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irrelevant that these oscillations are very large.
As long as each atom possesses a thermal-equilib-
rium position and does not wander away never to
return, the system is clearly behaving in accor-
dance with our intuitive notion of a solid. Accord-
ing to this criterion, the harmonic one- and two-
dimensional systems, the chain and net, are ex-
amples of solids.

IV. SUMMARY

In the present work we have shown that to
assure consistent statistical-mechanical calcula-
tions for a solid, one must include in the Hamil-
tonian terms explicitly describing the action of the
external forces, compression or tension, upon the
surface atoms. The physical reason for this re-
quirement is the existence of very long-range cor-

relations between atoms in the solid phase. Al-
though for convenience we selected the linear chain
as a model for our analysis, it is clear that the
same basic considerations will apply to a three-
dimensional solid.

For the one- and two-dimensional systems, the
harmonic chain and the harmonic net, although

(u„)diverges in the thermodynamic limit, we pro-
pose that these systems should be classified as
solids. Our proposal is based upon a criterion
which is i.n accord with the usual intuitive notion of
a solid.
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~Throughout, V" (d) must be assumed independent of d,
i.e. , V'"(d) =0, for otherwise it would be inconsistent
to drop anharmonic terms when approximating the Hamil-
tonian of (1) by (2) or (2').

2The lattice spacing of a solid in the harmonic approxi-
mation is well known to be independent of temperature,
but of course it is pressure dependent. This result is
rederived in the following paragraphs. In particular see
(12).

3The contradiction Z~ d is not unique to the canonical
ensemble; it occurs for any ensemble unless the Hamil-
tonian (1) and (2) is amended as described below.

The constant I (N-1)d is added to ensure that, if d

indeed equals d, the term E[xz-x& —(V-1)d] added to
the Hamiltonian (2) does not alter the energy of the sys-
tem.

5The reason for omitting the k =0 term in (15) is that
this term corresponds to motion of the center of mass of
the chain which is irrelevant to our analysis.

8The popular American children's toy "Slinky" displays
precisely this behavior when the two ends are held sta-
tionary after an internal vibration is excited.
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The contributions of the collective modes to the surface energy of simple metals are calculated.
This energy is found to give a relatively good fit to the experimental data indicating that col-
lective contributions must be included in any first-principles calculation.

I. INTRODUCTION

The surface energy is that part of the total en-
ergy of condensed matter which is proportional to
the surface area of the material in question. Were
we to cut a (macroscopic) solid into two (macro-
scopic) pieces and separate these two pieces the
net change in energy would be

&E= 2yA,

where A is the area of the cut (the factor of 2 be-
cause we create 2A new area). The surface en-

ergy per unit area or surface tension y is for
macroscopic bodies independent of the size and
shape of the body. This quantity y is of consider-
able technological interest as there exists a cri-
terion for brittle fracture which balances the en-
ergy of new surface produced to the elastic energy
released upon the growth of an intrinsic crack. ~

Suppose we start with a solid which fills all
space and then separate this solid into two pieces,
each filling one half-space. In doing so we must
do work (as y & 0); a direct calculation of y from
the work necessary to separate the two pieces
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would be extremely difficult as the forces between
the faces are not particularly well known, especial-
ly at small distances. We then look to see what
we have done with the solid which may have
changed the total energy. Aside from the static
redistribution of charge at the surface, one obvi-
ous change is that in creating new surface, we
have introduced new modes of excitation of the
system —surface modes. We now have surface
phonons, plasmons, magnons, etc. , associated
with each mode of which shall be a zero-point en-
ergy proportional to the area of the surface. Of
these candidates the surface plasmon, being much
the highest energy excitation, is the only mode
which need be considered. If we naively calculate
the zero-point energy of the surface plasmons we

get a result which has approximately the proper
functional dependence on electron density, but
which is about an order of magnitude too large.
Clearly, (a) the surface plasmons must be included
in the calculations of the surface energy and (b)
a better treatment of the surface mode than this
simple-minded one is needed.

The naive treatment above treats the surface-
collective excitation as in some way divorced from
the internal electronic degrees of freedom which

gave rise to these excitations. This is, of course,
incorrect. We must treat all these excitations
(and the changes in these due to the introduction
of the surface) on an equal basis.

In an earlier discussion of the surface energy
of simple metals, Lang and Kohn use an exact
variational theory, the Kohn-Sham-Hohenberg
theory ' of an inhomogeneous electron gas, to
calculate the surface energy. This theory requires
knowledge of the energy as a functional of the elec-
tron density. As this functional is not available

II. MATHEMATICAL BACKGROUND

We want to calculate an expression for the ex-
pectation value of the Hamiltonian'

0 = f @' (P'/2m) @+—,
' f V(1, 2) +'(1)@'(2)+(2)+(1)

(2. 1)
for inhomogeneous situations as those where a
boundary may be present. As numerous authors
have shown, e

where

"&true, I
dg

4 Q

(2. 2)

for the surface geometry, Lang and Kohn approxi-
mate it by the energy function for a homogeneous
electron gas. The surface modes which would be
included in the exact functional are missing in
such a treatment. It is not a Priori clear to what
extent ignoring these modes and the dressing of
the bulk excitation by these modes is self-com-
pensatory. This approach (with the approxima-
tions necessary to do real calculations) does, how-

ever, suffer from the same criticism as the naive
theory above; it does not treat all the excitations
on the same level.

In this work we develop a formalism for obtain-
ing the total energy of a finite system and identify
that contribution due to the surface. With this ap-
proach, dynamic contributions turn out to be easily
identified and isolated. In Sec. II we develop the
mathematical background necessary to express
the total energy of a finite system in terms of the
bulk properties. In Sec. III this calculation is done
and the dynamic contribution to the surface energy
is computed and compared with the experimental
values. These results are discussed in Sec. IV.

&„,(g) =-,'( f V(r, —r~) +~(l)@~(2)+(2)@(1)d'r, d'r2&g

,' f d'r, d—'r,V, (r, —r,) [(4'(1)@(l)+~(2)+(2)&—5(1, 2)(4'~(1)C (1)&j, ., (2. 3)

in which g is the coupling constant g,nd Eo is the en-
ergy of the system in the absence of interactions,
i.e. , for g=o. In the case of the Coulomb inter-
action between two electrons,

(2. 4)

The problem, therefore, reduces to one of deter-
mining F.„,(g).

To find E„,(g), we use an approach patterned
after that of Kadanoff and Baym. ' To the equilib-
rium Hamiltonian (2. 1) we add a term corre-
sponding to the addition of an external test charge,
p(r, t),„,(assumed positive); that is, one whose
position and amplitude we can control explicitly.

[

This adds to the Hamiltonian the term

p„(1)=-e+'(l)@(1). (2. 5b)

In the presence of the external test charge, the
single-particle propagator (for times on the imag-
inary axis) becomes

n'~@(1)+'(1')&
(rs&

(2. 6)

where

H,„,(t,) = —f v(r, -rz) p„(1)p,„,(rz, t~) d r~d ra,

(2. 5a)
where we have written
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(2. "t)

where
xg(r„rs,0) 5p„„(rs,Q), (2. 11)

Z(r„rs;t„ts) = (T p~(3)p (1)& —(p„(1))(p„(3))
(2. 12)

is a function only of the time difference t, —ts (al-
though not only of the space differences r, —r~ in
an inhomogeneous system) as the expectation val-
ues in Eq. (2. 12) are evaluated in equilibrium.
We note now that if we vary the test charge,

dsrs v(rs-rs)g(r„rs; 0) ( .13)&p„„(rg,) zu
„

so that

ex [-ttl(t —t)](- iptt) „5P„It.(r„f|')

= . d'rsvp(rs —r, & [&p.,(3)p.,(1)& —&p.,(3)&&p.,(1)&]
J

(2. 14)

&ff &

@/ P ds
~

Pind( ltr
(-tP@ o . '«p~. .~(ri tl),

+
2

&(rl —rs) [&p.,(I)&(p.,(3)& —5(I, 3)(p.,(1)&],

(2. 15)
the expression for H„,in (2. 15) can now be used to
calculate the ground-state energy by inserting this
expression into Eq. (2. 2). Equation (2. 15) is ex-
act and represents the starting point for the re-

In (2. 5), the operators + and +t are to be regarded
as developing in the interaction representation
relative to 0,„,. That is, they develop according
to the full Hamiltonian as given by Eq. (2. 1).

Suppose now that we vary the external test
charge. We ask how does G(1, 1 ) change to linear
order in 5p,„,. This change is given by

i5G(1, 1 ) = (i/8) f d'r, d'rs v(rs rs)

xf '
dts [(Tp„(3)4(1)%(1 ))

0

—(p„(3)&(T+(I)+(1)t&]5P,„„(rs,ts) (2. 8)

so that the change in the charge density

p(1) = - e i G(1, 1'), ,. (2. 9)

induced by the variation in the test charge ~p,„,is
5p,„s(r„t,)=(1/ih) f '

dts f d rsd s "(rs s)
0

x [(Tp„(3)p„(1)&—(p„(3)&&p.,(1)) ]5p,„,(rs, t, ) .
(2. 10)

If now we Fourier transform with respect to the
complex "time" variable

5P,~(r„fl) = f~d'rsd rg~(rs —rs)

mainder of our calculations.
A, priori this result for E„,would appear to have

no particular advantage over other more conven-
tional methods of calculating this quantity. As it
&urns out, in the case of a homogeneous system,
(2. 15) has no particular advantage or obvious dis-
advantage, being equivalent to the more conven-
tional expression which expresses the potential
energy in terms of the inverse dielectric response
of the system, for, in a sense,

5p,„,(r, Q)/5P„„(r,Q)

represents the effective inverse dielectric response
of the entire inhomogeneous system. That this
reduces to the conventional. result in the homoge-
neous limit is shown in the Appendix. For certain
inhomogeneous situations, however (namely, those
where the physical properties of the dielectric
medium change markedly in a relatively short
distance), the above formula may be very useful.
We shall apply this result to such a situation in a
calculation of the surface energy in Sec. III.

III. CALCULATION OF SURFACE ENERGY

In this section we shall calculate the interaction
energy in the case where a plarie boundary exists.
In order to do this we shall need the quantity

5p„s(r,Q)/5p„„(r,, A) .
Our approach to calculate this quantity shall be
strictly classical and introduces the principal
approximations of this work. The approximation
involved is that the physical properties of this
system change very rapidly in the vicinity of the
boundary compared with typical wavelengths and
that we may consequently replace the dielectric
constants on either side of the boundary by their
equilibrium values. This approach is therefore
nearly orthogonal to that of Lang and Kohn who
used a theory appropriate when the system prop-
erties are slowly varying.

Consider the following classical problem [Eq.
(3.1)]: A point charge q is located at r, (a, distance
z, away from a plane boundary separating dielec-
trics of dielectric constants e& and e&) and we wish
to find the potential P(r) and the induced charge
p«(r) everywhere. The method for solving this
problem is well known: we use an ansatz
that the effect of the boundary (for z & 0) may be
replaced by an image charge q located in the
mirror position to the charge in question r, . For
z & 0 the ansatz claims that the initial charge should
be replaced by a charge q located at r,. When

q and q have been chosen to satisfy the appro-
priate boundary conditions at z=o this leads to a
solution

e, ~r-r,
~

"(e,+e, ) ~r--.
~
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=e'()= —, ~,„;-, , 0. (3. 1)
q ( 2 1

When we use a dielectric formulism to describe
an interacting electron gas we find that e is not
local as assumed above, but instead is, in general,
a function of frequency and wave vector. It turns

out, however, that expressing the right-hand side
of (3. 1) in its Fourier transformed form and then
replacing e& by the c(corresponding wave-vector de-
pendent quantities gives the appropriate solution
in this more general case. That is, when a test
charge q(Q) (oscillating at frequency Q) is at r, in
the right half space, the following occurs:

e& k, Q) —e&(k Q)
k e&(k, Q) e&(k, Q)+ e&(k, Q)

4iiq(Q) f 2 lk (P-Pz)

(r, )~), t (k, Q)+c'(k, Q)
x&0 (3. 2)

p„„,(r, Q) =Q, q, (Q)5(r -r,},
then we can define

p'„„(r,Q) = g q, (Q) 5(r —r, )
z]& 0

(3.3a)

(3. sb)

in which we have used the fact that e& (k, Q) are
even functions of k. If now we have a distribution
of charges

p'„„(r,Q) =Q q, (Q) |)(r—r,.)
gal&0

(3.3c)

as those to the left]. We see that the contribution
to (t)(r, Q) from the distribution of charges in the
right half space is

as those charges lying to the right of the boundary
[and of course

p(r, Q)=(i) (r, Q)=p g &qr Q~ P test( 3 }+
e&(k Q)+e&(k Q)p

~( )
~sme' ' p&...,(k, Q)

e&(k, Q) + e &(k, Q)
a&0 (s.4)

where

Pt„t(k„pk„pks) = Ptest(ksp ksp —ks), (s. 5)

I

(&) and (&).
From this expression we can, using Poisson's

equation,
We can treat a distribution of charges to the left of
the boundary in an entirely analogous fashion so
that ultimately we get

k' e&(k, Q) e&(P, Q)+ s &(k, Q)

4~(ptotsl) 4V(ptest+ pied) 3 (3.7)

determine the charge density

,„;;)P' ...(k, Q), 2pl...,(k, Q)
e&(R, Q) e (k, Q) e (k Q)

e&(k, Q) —e&(k, Q)
e (k Q)+6&(k Q)

(s. 5)
with p&(k, Q) obtained by interchanging the symbols

d &&(k, Q) —e&&(k, Q)"t"«' "},&(r, Q) „&(rQ)

so that after some straightforward but tedious
algebra,

(r, Q) "d k 1,, e&(k, Q) —e&(k, Q)

p„„(P,Q) „(2ti}3e&(k, Q) e (&, Q)+e (k, Q) (s. 9)

When we insert this result into our basic Eq. (2. 15}, we get

1S„,=
3 (v(r, —rr)(p(r )p(rr) —3(13)p(rr)]d'rrd'rr r, . 3Z V,s,» & O) )
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( d k 1 l, d k [e (k, ~) —e'(»f1)]
(2~)(k, f1) I. (2 } ( } ( '} e (lk, fI)e (~, ~)[e (k, f1)+ (~, f1) (3. 10)

s'(k, 0)+ e (k, 0) = 0. (3. 11)

where V( is the volume of material for z &) 0 and A
is the area of the boundary.

We see that the exchange and correlation part of

Ef t, divides in a rather pleasing manner into two
terms dependent upon the properties of the material
to the right and left of the boundary, respectively,
and which are proportional to the volumes of those
pieces, plus a term we can associate with the sur-
face. This latter is proportional to the area of the
boundary and will have poles at the surface-plas-
mon frequency, i.e. , those frequencies for which

Within our approximation that the material for z & 0
can be described by the bulk properties of the cor-
responding material, the "Hartree" term

f v(r, —r, ) p(r, ) p(r, )d'r, d'r,
cancels against the positive background in the usual
way and the singular term

21 f v(rl r2) (rl r2) p(r1) d rl d r2

may also in the usual way be used to cancel the
singularities in the corresponding bulk terms. The
surface correction to the total energy of the system
is then

2

dg fA(2 ) dg d kp [e (ki Q} e (ky A}j
(-'P) .o „(2)' '(&, ) '(, )[ '(, )+ '(, )j

' (3. i2)

Her e e)( (k, , 0) = 2)( (k„,k„,0) and k „=k„i+k, f. (In the
remainder of this work we shall take 5= 1.)

At this point we introduce a number of further
simplifications. First for convenience and com-
parison with experiment, we assume that the half
space z & 0 is vacuum so that e& = 1. Now we expect
that the important contribution to (3. 12) will be that
due to the high-frequency poles. Accordingly, we
shall assume the high-frequency form for e' is ap-
propriate:

e( = 1 —&op2/02, (3. iS)

where 1d~ = &~(g) = (4mng/m)'~2. We further assume
e'(k, 0) to be independent of wave vector up to a
cutoff wave vector k, above which e'=1. This is
equivalent to the usual cutoff procedure in the
manner of Pines. ' Finally we assume the system
to be at zero temperature. This is always a good
approximation for

e2

dg d2 k„d(o (1 —e)'- "., g . (2.)'..(»).(i")' (3. 14)

with a contour c that which goes clockwise about
the positive real axis [Fig. 2(a)]. This contour
can be deformed into that of Fig. 2(b), thereby
isolating the collective poles from those due to in-
dividual particle-hole excitations (see the Appen-
dix). The contribution to y from the high-fre-
quency poles contained within Cz and C3, y, is seen
to be

dg d k„u2-1
g „2(211) 16 (3. iS)

The wave-vector and coupling-constant integrals
are elementary so this expression is easily eval-
uated giving

the surface plasmons. When we make the zero-
temperature approximation we find that the surface
energy becomes

&&(k,C) e ~(k,Q) (og, V2 —1
y =va 96mF

(3. io)

ql FIG. l. Image ansatz
for solving problem of
charge near boundary.

where we have set k, = a&1,/v~ in which vt, is the
velocity of an electron at the Fermi surface and e
is a constant of order unity. " Equation (3. 16) is
an extremely simple result, but one which we would
be rather unlikely to guess. There is an additional
contribution to y coming from the particle-hole ex-
citations contained within c„

—1,8 ~d d kp d~ (1 e)
8 „„(2)' 2 e(1+a) )'
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CgS (b)

FIG. 2. Contours used with evaluation of y.

This contribution comes from the low frequency,
nearly static region. Consequently, it is this term
which will be most sensitive to the "healing" of the
surface, i.e. , to the fact that the physical surface
is not a mathematical surface but instead is spread
out over a distance comparable with a Fermi wave-
length. This healing will also change the "Hartree"
term

f v(r, - r~)p(r, )p(r )2d r~d rz

from zero to some nonzero value and in addition,
there will exist contributions to the expression

6p„,(r, 0)/5p„„(r,0)
from the surface —induced charge within the bound-
ary layer itself. [Also Bennett' has shown that the
dispersion of the surface plasma is extremely sen-
sitive to the distribution of charge within the sur-
face layer, although of course it always reduces
to the same k = 0 limit, v~/W2. Presumably this
should show up as a contribution to (3. 14), but we
should not see this here as we have taken the high-
freguency part of s(k, 0) to be independent of wave
vector. ] Now we note that in an expansion in pow-
ers of 4vno(k, ~), the free-electron polarizability,
(3.17) is at least of order (4vno)~, a linear term

W2 1 3 1/6 &2 Hy
12m 16m r', / (a. u. )

' (3.18)

Equation (3.18) is plotted in Fig. 3 as a function ofr„together with various experimental values of
surface energy. The selection of experimental
values for y presents certain difficulties. The most
accurate measurements of the surface energy are
those done by the sessile drop method in which the
profile of a drop of the molten material is exam-
ined in detail. This, of course, requires that the
material be molten and therefore obviously not at
absolute zero (as far as the collective modes are
concerned, the temperature is still zero). We
could extrapolate the linear part of the surface en-
ergy to T = 0 across the liquid-solid phase transi-
tion and call this our surface energy. This, in
fact, is what Lang and Kohn have done. There is
no particular reason to believe that this extrapola-
tion across the phase transition is correct. If one
is to do this extrapolation he should extrapolate

which appears in the bulk correlation energy being
missing. The linear term in 4m&0 corresponds to
the Hartree-Pock approximation for the bulk ma-
terial in which the electronic density is replaced
by its independent particle value. The absence of
the linear term indicates that, in a sense, (3.1V) is
already beyond the lowest-order correction to y in
the static limit. '3

We are now in a position to evaluate the contri-
bution y, as a function of the free electron density.
It is conventional to express the electron density
in terms of the volume per electron, +3m; mea-
sured in atomic units. In terms of these units,

900

800—

700—

600—
Ol

E 500—
OP

400—C

500—

FIG. 3. Experimental and the-
oretical values of the surface energy.
The theoretical value plotted here is
that due to dynamic contribution only.

200—
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IV. CONCLUSION

The collective part of the surface energy is
evidently a major contribution to the total surface
energy, as consideration of this term alone gives
remarkably good agreement with experiment es-
pecially when considering the approximations in-
volved. Clearly, therefore, such contribution
must be included a P~io~i in a better calculation
of the surface energy. The Kohn-Sham-Hohenberg
theory as used does not include the energy of new
normal modes of the system introduced by the
variation of the density of electron gas. The rea-
son for this is easy to understand and suggests how

the Lang and Kohn procedure might be improved.
Hohenberg and Kohn3 showed that the energy is a
unique functional E(n(r)) of the electronic density
n(r). If we knew what this functional was there
would be no difficulty (in principle) in calculating
the surface energy. This functional would have
contained within it all possible information at all
possible electronic density distributions including
the one where the electronic system has a surface
(as well as more complicated arrangements) and

would contain therefore the surface plasmons.
Clearly we do not know this E(n(r)) and must in
some way estimate it. If we replace the functional
E(n(r)) by a function of n(r), E(n(r)) according to
the approximation scheme of Hohenberg and Kohn,
we introduce certain approximations. If, in ad-
dition, we use for E(n(r)) that appropriate to a
uniform electron gas (as did Lang and Kohn), we
no longer have any information at all about the
surface modes. '

TA BLE I. Experimental data.

Al'
Zn
Mg"
Li'
Ca'
Sr~
Sa'
Na

Rb'

2. 17
2.37"
2.74
3.32
3.40
3.67
3.83
4.04
5.02
5.40
5.78

y{2' ) (erg/cm2)

865
768c
583
397
360
304
267
186
104
79
65

the density as well to T= 0 to determine the proper
value of x,. The procedure used here was to select
that surface energy and density (and therefore r,)
appropriate to the melting temperature. The val-
ues used for y and x, at the melting temperature
are shown in Table I.

Q x
1'

IL
X

x Poles of I

e~~~- j

+ Poles of I

~(k,z)

~S%~~~w ~
+++++++

x 4~
-ipse

2%'

-ipse

X I'+++++++++++

C

X
II

X

FIG. 4. Integration contours used in conversion of the
frequency sum in (A5) to an integral.

APPENDIX

In this Appendix we show how Eq. (2. 15) gives
the conventional results for homogeneous elec-
tron gas. For a translationally invariant system
we can Fourier transform in space; then (2. 15)
becomes

How can we improve upon the results of Lang
and Kohn? Obviously, we cannot write down the
universal functional E((r)) and must, therefore,
settle for an approximation. Equation (3.10) (with
the proper added kinetic-energy term) provides
a possible starting point, for if we evaluate all the
terms of Eq. (3.10) as functions of n(r), we have
an expression for the energy of a system with a
surface. In this work we have taken the first step
in evaluating (3.10) when the electronic densities
are constant on either side of the boundary.

Finally, it should be observed that including
core-polarization and effective-mass effects would
tend to raise the dynamic contribution to the sur-
face energy, especially to the less ideal metals
(lithium and the alkaline earths) as would the in-
clusion of plasmon dispersion, whereas using the
value of the critical wave vector after Sawada
et a/. would tend to lower y, . Except possibly
for the effective-mass and core-polarization cor-
rections these effects may be neglected for metal-
lic densities. The present theory is a continuum
(jellium) model. The inclusion of the ions as dis-
crete (except as already noted above) is unneces-
sary as, for the wavelengths in question, the col-
lective modes do not see the discrete ions.

Reference 14.
"Reference 15.

'Reference 16.
~Reference 17.

Reference 18.
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(k)l:&p(&)&&p(k)& -&p(o)&] . (Al)

(A2a)

together with

k q'(k, 0)=4w[p„„(k,0)+ p„a(k, 0)],
we have

p „(k,0)/p„„(k,0) = I/E(k, 0) —1

(A2b)

(A8)

Now, defining the frequency and wave-vector-de-
pendent dielectric constant in the conventional
manner, that is

E(k, 0) kay(k, 0) =4wp„,, (k, 0),

electron hole and collective modes of the system
are undamped, these excitations appear as poles
of I/e(k, &u) on the real axis. The plasmon pole ap-
pears as isolated singularities at + ~~ (k); the
particle-hole excitations as a dense set of poles
running from u(= —(e „(k)to u(= u( (k). When
lifetimes are introduced, we find that these exci-
tations are represented by discontinuities in 1/
e(k, ~) across the real axis, i.e. , by cuts along
the real axis. We can therefore deform the con-
tour in Fig. 4 into C'. When we do this contour
deformation, (A6) becomes

so that

I3&.a~ = I/e(k, 0) —1 . (A4)

eV "" d~
2' e "' —( ((i((i, w + ii) i((i, e —ii )

(AV)

Because of the cancellation against the positive
background, the Hartree" term, &p) &p) in (A1)
vanishes and we find

but, from the Kramers-Kronig relations

1 1 — 1lim — . — . — = —2iIm, (A8)
e(u( + ie) e(cu - ie) e(k, (e) '

2 —i e„o
When we apply the usual prescription for trans-

forming the sum to an integral, 7 the first term of
(A5) becomes

ik d~ 1 1
2 2 (~" -() (k ( )'

C

where the contour c is shown in Fig. 4.
In the simplest approximation in which the

so that finally (A5) becomes, on using the anti-
symmetry of Im I/E(k, &u),

Ry
I

dak (i(e h(8u( l ( 1
I (2,)a I 2, "'"

2 ] imlE«k, ~))l

dk2

which is the conventional expression for E„,(g).
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We show that for a (2, 0, 0) surface of a bcc crystal there exist not only the Goodwin surface
states in the {1,0, 0) energy gap but also a new kind of surface state in the (-,', —,', 0) energy gap.
Although the Goodwin state exists only when V2pp is negative, these new surface states exist
for either sign of Vglp.

It has been a third of a century since Goodwin'

showed the existence of surface states on the (ijk)
surface of a nearly-free-electron metal. These
states have an energy within the (w, 2j, 2k) energy
gap and exist only if V;» [i.e. , the (ijk) Fourier
transform of the crystal potential] is negative.
Goodwin used a model in which the potential was
identical to the bulk-crystal potential up to the
surface plane and zero beyond the surface plane
so that negative V;,.„means that the surface plane
must be chosen to be at the point where V(r) is a
minimum. ' In this paper we show, using Good-
win's model, that (2, 0, 0) surface states exist in

bcc metals in the (—,, —,, 0) energy gap and that their
existence is independent of the sign of V»o and in

all likelihood independent of where in the surface
unit cell the surface plane is chosen. Although the
discontinuous model potential is not very physical,
these facts indicate that they should exist in real
metal surfaces. A simple generalization of the
following derivation shows that this kind of state
exists for an (I, J, K) surface if there exists a set
of degenerate energy gaps (~, xj, 2k), (~', 2j', —,'k'),
etc. such that (i + i ', j+j ', k+ k') = (I, J, K)

Consider the following wave function inside the
crystal (i. e. , for x & 0):

12x
(

fws/a
p

)rs/a
) (

&(rx-/a+t/& -) (rx/ave)) qx

(1)
This is a Bloch function in the (k„k,) plane with

k, =-k, assumed to be small compared to )//a, and

k, =)//a. Consideration of the continuity of the
two-dimensional energy bands, as well as detailed
numerical calculations, shows that if Eq. (1) is a
surface state at (k, v/a) there will also exist sur-
face states at (k, v/a —5), where 5«)//a. How-
ever if 5 40, the functional form of the surface

state becomes much more complicated than Eq.
(1) and our simple derivation cannot be made. The
Hamiltonian within the crystal is

H = —V2+ V(r),
where we take the pseudopotential

V(ra vr Tr I f X 2r& (x+g)/a -& X 2« ( @+AD&/-ar)- vo+ vsioke +e e

(2)

+e e +e eiX 2««-~&/~ -aX 2«« s)/a--
Because the pseudopotential of a nearly-free-elec-
tron metal is very weak, we are able to neglect
all other Fourier transforms of V(r) which mix
plane waves of much higher kinetic energy into
Eq. (1). This is the reason we require k «v/a.
The surface plane is taken to be at x= 0 but its lo-
cation with respect to the crystal lattice is deter-
mined by )i. Note that in the surface plane, V(r)
= Vo+ V»o4 cosy cos2)/z/a There. fore, we expect
our results to be independent of the sign of V»o be-
cause a change in the sign of V»o is equivalent to
replacing z by z+ 2a which is of no physical con-
sequence. This differs from the case considered
by Goodwin where V&oo was the important contribu-
tor to V(r); thus V(r) was a constant in the x= 0
plane making the sign of V2oo of paramount im-
portance.

Inserting (1) into the Schrodinger equation, re
moving the common factor e'""e'", multiplying
through by e"'" 'e""', and integrating over x and
z yield four equations which reduce to the follow-
ing two if we assume P= +1:

[k + ()//a) + ()//a —iq) + V2 E]e'"—
+ V„,Pe-""'~ = 0, (4)

[k2+ ()//a) + ()7/a+iq) + Vo —E]e '"


