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Exact Eigenvalues of the Constant-Coupled One-Band Model with a Finite Number of Sites
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The exact eigenvalues (for ground and excited states) of the constant-coupled one-band model
for N& fermions on N sites were obtained. Both electrons (T «0, where T is the coefficient of
the term representing the "hopping energy") and holes (T &0) were considered, and results
were obtained for 2~N&~N and N=2, 3, and 4. Only the N&=2, N=3 and N&=3, N=4with
T &0 cases gave a purely ferromagnetic ground state. These cases also showed a ferromag-
netic state at higher energy. The eigenvalues were calculated as a function of U/T, where U
represents the Coulomb energy of repulsion for electrons on the same site. The total spins
of the states were obtained from their splitting in a magnetic field. The hopping term was
found to be dominant for [ U/T[ as large as one. The calculations support the suggestion that
the ground state is usually antiferromagnetic.

I. INTRODUCTION

A model for certain aspects of magnetic behavior
in transition metals is defined by the Hubbard
Hamiltonian. ' The model defined by this Hamil-
tonian can perhaps more accurately be called the
short-range one-band model. The calculations to
be described were done on a constant-coupled one-
band model. However, for many of our small-
finite-site calculations, every neighbor can be
considered a nearest neighbor, and in this case
there is no distinction between the two models.
Thus many of our results have relevance for the
Hubbard model and therefore should be of some
physical interest. As a model for transition met-
als, the Hubbard Hamiltonian has serious defects;
nevertheless, it has been the subject of consid-
erable literature. A recent review article on the
Hubbard Hamiltonian has been given by Khom-
skiy, ' and Herring has written a comprehensive
review of the fundamental aspects of itinerant
magnetic phenomena. The Hubbard Hamiltonian
has also been related to the occurrence of insulating
and metallic states in transition-metal oxides.

A principal question concerning the Hubbard
Hamiltonian is the nature of the ground state. It
is not clear, for physically interesting cases,
whether the exact ground state of the Hubbard
Hamiltonian is ever ferromagnetic. Kemeny
has rigorously shown that a maximum-spin ferro-
magnetic state alone cannot be the ground state
for systems which contain the same number of
electrons as sites. For this case in the strong
correlation limit, one can argue rather convincing-
ly that the ground state is antiferromagnetic. '
Lich and Mattis have ruled out a ferromagnetic
ground state for a variety of nonphysically realistic
systems. Their results are, however, applicable
to the one-dimensional Hubbard Hamiltonian with
nearest-neighbor (nn) coupling, for which Lich

and Wu have obtained an exact ground-state so-
lution. The state is antiferromagnetic with total
spin zero for an even number of electrons.
Nagaoka" has considered the variation of electron
concentration and finds certain cases in which
there is a ferromagnetic ground state. Nagaoka
finds a ferromagnetic ground state for simple-
cubic, face-centered-cubic, body-centered-cubic,
and hexagonal close-packed structures when the
number of electrons (N, ) is slightly greater than
the number of sites (N), provided I U/TI is suf-
ficiently large. U represents the Coulomb energy
of repulsion for electrons on the same site, and
T is the coefficient of the term representing the
hopping energy. Nagaoka's results have been ex-
tended somewhat by Sokoloff' who argues for their
validity over a wider range of electron concentra-
tion. It should also be mentioned that many people
believe that a ferromagnetic ground state can be
induced if more degeneracy is allowed than in the
narrow s-band Hubbard Hamiltonian, and if intra-
atomic or Hund's rule coupling is included. A
discussion of this point has been given by Van

It is well known that the Hubbard Hamiltonian
with a large value of I U/Tl corresponds to a
localized picture of magnetic moments, whereas
a small value of I U/T l corresponds to a very
itinerant model. Inasmuch as the transition met-
als presumably are best characterized by an in-
termediate value of ~ U/Tl, a study of the eigen-
values of the Hubbard Hamiltonian as a function of
U/T is of some interest. Also, both excited and
ground states are required for the calculation of
the thermodynamic properties; therefore, all
eigenvalues of the Hubbard Hamiltonian are of in-
terest in gaining insight into the model's magnetic
behavior as a function of temperature.

The present paper attempts to understand the
nature of the solutions of the Hubbard Hamiltonian
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Our Hamiltonian in the Wannier representation
can be written

H=T Q C, C .,+UK n„n, —k Z n, o,
e, a', e Qt Qye

(1)
where the first term is the hopping energy, the
second is the Coulomb potential energy, and the
third is the Zeeman energy. The sites are labeled
by e and the spin by a. We assume o = +-,' for
alignment (0) or antialignment (4) of the spins with
the magnetic field h (assumed to be in suitable
units). The creation and annihilation operators
for a fermion on site n with spin g are given by
C ~, and C,. The corresponding occupation num-
ber operator is given by n„,= C, C,. As men-
tioned previously, T is a measure of the ease of
hopping between sites, and U determines the
Coulomb potential energy between electrons with
opposite spins on the same site. The prime on
the sum means to omit the n = n term.

A. Spin Angular Momentum

The z axis is chosen as the direction of the mag-
netic field. The components of spin associated
with the site n can be written

1/o,=-,(n, -n, ), (2)

through the study of a finite number of electrons
distributed over a finite number of equally coupled
sites. Of interest is the effect of U/T and electron
concentration in determining the nature of the
states, with particular reference to the ground
state. The use of a small finite number of sites
and electrons makes it both possible and practical
to obtain exact eigenvalues and eigenstates.

With completely straightforward computer pro-
grams, exact-energy eigenvalues as a function of
(U/T) have been obtained for the 2 (= number of
fermions N&) on 2 (= N), 2 on 3, 2 on 4, 2 on 5,
2 on 6, 3 on 3, 3 on 4, and 4 on 4 cases. Both the
T & 0 (holes) and T & 0 cases have been considered.
The total spin of each state was identified by ex-
amining the variation of the energy eigenvalues
with magnetic field. In principle, our finite
models could be solved exactly by analytical tech-
niques. In practice, the computer provides, for
most cases, a much more practical method of ob-
taining these exact solutions.

In Sec. II a few (well-known) properties of the
constant-coupled one-band model that are relevant
to our calculation are summarized. In Sec. III
the method and results of our calculation are given.
In Sec. IV the results are discussed and a few
suggestions for further work are presented.

II. SOME PROPERTIES OF THE CONSTANT-COUPLED
ONE-BAND MODEL

o O~ ~28(CSg C~4 0!4 Qf) (3)

(4)

The total spin operator of our system can then be
written

B. Electron-Hole Symmetry

We follow the usual procedure and choose T &0
for electrons and T& 0 for holes. ' ' The sign of
T is important because the nature of the ground
state may depend on the sign. U is positive be-
cause it represents repulsive Coulomb interac-
tions.

Although the electron-hole symmetry of the
Hamiltonian is an elementary property, it will be
briefly discussed for clarity. Consider Eg. (1)
with N electrons on N sites. Inasmuch as creating
an electron destroys a hole, we have C ",= C'~„
where the superscripts h and e refer to holes
and electrons, respectively. Thus by the anti-
commutation relations for fermion creation and
annihilation operators, we see that the kinetic en-
ergy for electrons is equal to minus the kinetic
energy for holes. On the other hand, the Coulomb
term + n'„, n', converts to + n", n", +U(N Nz)-
for N„=2N —N, holes. At zero field, if

H, =-iTi Z' c"., c.',.+Up n. , n. ,
Qy A sty

is the Hamiltonian for N, electrons on N sites,
and if the Hamiltonian for N„= 2N -N, holes on
N sites is

H„=+
i Ti Z C".'.C"...+ UZ. n"., n".. .

CLg 0! ~ Cf

then

Hq=H, —U(N —Nq), (8)

which defines the relation between the energy
spectrum for electrons and holes. Note that the
spectrum for N electrons or N holes (on N sites)
is the same.

8 is a valid angular momentum operator because
from its definition it can be shown to satisfy the
appropriate commutation relations. One can also
directly verify that [H, S2]= 0 and [H, S,] = 0, where
H is defined by Eg. (1) and S is defined by Eq.
(5). One can therefore construct eigenstates of
the Hamiltonian that have definite total spin and
definite z component of the total spin. Further-
more, matrix elements of the Hamiltonian between
states that differ in total spin or total z component
of spin must vanish.
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C. Limits of Strong and Weak Interaction

In the extreme strong-interaction limit, T
equals 0, and our Hamiltonian is easy to solve be-
cause it is diagonal in the Wannier representation.
In the extreme weak-interaction limit, U equals 0
and the Hamiltonian can be diagonalized by use of
the Bloch representation. ' Basically, this tech-
nique has been used to find exact solutions for our
finite models in this limit.

Fairly reasonable Hartree-Pock solutions can
be obtained when ! U/T I is very small but not zero.
However, these approximate solutions break the
rotational symmetry of our Hamiltonian, and the
concern here is with exact solutions. For large
!U/Tl, the Hubbard Hamiltonian (when N, = N) can
approximately be replaced by a Heisenberg Hamil-
tonian with antiferromagnetic coupling. This re-
placement does, however, eliminate the highest
energy states.

III. METHOD AND RESULTS OF CALCULATION

A straightforward method of calculation was
used. Basis states in occupation-number space
were chosen, the matrix elements of the Hamil-
tonian for these states mere generated, and the
resulting eigenvalues were computed as functions
of U, T, and h. The basis states were chosen by
specifying n, (here used as occupation numbers
rather than occupation-number operators) and so
were of the form n„n&, n&, n&, ~ ~ ~, where for Nf
fermions g, , n, = N&. For N sites the number
M of NI-particle basis states is given by

(2N)!
(2N —N1)!N1!

We can use an array N(I, Z) to specify all basis
states. A particular state of the basis will be
designated I, and J will refer to the subscripts
that label the occupation number. Thus, for ex-
ample, 8=3 will correspond to 24, and N(I, 3) is
the value of n2, in state I. N(I, Z) will be 0 or 1
for all values of I and J. From the known proper-
ties of the fermion creation and annihilation op-
erators, an explicit expression for the matrix ele-
ments can be derived. Vfe assume all distinct
sites are equally coupled. The kinetic-energy op-
erator T„contributes only off-diagonal terms to
the matrix elements. These matrix elements are

A = Z N(I", Z() + Z N(I', J2) .

I' and I" both range from 1 to M and the sums and
products over the J's range from 1 to 2¹The
Kronecker 5 involving 0(mod2) constrains J' and
J' to differ by an even integer. Physically this
takes into account that the hopping term does not
flip the spin. The Coulomb energy and the Zeeman
energy are diagonal in the Wannier representation.
Thus the matrix elements of the Hamiltonian are
given by

I"&+a'r U ~ N(I', 2I-1)
2N

x N(I', 2J') —51. (I(/2) Z [N(I', 2J' —1) N(I', 2-J)] .
J' -"1

(11)
In the computations, it is useful to realize that
(I'I III I") =(I"I H lI')*.

When the number of fermions, the number of
sites, and T, U, and h, were given, the computer
was programmed to generate the basis states [the
array N(I, Ã)], compute the matrix elements by
E(ls. (10) and (11), and find the eigenvalues of the
resulting matrix. The results of these computa-
tions are presented below.

The major information in our calculations is con-
tained in Figs. 1-3, which are smooth curves of
the energy eigenvalues (E) divided by T drawn
through calculated points at U/T=0, 0.5, 1.0, and
2. 0 with A = 0. Note that the 3 on 4 "hole" case
(Fig. 1) has a "ferromagnetic" ground state. By
ferromagnetic we mean a maximum-spin ground
state, and by "antiferromagnetic" a minimum-spin
ground state. Additional calculations, whose re-
sults are presented in Table I, have been made.
The type of ground state obtained is summarized in
the table. From the additional calculations, only
the 2 on 3 hole case showed a purely ferromagnetic
ground state. Figures 1-3, which are for a four-
site problem, can be considered to represent a
regular tetrahedron of sites with nn coupling. Sim-
ilarly, the three-site case can be considered as an
equilateral triangle, and the two-site ease as a
dumbbell; both cases with nn coupling. In Table I,
the five- and six-site cases are not particularly
physically realistic because of the assumption of
equal coupling of sites.

IV. DISCUSSION AND SUGGESTIONS FOR FURTHER
WORK

where

[(1 (! 1') (!N(1', J' } 5 N (I'g 1) f 0(mod2)

J', P

For Figs. 1-3 we note that the energies of the
states of maximum spin are independent of U/T.
If the number of fermions is less than or equal to
the number of sites, then, by the Pauli principle,
maximum spin is obtained when all fermions are
on different sites. If the fermions are never on
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FIG. 1. The 56 energy eigen-
values (EIVS), E for 3 holes on
4 sites as a function of the ratio
of Coulomb to hopping coefficients
(,U/T) with h=0.
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the same site, they do not experience the Coulomb
repulsion and so their energy is independent of
U. Also, all calculations show a low spin value
associated with the highest energy state, which
might be expected from the association of high en-
ergy with double occupancy of sites.

As mentioned, Nagaoka" has predicted that if
N, is greater than and nearly equal to N (or N„ is
less than and nearly equal to N}, and if the Cou-
lomb energy is sufficiently strong, then the Hub-
bard model for several crystal lattices should have
a ferromagnetic ground state. Although the model
for Fig. 1 corresponds to Nagaoka's conditions
only by analogy, the occurrence of a ferromagnetic
ground state might have been deduced by pursuit
of this analogy. Similar considerations mould
lead one to expect that the model of Fig. 2 would

not have a ferromagnetic ground state. Our re-
sults agree with this expectation. As can be seen
from Table I, our calculations do lend support to
the concept that the ground state of our Hamiltonian
is a purely ferromagnetic state only for special
conditions.

In Fig. 1 the highest spin value occurs both at
the lowest energy and at a higher energy. For
completely localized spins, if the lowest state is
ferromagnetic, the higher states can be con-
sidered to have more spin disorder. Thus, if the
spins are allowed the extra freedom of hopping,
qualitative differences in the distribution of en-
ergy levels are produced. The occurrence of a
maximum spin value at two different energies is
also seen in Fig. 2.

If U= 0, the energy spectrum of N, electrons
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EXACT EIVS, 4 ON 4, NO FIELD,

E/IT l S =0 8=0, betimes S=G, twice

»0 GR T&G

8= I, 3 times

S= 0, 5 times

8= 0, twice

8= I, 6 times

S=0, 5 times

8 = I, 5 times

FIG. 3. E/T vs U/T with h=o
for 4 electrons on 4 sites. This
case involves 70 eigenvalues
{Ervs).

+-8=2

8=0

8= 0, 3 times

8 = I, 3 times
8 = 0, twice

70 STATES

U/)Tl

energies would be 0, U, and 2U. The range of
U/T in Fig. 3 is too small to see this trend; how-
ever, an actual calculation with U/T = 100 showed
a strong bunching of levels about E/T = 0, 100,
and 200. Only the E/T = 100 level showed any ap-
preciable spread, and it was on the order of a 3.
As might be expected, the 2 on 4 case (both signs
of T) showed less variation in the energies as a
result of increasing U than did the 4 on 4 case.
The fermions in this case can more easily avoid
double occupancy of sites. For the N on N case,
the ferromagnetic state is expected to be degen-
erate with the ground state as U/T- ~, because
the ferromagnetic state will have energy zero (no
hopping and no double occupancy), and, when T = 0
(and h= 0), the lowest eigenvalue of the Hamiltonian
is zero. This trend was clearly noted for the 4

on 4 case with U/T =100.
For T &0, the 2 on N calculations showed a

steady decrease of the ground-state energy as the
number of sites N was increased. For T &0, the
2 on 1V calculations with N & 3 had a constant
ground-state energy of —2T corresponding to a
ferromagnetic ground state (degenerate with an
antiferromagnetic state for the N = 4, 5, and 6
cases).

To date, firm conclusions for actual physical
systems cannot be drawn from this type of work.
Vfe need to know the relation between the Hubbard
Hamiltonian and actual physical systems, and how

large to make our finite models so that they will
accurately reflect the behavior of a given property
of an infinite-site model. To answer the latter
question, larger arrays may be considered and the
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Number of
particles

Number of
sites Sign of T,

Type of ground
state~

AF, S=O

F, S=1

AF, S=O

F, $=1
AF, $=0

AF, S=O

F~ $=1
AF, S=O

AF, $=0

F, $=1
AF, S=O

AF, S=O

AF, S=y

F, S=~

AF, S=g

AF, S=O

Number of
times occurs

10

aF means ferromagnetic, and AF means antiferromag-
netic. The calculations were, for the most part, for

I U/T I
~ 2, hut some calculations outside this range sug-

gest that the results in this table are probably valid for
0& )U/Tl «~.

TABLE I. Nature of ground state of finite-site constant-
coupled one-band model.

the Hamiltonian in block diagonal form. This could
be accomplished by construction of basis functions
that are eigenfunctions of S' and S, and are basis
functions for the irreducible representations of
the spatial symmetry group of the Hamiltonian.
However, for practical calculations, the size of
the arrays is still drastically limited.

Other studies can usefully be made. From the
exact energy levels, one can evaluate the partition
function and hence derive all thermodynamic quan-
tities. To date, this has been performed only for
one dimension with nn coupling. It might also be
useful to consider, for finite models, the effect of
generalization of the Hamiltonian to include de-
generacy and Hund's rule coupling. '

The present results may be used as a guide to
check approximation procedures that may be used
later on systems of realistic size. Unfortunately,
an approximation procedure might give good re-
sults on a finite system and fail on an infinite sys-
tem, or vice versa. Nevertheless, the compari-
son of approximations and exact results on finite
systems should aid in a physical understanding of
the approximations.
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