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The time-dependent Ginzburg-Landau equations applicable to a gapless superconductor con-
taining a high concentration of paramagnetic impurities are solved to find the field and charge
distributions around an isolated vortex moving in a transport current. The initial slope of the
flux-flow resistance with respect to the average magnetic field is found to be approximately 3
the normal resistance divided by H,2. A backflow current is generated for all physical values
of the parameters, vanishing only for a special case not possible for this system.

I. INTRODUCTION

In a previous paper' we solved a complete set
of time-dependent Ginzburg-Landau (GL) equations
to find the local current, charge, and field distri-
butions when a transport current is forced through
a superconductor in the mixed state near the upper
critical magnetic field H,&. This explicit solution
was obtained by linearizing the equations in the
order parameter, which becomes small as H,2 is
approached . In the present paper we extend our
work to lower magnetic fields, particularly to

quite low fields where the vortices are well sepa-
rated and may be studied individually. Our method
of approaching this problem must be different from
before owing to the nonlinearity of the GL equations,
since explicit analytic solutions for the spatial de-
pendence of the order parameter and magnetic field
have not been obtained even in the static case when
no transport current is applied. The equations can
be linearized in the regions near and far from the
vortex core, and explicit features of the solution
are obtained. However, not enough information is
obtained from these asymptotic solutions to deter-
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mine the dissipation rate. Consequently, we, like
Schmid, derive energy-balance relations involving
integrals of the solutions over the sample, which
we can evaluate using an approximation introduced
by Schmid. Unlike Schmid, we consider the back-
flow current which generally arises around each
vortex.

A major qualitative feature of the effect of a
transport current on the mixed state is that in the
absence of pinning defects the vortex structure
moves at right angles to the transport current. If
a vortex consisted of a normal region (core) of a
certain size with a sharp phase boundary into the
surrounding superconducting region, the magnitude
of the drift velocity v and the current distribution
would be easily obtained by a Lorentz transformation
of the static structure. If the shape of the core
does not change along the direction of the magnetic
field, it will have a uniform value B inside the core
and vanish outside of it. Movement of the core then
generates a uniform electric field in the core E
= —v &&B. Outside the core E = 0, and the super-
fluid flow is not disturbed. If the strength of E is
just the ratio of the transport current j, to the
normal-state conductivity o, the transport current
will be driven across the normal core at the same
rate as it approaches from the superconducting
region, and a steady-state solution is obtained with
a uniform transport current and the vortex trans-
lating w ith v = f, & B/oB .

Actually, however, for a singly quantized vortex,
the width of the superconducting-normal boundary
region is the same as the radius of the core, and

this simple picture is incomplete. The steady
state is achieved as the result of a balance between
the various screening processes which are governed
by different characteristic lengths. Generally,
the local electric field is not proportional to the
local magnetic field, and an additional backflow
current arises to compensate for the different char-
acteristic lengths. The purpose of our paper is to
determine the average dissipation rate, which in-
volves determining the relation between v and j, ,
and also some details of the local current, charge,
and field distributions.

Section II is devoted to a derivation of expres-
sions for the energy input and dissipation rate.
In Sec. III these results are applied to an isolated
vortex in the high-& limit to find the effective resis-
tivity. The backflow and local-field distributions
are studied for this high-& limit in Sec. IV. The
local electric field is proportional to the local mag-
netic field only when their respective screening
lengths are equal, and this limit is studied in Sec.
V for all &. Finally, the only special case where
backflow is absent, when the two screening lengths
are equal and also «= 1/v 2, is examined in Sec.
VI.

II. ENERGY BALANCE

The basic equations whose solutions we seek
are the same ones we used in our previous paper,
which have been derived from microscopic theory

by Gor'kov and Eliashberg for a gapless super-
conductor containing a high concentration of para-
magnetic impurities:

y — +i2e ~+ ~ —1

8
+ —. —2e A a=0 (1)

Z

j=o -V

V 2+Re n* —. —2eA n Seek, (2)

p= (0- 9)/4»'.
y is the inverse of the normal-state diffusion con-
stant D, g is the electrochemical potential divided

by the electronic charge e, and 4 is the order
parameter divided by its equilibrium value in the
absence of fields += m[2(T, —T )j'~, where T is
the temperature and T, its critical value. Thus
our reduced 4 equals unity in the absence of fields.
The temperature-dependent coherence length is
$ = (6D/r, )' /+, where 7, is the spin-flip scat-
tering time. o is the normal-state conductivity,
and the temperature-dependent magnetic field
screening length is X= (Smear, ) '~2/no The G.L
parameter « is defined as usual as «= &/$, and

QF is the Thomas-Fermi static-charge screening
length. (We have set k=c=ke=1. ) This set of
equations is completed by the Maxwell equations
coupling the scalar and vector potentials cp and A.

to the charge and current densities p and j.
A set of equations having essentially the same

form was derived earlier by Schmid. However,
Eliashberg' has shown that this set of equations is
not valid in the case of weak pair breaking consider.
ed by Schmid. The one difference in the forms of
Egs. (1)-(3) and Schmid's is a very small addi-
tional term which Schmid included in p resulting
from the curvature of the Fermi surface. Such
corrections are of order [(Fermi wavelength)/$]
relative to the main effects we are studying, so we
ignore them. If we wanted to study these higher-
order corrections, we would like to find all of them
and not just the contribution to p. In fact, Schmid
only kept this correction briefly to indicate the
possibility of a small charge redistribution in a
static vortex, and then dropped the correction when
he went on to investigate dynamic properties. Our
way of finding the rate of dissipation for a moving
vortex is very similar to Schmid's work, but with
some corrections and additions.
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Using the Eqs. (1)-(3), Schmid has derived an
ener gy-balance relation

(4)

This equation shows that the rate of increase of the
free energy F plus the rate of dissipation W equals
the inflow of energy current j . Converting his ex-
pressions into our notation, F and j consist of
three parts: electromagnetic (em), normal (n),
and ordering [superconducting-normal (sn) differ-
ence].

I',m= (B + E )/8v,

2

W=cr V + +y —+i2e ~ 16me ~,9 t 9t
(5)

j „=—Re —+ i 2e( h( V+ i 2eA) A* 16ve'X' .

BF
V ~ j, + ' +j ~ E=O.

Bt (6)

To obtain the dissipation rate in low magnetic
fields, Schmid introduced an approximate form for
the static order parameter which enabled him to
approximately solve for the field distributions and
evaluate the expression for the average (W). (W)
is then proportional to the square of the velocity of
translation of the vortex structure v, but the rela-
tion of v to the transport current is not yet known.
The ratio mould be known if one could solve for the
moving order parameter as has been done near
&,2, but this is much more difficult for low magnetic
fields owing to the nonlinearity of Eq. (1). To
circumvent this difficulty, he found a relation in-
directly by stating without proof that (W) should
equal the average current times the average effec-
tive electric field, j,(- &A/&t —Vg). Although this
relation may appear evident if there is no backflow,
we now know that backflow is a general feature of
moving vortices. Thus one is not sure whether the
backflow current may also contribute to the dissi-
pation .

We think it worthwhile to examine the basis of
Schmid's alternative expression for (W). Using
Maxwell's equations one finds immediately

electric f ield E = —SA/&t —Vy. The practical
difference between g and y and between h and E is
negligible since &» is much less than the distance
over which the charge density varies (- $). Re-
writing j ~ E in terms of 8 we get

E=l &+& ~ V(( —O)

gp=j 8+V
&t

(7)

aF
j ~ S=R+ '"+ V j,„+ "+ Vy,

&t

+ sr. /st+ v. g, , (9)

where g„= (g —y)g, F, = (8'+E )/Sw, and g, = E
xa/4v. The net energy currents enter the vortex
from both ends along the lines of the external
magnetic field B, . (j, . 8) gives the main energy
input to the lowest interesting order -v, since at
the sample surfaces normal to B, the perpendicular
component of g vanishes and I is parallel to B,
to order v.

III. DISSIPATION RATE OF AN ISOLATED VORTEX
I%HEN K»1

To discuss an isolated vortex it is convenient
to separate L into its magnitude and phase I &l =f,
A=fe'2'", and to define the gauge invariant quan-
tities Q= A —Vy and I'= g+ &y/&t. Our basic equa-
tion are then rewritten in the new notation with
Eq. (1) separated into its real and imaginary parts:

y —+ $ (f f) —V'f+4e'Q'f= 0—,

Substituting Eqs. (6) and (7) back into (4) and (5),
we get

BF,„j g= g+ "+V ~ j

This relation was also obtained by Schmid during
his derivation of Eqs. (4) and (5). It is a straight-
forward consequence of the basic equations (1) and

(2), so we will not repeat its derivation. We note
that the net energy input in the steady state is fun-
damentally the total current times S and not simply
the average transport current times 8, although
the two quantities may be practically equal.

To investigate the difference between I h and

l, ~ h, we define j =j,+ g, where j,= (j) is a con-
stant and (8)= 0. g is the screening and backflow
current. We similarly define 8 =B,+ , where
B, is the magnetic field generated by j, and is
the rest: V x 0 = 4vf+ &E/&t. Repeating the above
steps in the reverse order me obtain

The driving potential for electrons in a metal is
not the electric scalar potential y but the electro-
chemical potential eg. Consequently, it is worth-
while to formally define a vector field S= —SA/Bt
—Vg, which is to be distinguished from the actual

yf'I'+ V. (f'Q)=0,

sQ f%
j =cr —VP-

Bt 4gA.2 (12)
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p= (0 —q)i«4 .

Similarly, the dissipation rate becomes

W=o VP+ + y 4e +P 4pX

(14)
An equation to determine Q is obtained from Eq.
(12) using a Maxwell equation:

'Vx(Vxg)= 4vl i

= 4' —VP—

+ !
—V — fg/X-. (15)

~ BP 82Q

et et

In the static case this equation reduces to the usual
screening equation Vx(Vxg)+f Q/X =0. In the
dynamic case, the terms involving P can be elimi-
nated by taking the curl of the entire equation.

A relation to determine P is obtained by taking
the divergence of Eq. (12) and using the continuity
equation V j+ &p/st= 0, which is a consequence
of Maxwell's equations. Using Eq. (11)to eliminate
the divergence of the last term in Eq. (12), we
obtain

2 SV 4 yf'P Sp

The last term sp/St is of second order in v since
p vanishes in equilibrium to the order we are in-
terested in. We will neglect it since we only wish
to find P to first order in v. It is natural to com-
bine the constants to form a screening length t for
P, f2= 4m' o/y. Examining the microscopic ex-
pressions for & and $ we see that g = (/412 for a
superconductor containing a high concentration of
paramagnetic impurities. This is the physical
value of P for the system for which the basic equa-
tions were derived. However, we may also study
the system of equations for an arbitrary g/$ ratio
for general interest and in case the equations are
later found to apply to another system with a dif-
ferent ratio.

We choose a system of coordinates with the z
direction along the externally applied magnetic field
8, with the origin of the x-y or r-8 plane at the cen-
ter of a vortex. We choose the x or 8= 0 axis
as the direction of motion v. The direction of j&

is then along the y or 8= 2m axis.
In the static limit the solution for Q, Q2 is known

to have the form $2= q2(~)e2. The static screening
current is thus also just a function of r times e&.
Near the origin, the behavior of Q2 is dominated
by the phase contribution —V~. Since the phase 2 ex is
just the angle 8 there, q2(r)- —1/2 er This term.

gives no contribution to B2= Vx/2. The next
term for small x gives the fieldattheorigin: q2(y)

- —I/2er+ 2B2(0)r.
The form of P to first order in v follows from

the form of Sy/&t. The time derivative in the
steady state is replaced by —v ~ V. Thus P=P(r)
xsin8. Near the origin p must have the limit p(r)
-v/2er+ [2 vB2(0) —$(0)j~ so that Z(0) is the limit
as r goes to 0 of (—VP —SQ/St).

Using these forms for Q and P we can obtain a
simplified expression for the dissipation rate
f WdV in the volume around a vortex B. eginning
with Eq. (14) we find

gf 2

Wdv eI 8e ~ — 4ee+Pefe f'I dV, .

(17)
Using Eq. (16), noting that V ~ $2= 0, the last
term becomes

f (P'f'/&')dV= fPV'PdV= —f PV hdV.
(18)

The first term on the right-hand side of Eq. (17)
gives

8 dV=
~f

—VP —
!

~ SdV . (19)

Combining Eqs. (18) and (19) we have

P2 2
$2

~ dV= — ~ 8- V P dV.

(20)

The last term of Eq. (20) is a surface integral
and the first term on the right-hand side can be
further rewritten

(-'„).sav=Il ('„) .('„) . v~ dv.

(21)
The last term is again a surface integral since
V $2= 0. Using the explicit form for Q and per-
forming the angular average we get

I

( )
dv ,e

II ( +(
—
) dv

~%

= -,'v'
1

B'- 2 — d V . (22)sr

The last term of Eq. (22) is also a perfect integral.
Q and P vanish exponentially as r -~ so the con-
tributions to the surface integrals come only from
the region r- 0. Combining all the previous steps,
with I being the length of the cylindrical volume
along the z direction and using the limiting ex-
pressions for Q and P as r 0, we obtain our final
simplified formula for the dissipation rate:

WdV= —, o'v ~B dV+o' i 4e g dV

+leg d8 r ~ PS —P + 2v q
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(&t
WdV=-, ov B dV+o (

2 2 I

/Sf
e f d t/'

B()(0)= » H, 2 (ln»+0. 1)8, . (26)

Similarly, 8 can be found from 8 = —r/P+ v ~ ))/Q:

L t/(/v [2 S(0) —vB (0)]+ 2e 23

To proceed further and evaluate the dissipation
to the leading order -v, we need expressions for
the static magnetic field B()(r), for the static order
parameter f()(r), and for the electric field 8 in
the lowest order - v. Exact analytic expressions
for the static quantities are not known. Conse-
quently, we use an approximation introduced by
Schmid (with an erroneous factor of 2 deleted):
f()(r)= (1+ ( /r ) ', for the region r «&. This
approximation has the virtue of being correct in
the large region $ «r «& where ft)= 1 —$ /2r'. It
also has the correct form at the origin f-r, al-
though the slope is most probably wrong. One
may easily verify that this approximation for f()
is not an exact solution of Eq. (10).

With this approximation for f(), Eqs. (15) and

(16) become soluable for Qo and P as found by
Sch mid:

(r2/t2 1)i/2 K ( (r2 t2)) /2/g)

2er K, ($/X)
(24)

v(r2/(2+ 1)i/2 K ((r2+ ]2) )/2
/g)

2er K,((/g)

The functions K„are the modified Bessel functions
of imaginary arguments which vanish exponentially
at infinite arguments. Taking the curl of Q(), we
find B(), where 2eH, 2= (

B()(r) = » ' H„K, ((r'+ (2)'/2/X)/K, (» ') e, ,

= Lt/H, 2/2e»

8 2

dV=
I

(v )/f())'dV

= —'Lmv 2

(27)

Combining all these results together we get

Wd V )/ov Ho2 1 k h K()(t/&) (28)
L 2e 2» 4P fK($/g)

In the physical limit where t /f = 12, the first
term in the parentheses is negligible since z» I.
The second term which came from f (sf/st) dV
gives 3, while the third term which came from @0)
gives 3.05.

We have thus found an expression for the dissipa-
tion rate per unit length of an isolated vortex in
terms of its velocity of translation. However, to
find the flux-flow resistance we need to know it as
a function of the transport current j,. To find a
relation between j, and v we set the dissipation rate
equal to fj, . SdV=j fhtdV. Although we noted that
locally h 4 —v && B, the averages are equal (8 )
= —v&&(B). This result can be verified from our
explicit solutions for 5 and 8 or more directly
from Maxwell's equations fE dy= —d(f B,dhdy)/dt
= —v f B,dy. The average over h gives the above
relation. The integral of 8 is known by flux quan-
tization. Consequently, we have

(K.((/~), & K, (&i/)" «, (t/~) ~K, (&//)

= —,
'

vH, 2» (In»+0. 1)+ e, . (26)2 $ Ko(h/r)
1

The two integrals on the right-hand side of Eq. (23)
may also be evaluated with the approximate f():

J B()dV= (L)/H, 2/2e» ) [1 -K()(» ') /Ki(» ) ]

( /( )
(( '+h')"'/ )

K, (&/~)
5'd V =jt vt//e ~ (28)

«i((r '+ ('}"'h)
)Ki(h/&)

A relation between j, and v is obtained by equating
Eqs. (28) and (29):

+ (tg)-'K, ((r'+ ]')"'/|;)/K, (~/t) sine, 1, k', hK. (h/~)
Jt 2 v ()2 2»2 4)2 gK (]/j) (30)

1
K,(&/~)

The flux-flow resistivity may be defined as p&
= ( W)/j, = ((t')/j, The ratio of.p/ to the normal-
state resistivity is R:

«, ((r '+ ('}'I'/~}
)K,((// )

+ ($) )-'K, ((r 2+ (2))/2/) )/K, ((//() coss .

Notice that only if the two screening lengths are
equal A. = g is the simple relation 8 = —vxB ob-
tained, as for a rigid Lorentz transformation. At
the origin

B = o ( (tl )/j, = ov (B)/j,
hKo(k!r) ' (B)

4»' 8t- +2r K,(]/r. ) H„'
We find that the slope

gK, (t/g)
d(B) (g) () 4» 8& 2g K()$ f/)

(31)

(32)
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In the physical case when g= ]/;12,,~,~12 the slope is
evaluated to be

(33)

IV. BACKFLOW AROUND AN ISOLATED VORTEX
WHEN g»1

H.. " =0.33.
d& I~) (a&&

n with our previous result near H,2,
where the slope equals $ z /g [1.16 ~ — +

ture d~R/d(B)~&0 in the physical case. If g=( 2,
1 flat and if g& $,the curve would be approximate y a,

the curvature would be negative. iguFi re 1 illus-
trates the prediction for the physical case.

rk another inde-After the completion of our work,
t rk was published by Gor'kov and Kopnin'penden wor w

which also attempts to solve the same se o
equations to in efind the dissipation rate in the low-

't They found a relation between

j, and v similar to our Eq. (30) but neglected e
electric ie evt ' f' ld everywhere. Only the f(8f/Bt)~md'

of theirterm con ri ut 'b tes to the right-hand side o eir
ral nu-equation. eyThe have evaluated this integra nu-
111 d found 0. 247 where we go —, using

h id's a proximation. This indica es a
r ood as a leadingSchmid's approximation is rather goo a

r our result shows thatapproximation. However, ou
and Ko nin's approximation of neglectingGor kov an op

'

is not valid, since thethe electric field everywhere is no va i,
~(0) term makes an equally largr e contribution to the
relation between j, and v as the term ythe evaluated.

. (31) they there-
fore found a value twice as large as ours.

tant three-dimensional structureres of the moving
bendin, whichvol leest' s including their necessary '

g,
we show thewe have not yet studied. In Sec. IV we s ow

b kf low structure in the plane p per endicular to aac 0
t which was not studied by them. Thus thevortex, w ic

brin in outtwo works complement each other in ring' g
new features of the dynamics of vortices.

=
p O'V8
1 8 dV Hf) dV,

~(0)
nL Bt 47t'8$ 'U

I
—' -~+~2/4g2 ~-2(in~+0 I)j . (36)

~~ R=P,/t„

/
/

/
/

sLopE S.2

from V ~ ~ p an~p4 d verify that the corrections are
small. Since V Q0=0, we obtain

(34)4' = —v p= fp-/r„
. ,16) to obtain the last equality. The dif-

ference between t) and y follows from Eq. ( ):

= ("') "--('-) '( -'") ""
is only a few angstroms whereas g = t/

t ll~~12-100 A, the difference is indeed pr
om aring Eq. (24) for P and Eq. (25)

for Bp, we find that p=v ~ jp=v'VxBp 7t w en

r the e uality of the electric field and
char e distributions to those of a rigi oren
transformation is not sufficien' ' nt to eliminate the
backflow current in the low-m gn-ma etic -field limit,

H . Since f= 0 at the vortex coreas was true near
j(0) equals ere'(0) Therefore, combining Eqs. ( ),
(29), and (30), we see that

i )
—j(o)

In our previous work we fouund that near H~ the
local field relation $(r) = —vx Bo(r) and p= v ~ Io
characteristic of a rigid low- y-velocit Lorentz
transformation of the static vortex field Bp and cur-
rent jp= Vx p/ 77 ocB /'4 curred when the two screening

1lengths were equa, A. =

current was just the translating jp plus a uniform
transport current j, only in this case, independent
of z, except that the physical case I' = $/~12 re-

= I/~12. In this section, we investigate
whether these relations are still true for e ow-
field limit.

e = -vxB (r) ifIn Sec. III we found that indeed e (r) = —v &c

difference be-only A. = q. sAs mentioned earlier, the i
tetween 8 and E is very small. We can calcula e p

OPE 0.5$

1 B/Hgg0

1. Ha lo 0H t R of the flux-flow resistivity p& to the
h' h-g superconductornormal-state resis '

y p~
' tivit or a xg -g

tic impuri-concentration of paramagne xc imcontaining a large conc
nl th limiting slopes have been ca cu a e

low-field B-0 and high-field J3= H, 2 limi
dashed curv purve extrapolates e een

est that the optimum ex-a ositive curvature. We suggest t a e oa po
ement for verifying the prediction ss ap " al rang

flat sample perpendicularlar to the externa y ap
' ient= 1, so thatic field H (demagnetization coefficient= 1, so a

a ' -H Some unphysical casesa e local field B=H~. m
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In the physical case g = $/~12 this equation gives

j, —j(0) = ~ crvH, z = 0. 98 j(0),
which satisfies Eq. (41):

j(0) = 0. 5j, .
(37)

However, in the unphysical case for large z when
A. = p, where j, would equal j(0) if backflow were
absent, we get

j& —j(0) = z oyH~&K [~ —(lnK+0. 1)], (38)

= 1 —4~'k'(Qo+ 2Q, Qg) . (40)

Inserting this into Eq. (39) and keeping only the con-
tributions to B, we find

880 BV'B =4po '+~
et

x(Q', Q, +2Q, Q, Q,),
(41)

eX

4' $ 4 y 6

The homogeneous solution for Bb which is propor-
tional to cosg is K,(y/x), which can be added in an
arbitrary amount. An exact solution has been found

which does not vanish but is negative, i.e., j(0) & j,.
From Eq. (36), we see that j(0) =j, when f = -,'X/
(lnK —0. 4)'~ . However, the current being equal
to j, at the origin for this value of g does not mean
that the backflow vanishes elsewhere, as may be
expected since the field distributions do not corre-
spond to a Lorentz transformation here.

We can find the backflow pattern to first order in
u outside the core r» $ by using asymptotic ex-
pressions valid in this region. To obtain a scalar
equation to solve we take the curl of Eq. (12):

Vx (Vx B)= 4vc —--V x(y'Q)/X'. (39)
8 $

We will concentrate on the two-dimensional charac-
ter of the solution, ignoring the response to the
magnetic field generated by j, which will include
bending of the flux lines and additional screening
currents flowing along the z direction parallel to
the external magnetic field. We thus assume that
B= Bo+ B,+ B„where Bo is the translating static
field given in Eq. (25), Vx B,= 4+j, , and signifi-
cantly the B, generated by the backflow current j,
is only in the z direction.

Q can similarly be broken down into three parts:
Q=QO+Q, +Q,. From Eq. (24), Qo= -K,(x/X) eg/2ez.
Q, is a constant vector whose magnitude follows
from j, = -Q,/4m' in the superconducting region and

B,= VxQ~. For y» $, the leading contribution to
f follows from Eq. (10):

f =1 —4e( Q

+ ' -Ko — +C K, — cos6e, . (42)2jt
ovH, z

The first two terms of B, give the two source
terms on the right-hand side of Eq. (41), whereas
the last term is the homogeneous solution whose
magnitude C is not yet determined. In order for
B, to stay finite as x- $, the magnitude of C should
be - 1nz. The backflow current is found immedi-
ately by differentiation 7'& Bb = 4&jb.

An interesting feature of B, is that for any fixed
8 it changes sign as a function of x at some xo. For
a two-dimensional j the lines of constant 8 are the
streamlines of j (Vx Be,= —e, x V B). Consequent-
ly, on either side of the y axis there are closed
loops of j, circulating in one sense in the region
x& xo and another set of closed loops of j, for x& xo
circulating in the opposite way. On the side nearer
the core, the direction of the current flow of the
inner loops is opposite to j, , whereas that of the
outer loops is the same as j,. An illustration of
this behavior is shown in Fig. 2.

The location of ro depends on the ratio j,/v, which
is obtained from Eq. (30). In the physical case,
where P=)/&12, 2j,/ovH, ~=6. 05, so po is rather
large in the asymptotic region where Ko =K, , giving
so=12. 1C~. For this large value of zo, the K func-
tions are exponentially small, so the outer loops
ore moved out so far that they are negligibly small,

d the backflow pattern is dominated by the inner
.~ops, giving j, opposite to j, near the origin in

agreement with our result j(0) & j,.
As the ratio g/$ increases from its physical val-

ue, the value of zo decreases. The backflow van-
ishes at the origin and j(0) equals j, when P/$ has
increased just enough to make so= 0. Further in-
crease of g/$ gives an enhancement of j at the ori-
gin, j(0) & j, , since only the outer loops remain.
Our formula, Eq. (42), for B~ is not correct in the
core and cannot be used to verify that indeed zo = 0
exactly when g= —,'X/(InK —0. 4)'~~, where we earlier
found j(0) = j,. However, Eq. (42) is correct well
outside of the core and shows that Bb and jb do not
vanish everywhere for any & including this particu-
lar g where jb vanishes at the origin.

Although the condition ~= g is enough to give the
correct electric-field charge distribution for a rigid
Lorentz transformation of a vortex, it is not suf-
ficient to eliminate backflow, which we see exists
for all g/X ratios for high K. In Secs. V and VI we
will investigate further the case g = X for all g val-
ues and will find that there is a special K value K,
= I/W2 where the backflow does vanish, requiring
simultaneously g = x = $/&2.
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V. RESPONSE OF AN ISOLATED VORTEX WHEN g = X FOR
ALL v

In Sec. IV we found that 8 (r) = —vx B (r) and
p(r) = v ~ jp(r) were obtained as in a rigid Lorentz
transformation if and only if f =X for z»1. We
first will show in this section that this result is
true for all z if only & = X. Then we will proceed
to find the dissipation rate in terms of H,&, the
static lower critical field for vortex entry when
the demagnetization coefficient is zero. Backflow
is also analyzed.

Our equation for P to first order in v is obtained
from Eq. (16):

r„'[v'P+v v(v' Q,)]=f'P . (43)

From Eq. (15) the equilibrium Qp satisfies

—&'vx(vx Qo) =f'Qo,
(44)&'[v'Qp- v(v Qo) l=f'Qo

The boundary conditions at the vortex core follow
from the space and time derivatives of the phase
2eX= 8:

A

Qp- —(2er) e, ,

28 XBO + —,
' 1 —

o rdr . 47

Subtracting the two right-hand sides it follows that

f (2e)XBp) rdr= ,' f -(1 fp) rdr-. (48)

We need an additional similar identity in order to
evaluate the quantity j(sf/pt) dU/L = ve f(vfo) rdr:

f (vfo) r dr = —ffo v for dr

Comparing these equations we see that the solution
when t = X is P=v ~ Qp. From this solution we find

h = —v(v Q )+(v v)Q,
= —vxvxQ =-vxBp. (45)

Taking the divergence of this equation it follows
that p = v ' j0

To discuss the dissipation rate we wish to re-
write our expression Eq. (23) in terms of H„. For
this purpose we use some identities proved using
the static GL equations for the equilibrium solution
in a book on type-II superconductivity:

4e]'X'H„= f (1 f',)rdr—

P- —(2er) 'v e, . (45) = ffoI& 'fo(1 fo) 4e'Q-ufo]«— r
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FIG. 2. Equal-interval
contours of the value of the
magnetic field B& generated
in the &» direction by the
backflow current j& are dr'awn.
The + and —signs indicate
the local maxima and minima
of B&. These contours are
also streamlines of ji„
which flows in the direc-
tions indicated by the
arrows. The vortex
centered at the origin is
moving in the &„direction
as forced by a uniform
transport current j& flow-
ing in the &„direction. 8&
vanishes on the line x=0
and on the perfect circle
r = rp intersecting this line.
The values of B& are calcu-
lated from Eq. (42) for
r ~ 2$ and linearly extrap-
olated to vanish at the
origin for smaller r where
Eq. (42) is invalid. The
parameter values g =10
and 2jq/O. vH, q =0.1 are
usedo
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= f [& (fp-fp)+4e'X'Qp V&&(V ~Qp)]hdh

= f [( '(fPp-fp)+4e'~'Bp]hdh —2eX Bp(0) . (49)

Putting these results into Eq. (23), noting Eq. (29),
we get

j, =(e/vv)~ W—dV

= sg(0) —eru((+m (Bg(0) —B.J
~ ~

+(ev/Be) X )(1 —X /g )
I

(fp-f())hdh . (50)
a p

When X=& we can use 8(0)=vBp(0) and therefore
we have

jt (7vaci ~ (51)

Since the flux quantum is e/v, the ratio of the
Qux-flow resistance to the normal-state value is
just

R = (B)/H„.
The initial slope

dR H~
"d(B)( &p&p H„

(52)

(53)

is (&, &, or =) to unity when v is (&, &, or =) to
g, = 1/W2. Thus, as in the high-)(: case, this slope
and the sign of the curvature necessary for R to
reach unity smoothly at H,2 depend on the ratio of
K to $/W. For the physical value 1'/f = 1/~12 or
a = 1/412 if &= I, the slope is less than one in both
this low-g and the previous high-g limit. An
isolated vortex with a single-flux quantum will be
the thermodynamically preferred solution for this
low-& value only for thin films perpendicular to B.

The backflow current at the origin is obtained
directly from Eq. (50) using j(0) = a 8(0):

j„(0)=j(o)-j,
= —.'ev(1+ X'/g')[Bp(O) —H., ]

+(ov/8e& X )(1 —X/g ) f fp(l-fp)hCh.
(54)

Since Bp(0) —H„has the same sign as ~ —~, , it fol-
lows that jp(0) has the same sign as )( —)(, if p = X

and has the same sign as &
—X if g = g,. This result

is consistent with our previous result that jp(0) is
positive, in the same direction as j, , when X=& for
p»1. jp(0) vanishes at z=z„X=p. We will show
in Sec. VI that, unlike the high-g case, the backflow
vanishes everywhere for this special case where
jp(0) vanishes.

For the remainder of this section we wish to ap-
ply our new identity Eq. (49) to the high-z limit,
where we find that the widely quoted numerical work
of Abrikosov must be wrong. In the high-g limit

Abrikosov found

B()(0)= g (in'+ Cp)H, p,

H,~
= 2(( (in'+ Cq)H, p .

(55)

VI. FLUX FLOW WITHOUT BACKFLOW WHEN ~ = g = $/W

Finally, we examine the one special case where,
as we will show, the backflow current j~ vanishes
not just at the origin but everywhere in the plane
perpendicular to the external magnetic field. Al-
though this special case is not physical for our sys-
tem since g 4 f/))12, it is especially interesting
since we manage to get a solution for all fields,
not just in the low- and high-field limits. (Of
course, the demagnetization coefficient of the sam-
ple must be greater than zero for the field to
penetrate below H, 2, since H, g

= H,~ = H~p when /&

=1/V 2.)
For the static case with v = 1/v 2 it is already

known that the GL equations for the field and order
parameter become the same if the solution for Bp

He estimated numerically that Cp=-0. 18 and C&

=+0.08. Combining our identity equation (49) with

Eq. (47) we get

f (Vf())'hdh=2eX'[2H, g
—B()(0)]-4 eX' f Bphdh.

(58)
Our result for the last integral above, calculated
in Eq. (2V), is correct for large z independent of
the approximation used for fp. Consequently, we
find

f (Vfp) hCh= C~ —C() ——,
' . (57)

p

The integral on the left-hand side is positive de-
finite. Using Schmid's approximation fp=h/(h
+$ ) ~ its value is —,', whereas, according to the
numerical work quoted by Gor'kov and Kopnin, it
equals 0. 247. Using Abrikosov's values for Cp and

C~, the right-hand side of Eq. (5V) is —0. 24, not
even positive. At least one of Abrikosov's numbers
must be seriously in error.

Schmid's approximation actually gives a worse
result for the identity. From Eq. (25) we find
Cp=+0. 1. To evaluate H„ from the first identity
of Eq. (27), we use fp=h/(h +$ )'~ in the region
h& (X$)~~P and the asymptotic result from Eq. (40),
f,=l —~ 'K&(h/X)', in the region h&(X$)' '. We then
obtain C~ = —0.4. The right-hand side of Eq. (5V)
then gives —1.0, worse than Abrikosov's value.
Evaluation of our result for the slope dR/d(B) when
X= f and comparison with Eq. (53) give another dif-
ferent value C& =+0.9. Thus Schmid's approxima-
tion is not enough to obtain the corrections to the
leading in' behaviors. One of us (C.R. H. ) has de-
vised a program for calculating Cp and Cg numeri-
cally as well as f(Vfp) hdh and hoPes to rePort con-
sistent results later.
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= H, p(1 —fp) is used, leaving a single equation to
determine fp:

f,v'f, + $ 'f', (1 f',-) - (vf, )'=0 . (58)

We will show that this same solution is also valid
for the translating vortex to order v and that f
and 8 are not changed so the vortex does translate
rigidly without backflow.

Our basic set of equations is still Eqs. (10)-(12).
We should point out that since we are ignoring the
effects of the magnetic field generated by the trans-
port current j, in order to get a two-dimensional
solution, Eq. (12) for the current is connected with
the magnetic field for our derivations by Vx 8=4+
x(j —j,). Eliminating g from Eqs. (10) and (12)
in terms of f and I3 and neglecting terms of order
v, we get

vf+& 'f(1 -f')+r(v v)f

=4 ex'f '[vxB-4v(oh -j,)]'
= 4e A. f p(v x B) ~ [v x B—Bv(og - j,)], (59)

vx(vxB)+X 'f'B —yg'X (v v)B

The right-hand side of this equation is the source
which determines the magnitude of bf. It can be
simplified by remembering that since X=&, 8
= —v~BO, and by using the solution for Bo=e,0,2
x(1-fp), since v= 1/W2:

—Bred fp e (vfp)xone

=Bmeg fp e, ~ (Vfp)x. (ovxe, H, p)

—yfpe (Vfp) x (v x e,) . (68)

We used the definition of &p= 4vXpo/y to replace
Bve& oH, p by y since $/v 2=x = t U.sing a vector
identity, the last term in Eq. (63) exactly cancels
the last term in Eq. (62). Therefore, the right-
hand side of Eq. (62) becomes simply

Bve) f p e, (Vfp)x[j, +ovxe, H,p] . . (64)

The term in brackets is a constant independent of
Its value can be determined by examining the

equation for bf near a vortex core at the origin of
the coordinate system. As &-0, f must vanish.
Since fp vanishes, so must bf. This is only possible
if the constant vanishes. Therefore, we find

=2f 'vfx [vxB-4v(oS -j,)] .
j, = —ov x e, FI,p = —ov x Bp(0) = oh (0) ~ (65)

For a two-dimensional solution with 8= a, b the
equations can be simplified using various vector
identities:

Vx (Vx B)= —egv b,

(vx B)'= (vb)',

(vf) x (v x B)= —e,(vf) (vb),

(Vx B) ' (h or j,) = —e, ~ (Vb)x (S or j, ) .

(60)

If we now put in the trial solution b = H, (1 p—f ),
Eqs. (59) become (after multiplying the first by

f and dividing the second by 2H,p):

fv'f+! 'f'(1 f)+rf(v v)f-

=2g'(vf)'+16pev 2o'f 'e, (Vf)x(-og+j, ),
fv'f+ l~ 'f'(1 f')+rt'& 'f(v -v)f (61)

=(vf)'+ Bove" ~2-'x' f'e, (vf)x(-oS+jg) .
These two equations become identical and the trial
solution for b is valid only if both K = I/v 2 and A = g.
This result is incidentally a proof of the result
quoted earlier in the static case for arbitrary two-
dimensional solutions.

The task remaining is to show that f=fp. For
this purpose we let f=fp+bf, where bf is a possible
correction of order e.

fpv 6f+ (v fp)bf - 2(vfp) . vbf + 2$ fp(l —2fpg)bf

=Bve)'f p'e ~ (Vf)x(j, —oh) —yfp(v ~ V)fp . (62)

The source term therefore vanishes everywhere,
and bf = 0. There is no distortion off and no back-
flow (8,, =0).

Using Eq. (65) we can find 8, the ratio of the
flux-flow resistance in the superconducting state
to the normal-state resistance:

It=o(& &/j, = (H &/H, p,

H„dH/d (H &=1.

These relations are valid for all fields between 0
and H,~ and are consistent with both our high- and
low-field limiting results.

VII. CONCLUSIONS

We have found the dissipation rate and backQow
character of a vortex line moving in the plane per-
pendicular to the magnetic field for various ratios
of the screening lengths and g values, illustrating
the backQow in the low-field region for the first
time. More work remains to determine the com-
plete three-dimensional structure of moving vor-
tices including their bending, the screening of the
transport current between vortices, and the opening
up of the vortex lines at the sample surfaces, which
will allow an explicit verification of the assertion
made at the end of Sec. II. The thin-film limit also
deserves further study owing to the importance of
the boundary conditions on the fields at the sample
surfaces.
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Thermal Effects at Superconducting Point Contacts
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In this paper we have calculated I-V curves of superconducting weak-link constriction
junctions by assuming that there is a region of normal material which tends to spread with
increasing power levels. The causes for the spreading of the normal resistance are twofold.
One is the increase of the current-density distribution and the other is the increase of local-
ized Joule heating at the contact as the total current is increased. The resultant rise in tem-
perature of the link above the bath temperature, over the range of the I-V characteristic, is
found to be significant. Using material constants that are representative of bulk Nb, we found
that the calculated I-V characteristic is very similar to several experimentally observed Nb

point-contact curves. The spreading normal-resistance analysis has suggested a model to
explain the I-U characteristic of a superconductor-normal-metal (S-N) point-contact system.
A calculation hasindicatedthat large excess temperatures are also present at the contacts
when biased in the millivolt region. These findings have prompted us to review several pub-
lished experiments with S-N contacts.

I. INTRODUCTION

Current-voltage (I V) character-istics of super-
conducting weak-link point-contact or thin-film
constriction junctions usually exhibit a zero-volt-
age current followed by either a continuous or dis-
continuous transition into a nonlinear resistive
region. ' 4 The types (Ohmic, flux flow, radiation)
of dissipative mechanisms active in this region and
the proportions which they contribute to the local
resistance are difficult to distinguish in experimen-
tal situations. ' It has been well documented in the
literatures that superconducting phenomena can be
present in the resistive state.

In the theory of resistive yet superconducting
point contacts at a nonzero voltage the total trans-
port current is generally assumed to consist of a
superconducting and a normal component. s The
superconducting component consists of Cooper
pairs and is dissipative because of the emission of
photons. The normal component consists of quasi-
particles and is also dissipative because of Joule
heating. In the simplest approximation such a point
contact may be represented~' by an ideal Joseph-
son element, in parallel with a shunt conductance G
that exhibits Ohmic behavior.

Several authors have calculated the I- V charac-

teristics that result from this model when it is
modified by the circuit capacitance and inductance.
Scott has found satisfactory agreement between
the experimental observation of hysteresis in the
I-V characteristics of thin-film Pb-PbO-Pb sand-
wich junctions and the theoretical predictions of
Stewart and McCumber. Although this theory
gives good agreement with experiment in the case
of some types of weak-link junctions, "' in the case
of point-contact junctions poor agreement'3 with ex-
periment is obtained, especially at large biases.
This inconsistency may be attributed to an over-
simplified picture of the contact model.

To explain their I- V curves with weak-link junc-
tions (both thin-film constrictions and pressure con-
tacts) several authors'3 have suggested that the
super conducting region adjacent to the contact
interface is driven normal by the large current
densities localized there, while the surrounding
material with lower current density remains super-
conducting. This process is accompanied by Joule
heating at the contact. As current through the con-
tact is increased, the Joule heating and current
density in the contact region are increased, result-
ing in a spread of the region of normal material
and hence an increase of the Ohmic resistance. In
the models of Stewart and McCumber the shunt con-


