low-temperature resistivity p(T) of

K. The final curve labeled 4 is for an Ashcroft
form with R,= 1.275 A which does fit the resistivity
at 90'K, but was rejected by Hayman and Carbotte, ~

because it failed at lower temperatures. It is in-
cluded in Fig. 8 to show an extreme case. We see
that the shape of the curves obtained is qualitatively
the same whatever the pseudopotential used. Quan-
titatively, however, the results are very sensitive
to the form of W(q). On the other hand, it is en-
couraging that curves 1 and 2 are not very dif-
ferent. Both are obtained from empirical pseudo-
potentials fitted to experimental data. Since
curve 1 is obtained from the resistivity data, we
would tend to prefer it to curve 2 although we
should stress again that, at the moment, we are
more interested in the general qualitative features
of our results.

It is important to note the minimum at roughly
4 'K in all these curves. This minimum correlated
well with the maximum observed by Ekin' in a
plot of p(T)/T' vs T. This author observes a
maximum at = 5 K, which he correlates with the
onset of umklapp processes at this temperature.
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FIG. 6. Scattering times in K at
4'K as a function of position on the ir-

f
reducible 48th of the Fermi surface.
Results for various possible choices
of pseudopotentials are compared. On

each graph the value of 7(k) for k
=(0, 0, k~) is entered and all results
are normalized to this value. For k
= (&, Q, k~), the results for the three
arcs Q = 0, 222', and 45' are to be
distinguished as follows: ~, /=0'; x,
Q =222', o, p =45',
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FIG. 7. Comparison of various form factors W(q):
Bardeen( ——), lower Lee-Falcov (x-x-x), Ashcroft
8~=1.27 A (o-0-c'), and Ashcroft R~=1.04 A ( == ).

We believe the minimum in n*/n to have the same
origin. In Fig. 9, we show results for Na, Rb,
and Li. These curves are all based on pseudo-
potentials which fit the resistivity well. 2'9 We see
that, in all cases, as T decreases, n~/rs also de-
creases. It then reaches a minimum at a few de-
grees kelvin and starts increasing again. For Rb
and Na, deviations of n*/n from 1.0 seem to be-
come of some significance only at the very lowest
temperatures. For Li, the effect is quite large
even at room temperature. This is not unexpected
since Li has by far the most anisotropy.

Robinson and Dow' quote room-temperature ex-
perimental results for n*/n of 0. 87 (0. 79) in Li,
0.95 (1.17) in Na, 0.95 (1.11) in K, and 0.94 in
Rb. The numbers in parentheses are other ex-
perimental numbers which are included to indicate
to the reader the uncertainty that seems to exist
at the present time. For lithium we get 0. 87 while
for the other alkalis we get slightly less than 1.
We consider the agreement satisfactory although
more experimental work would certainly be of
inter est.

Recently, Alderson and Farrell'~ have measured
n~/n in Li, Na, and K over the temperature range
6-300'K. lt is observed that n"/n decreases
slowly with T in qualitative agreement with our
calculations. Na and K show the least variations
while that in Li is much more pronounced again in

IQ—

.6— FIG. 8. Effective number of car-
riers g*/n as a function of tempera-
ture for various choices of 8'(q) in K.
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general agreement with our work. At the lower
temperature end, the experimental results in Li
and Na are complicated by a Martensitic trans-
formation. In K, if we ignore the minimum ob-
served around = 20 'K because its origin is not
well known, we estimate roughly a 8% decrease
from high to low temperature. This is in reason-
able accord with our results (see curve 1, Fig. 8).

V. CONCLUSION

We have calculated the effective number of charge
carriers n*/n in the alkali metals. We ignore
Fermi-surface anisotropy but include the anisotropy
in the scattering time, due to anisotropy in the elec-
tron-phonon interaction. We find that the data of
Alderson and Farrell on the temperature variation
of n*/n can be understood qualitatively on the basis
of our calculations. We find further that at very
low temperatures a minimum occurs in our the-

oretical curves which we believe to be due to the
onset of umklapp processes. A similar effect has
recently been observed by Ekin in the low-tem-
perature resistivity of K. We find that at low T,
n*/n is very sensitive to the form of the pseudo-
potential form factor. The Hall coefficient is an-
other method to get information on this quantity.
It is hoped that the present study will stimulate
more experiments on the temperature variation
of the Hall constant.
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Observations are reported of a negative contribution to the magnetoresistance of a paramag-
netic transition metal, palladium, with nonmagnetic impurities. The longitudinal magnetore-
sistance of some polycrystalline palladium alloys which show a resistance minimum is com-
pared with the magnetoresistance of palladium alloys with no resistance minimum. Kondo
scattering in these alloys cannot account for the results, but we suggest that the energy depen-
dence of Mott s-d scattering, used successfully to explain the temperature dependence of re-
sistivity of these alloys, is also responsible for the negative magnetoresistance. A positive
contribution to the magnetoresistance which, unlike the negative component, obeys Kohler's
rule is also present. We attribute this component to anisotropy of scattering on the Fermi
surface. It proves to be surprisingly sensitive to the impurity type, suggesting that this may
be a profitable way to study the anisotropy of scattering in other paramagnetic transition me-
tals.

INTRODUCTION

In a recent letter Rowlands et al. ' described
experiments on the electrical resistivity of dilute
Pd-Rh~ alloys which showed a resistance mini-
mum. Other worker s~ have found resistance mini-
ma in some concentrated Pd-Ag alloys. However,
no minimum is seen in dilute Pd-Ag or Pd-Pt
alloys. Rowlands et al. explained these results
on the basis of the energy dependence of Mott 8-d
scattering, which gives rise to a resistance of the
form

pr = po(1-AT ),
where A is a term related tothe energydependence
of the density-of-states curve.

This mechanism was first applied to impurity
resistivity by Coles and Taylor, 4 who successfully
explained the peculiar concentration dependence
of the room-temperature resistivity of Pd-Ag al-
loys on this basis. It was extended and applied to
other electronic properties by Dugdale and Gue-
nault. '

There is no evidence that the impurity exhibits
a local moment in any of the alloys we have men-

tioned; therefore, the Kondo effect can be ruled
out. Rowlands and Greig' in a forthcoming paper
discuss further evidence to support the contention
that even in some Pd-Cr and Pd-Np alloys, where
it is possible that the impurity is magnetic, the
resistance minimum that has been observed is due
to a virtual bound state with a strongly energy-de-
pendent density of states. If the energydependence
of the final d states in our alloys is responsible
for the resistance minimum, then the effect of a
magnetic field on the alloys should also be marked.
A component of the magnetoresistance, which we
shall call "band" magnetoresistance will arise
from the splitting of the d band into two spin bands.
The band magnetoresistance maybe evaluated from
the density-of-states curves for pure palladium
derived from magnetic-susceptibility data. It
turns out that it is negative and proportional to the
solute concentration for sufficiently dilute alloys.
"Anisotropy" magnetoresistance, arising from
the anisotropy of scattering processes on the
Fermi surface, ' is the other component to be ex-
pected in these alloys. In alloys where the band
component is small, it is demonstrated experi-
mentally that the magnetoresistance obeys Koh-


