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A discussion of the effect of lattice vibrations on the effective electron—ion-core elastic
scattering vertex is given using the model of Duke and Laramore. The renormalization in-
troduced by the lattice vibrations can substantially increase the number of partial waves
necessary to describe this scattering. The vertex approximation using the s-wave part of the
phonon renormalization factor and phase shifts from a realistic potential to describe the elec-
tron—rigid-ion scattering is compared with the vertex approximation using the full phonon re-
normalization factor and the constant phase shift s-wave model to describe the electron—
rigid-ion scattering. Model calculations of low-energy—electron-diffraction (LEED) intensity
profiles are presented for a system having the geometrical parameters of Al(100), and effec-
tive Debye temperatures are obtained for the Bragg peaks in the intensity profiles. The de-
pendence of these effective Debye temperatures on the ineleastic-collision mean free path and
on the characteristic falloff of the vibrational amplitude of the ion cores with distance from
the surface is investigated. Even for a constant mean free path the @ ! exhibit a pronounced
energy dependence. By comparing the calculated ®D’" with the experimental measurements
of Quinto et al., a crude estimate of the inelastic-collision mean free path in the surface re-

gion of aluminum is obtained.

I. INTRODUCTION

It is well known that lattice vibrations introduce
a temperature dependence into the intensities of x
rays' and neutrons® scattered by a solid. Since the
x rays and neutrons interact only weakly with the
ion cores of the solid, their scattering can be
treated in linear response theory and so the tem-
perature dependence of the scattered beams can be
simply related to a Debye temperature® which
characterizes the vibrational amplitudes of the ion
cores in the “bulk” region of the solid. Low-ener-
gy electrons, on the other hand, interact quite
strongly with the ion cores of the solid and also
with the high-energy electronic excitations (e. g.,
plasmons, interband transitions). These effects
greatly complicate the interpretation of the tem-
perature dependence of the elastic scattering in-
tensity for electrons. *'> However, it is an experi-
mental fact that the temperature dependence of the
intensity of maxima in low-energy—electron-dif-
fraction (LEED) intensity profiles can be described
in terms of an effective Debye temperature. 6~*° A
common feature of these observations is that in a
given intensity profile the low-energy maxima are
characterized by a smaller effective Debye tem-
perature @ than the higher-energy maxima. This
smaller ®@%! for the lower-energy peaks is indica-

tive of a larger amplitude of vibration for the sur-
face atoms than for those atoms in the “bulk” re-
gion of the solid. Duke and Laramore®'® investi-
gated the consequences of lattice vibrations in a
theoretical calculation of the LEED intensity pro-
files and showed that for the range of electron en-
ergies commonly used in LEED, their main effect
was to renormalize the effective electron-ion-core
elastic scattering vertex, making it temperature
dependent. They investigated the effects of a vi-
bronically inequivalent surface layer® on the tem-
perature dependence of the elastic intensity pro-
files and showed that although the temperature de-
pendence of the peaks in the intensity profiles
could be described in terms of a @%?, this effec-
tive Debye temperature could not be simply related
to the vibrational amplitudes of either the surface
or the bulk ion cores. The ®@%! obtained from this
analysis depends as well on the relative scattering
strengths of the surface and bulk ion cores and upon
the inelastic mean free path which determines the
relative sampling of the surface and bulk regions
of the elastic beam.

Recent model calculations indicate that for a
clean surface it is reasonable to use the same po-
tential to describe the interaction between the beam
electrons and both the surface and bulk ion cores of
the solid. The rationale for this is that the electron
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energies and experimental geometry used in LEED
mean that large-angle scattering events dominate
the features of the LEED intensity profiles. These
scattering events involve large momentum trans-
fers and hence probe the part of the electron-ion-
core potential determined by the atomic core lev-
els. 22 This part of the potential is not greatly
affected by the local screening of the ion core and
hence is the same whether the ion core is located
on the surface of the material or in the bulk. Thus,
for a clean material the “unknown” quantities on
which a measurement of ®%(E) may shed some
light are the imaginary part of the electronic self-
energy Im¥ in the surface region and the vibrational
amplitudes of the ion cores in the surface region.
For a given model of ImZ the data can be used to
extract information about the vibronic properties
of the surface atoms; or, conversely, for a given
model of vibronic properties of the surface atoms,
the data can be used to extract information about
ImZ in the surface region. Unfortunately, neither
of these quantities is accurately known for the case
of a metal and so it is necessary to determine both
quantities in a self-consistent manner. Such a
program would require analyzing a rather large
block of LEED data over a wide range of tempera-
tures, energies and angles and is outside the scope
of the present paper. Here we merely wish to ex-
amine some of the features of LEED calculations
which use different approximations for the renor-
malized electron-ion-core elastic scattering ver-
tex.

The vibronic renormalization of the electron-
ion-core elastic scattering vertex significantly al-
ters the angular dependence of the vertex and this
substantially increases the number of partial waves
necessary to describe the vertex. One approach
that has been taken'® to avoid this difficulty is to
accurately model the electron-rigid-ion-core por-
tion of the vertex and use only the s-wave portion
of the phonon renormalization factor. Although
this procedure produces calculated intensity pro-
files that are in qualitative agreement with experi-
mental data we shall see that it does not quantita-
tively describe the temperature dependence of the
LEED intensity profiles. Another approach is to
simply parametrize the electron-rigid-ion portion
of the vertex in terms of the constant-phase-shift
s-wave model® %28 and then use the available par-
tial waves to accurately model the vibronic renor-
malization factor. This procedure restricts our
analysis to only the primary “Bragg” peaks? but it
does seem to provide a reasonable description of
the temperature dependence of their intensities.

We shall also see that although it is commonly
thought that the energy dependence of ®%* denotes
an energy-dependent inelastic mean free path, this
is not necessarily the case. Even for a constant
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inelastic mean free path, a significant energy de-
pendence to @Y can occur when the vibrational
amplitude of the surface atoms is much larger than
those in the bulk. For such a case the effective
vibrationally renormalized scattering cross sec-
tion drops off much faster with increasing energy
for the surface atoms than for the bulk atoms, and
so with increasing electron energy the contribution
to the LEED intensity of the surface atoms relative
to the contribution of the bulk atoms decreases.
This effect is evident in Tables III and IV of Ref.

5 although it is not emphasized there. This paper
also augments the work of Laramore and Duke® in
that rather than calculating the elastic scattering
intensity using the double-diffraction approxima-
tion, ® here we use the full-matrix-inversion meth-
od of solution. % We also investigate the effects of
having more than one atomic layer in the surface
region vibronically inequivalent to those in the
bulk. By comparing the results of our calculations
with the experimental measurements of Quinto et
al. % on A1(100), we obtain a cvude estimate of the
effective inelastic mean free path and hence of ImZ
for this material. We consider only the “Bragg”
peaks®” of the intensity profiles. The ©@%* obtained
for the n=2, 3, and 4 “Bragg” peaks by Quinto et
al. are shown in Table I. These values were ob-
tained using a kinematical analysis of the scattered
intensity assuming a Debye model for the phonon
spectrum of the solid in the temperature range
300-600 °K.

In Sec. II we review the models for the renor-
malized electron-ion-core elastic scattering ver-
tex and for the electronic self-energy which are
used in the calculation. In Sec. III, we present
calculated intensity profiles and effective Debye
temperatures using different models for the renor-
malized electron-ion-core elastic scattering ver-
tex, and in Sec. IV we briefly summarize our re-
sults.

II. DEFINITION OF MODEL

The basic model used in this work has been ex-
tensively described elsewhere, *'°'2% and so here we

TABLE 1. Experimental effective Debye temperatures
(Ref. 28) for the first three Bragg peaks for the (00) beam
for A1(100).2

Peak Energy oyt

(eV) K)
n =2 Bragg peak 26 189
n =3 Bragg peak 69 236
n =4 Bragg peak 134 331

2The incident beam makes an angle of 5° with the nor-
mal to the crystal face, and the scattering plane makes
an angle of 5° with one of the cubic axes in the plane.
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only review some of the salient features. The
main effect of the lattice vibrations is to renor-
malize the effective electron—ion-core elastic scat-
tering amplitude, making it temperature dependent.
The renormalized scattering amplitude for the nth
ion core is given by

b,(Kz, Ky) = exp[~ 3 (kg — ky)* (U2 US) (kg — ky)°]
th (ﬁz, k.l) ’ (1)

where 1-{.1 is the wave vector of the incident elec-
tron, Ez is the wave vector of the scattered elec-
tron, o and B are Cartesian indices and we use the
convention of summing over repeated Cartesian
indices, iI',, is the displacement from equilibrium
of the nth ion, () denote a thermal ensemble aver-
age over the vibrational states of the solid, * and
t,,(Ez,E,) is the scattering amplitude for the nth ion
core when it is held rigid. To carry out an explicit
evaluation of the scattered intensity, it is neces-
sary to decompose the b, into partial-wave compo-
nents. As before, we will use a Debye model to
characterize the vibrational properties of the ion
cores, ’® i, e., we assume that each ion core has a
spherically symmetric mode of vibration, the am-
plitude of which is parametrized by a Debye tem-
perature. Using this approximation,

Ly = k) (UL ULY (ky - ky)*= W(T, 0, M) Ky —k)?,

where @
__8m®
- 2M, kg @)

1 [T\ (%7 x
I . @3
X[4+(®z) J- dxe"—l] (3)
0

In Eq. (3), T is the temperature of the solid, M, is
the mass of the nth ion core, and ®F is the param-
eter describing the vibrational amplitude of the nth
ion core.

The renormalization due to the lattice vibrations
can appreciably change the angular dependence of
the electron-ion-core scattering amplitude and can
greatly increase the number of partial waves
needed to describe b,(K;, k;). Suppose, for ex-
ample, it takes ' partial waves to describe the
angular dependence of the vibronic renormaliza-
tion factor, i.e.,

w(T, @}, M,)

exp[ - (K; - K,)% W(T, @, M,)]
'l
=2 Wik, T, 0%, M,) P,(cosby,) , (4)
1=0

where 6, is the angle between ﬁl and Ea, and &

= |k, | = 1K,l. The value of I’ needed in this expan-
sion depends upon ®}, M,, T, and the energy of the
electron. The more sharply peaked this quantity is
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about 6,,=0, the more partial waves will be needed
for this expansion. As a practical matter for the
parameters used in this work, we need to have I’
at least equal to 2, t,,(l-fz, 1-51) is also expressed in
terms of partial-wave components. These are ob-
tained from a model of the electron-ion-core in-
teraction potential. Suppose that it takes I” partial
waves to adequately describe this part of the inter-
action, i.e.,
Lo

t(Kz, K1) = 20 ] (k) P,(cos6y,) . (5)
1=0

Since b,,(l_fa, El) is the product of the quantities given
in Egs. (4) and (5), a partial-wave decomposition
of it would require

T=1'+1" (6)

partial waves. Using Snow’s potential® to describe
the electron-ion-core interaction, we need I” at
least equal to 2 to accurately model ¢,(K,, K;) for
aluminum in the energy range under considera-
tion. 22 It thus requires at least /=4 partial-
wave components to accurately model the renor-
malized scattering amplitude. Unfortunately, the
computer code available to us at the present time
has only the capability of using I <2 partial waves,
and so we are forced into compromising either our
model of t,,(Ez, 1_{'1) or the vibronic renormalization
factor. This problem did not come up in earlier
work!®? on aluminum which was compared with
experimental data taken at only room tempera-
ture. ¥-%% The relatively large value of @7 =426°
used in the theoretical calculations'®?? also helped
to make the vibronic renormalization factor not
too sharply peaked in the forward scattering di-
rection, and this reduced the number of partial-
wave components needed to describe this part of
the effective elastic scattering vertex.

In Ref. 5 it was shown that the effective Debye
temperature obtained from the temperature depen-
dence of the LEED intensity profiles generally lay
between the Debye temperatures describing the
vibrational amplitudes of the bulk and surface ion
cores. The @(E) establish a “trend line” which
shows the ®@%*(E) increasing to the bulk ®, with in-
creasing E. Multiple scattering effects can intro-
duce about a 15% fluctuation about this “trend line.”
For the Debye temperature parametrizing the vi-
brational amplitude of the bulk ion cores, we take

®5=380°K . (7a)

This is in accord with the work of Flinn and Mc-
Manus® which shows ®, for aluminum at 7% 300 °K
lying in the range (380-390) °K for both x-ray and
heat-capacity measurements. We will use this
value of ®5 instead of the value®® ®5 =426 °K which
was used in Ref. 5. From the work of Quinto et

al. ,? we see that we must have
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FIG. 1. Plot of the phonon renormalization factor for
the electron—ion-core elastic scattering vertex as a func-
tion of scattering angle. The renormalizationfactor which
is shown as the solid line was calculated using the Debye
model for the ion-core vibration and the parameters
shown in the figure. The s-wave approximation to the
renormalization factor is shown as the horizontal dashed
line. The approximation using three partial waves is
indistinguishable from the exact result.

©55189°K, (7b)

and so we take ©3 =180 °K for the Debye tempera-
ture parametrizing the vibrational amplitude of the
surface ion cores. The only theoretical calcula-
tions of the vibrational amplitude of the surface
atoms are based upon two-body central force mod-
els to describe the interaction between the ion
cores. 3%=%° These calculations show that the vi-
brational amplitude of the ion cores falls off very
quickly to the bulk vibrational amplitude with in-
creasing distance from the surface. It is not clear
to what extent these calculations apply to metals,
but we shall first consider the case where only the
surface ion cores have a vibrational amplitude dif-
ferent from the bulk value. Taking ©3=180°K and
®3 =380 °K means that in the high-temperature
limit the surface atoms have a mean square vibra-
tional amplitude about 4. 4 times as large as the
bulk ion cores. This is not an unreasonable figure
compared with the results of the theoretical cal-
culations, 3640

The final quantity that we need to specify for our
calculation is the electron self-energy which we

take ag® 19:22,25,26,41

Z(E)= -V, —il(E), ®)
where

T(E)= 1Y/ mrg) [@m/m) (E+ VY2, (9)

In Egs. (8) and (9) E is the energy of the electron
outside the crystal, A, is twice the inelastic-col-
lision mean free path, and V, is the inner potential
which for aluminum® '*%? we take as 16.7 eV.

III. NUMERICAL RESULTS

In Fig. 1, we show a plot for a bulk ion core of
the vibronic renormalization factor given in Eq.
(4) as a function of scattering angle for 7'=400 °K
and E + V3=100 eV. The s-wave approximation to
the renormalization factor

e~® 0 (T, @, , M)~ W(k; T, ®p, M),  (10)
where

W(k; T, ®p, M)= e (sinh2Wk?)/2wk?  (11)
and

W= W(T, ®,, M) (12)

is shown as the horizontal dashed line in Fig. 1.
We first consider the situation where we use the
1=0, 1, 2 phase shifts'®?? from Snow’s potential?® 4
to describe the electron-rigid-ion scattering am-
plitude defined in Eq. (5) and use the s-wave part
of the vibronic renormalization factor to describe
the effect of the lattice vibrations. This is the
procedure used by Tong and Rhodin. !* An example
of an intensity profile calculated using this model
of the electron-ion-core vertex is shown in Fig. 2.
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FIG. 2. Calculated intensity profile for the specular
beam using the I =0, 1,2 phase shifts from Snow’s poten-
tial (Ref, 29) and the s-wave approximation to the vibronic
renormalization factor. The calculation is for a normally
incident beam and uses the parameters indicated in the
figure. The primary “Bragg” peaks are labeled for iden-
tification purposes.
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FIG, 3. Plot of the logarithm of peak intensity vs tem-
perature for the peaks shown in Fig. 2. The intensity
units are arbitrary.

The electronic parameters are the same as used
in previous work, **# put note that the secondary
structure of the profile in Fig. 2 is greatly re-
duced relative to the secondary structure obtained
in the previous calculations. % The secondary
structure is fairly prominent in the experimental
data®®30:3! and so the calculation does not correct-
ly reproduce this feature of the data. This is at
least partially due to the use of the s-wave approx-
imation for the vibronic renormalization factor.
If the angular dependence of this factor were cor-
rectly described, then the forward scattering con-
tribution of the surface atoms (8,,~0) would not be
diminished by the vibrational motion (no matter
how large the vibrational amplitude) and then sec-
ondary structure could result from multiple scat-
tering between the surface atomic layer and the
bulk atomic layers. Using ®5=180°K and the s-
wave approximation to the vibronic renormaliza-
tion factor reduces the forward scattering compo-
nent of the surface too much to allow enough of
this multiple scattering to occur. When a substan-
tially larger value of ® is used, '*% this scatter-
ing is not too greatly reduced and secondary struc-
ture is seen in the calculated profiles. We con-
sider next the primary Bragg peaks which super-
ficially appear to be correctly described by this
model.

To obtain an effective Debye temperature we
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simply see how the peak intensity changes with the
temperature of the solid. We neglect any anoma-
lous thermal expansion in the surface region but
take the bulk lattice parameter for aluminum ap-
propriate to the solid temperature. “ The effec-
tive Debye temperatures are obtained by plotting
the logarithm of peak intensity vs temperature as
is shown in Fig. 3. In the kinematical approxima-
tion the intensity of a “Bragg” peak is assumed to
behave like

I=Lyexp[-2W(T, 0%, M) (k;-K))’] , (13)
where in the high-temperature limit
W(T, ®p, M)~ 3% 2T/2Mk 0% . (14)

Using the input inner potential of 16.7 eV, we ob-
tain the values of ®$ff shown in the x,,=8 A column
of Table II. Note that there is a substantial ener-
gy dependence to these @%* with ®F(E) increasing
as E increases. The energies of the peaks are
measured external to the crystal. These are
somewhat lower than the experimental peak posi-
tions which are given in Table I. Part of this shift
is due to the fact that the experimental curves are
for an angle of incidence of 5° while the theoretical
curves are for a normally incident beam.

Effective Debye temperatures were obtained in
the same way for =4 A using the same vibronic
parameters and those are also shown in Table II.
Note that although the ®%! increase with increas-
ing peak energy, the values are much too large
when compared with the experimental values in
Table I. The ®%' for the n=3 and 4 Bragg peaks
are even larger than ®5. This discrepancy is due
to the use of the s-wave approximation to the vi-
bronic renormalization factor. The origin of the
difficulty can readily be seen on inspection of Fig.
1. Single scattering events make a significant

TABLE II. Effective Debye temperatures obtained
from a model calculation which describes the effective
electron—ion-core elastic scattering vertex by using the
1=0,1,2 phase shifts from Snow’s potential (Refs. 29 and
42) and the s-wave approximation to the vibronic renor-
malization factor. Parameters of the calculation are
@5 =180°K, ©®8=380°K, V;=16.7 eV with the geometrical
parameters corresponding to Al (100).

Energy® Nee=4 A A=8 A
2Peak (eV) °K) (K)
1
(n =2 Bragg peak) 19 307 380
2
(n =3 Bragg peak) 65 401 450
3
(n =4 Bragg peak) 127 473 491

2Peak position used in determining effective Debye
temperature (position at 400 °K).



1102 G. E.

ALUMINUM (100) LATTICE
o
. = =
)\ee 4A, VO 16.7 eV, do 12

T30k, 6 - 180K, o8 s’k 4

INTENSITY (arbitrary units)

x 10

1 | I 1 1
0 20 40 60 80 100 120 140 160

ENERGY (eV)

FIG. 4. Calculated intensity profile for the specular
beam using the constant-phase~-shift isotropic scatterer
model for the rigid ion scattering amplitude (Refs. 25
and 26). The calculation is for a normally incident beam
and uses the parameters indicated in the figure. The
primary “Bragg” peaks are labeled for identification
purposes.

contribution to the “Bragg” peak intensities and
considering specular reflection of a normally in-
cident beam, these events correspond to a scat-
tering angle of ;,=7. At this angle the true pho-
non renormalization factor is substantially small-
er than the s-wave approximation. At a given
temperature and beam energy the s-wave approxi-
mation for a given ®, corresponds to the 6y,=7
value of the renormalization factor for a much
larger ®,. The kinematical analysis of the tem-
perature dependence of the scattered intensity thus
gives rise, especially for large-angle scattering,
to @%?! that are erroneously large. The use of this
approximation gives much too weak a temperature
dependence for the “Bragg” peak intensities for
large-angle scattering. Hence, the s-wave ap-
proximation for the vibronic renormalization
factor does not quantitatively describe the be-
havior of either the primary or the secondary
peaks in the intensity profiles.

Let us next consider the other limiting case
where we use a simple constant-phase-shift s-wave
model to describe the scattering properties of the
rigid-ion core and accurately describe the vibronic
renormalization factor. The electron-rigid-ion

LARAMORE
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scattering amplitude is thus taken as® 264!

t,(Ky, Ky) = £, (k) = (milt ¥/ mk) (e¥0n- 1) , (15)

where we use 5,= 37 for both the surface and the
bulk atoms. This keeps the rigid-ion scattering
properties of the surface and the bulk-ion cores
the same. The vibronic renormalization factor is
then written as

s s 2
o~ &1k W o 2P [Ag Py(cosbyy) + Ay Py (cosby,)
+A2P2(003912)] . (16)

Equating the left- and right-hand sides of Eq. (16)
at 6;,=0, 37, and 7, we obtain

Ay= 3(cosh2r®W+2) , (17a)
Ay = sinh2k%W , (170)
Ap=%(cosh2r®W-1) . (17¢)

For the parameters used in Fig. 1 the fit using
Eqs. (17) was indistinguishable from the exact re-
sult. The differences between the left- and right-
hand sides of Eq. (16) are not appreciable for any
of the parameters used in this paper.

An example of an intensity profile calculated us-
ing Egs. (15) and (16) to describe the effective
electron-ion-core elastic scattering vertex is
shown in Fig. 4. This calculated intensity profile
exhibits the characteristic failings of the constant-
phase-shift s-wave model®'% in that (a) only the
primary “Bragg” peaks are described in an ap-
proximately correct way, (b) the calculated re-
flectivity diverges as E~0, and (c) the higher-en-
ergy “Bragg” peaks are greatly reduced in inten-
sity relative to the lower-energy “Bragg” peaks.
Nevertheless this simple model describes the
temperature dependence of the “Bragg” peak inten-
sities well enough to provide some insight into the
experimental measurements.

In Fig. 5, we show a plot of the logarithm of peak
intensity vs temperature for the peaks in Fig. 4.
The values of ®%f obtained from these slopes are
shown in the A,,=4 A column of Table IIl. Effec-
tive Debye temperatures were obtained in the same
way for X,,=2 and 8 A for the same vibronic pa-
rameters, and these are also shown in Table III.
The positions of the “Bragg” peaks are somewhat
lower than those listed in Table II. Using this
model the @' lie between ®3 and ®5 as expected.
For a given 2, the ®@3* exhibit a pronounced ener-
gy dependence with the ®%! increasing with in-
creasing energy. This is because the vibrational-
ly renormalized scattering amplitude of the sur-
face atoms decreases relative to the vibrationally
renormalized scattering amplitude of the bulk
atoms with increasing electron energy. Thus, the
relative surface-to-bulk contribution to the scat-

.tered intensity decreases with increasing electron
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energy and we see a ®%* changing from a value
gy D

more characteristic of the surface to a value more
characteristic of the bulk.

Just as in Ref. 5, there is a strong dependence
of ®@%* for a given peak on X,, with @} moving
closer to ®3 with increasing \,,. Even for 3, as
small as 4 A, the calculated ®%' are larger than
their experimental counterparts with a ), (E) be-
tween 2 and 4 A being indicated for energies near
the »=4 Bragg peak. One might be tempted to al-
low 2,, to be energy dependent and obtain values for
it by fitting to the observed ®%*. However, this is
only valid to the extent that the vibrational proper-
ties of the ion cores in the surface region are
known. To illustrate this we consider the situation
where the surface ion cores are characterized by
®% =180 °K, the ion cores in the second layer are
characterized by ® {,a’ =280 °K, and the ion cores in
the remaining layers are characterized by the bulk
value ®5=380°. Effective Debye temperatures for
the peaks in this case are shown in Table IV.
Comparing corresponding @jf* between Tables III
and IV shows that the shape of the profile for the
decay of the vibrational amplitude to the bulk value
can appreciably affect the values of @5 (E). Com-
paring Tables I and IV still indicates Xe.<4 A for
E=~60 eV but gives the possibility of 4 A<x,,<8 A
for E~120 eV. One thing that should also be no-

LOGARITHM OF PEAK INTENSITY

| 1
300 350 400 450
TEMPERATURE (°K)

FIG. 5. Plot of the logarithm of peak intensity vs tem-
perature for the peaks shown in Fig. 4. The intensity
units are arbitrary.

TABLE III. Effective Debye temperatures obtained
from a model calculation which accurately describes the
vibronic renormalization of the electron—ion-core scat-
tering amplitude but uses only s waves to describe the
scattering properties of a rigid ion core. Parameters of
the calculation are ®3=180°K, @5=380°K, §,=4r,
Vy=16.7 eV with the geometrical parameters correspond-
ing to A1(100).

Energy® A,=28  Ag=4& ,=824
Peak (eV) CK) CK) (K)
1 17 b 235 304
(n =2 Bragg peak)
2 60 233 307 352
(n =3 Bragg peak)
123 304 354 367

3
(2 =4 Bragg peak)

2Peak position used in determining effective Debye
temperature (position at 400 °K).

*The reflectivity boundary conditions wash out the first
peak for this set of parameters.

ticed is that the calculated @5 for the n=2 Bragg
peak are higher than the experimental value even
though @3 is ~10° lower than the experimental val-
ue. This indicates that the lowest experimental
®%* provides an upper bound to ®3 and hence gives
a lower bound to the vibrational amplitude of the
surface atoms. The particular @ needed to give
®% =189 °K for the n=2 “Bragg” peak will depend
both on 2, and on the shape of the profile for the
decay of the surface vibrational amplitude to the
bulk value. We will not further pursue the problem
of the determining 2,,(E) and ®$ using this model
but will wait until it is possible to accurately mod-
el both the rigid-ion scattering properties and the
vibronic renormalization factor.

The measured ©%!(E) do seem to indicate a fair-
ly small value for A, and, if we were to take 2,
~4 A for E+ V=75 eV (which is certainly consis-

TABLE IV. Effective Debye temperatures obtained
from a model calculation which accurately describes the
vibronic renormalization of the electron—ion-core scat-
tering amplitude but uses only s waves to describe the
scattering properties of a rigid ion core. Parameters
of the calculation are ©=180°K, 0%’ =280°K, 05=380°K,
8y=3m, V;=16.7 eV with the geometrical parameters
corresponding to Al (100).

Energy® Mee=4 A Aee=8 A
Peak (V) CK) CK)
1 17 220 276
(» =2 Bragg peak)
2 60 262 316
(n =3 Bragg peak)
3
(n =4 Bragg peak) 123 306 338

2Peak position used in determining effective Debye
temperature (position at 400 °K).



1104

tent with the experimental results), this would
give ImX ~8. 5 eV. This is substantially larger
than the values given by bulk electron gas calcula-
tions****® which are in the range 3—-5 eV. This dif-
ference could be due to surface plasmon losses
which are comparable to bulk plasmon losses. #6:47
Noe =4 A is, however, in agreement with the values
of the inelastic mean free path obtained from
photoemission work in aluminum for electrons
above the bulk plasmon threshold. *®

IV. SUMMARY

In summary, we have discussed the effect of
lattice vibrations in renormalizing the effective
electron-ion-core elastic scattering. It was not
possible to accurately treat the renormalized elec-
tron-ion-core elastic scattering amplitude using
the computer codes presently available to us so we
considered instead the two limiting models for the
renormalized vertex. One limit involved accurate-
ly describing the rigid-ion part of electron-ion-
core scattering amplitude but using only the s-wave
portion of the vibronic renormalization factor. It
was found that this procedure did not accurately
describe the behavior of the temperature depen-
dence of either the primary or the secondary
structure in the intensity profiles. The other limit
that was studied involved using an s-wave model to
describe the rigid-ion scattering and accurately
treating the vibronic renormalization factor. Al-
though totally inadequate for the secondary struc-
ture this approach appeared to at least semiquanti-

G. E. LARAMORE

o

tatively describe the behavior of the primary
“Bragg” peaks in the intensity profiles. We note
in passing that if one is only interested in describ-
ing the qualitative features of the experimental
data, this can often be done using only s waves for
both the rigid-ion scattering and the vibronic re-
normalization factor.*? We obtained effective
Debye temperatures by kinematically parametriz -
ing the temperature dependence of the “Bragg”
peaks. Even though a constant inelastic-collision
mean free path was used in the calculation, it was
found that the @3f* for the Bragg peaks exhibited a
significant energy dependence. This was due sim-
ply to the temperature-dependent renormalization
of the electron-ion-core elastic cross section re-
ducing the cross section for the surface atoms
much more with increasing energy than for the bulk
atoms, which was a consequence of the larger am-
plitude of vibration of the surface atoms. It was
found that ®%* depended quite sensitively on the
form of the falloff of the surface vibrational ampli-
tude with distance from the surface. The lowest
®y* for the peaks in the intensity profile always
lay above the value of @, indicating that the low-
est @3 provides an upper bound on ®. By com-
paring the calculated ®%f with the experimental

‘measurements of Quinto et al. 2 a crude estimate

of Im% was obtained. This was substantially high-
er than the results of bulk electron gas calcula-
tions*"** which did not include the effects of sur-
face plasmons, but are in agreement with esti-
mates reported by Ritchie® from photoemission
work in aluminum.

*Work supported by the U. S. AEC.
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