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J. A. Appelbaum and D. R. Hamann
Bell TelePhone Laboratories, Murray &ill, New Jersey 07974

(Received 26 January 1972)

We have calculated the interaction energy of a static point charge with a metal surface. The
metal surface is treated in the jellium approximation with the positive ions replaced by a uni-
form background and the electrons characterized parametrically by their total charge density.
The energy of the system is written as a functional of the total electron density, including
that induced by the point charge external to the metal. The distribution of this induced charge
is varied to minimize the energy and thus calculate the image potential. We find that we can
write the image potential for D &2k as —Q j4Q) -d), where Q is the size of the point charge,
D the distance of the point charge from that jellium discontinuity, and d an origin shift which
is a function of the electron density at the metal surface. For smaller distances the potential
no longer scales as Q2 and saturation sets in.

I ~ INTRODUCTION

There has in the last few years been renewed in-
terest in studying the interaction of a point charge
with a metallic surface. The precise form of
this interaction is of importance for a number of
phenomena, such as field evaporation and desorp-
tion, electron tunneling, ' field emission, '0 ]ow-
energy-electron s cattering, "etc. From classical
electrostatics, one knows that the interaction ener-
gy of a point charge of strength Q with an ideal
conductor is just —Q /4sD, where D is the distance
of the charge from the metal surface. Since this
expression is singular as one approaches the metal
surface it is very important to know in what way
the energy saturates for a real metal surface as
D- 0. In addition, the very long-range nature of
the image potential makes it important to know the
asymptotic corrections to the 1jD behavior.

Corrections to the image potential can be classi-
fied as static or dynamic in origin. The latter
arise when the point charge is traveling at veloci-
ties comparable or greater than those of metallic
electrons; it is then important to include the non-
adiabatic response of the electrons to the point
charge. %'e will have essentially nothing to say
about these corrections. The static corrections
arise because the charge induced in the metal is
not a planar surface charge, but has finite extent
in the direction of the surface normal. This leads
to dipolar and higher multipolar interactions be-
tween the point charge and its induced charge and
to saturation of the interaction energy at very
small distances. Furthermore, modifications of
the charge density in the region of the metal surface
result in changes in the total kinetic, exchange, and
correlation energy of the metal electrons which
must be included in a complete theory.

Recently both Newns and Beck and Celli have

treated the static problem by studying the resyonse
of a metal to the point charge using a random
phase-approximation (RPA) dielectric function for
a semi-infinite metal. There are two potentially
serious limitations associated with their approach-
es. First, their method is linear, and therefore
breaks down when the electrons approach too close
to the surface. The second, and we believe more
severe, restriction is that the surface is highly
artificial, in that the wave functions are constrained
to vanish exactly at a fixed point outside the positive
jellium background. It is the aim of this paper to
partially remove both these restrictions.

The approach we take to the problem is variation-
al, exploiting the fact that we can write the energy
of the metal as a functional of the density. The
method, in its broadest outline, proceeds as fol-
lows: We write down the energy of the metal as a
functional of density, making certain assumptions
about the exchange, correlation, and kinetic terms.
We then parametrize the density in the metal in the
presence of the external point charge, choosing a
form for the density consistent with classical
image theory among other requirements. We then
minimize the total energy of the system with re-
spect to the parameters of the electron density for
fixed metal-point-charge separation. This energy
minimum is then studied as a function of metal-
point-charge separation.

The remainder of the paper is divided up as fol-
lows: In Sec. II we discuss our choice for the en-
ergy functional and introduce and motivate two
possible ehoiees for the electron density. The
methods and ayproximations used in evaluating the
functional for these choices are given in Sec. III
and Sec. IV. These sections may be omitted by
the casual reader without loss of continuity.

In Sec. V we present our results for the image
potential, a discussion of them, and a comparison
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of this work with that of previous authors.

II. ENERGY AND CHARGE DENSITY

E$ =Earn+Ex-c+Ecous y

where

(2. 1)

We adopt for the metal surface a jellium model
in which the positive ions are smeared out into a
uniform background which has a step-function dis-
continuity at the hypothetical metal surface. An

expression for the energy of this model has been
written down recently by Smith. " He uses a gra-
dient expansion for the exchange- and kinetic-ener-
gy terms, an expression due to Kirzhnits' involv-
ing the square root of the gradient of the density
for the correlation energy, and of course, the
exact expression for the Coulomb self-energy.

The expansions for the exchange and correlation
energy Smith uses are at best asymptotic, and are
particularly suspect at low electron densities. In
place of them we adopt Wigner's" interpolation
expression for the exchange and correlation energy,
which is a local functional of the density. This
choice is consistent with that of Lang and Kohn, '
who have studied the jellium model through the
self-consistent solution of Schrodinger's and Pois-
son's equations. It has the further advantage of
simplicity. For the kinetic terms we have found it
necessary to go beyond the local-density approxi-
mation and have retained the first two terms in the
gradient expansion as written down by Smith. If
we had only retained the leading term, i.e. , the
Thomas-Fermi approximation, we would find that
the system would go unstable at low electron densi-
ties. This is because the physical requirement
that one pay an infinite penalty in kinetic energy to
produce a step-function discontinuity in the electron
density is not incorporated into the local-density
approximation.

The expression we adopt in this paper for the
surface energy is then (we use atomic units through-
out)

n, = 3l4~3;3 . (2. 8)

n(r) = &n, (1 - t~hPz), (2.7)

which depends on the single parameter P.
This expression is similar to that of Smith's

trial density, in that it varies monotonically and
approaches its asymptotes exponentially. It differs
from Smith's choice in that it is analytically well
behaved at g = 0, a feature which we will find useful
when we consider the external point charge.

Inserting n(r ) into (2. 1)-(2.4), the integrals can
all be done exactly, leading to a polynomial in P.
Minimizing E with respect to P fixes P for a given
r, . In Table I we show the values of P and the di-
pole moment associated with (2.7) for r, = 2, 3, and
5 and compare it with Lang and Kohn. Notice the
results are in reasonable agreement with Lang and
Kohn's, especially considering the simplicity of
(2. 7), lending support to our assumption that (2. 1)
and (2.7) represent a reasonable starting point for
studying the image potential.

If we now introduce into the problem a point
charge Q a distance D from the surface we expect
the electron density n(r ) given by (2.7) to be modi-
fied. A physically reasonable choice for n(r ), con-
sistent with the cylindrical symmetry of the prob-
lem, is

n(r) = yn3(1 -tanhp(r)[g —g3(r)]) . (2.8)

What we are allowing for in (2. 8) is for the unper-
turbed electron density to distort both by stretch-
ing (contracting) through P(x) and by simultaneously
shifting by z3(r) It is i. mportant to realize that
changing P(4 ) does not change the net charge on the
metal —that is only accomplished by z3(3). The
functions p(3) and z3(4') are not arbitrary, but are
constrained in the following ways:

As a preliminary step, we examine the properties
of the metal surface which result from our choice
for the energy E-gs (.2. 1)-(2.4). To this end we
adopt the trial density

E34 2'871 44 (~)d ++72
~

d + (2 2)
5/3 3 1

~

I &n(F)i 3

n r

E, ,= —0 738 n (r) I 1+1 12' 7,&3 d r,4g ( 0.959

P(3)- P3 as 3 -~,
g3(r)-0 as r-

(2. 9a)

(2. 9b)

n(r )n(r ')
d d33

(2. 3)

(2. 4)

TABLE I. We have listed for ~$=2, 3, and 5 our cal-
culated values of 1/P and q&~&„ the electrostatic-
surfacedipole layer, and compared them to fI()'&~&e calcu-
lated by Lang and Kohn (Ref. 16).

In the above, n(r ) denotes the electron density and
n(r) the total charge density f$

This calculation
1/P &diyoie
db (eV)

Lang and Kohn

+dfyole
(eV)

n(r ) =n(r ) -n38(- z), (2. 5)

where no is the positive jellium background, related
to the Wigner-Seitz radius ~, by

0.626
0.626
0.61.0

5.97
1.77
0.36

6. 8
2.32
0.35
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+r ~. +e f[n(r)/ Ir -~l ]d'r (2. 12)

. Equation (2. 12) omits the exchange and correlation
interaction between the point charge and metal
electrons in the case where the point charge is an
electron. We will return to this subject in Sec. V.

Unfortunately we have been unable to exactly
evaluate (2. 12) as an explicit function of c and 8
and have had to use an expansion procedure on the
Coulomb terms which limits our ability to let D be-
come very small.

In order to examine this region we have adopted
the following alternative trial density:

n(r) = ynp(1 —tanhPp z)+ 2 np zo(r)Posech Pzz.
(2. 13)

For a positive point charge (2. 13) is positive defi-
nite, and using (2. 13) we can evaluate (2. 12) for
arbitrary values of R or D. For a negative point
charge (2. 13) becomes negative at some point, and
this clearly presents a lower limit on the size of B.

It will be obvious to the reader that n(rj given by
(2. 13) can be obtained from (2. 8) by setting c =0

These two requirements arise because the metal
must look the same infinitely far from the point
charge as it did in its absence. Clearly P, is the
value of P for the free jellium surface. The equation

2vn, f, z,(r)rdr =Q (2. 9c)

simply states that the induced charge on the metal
is opposite that of the point charge.

The simplest way to proceed is to define zo(r)
and P(r) parametrically, building into them the
requirements (2. 9a)-(2. 9c) as well as a number of
others to be discussed below. For zz(r) we choose

A

2mno (r'+R')'i

and for P(r),

p(r) = pz+czz(r),

in which c and A are variational parameters.
The choices (2. 10) and (2. 11) clearly satisfy

(2. 9). Furthermore, in the limit that Pz- ~ (ideal
classical metal) zp(r) correctly gives the induced
surface charge if one sets A=D. Our choice for
P(r) was motivated by the following reasoning: The
zeroth-order dipole moment associated with (2. 7)
is proportional to 1/Poz. Small shifts of P from Pz
therefore induce shifts in the dipole moment pro-
portional to the changes in P. Since we expect the
local dipole moment to be proportional to the ap-
plied field (in the weak-field limit), which in turn
is proportional to zz(r), it follows that P(r) —Pz
~ zo(r).

Our trial density (2.8) must now be inserted into
an expression for the total energy, which in the
presence of the point charge is just

and expanding (2.8) to lowest order in zo(r). It
must be pointed out, however, that (2. 13) is a
bonafide trial density in its own right, and its use
does not imply a perturbational approach.

III. EVALUATION OF ONE-PARAMETER VARIATIONAL
ENERGY

+ Pz zo(r) sech'P, z]"-[1-tanhP, z]"], (3.1)

where y= 2 or 2, and zo(r) is given by (2. 10). Note
that the unperturbed expression must be subtracted
to obtain convergence. We develop a series repre-
sentation for the integral by expanding the first
radical in a binomial series, putting the Ppzp term
in the numerators. Each term is a product of a
function of x times a function of z. The x integrals
are of the form

Q
5 Itz

rdr[zo(r)]"=
2 2 (3~p

In the g integrals, changing to the variable
y = tanhPpz yields

(3.2)

1f dy (1 -y )" (1 -y) "'"=2"'" [I ( )r(y)/r(r+n)],
(3.3)

where I' is the gamma function. The series is

The bulk of the effort in performing this calcula-
tion is involved in evaluating integrals. The par-
ticular choice of variational function was, in fact,
made to facilitate this as much as possible. The
integrals to be dealt with are of three types, each
of which presents its special problems. The first
type arises from the local functional terms (2. 2)
and (2. 3). The second is the point-charge interac-
tion with the added charge density. The third is
the self-interaction of the added charge, coming
from (2. 4). Another term arising from this inte-
gral is the interaction of the added charge with the
unperturbed charge distribution. When the positive
background is included, however, this term vanishes
identically by symmetry.

A. Local Terms

The leading term in the kinetic energy (2. 2) con-
tains a nonintegral power of the density. The ex-
change -correlation integral (2. 3) contains a similar
term multiplied by a slowly varying function. For
the present purpose, we simplify this integral by
replacing that part of the functional with a constant
u adjusted to make Po agree with the result obtained
using the full functional. This approximation is
commonly employed in band-structure calculations,
where the coefficient of the Slater exchange is ad-
justed to fit some key feature. 17

Therefore we must evaluate two inte grals of the
form

I„=(yno)" (2w) f dz f rdr([1 —tanhpzz
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I„=n,.R Z
" '"-" "-"")

(3 4)
„=g n(sn -2) r(r+1) ~ ~ ~ (r+n -1) '

o'np, Rp 0. 1x +0.0244xo
V2

' 1+0.494x+ 0.0244x

where

x= QBp/pnpR (s. 5)

1 0.1875x + 0.0816x
Po 1+0.V58Vx+0. 1024m')

B. Point-Charge-Interaction Terms

5/3 2 0.03125 x +0.00191x
1+0.09528 x —0.00191x

p 4/3 2 0. 01786x + 0. 00171 x
1+0.1V805x —0.00171x

(3.6)

where the prime denotes the subtraction of the R-
independent term, and ~ is the adjustable coeffi-
cient. (The pole in these approximants at large
positive x is an artifact which moves to 1arger x
as higher approximants are taken. It is far beyond
any x values that occur in the calculation. )

The kinetic-energy-gradient term in (2. 3) is
given by

The first term of the series gives a R-indepen-
dent contribution to the energy, and arises from the
first term in the expansion of the energy about the
unperturbed charge density. The sum of all such
contributions must vanish because of the variational
choice of Pp, so we will drop these terms.

The series diverges for I x+1 because the varia-
tional electron density (2. 13) can become negative
for a negative point charge and R sufficiently small.
The series represents functions with a branch point
on the negative real axis. W'e can continue the
series for x &1 most easily by using a rational ap-
proximation. The second approximant, computed
from the series using a standard algorithm, is ac-
curate to 0. 2%% for x = 10, and is more than adequate
for our purposes. The results are

Substituting (2. 13) into (2. 12), we obtain
~a ppo 2

1 pR ~

I
sech Poz

[r'+( D-)'] '"(r'+R')'" '
pO ~Q

(3.11)
The unperturbed electron density produces a poten-
tial which is independent of R, but which varies
with D and will eventually be added to the image
potential. The x integral is elementary after
changing to the variable y=[r'+(z-D) ]'~', and

I„=y Q f dz (sech Poz )/(R +
~

D —z
~
) . (s. 12)

This integral depends on two arguments, PpR and
PoD, and is not well represented by a simple for-
mula. However, it converges exponentially and is
accurately and quickly computable using a
Laguerre -integration scheme.

(3. 13)

The Fourier transform of our variational function

C. Coulomb Self-Energy

Direct substitution of the perturbing density into
(2. 4) gives an integral which is nontrivially five
dimensional. A more fruitful way to proceed is to
use the Fourier transform of the electron density,
p(q), in the alternative expression for the Coulomb
self -energy,

dy
~

rdr ~0(1+7)
~ -1 40

„4&ozoy+4Pozoy'+(zo)'
(3 8)

1 + Pozo(1 +y)

where the above variable change has been made,
and z0 is the x derivative of g0. If the denominator
in (S.8) is expanded into a geometric series, each
term will be the product of ay integral and an ~
integral, both of which are elementary. The re-
sulting series are

I:,-'" (8P,R i
72 '( p n(n+ 1)(n+ 2)(sn —1)

6x P (-x)"
l~ (3 9)

P, „„(n+1)'(Sn+5) &

'

where the prime indicates the neglect of an R-in-
dependent term in (3.8) and (3.9). Once again, we
use a rational approximation to represent these
functions,

pq(q) = (QpR/2pno) fd'xe"'* esch pzpz(rp+Rp) '~p

(3.14)
consists entirely of tabulated integrals provided
the angular integration is done first. It turns out
to be the rather simple function

p&(q) = (p/2Ppnp) q, csch(pq, /2P) e-'~n . (3.15)

When pq(q„, q, ) is substituted into (3.13), the q,
integral can be performed by contour integration.
Tbe infinite semicircle and the real q, axis enclose
a series of poles of csch on the imaginary axis.
The contribution from the semicircle does not van-
ish, but if it passes midway between two poles, its
contribution is a tabulated integral. The remaining
q„ integral becomes, after the change of variable
t=q„/2Po,

Icosi = 2Q Po f dte o"' [tg'(t) —t —
z ], (3.16)

where g' is the trigamma function.
This integral is unpleasant to handle numerically.

By expanding the bracketed part of the integrand
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around t=0, an asymptotic series in 1/x, where
x=4PR, can be developed. For small x, the inte-
gral diverges as lnx. By adding and subtracting
the leading term in the large-t expansion of the
bracket, the coefficient of the ln term and the con-
stant term can be found. A formula can then be di-
vised to fit the leading two terms at large and small
x. The result is

QzPo x + 5. 88x+7. 14
coul 3 &2+ 2

(3. 17)

The local terms, excepting the gradient, have the
form

I„,= (2o) f rdr f „dz(P(p(r)[z —zo(r)]) -q (Poz)],
(4. 1)

where p is some function. To evaluate this inte-
gral, we first integrate by parts to obtain an inte-
grand of the form gq'. Then the variable change
x = P(4 )[z-zo(r)) is made in the first term and x= Poz
in the second. The resulting expression is

&„,= (2o) f 4 dr [1/P(r) —I/Po] f 4fxxy'(x), (4. 2)

where an 8-independent term equal to the bulk en-
ergy of the added electron density has been dropped.
The x integral depends only on no. For the kinetic
and leading exchange-correlation terms, it is

y(zno)" fdxxsechzx(1-tanhx)" '

= no [1/y + $(l) —$(1+y)], (4.3)

which can be shown from tabulated integrals after
making the variable change y = tanhx. g is the di-
gamma function and y=3- or ~. The second term in
the exchange-correlatior. integral depends on no in a

The interpolation formula was checked at x= 1 by
performing the integral numerically, and is accu-
rate there to better than 0. 1%.

Having evaluated all the terms in the energy, 8
is varied to find a minimum of the total energy for
a sequence of values of D. A method of succes-
sively improved parabolic fits was used to find the
minimum from the energy expression itsejLf in pref-
erence to computing the derivative analytically and
searching for its zero.

IV. EVALUATION OF TWO-PARAMETER VARIATIONAL
ENERGY

Evaluating the energy functional for the full vari-
ational density (2. 3) entails some different proce-
dures than those employed for the restricted func-
tion. The local terms are simpler by design. How-
ever, the Coulomb terms can be evaluated only by
expanding the variational function. Pozo measures
the extent of the distortion of the charge density,
and is the natural expansion parameter. All inte-
grands retain at least second-order terms in Pozo.

A. Local Terms

more complicated manner and was evaluated numer-
ically. It should be noted that the same coefficients
enter in the determination of Po because the I/Po
term in (4. 2) is just the surface energy.

The r integral in (4. 2) could be done exactly.
However, there is a distinct advantage to expanding
1/P(r) to second order in czo. Since the Coulomb
terms will only be carried to second order, this
will make the entire energy a second-order poly-
nomial in the variational parameter c, greatly
simplifying the minimization. When I/P(4 ) is ex-
panded, the r integrals are just those given in (3.2).

The kinetic-energy-gradient term is more com-
plicated, but may be performed by similar tech-
niques. After the above change of variables, the x
integrals are all numerical constants which may be
evaluated exactly, and the ~ integrals are all pow-
ers of P(r) and dP/dr. As before, negative powers
of P are expanded, and only second-order terms
retained. The result is

where

8

h[Po+ ( )l[ — o(4)]] = & p +0( 'o),

(4. 5)

po =
a no'(1 —tanhPoz),
1

pl= YnoPozosech Poz
2

pz= Qnoczoz secll poz
2

p, =ynoczosech Poz,
1 2 2

1
p4 =

z noPozo secll Poz tanhPoz,

po = ynoc zoz sech poztanhpoz,
j.

po = —noc Pozozz sech &oz tanh&oz ~

(4.6a)

(4. 6b)

(4. 6c)

(4. 6d)

(4. 6e)

(4. 6f)

(4. 68)

In evaluating the interaction of each of these terms
with the point charge, the ~ integral can be done
analytically. For pl-p, , it is the same as in Sec.
IIIB, and gives denominators equal to that in (3.12).
For p, -p8, the corresponding integral is

E =f xdr[r +(z-D) ] '' (r +R ) '. (4.7)

While this can be evaluated in terms of elementary
functions, it is too complicated to be convenient for
the subsequent numerical z integration. The fitted
interpolating formula

Fo=(0. 587R+ 0. 336 ID —z I)/(R+ 1 161ID -zI)' (4.8)

is convenient and accurate to better than 1% over
its entire range. All 6 g integrals are done numer-

I,', = (Q'/1152R4)[(3, o/wno) —(3/vno Po) c

+ (o/4noPo)c'], (4.4)
where an 8-independent term has been dropped.

B. Point-Charge-Interaction Terms

The expansion of the charge density (2. 8) to sec-
ond order xn go is
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2 2 2I,„,= ~
I

dte "'[2(—,
' t -1/w )g' '(1+t)

+0 «0

—(2t/z')y"&(1+t) —(t'/3~')tI'"(1+t)+ —.
' '. t], --

(4.9)
where t=q„/2ps, x=4psR, and the g'"'»e po ly-

gamma functions. This exact expression is not

convenient, and a useful interpolation formula fit
to the large and small x asymptotic series is

csq sos 1

This result can be checked in a completely indepen-
dent manner as PsR-~ by computing the energy
yer unit area of a similar charge distribution which

is uniform in the x-y plane, and then integrating
this energy with the appropriate weighting function.

To compute terms of the second type, the cross
terms, we start with Poisson's equation for the po-
tential produced by po plus the positive background,

dv
ds s = 4m[ps(z) —no8( (4. 11)

The energy is then just
~0

Io., =2mf dzv(z) f rdrp, (x, z),
and the r integrals are straightforward. Since
(4. 11) can be integrated only once analytically,
(4. 12) is integrated once by parts. Each resulting
z integral is then a power of Ps times a numerical
constant. The results are

(4. i2)

Io 4= 0.3069(Qs/8PoRs),

Ig s=0. 5220(c Q /8PsR ) .

(4. 13)

(4. 14)

ically using a Laguerre scheme.

C. Coulomb Self-Energy

There are two distinct types of terms involved in
calculating this contribution through second order
in So. The first type includes the self-interaction
of pz, which was calculated in the one-parameter
theory, and the self-interaction of p&. The p&-p&

cross term vanishes from symmetry. The second
type includes the interactions of p4 and p, with po
and the positive background. Since one charge is
uniform in the x-y plane in this case, these terms
are much simpler. The corresponding terms with

p3 and p6 vanish from symmetry.
The self-interaction of p~ can be evaluated in es-

sentially the same manner as used for p& in Sec.
III C. Since the functional form of p2 is just z times

p&, its Fourier transform is just the q, derivative
of (3.15). When th'ls quantity is squared and sub-
stituted into (3. 13), the q, integral can be done by
contour integration as before, and the q„ integral
reduces to

D. Minimization

All the terms in the variational energy can now
be collected and grouped according to their depen-
dence on the parameter c,

E(c, R) = u(R)c s+ y(R)c + &u(R) .
It is easily seen that the minimum occurs at

c = -y(R)/2u(R),

and the energy at the minimum is

E(R) = &u(R) —y (R)/4u(R) .

(4. iS)

(4. 16)

(4. 17)

We turn first to the results of our one-parameter
variational calculation. We have plotted in Fig. 1
the image potential energy E versus distance for
metals with r, = 2, 5. The solid lines are for point

0.0

-0.1

O
E -02
O

~ -03
LU

R
LIJ

-0.4—

0.0

—0.1

—0.2

I I I I I I I & I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DISTANCE (atomic units)

FIG. 1. Total energy as a function of the distance of
the point charge from the jellium surface based on the
one-parameter variational function. The solid curves
are for a positive charge of 1 a. u. , and the dashed curves
are for a charge of 2 a. u. , with the energy scaled by a
factor of $. The energy origins for y, =2 and x~=5 are
displaced for clarity.

This yortion of the calculation has the following
interpretation: u is essentially a stiffness param-
eter giving the restoring force with which the sur-
face resists changes in its equilibrium profile.
is the external driving force, arising largely from
the point-charge interaction, but in part from the
origin shift (through the kinetic-gradient term). +
is that part of the variational energy arising from
the shift alone, and in the limit of a distant or weak
charge becomes equivalent to the one-parameter
theory. It is clear that as long as the system is
stable (u & 0), the added variational freedom of the
present calculation gives additional energy lower-
ing.

The final minimization with respect to R is
carried out simply by searching for the minimum
as described in Sec. III.

V. RESULTS AND DISCUSSION
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120—
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FIG. 2. Reciprocal energy vs distance for the one-
parameter theory with z, =2 and one-unit charge. The
quality of the straight-line fit demonstrates how well the
classical functional dependence is followed, and the in-
tercept gives the apparent location of the ideal surface.

E(D) = —Q'/4(D -d) (5. 1)

charges with Q = 1, while the dashed curves are for
point charges with Q = 2. The curves for Q= 2 have
been scaled by 4. The first thing to notice is that
the curves for the two different values of Q are es-
sentially identical except at the smallest distances.

A similar and even more impressive scaling re-
sults where one scales from a smaller value of the
point charge to one with Q= 1. The fact that the
image potential is proportional to Q is of course
predicted by classical theory as well as any linear-
ized quantum theory. The situation when the point
charge is less than 2 a. u. from the surface is by
any a bio~i measure, highly nonlinear. For ex-
ample, the induced charge density produced by the
external charge is equal to or greater than that of
the background metallic electron density for D & 2
and ~, = 2. The same statement can be made in
comparing the force experienced by a test charge
at the jellium discontinuity from the unperturbed
metallic dipole and that resulting from the point
charge and its image. Part of the explanation for
the excellent scaling can be found in the fact that
the Coulomb terms in the interaction energy scale
with Q . While these terms do dominate, the re-
maining quantum terms contribute typically 10%%ug

of the energy. Since the scaling of the interaction
at D=1.5, r, = 2 is accurate to 1%%ug, one can only
conclude that the nonlinear behavior is not strong
even in those terms.

A second feature of curves is that they are near-
ly independent of x, for D & 4. This results from
the remarkable independence that P has on ~,. In
extracting an analytic form for E(D) we have plotted
1/E vs D in Fig. 2. The points with D greater than
3 all lie on a straight line, implying an energy law

1.4
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O
~ 0.2
~ 0.0
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FIG. 3. Apparent ideal-surface location vs point-
charge distance for the two-parameter theory and an in-
finitesimal charge. These plots are obtained by equating
the energy to Q2/4 (D -d) at each D, and solving for d.
Departures of d from constancy correspond to departures
of a plot like Fig. 2 from a straight line.

for D& 3. In other words, we recover the classical
image-potential law for distance greater than 3
a.u. if we shift our origin from the jellium discon-
tinuity to a surface d = 0. 5 into the vacuum, a point
at which the electron density has fallen to 20%%uo of
its bulk value. The radial shape of the induced
image charge is determined by R, our variation
parameter. We find that for D & 3, the range over
which (5. 1) holds, 8 is approximately 0. 9 a. u.
less than D, implying an image charge somewhat
more tightly bound than would be predicted by
classical electrostatics with the ideal conductive
surface at d. For D & 3, R tends to saturate, and
by D= 0.75, R=0. 72.

We now move on to consider the results of the
two-parameter theory. This theory has certain
perturbational aspects with the dimensionless cou-
pling constant proportional to Q/8 . This restricts
the size of our charge and the distance to which we
can let the point charge approach the metal sur-
face.

Qver a range consistent with these restrictions,
we find once again that E scales as Q, and that
this scaling is much better than would have been
predicted from the size of the coupling constant.
With this Q scaling rather firmly established, we
will use the following ansatz for obtaining E(D) for
small D. We will let Q=0. 01, which enables us to
plot E vs D over almost its entire range, and then
scale E up so that it is valid for Q= 1.

Once again E vs D appears to obey a classical-
image law with a shifted origin. To better reveal
this, we have assumed that E obeys Eg. (5.1) with
d allowed to vary with D and plotted d vs D for x,
= 2, 3, 5 in Fig. 3. We see that d is remarkably
constant for D 3, after which it begins to drop
rapidly. Notice that unlike the one-parameter
theory, d is a function of r„ranging from - 0. 5 to
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FIG. 4. Solid curves are the effective exchange and

correlation potential seen by an electron. They are ob-
tained by interpolating between the local approximation
used inside the metal and the image potential calculated
outside as explained in the text. For ~,=2, the dashed
curve shows this plus the Hartree electrostatic potential,
and thus represents the total barrier. For y~=5, the
Hartree term is so small we have not shown it.

1.0. This arises because of the extra freedom
built into the trial density, which allows for polar-
ization of metal through a local change in P. The

fact that d increases with decreasing ~, results
from an interplay of two factors. For a given
change in P, the induced dipole is proportional to
the density or x, . The ability of a given applied
field to change P is a less sensitive function of r,
(recall that P itself is practically independent of
r,) and the net result is the trend one finds. The

value of x is again -D —0.9 and is independent of
metal density. On the other hand, c goes from
0.96 to 0.13 as we let ~, go from 2 to 5.

There exists a fairly substantial theoretical
literature on the subject of the image potential.
Two of the most recent works are due to Newns

and Beck and Celli. Their results are substantial-
ly the same. They are both linear dielectric-
response theories and adopt infinite -potential-
barrier models for the surface potential. The
linear treatment they use does not enable them to
explore the validity of the Q' dependence of the ex-
change potential or at what distance from the metal
surface their predictions break down. They do,
however, make a definite prediction concerning
the origin one should measure the equivalent class-
ical-image-potential law from.

Since the model they adopt for the surface is dif-
ferent from ours, a precise comparison is not pos-
sible. However, they both use jellium models, and

using the jellium discontinuity as our common ref-
erence for comparison, they find their hypothetical
classical surface lies inside this point while we find

it outside. Another way of comparing our results
would be in terms of electron density. In this case
one could say that their surface is situated where

the electron density is 60-75/p of its bulk value,

r, . = 2-4, where we find a value closer to 15-30/q.
We feel this discrepancy lies in an inadequacy of the
infinite-potential-step model, which inhibits the
motion of electron charge into the vacuum. For
example, no matter how strong the attractive per-
turbation might be, electronic charge cannot pene-
trate beyond the infinite -potential step. Since any
improvement in our final density function can only
result in an increase of d (by the variational theo-
rem) we expect this conclusion to hold in more re-
fined treatments of the jellium model.

In this connection, there has recently been a
study by Lang in which the charge induced by a
weak uniform electric field is calculated. Using a
jellium model, he carries out a self-consistent
quantum-mechanical calculation. One might hope
that for a distant point charge the field outside the
surface would be sufficiently weak and slowly vary-
ing that the z dependence of the induced charge
would have the form he has calculated. The in-
duced charge could then be written as a product of
a radial function f(x) times Lang's function and an

integral equation for f derived from the variational
principle. Unfortunately, the kernel for this inte-
gral equation would be a complicated multiple con-
volution of Lang's function, which is only known

numerically. Thus application of these results to
the image problem would be a formidable under-
taking.

If one makes the ad hoc assumption that the radial
dependence found variationally turns out to be
(x2+D2) '~2, the "classical result, " it is simple to
calculate the force on the point charge and show
that the origin shift d is proportional to the centroid
of the induced charge. For x, = 2, this gives
d = 0.75, which is qualitatively similar to our re-
sult. However, the changes we find in the radial
function can produce comparable shifts, so it is
not possible to avoid the self-energy integral if
quantitative results are to be extracted.

Within the context of the present calculation we

have ignored a number of added complications which

we should like to consider now. The first of these
is the interaction of the point charge with the undis-
turbed surface dipole of the metal. This interac-
tion is highly localized, falling off exponentially as
e ~o for large D. It is entirely negligible for
D & 3. Its inclusion for both signs of charge is triv-
ial and accounts for the difference between the solid
and dashed curves marked ~,= 2 in Fig. 4. Need-
less to say, this term depends linearly on Q, and
is repulsive for a positive charge.

The second complication concerns our treatment
of exchange and correlation when the point charge
is an electron. When the electron is in the metal,
the exchange and correlation energy represents the
energy gained from the formation of an electron
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deficiency about the electron-the so-called ex-
change and correlation hole. When the electron
leaves the solid, the exchange and correlation hole
changes into the image charge. To simply add the
exchange and correlation potential to the image po-
tential would be double counting. W'ith this identi-
fication in mind, we should now like to consider the
interaction energy of a very slow electron incident
on a metal surface from infinity. Over most of its
path it is essentially a static charge-the image
potential we have derived, exhibited in Fig. 1,
should be perfectly valid. As the electron approach-
es closer to the metal surface, it acquires substan-
tial kinetic energy and the static approximation be-
gins to break down. The image energy we calcu-
lated is then expected to overestimate the strength
of the actual potential.

%'hen the electron has entered the metal, we ex-
pect its interaction energy to be better represented
by the local approximation to the exchange and cor-
relation potential. As one follows the electron
backwards along its trajectory, we expect that the
exchange potential will underestimate the interac-
tion energy due to its neglect of nonlocal effects.
The actual potential experienced by the electron is
expected to be an interpolation between these two
limits. Our candidate for such an interpolation is
shown in Fig. 4. It is constructed by plotting the
exchange and correlation potential as well as the
image potential and drawing a common tangent to
both curves in an attempt to interpolate smoothly
between them. The total potential for z, = 2, in-
cluding the electrostatic dipole potential, is given
by the dashed curve in Fig. 4.
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It is shown that for a solid subjected to external compression or tension, statistical-me-
chanical calculations lead to inconsistent results unless the Hamiltonian includes terms de-
scribing the action of these external forces upon the surface atoms. This requirement is due
to the existence of very long-range correlations between atoms of the solid. For liquids or
gases not on the verge of a phase transition, the correlations are short ranged and the usual
procedures for statistical-mechanical calculations suffice. The question of the characteriza-
tion and stability of a solid is also discussed.

I. INTRODUCTION

The seemingly straightforward question of how
to calculate the thermodynamic properties of a
solid subjected either to tension or pressure, using
the methods of statistical mechanics, provides a
number of surprises. The simplest approach one
might propose is to employ the canonical ensemble.
Here one only specifies the Hamiltonian describing

the atoms comprising the system. In particular,
in this approach one completely ignores all inter-
actions between the system and the container
"walls. " (This is the great beauty of statistical
mechanics. ) In principle one can calculate the
canonical partition function, and from it the Helm-
holtz free energy F(T, V), assuming the system
occupies a given volume V. The thermodynamic
relation P = —(&F/&V) r gives the pressure in terms


