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Vibrational Edge Modes in Finite Crystals
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In addition to surfaces, real crystals have edges, corners, and steps. In this paper we
present a theory of long-wavelength acoustic phonons localized at an edge of a cubic elastic
medium bounded by two (100) faces. The stress-free boundary conditions on the faces of the
semi-infinite medium meeting at the edge are incorporated into the equations of motion of the
medium by the device of assuming position-dependent elastic constants. The equations of
motion of the medium are solved by expanding each displacement component iri a double series
of Laguerre functions, which are orthonormal and complete in the region @~~0, @2~0. The
edge modes obtained are wavelike parallel to the edge and decay rapidly with increasing
distance into the medium from the edge. For the particular case of an elastically isotropi. c
medium for which the Lamb constants p and p are equal, the speed of propagation of the
lowest-frequency edge mode is 0.9013ct, where c& is the speed of sound of bulk transverse
modes and is lower than that of Rayleigh waves, which is 0.9194c&. A variational prin-
ciple for the speeds of edge modes is also presented.

I. INTRODUCTION

The equations of motion of an elastic continuum
are

p@e = (2. l)

where u (xQ is the n Cartesian component of the
displacement field at the point x, p is the mass
density, and T ~ (x) is the stress tensor. The lat-
ter can be written in the form

T~(x) = Z C,„„(x)q„„(x),

where the (C ~„„(x)}are the elastic constants and

(2. 2}

In recent years many investigations have been
undertaken on the properties of excitations local-
ized at crystal surfaces, such as surface pho-
nons' and surface magnons. If the surface is
planar, these surface excitations have amplitudes
which are wavelike parallel to the surface and
which decay essentially exponentially in the normal
direction away from the surface.

In addition to surfaces, however, real crystals
may have edges, corners, and steps. The present
paper is concerned with a theoretical study of pho-
nons localized at an edge of a crystal. These edge
excitations are characterized by a one-dimensional
wave vector parallel to the edge and by rapidly de-
caying amplitudes in directions normal to the edge.

To simplify the analysis we assimilate the crys-
tal into an elastic continuum and solve the equa-
tions of motion of a right-angle elastic wedge, to-
gether with stress-free boundary conditions on the
faces which intersect at the edge. Our results,
therefore, describe long-wavelength acoustic edge
modes in a crystal.

II. VIBRATIONAL EDGE MODES

q„„(x) is an element of the strain tensor

2 &x„ex„ (2. 6)

When Eqs. (2. 2} and (2. 3) are substituted into
Eq. (2. 1) we obtain the equations

BC~p su„g 82

pB= + ePyv
g gv ~X' ~Xv @p v 8Xg 8Xv

(2.4)

pl =5(xi) Z C,„„"+ 5(x2) Z C p„„
pv 8Xv

& u~+ Z C~„„",x„xa& 0 . (2. 6)
agv @a~Xv

Solving Eq. (2. 6}with the first two terms on the
right-hand side present is equivalent to solving the
usual equations of motion for an elastic medium
and then imposing the conditions that the surfaces
x, =0 (x, & 0) and x2--0 (x, & 0) be stress free. This
is because the coefficients of 5(x,} and 5(xa) are
the components of the stresses acting on these two
surfaces, respectively. The formal device of
introducing position-dependent elastic constants
has been used previously in other studies of the
vibrations of semi-infinite elastic media. It is
convenient to use it in the present work because

If we consider a semi-infinite solid occupying
the quadrant x& & 0, x2 & 0, — (xe ( , the position
dependence of the elastic constants is given by

(2. 5)

where e(x) is the Heaviside unit step function and
the (C z~„}are the ordinary (position-independent}
elastic constants of the medium. Combining Eqs.
(2. 4) and (2. 5) we obtain as the equations of mo-
tion of an elastic continuum occupying the region
x» x2 & 0, with an edge along the x3 axis,
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by incorporating the boundary conditions in the
equations of motion it makes possible the semi-
variational determination of the frequencies of
edge modes, to a discussion of which we now turn.

In what follows, rather than maintaining com-
plete generality we specialize to the case of a
cubic medium for which the cube axes and the co-

ordinate axes coincide.
We assume as a solution to E(ls. (2. 6)

u (x, f) =u (x„x2)exp(iqx2 —iut), (2. V)

and find that the equations satisfied by the ampli-
tude functions (u (x„x2)) are

( eQ, 8Q, Q2—p(d u, =8(xl)
I c» 8

+ C12 8 +iqc12u21+8(X2)c44
l 8

+-
a X1 eX2 ~ 8X2 BX1

Bu, 8 Qg 8 Q2 ~QS+l cll 2 +c44 2 q c44ul+ (c12+c44} +iq(c12+c44) ) (2.8a)
X1 ~X2 ~X1 ~X2 ~X1

2- = Bul 8u2 t Bu, 8u2—ptd us--5(x)ccrc +
p

+ (x)
l c„p +c„+'pc„u)

X2 Xl Xl BX2

8 Q1 ~ Q2 ~ Q2 eQ3+
l
(c„+c„) +c„, +c», -q c44u2+iq(C, 2+c44) ', (2 8b}

X1 X2 X1 aX2 ~X2

2—— l. Bus I' . Bu3—p((l u2 = 8(xl) c44
l

iqul+ + 5(x2) c44l iqu2+
8XI Bx,

x 8Q] ~ ~02 8Q3 2+('Ip(cgg+c4g) +Ep(egg+6 ) +c4g g +c44 g
—p cggl4g) (2. 8c)

~X1 X2 ~X1 8X2

xi=(/q, X2=nlq, (2. 9)

where the c,&
are the elastic constants in the con-

tracted (Voigt) notation.
We now introduce the changes of variables

iu, (x„x,) = u2(g, q),
to obtain

(2. iO)

and define new coefficient functions Iu ((, q) j by

ul(xl X2) ul($ l) u2(xl X2) u2($ q)

Bu2 u1
P 2 ul = 5($) cll 8

+c12 8 +c12lli + 5(7))c 44 +
8 Bq Bq Bg

8 u1 8 ui+ c11 2 +c44 2- -c44u1+ c12+c44 + 12+&44 ~ 2 11a
8] Bq 8 Bq

CO Bul Bu2 ~u2
p 2 u2 8(()C44 8

+
8

+ B(q) 12 8
+ 11 +C12ui

Q' Bq 8 1,
-

8~ Bif

8'ul 8'u2 8'll 2+ C12+C44) +cll 8 2 +C44 2 -c44u2 + (c12+c44), (2. 11b}8 8 if 8il 8$ 8'g

Bu21 i ~u3
p p) u2 = 5($)c 44 ul+

l
+ 5(ll) c44) u2+

Bg & Bq

Bul &u2 8 u3 ~u3+ ~12+~ 44 12+44 + &44 2 +& 44 2 ~11u3
Bil 8$ 8$

a a
u-. (&, n) = ~ & u.".e.(~) e.(n),

m=0 n=0

where

(2. 12)

From these equations we see that ~ is linear in q.
To solve this system of equations we expand

u ((, if) as

e-«) =e'" ~L-(()/m'] = lm) (2. iS)

and L„($) is the mth Laguerre polynomial. The
choice of the expansion (2. 12) was dictated by the
fact that the set of functions ((t)„(()jis orthonormal
and complete in the interval 0 & $ & ~, and so is
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well suited for the expansion of a function defined
only for positive values of $ and )I. In addition,
the presence of the factor e ~ in the definition of

($) is convenient since we are looking for func-
tions localized in the vicinity of the edge.

The generating function for the Q&„($)].is

2((I +e)/(I s)]
1 —s (}}=(}

The first few of these functions are

(g) e-4/ 2

y (()=e "'(1—(),
e (&)= "'(1-2& —.'&'),

e2(() = e '"(1—3&+-.'&'- 2&'). ~ ~ .
The recurrence formula satisfied by the f(I} (])] is

(2. iS)

e(n)=i, n o

=0, n&0.

When the expansion (2. 12) is substituted into
Eqs. (2. 11) and the orthonormality of the Q}„($)]
is used, the resulting equations for the expansion
coefficients can be written in the form

3

(2 ~ 13)
t

8=1 m, n

il = p(u /c44q
2 2 2 (2. i9)

The matrix elements (A(&2„)„]are given by

A I&'.„}„=—,'(3 -A) 5; 5;„+As;„[min(i, m) + —,
'

]

+5, [min(j, n)+-,'],
A II.2}„=[-,' S,.„+e(m i —1)]+B—[,' S,„+e(n —j —1)-]

—(B+I) [-,' S,„+e(m —i —1)][2 6&„+e(n —j —1)],
A(,I») = S, S, —,'(B+ I)+ S,„[-B+ (B+I) e(m - i - I)],

(2. 16)
With the aid of the generating function (2. 14) the

following useful matrix elements are readily ob-
tained:

&m(n) = S.„,
&m( S(g) ~n&= i,

(m &(() —n = —(n+-,'),
d$

(2. 17)

m —n = —[-, 5 +e(n -m —1)]1
(((}}

I

(
d2

m ~ n) =-,'5„„+(n-m}e(n —m —(),

where we have set

A =c11/c44, B=c12/c44 .

+ sy„[min(i, m ) + ~2],

(2. 21)

It should be noted that for arbitrary values of A
and B the matrix A(ij. '„ is not symmetric, that is
to say we have

n(1~) ~ ~(t)a)~ij mn ~mn;ij' '

However, in the special case A. =3, B=1, to be
discussed below, this matrix is symmetric:
~i j& mn ~mn; ij

Equations (2. 18)-(2.21) can be simplified some-
what by the use of symmetry and group theory.
The wedge x1 & 0, x2& 0, —~ & x3& ~, is invariant
under the operations of the point group C„whose
elements are 8, the identity, and 0, the reflection
in the plane containing the x3 axis and bisecting the
xI and x2 axes. If we write Eqs. (2. 11) in the
form

-p ' .(~, n)=~2L.,(~, n), (4, n), (2. 22)

which defines the differential operators I(L 2(g, q)].
implicitly, it can be shown straightforwardly that
these operators transform under the operations of
the group C according to

L (Sx„)= Z S S „L „(x„), (2. 23)

where 8 is the 3~3 real orthogonal matrix rep-
resentative of an operation of the group C, and
x„ is the vector (&, Ii, 0). Combining Eqs. (2. 22)
and (2. 23) we obtain

—p(u'E, S„',u, (Sx}()=Q„L„~(X}})Qt) S„t) u()(Sx}})

(2. 24)
Thus, if u(X„) is a solution of Eq. (2. 22) with fre-
quency (d, so is S 'u(SX}}). Consequently, the com-
ponents of u(F}})are basis functions for the irre-
ducible representations of C,. The group C, has
only two one-dimensional irreducible represen-
tations, l"1 and E'2, and we are led to the results
that the displacement fields belonging to these two
representations possess the properties

u ('0, 5) = u (5, '0),

u2(II, () =u, ((, II),

u, (g, () = u2(g, It);

g (21) g (12)~i j;mn ji;nm ~

n (22) A (11)~ij; mn ~ji;nm ~

~ (23) q (13)
ij; mn jIi;nm &

AI2. ' „= —5(„5&„—2(B+ I) + 5&„[1—(B+1) e(m i —-1)],
~(32) ~(31) (2. 2o)

ij';mn ji;nm ~

AI&. '„= (A —2) 5( 5&„+5( [min(j, n)+2]
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These conditions translate into the following con-
ditions on the coefficients fa „') in the expansions
(2. 12):

(1) ( 2)
nm + &mn

(2) (1)
&nm + ~mn

(3) (3)
anm =damn

(2. 26)

where the upper (lower) signs refer to displace-
ments belonging to I'i(I'a). The use of Eqs. (2. 26)
together with Eqs. (2. 18)-(2.21) allows one to
work with matrices of about half the dimensionality
required when no account is taken of Eqs. (2. 26).

In the present work Eqs. (2. 26) were used to
simplify Eqs. (2. 18)-(2.21), but not to the fullest
extent possible. The equations that were solved
are

cu = Opt q, (2. 31)

where 0 is an eigenvalue of the matrix A,'j~~.

quently, for a given value of p there are —,'(p+ 1)
x (p+ 2) terms in the expansion (2. 12) for each
component u (t', iV), and the dimensionality of the
corresponding matrix equation (2. 2V) is therefore
(p+1)(p+2)x (p+1)(p+ 2).

The results of the calculations show that the
lowest-frequency edge mode has I'2 symmetry; the
edge mode of next lowest frequency has 1"1 sym-
metry. To show how rapidly the calculations con-
verge with increasing p we present in Table I the
values of the two lowest eigenvalues as functions
of p. (Note that the calculations for p = 11 required
the diagonalization of a 166x 166 matrix. )

Because for the choice of A and B made here the
speed of sound for bulk transverse waves is

C, = (C44/p)"',

we see from Eq. (2. 19) that the dispersion relation
for edge modes is given by

~2 (1) ~ f ~ (11) (1) ~ (13) (3)L
~~ ~ij +-& LBig;mn&mn + ij;mn mnI

mn

Y. I~(31)
ij'mn mn + ij;mn~mnf ~

mn

(2. 2V)

LO'LIEST-ENERGY EDGE MODE

and aij) was obtained from aij' by means of Eqs.
(2. 26). The matrix elements (B,j.„'„)appearing
in these equations are given by

u(11) A (11) n(12)
Bij;mn Aij;mn+Ai j; nm &

r

Z

~(13) I (A (13) n (13)
i j;mn 2 ( - i j; mn +~ i j;nm) ~

~(31) I (A (31) n (32) n (31) A (32)~ ij; mn ~~ ij;mn+Ai j;nm +A ji;mn +~ ji;nm ~

B(33) 1 ( n (33) n (33) n (33) n (33)
ij;mn 4(~U; nm+~i njm +~j ; jmn+ ji~; )nm

for modes of l"1 symmetry, and by

(2. 28)

l5

x,v

~(11) n (11) n (12)
Bij;mn ~ij;mn ~ij;nm ~

m(13) I ( A (13) A (13)~ij mn 2(~ij'mn ~ij'nm)
t, 2. 29j

~(31) I ( n (31) n (32) n (31) n (32)~ ij;mn n(~ij;mn ~ij;nm ~ ji;mn +~jilnm)

K?(33) ~(A (33) n (33) n (33) + n (33)
~ij;mn 4( ij;mn ~ijlnm ~ji;mn+~ji;nm)

for modes of I'2 symmetry. The use of Eqs.
(2. 2V)-(2. 29) in place of Eqs. (2. 18) results in a,

reduction in the dimensionality of the matrices to
be diagonalized by a factor of one-third, for the
same number of terms in the expansions (2. 12).

We have solved the set of equa, tions (2. 2V)-(2. 29)
to obt" in the lowest few eigenvalues and the cor-
responding eigenvectors for the special case A = 3,
B=1. This is the so-called Poisson case in which
the elastic constants satisfy the isotropy condition
and the Cauchy relations. (The Lame constants
X and p, characterizing the elastic properties of an
isotropic medium are equal in this case. ) The ex-
pansion (2. 12) was truncated by retaining all terms
for which m+n& p (m & 0, n & 0, p & 0). Conse-

NEXT-LOWEST-ENERGY EDGE MODE

X
Interior

i

SurfaceI

Interior

FIG. 1. Displacement fields of (a) the vibrational
edge mode of lowest frequency possessing I'2 symmetry,
and (b) the vibrational edge mode of lowest frequency
possessing I'1 symmetry.
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TABLE I. The values of the lowest (F2) and next-
lowest (F&) eigenvalues of the matrix A defined by Eqs.
(2.18)-(2.21) as functions of the number of terms re-
tained in the expansions (2.12) of the displacement am-
plitudes.

0
1
2
3
4
5
6
7
8
9

10
11

0.8788
0.8227
0.8140
0.8131
0.8128
0.8127
0.8126
0.8124
0.8124
0.8124
0.8124

1.1061
0. 9130
0.8854
0.8675
0.8612
0.8566
0.8540
0.8520
0.8507
0.8496
0.8491

From the results of Table I we find that the fre-
quencies of the two lowest edge modes are

~&, = 0. 9013c,q,
~& =0. 9215c,q . (2. 32)

These results should be compared with the fre-
quency of Rayleigh waves of the same wave vec-
tor':

v~= Q. 9194cq q . (2. 33)

Thus we see that the speed of the lowest-frequency
edge mode is slower than that of Rayleigh waves,

III. VARIATIONAL APPROACH TO VIBRATIONAL EDGE
MODES

It is possible to formulate the problem of obtain-
ing vibrational edge modes variationally. For this
we first consider the functional

„L/2

"0 "0 -I/2
dX3

xz c.,„,('" ) I'+), (s. i)

where L is the periodicity length of the elastic
medium parallel to the edge. We now let u (X) go
into u„(@+5u (R), whereupon E(u(R)) goes into
E(u(x))+ 6F(u(x)), where

while that of the next-highest-frequency edge mode
is slightly faster.

It is found numerically that the frequencies of
the modes of I'& symmetry interlace those of the
modes of I"2 symmetry, at least for the ten or so
lowest-frequency edge modes. We have not been
able to determine whether this result holds for all
edge modes or not.

The displacement patterns corresponding to the
two lowest-frequency edge modes are plotted in

Fig. 1 (calculated from the results for p =8), and
the rapid decay of the displacement amplitudes with
increasing distance from the edge is clearly evi-
dent from these plots.

I /2

5F(u(x)) = Z C~gqn
~

dxg dxg
~

dxs 5g„+ "
egg+

~
(3.2)

ar6 4 -L/2

We integrate by parts to obtain

~L /2

5E(ug)) = — Z dx~ ~, dxg 5u~ C~g„6
X6 gy=0 er 6 4

0

dxg dx~ 5n+~ C ~2r 6
" "L/2

8X6 x2=0

O + 00 1+ L /2 28 QrC~„, dx,
~

dx2
~

dx~M~C~„~ +c.c.
eSr 6 40 "-L/2 8x 8x

0
g 6

CO OO .L/2

Z dx, dx2
~

dxs Gum C ~,„65(x&) + C~2„55(x2)
8Qr 8Qr

er6 „0 Bx " 8X6 6

i L/2 2

Z C~&& dx& dx2 dxs 6&&+ +c ~ c. (3.3)
8 Qr

Or, 4 0 4 0 4 L /2
8x 8x6

The displacements u (x) and u~(x) are linearly
independent. Thus, if we minimize E(u(x)) with
respect to variations of u*(x), subject to the con-
straint

G(u(x)) =5„f dx~ f dxz f dx~u~ u~= const,
(3.4)

the resulting Euler equation for determining
u(x) becomes
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—Xu~ =0, xg, x~p 0

where X is a Lagrange multiplier, which we can
identify as pe .

Let us now consider the functional

(2. 6)

(3. 'f)

IV. DISCUSSION

In this paper a method has been developed for
obtaining the frequencies and the corresponding

pQ'(u(x)) =E(u(x))jG(u(x)) .
Since G(u(x)) =const is just the normalization
condition for u(x), the above variational procedure
is equivalent to minimizing pQ (u(x)).

In fact, if we multiply the equation

2 Bu„ eu„
p(u u~ = —5(x,) Z C„„, " —5(x,) Z C„„,

go xo yd x5

82uy—Z CnBw5 s xi&+2 0
Swo xg xt)

[which is just Eq. (2. 6) when a harmonic time de-
pendence is assumed for u(x)], by u*, sum on n,
and integ rate over the region 0 & x& & , 0 & x2
& , —2L &x3 & 2L, we find after an integration
by parts that the minimum value of Q (u(%)) is &o2.

The symmetry properties of the displacement
amplitudes expressed by Eqs. (2. 25) should be
taken into account in constructing the trial func-
tions used in minimizing the functional pQ (5(R)).

displacement fields for vibration modes localized
at an edge formed by the intersection of two
stress-free (100) surfaces of a cubic elastic
medium. It has been applied to obtain the lowest
edge-mode frequencies for an isotropic medium
whose elastic constants satisfy the Poisson con-
dition. It is found that the speed of sound for the
lowest-frequency edge mode is lower than that of
Rayleigh surface modes on the same wavelength.

Several interesting properties of edge modes
remain to be studied. The dependence of the speed
of the lowest-frequency edge modes on the elastic
constants, even for cubic crystals, should be de-
termined. The degree to which edge modes are
localized in the vicinity of the edge undoubtedly
depends on the elastic constants of the medium and
on the angle of the wedge. Ne have considered
only a right-angle wedge in this paper, and the
question of whether edge modes are more localized,
or less, when the wedge angle is acute or obtuse
remains unanswered. For dealing with wedges
other than right-angle wedges a transformation of
the equations of motion to cylindrical coordinates
would seem to be appropriate. It is hoped to con-
sider these and other problems in a subsequent
paper.
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