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We report measurements of the low-temperature specific heat of CeB6 and discuss their
significance in the light of earlier studies of this compound. The large specific heat above
the antiferromagnetic ordering at 2. 31 K is interpreted with the aid of a decorated Ising model.
This model permits us to combine exchange and crystal field interactions in a simplified, but
exact, calculation of the thermodynamic properties of a magnetic system including the effects
of fluctuations. The analysis gives independent support to t1:e proposal by Nickerson and
White that the exchange in the crystal field excited state is substantially stronger than the
ground-state exchange in CeB6. We also comment on the possibility of extending such an
analysis to other magnetic rare-earth hexaborides.

I. INTRODUCTION

Cerium hexaboride is a metal with an antifer-
romagnetic transition at 2. 3 K. The trivalent Ce
ions are in the 4f ' configuration, resulting in a
I &I& ground state, which is further split by a cubic

crystal field into a (ground-state) doublet I', and
a quartet I', . With but a single 4f electron and a
well-known crystal field spectrum, CeB6 should
thus be the simplest of the magnetic rare-earth
hexaborides.

The magnetic susceptibility of Ce86 has been
measured a number of times, with consistent re-
sults': The magnetic susceptibility follows a
Curie-Weiss law with a free-ion slope down to
150 K, and rises above the extrapolated Curie-
Weiss value below. Nickerson and White3'4 have
given a theoretical interpretation of the magnetic
susceptibility. Hull' has measured the isothermal
magnetization from 1.74 to 7 K, and risk obtained
the resistivity from 2 to 300 K. The firmest evi-

dence for a I'7 crystal field ground-state assignment
is in the isothermal magnetization measurements. '
At the lowest temperature and highest field
(60 kOe), the magnetization curve is rather flat
and has a value of 0. 74 pa jatom, in good agree-
ment with the 0. Vl p,s /atom expected from a well-
isolated I'~ doublet.

We present measurements of the specific heat of
CeB6 from 1 to 22 K and discuss its significance
in the context of the earlier work on this compound.
Our data were analyzed using a decorated ising
model; the general form of such models has been
discussed by Fisher. '8 Within this framework we
find strong support for the proposal by Nickerson
and White' that the exchange interactions in the
ground and excited states are of different magni-
tudes, with the excited-state exchange being con-
siderably stronger. The extension of such an anal-
ysis to other rare-earth hexaborides, however, is
more problematical. We discuss the difficulties
further below.
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FIG. l. Specific heat of CeB6. Broken curve:
Schottky anomaly vrith Q=70 K, no exchange; solid curve:
fit to the decorated Ising model, J,=1.39 K, J8=12.5 K,
6=70 K.

II. SPECIFIC HEAT

Data were taken using new techniques for mea-
suring heat capacities of small samples. These
methods are described elsewhere. The sample was
a 24-mg slice cut from an arc-melted ball which
had been remelted more than twenty times in an
effort to grow large cry. stallites. Laue x-ray-
back-reflection photographs showed that crystallites
as large as 1 mm had indeed been grown. Our
specific-heat data show, however, that this was
something of a Pyrrhic victory, since the sample
had also picked up some second-phase contamina-
tion.

The data were taken by the heat-pulse method;
a few points were also measured by the step meth-
od. Data from the two techniques agreed with each
other and with earlier data taken (by the step meth-
od) on a 54-mg chip of CeB6 used in a previous in-
vestigation' (supplied by Hull, Jr. of the Bell Tele-
phone Laboratories). Despite its small size, the
sample heat capacity far outweighed that of all the
addenda, and no correction for the latter was ap-

plied. The scatter in our data (Fig. l) is typically
2/g, and we estimate an absolute accuracy of 5/p.

The slight oscillation near 15 K is attributed to er-
ror in the temperature calibration.

The first striking feature of our data is the pres-
ence of two ordering peaks. The higher-tempera-
ture one at 3. 3 K contains only 5% of the entropy of
the large peak at 2. 31 K, if one makes a smooth
extrapolation of the background due to the large
peak. Magnetic- susceptibility measurements at
liquid-helium temperatures show a broad peak at
2. 4 K, with a shoulder —but no second peak —at
about 3. 3 K. From the weakness of the magnetic
signal and the small entropy enclosed by the satel-
lite peak, we attribute it to a second cerium com-
pound. This interpretation is supported by a mi-
croprobe analysis' which gives a 6/~ signal for
boron-deficient regions.

Next, consider the total entropy. According to
Nickerson and White, 3 the I', doublet lies about
320 K lower than the Fa." We expect, then, an

entropy of 8ln2 to be released by the magnetic
transition. In accord with this expectation, the en-
tropy under the large peak is A ln2. The difficulty
is in the large specific heat above the ordering peak.
By 20 K, in fact, the total entropy is more than

Aln4, only a small part of which can be attributed
to the lattice. (Figure l also shows the specific
heat of LaB6, to indicate the size of the lattice and

conduction-electron contributions. )

The excess specific heat can be interpreted in a
number of ways. To begin with, it might be non-
magnetic. Following the procedure of Robinson and

Friedberg, ' we plot the specific-heat data as CT ~

vs T' to extract a cubic coefficient which can then

be associated with the lattice. Between 11 and 22

K we do indeed find a cubic temperature dependence,
corresponding to a Debye temperature OD=135 K.
Both the low value of BD and the high temperature
to which the T ~ behavior persists (0. 280) make an

interpretation in terms of phonons rather unlikely.
In addition, the magnetic entropy is then approxi-
mately Aln3, requiring a triplet ground state,
which is impossible for the I 5&~ configuration.
We regard the 73 behavior as accidental.

Second, one might take the ground state to be the

quartet I', . The magnetization measurements'
show a saturation moment of about 0. 7 JL(,~, quite
far from the l. 57 p, ~ expected for the I'„we may

regard this possibility as ruled out.
Last, the excess specific heat might be due to

fluctuations induced by the excited state, taking I',
to be the ground state. Nickerson and White3 fitted
the magnetic susceptibility data and found a crys-
tal field splitting of 320 K, making this interpreta-
tion impossible, too. We have, however, found

it possible to reanalyze the susceptibility to give
a crystal field splitting of 70 K, a value which al-
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FIG. 2. Inverse magnetic susceptibility of CeB6.
Data from Befs. 2 and 5. Solid curve is the fit described
in the text.

lows us to make a qualitative fit to the specific-
heat data, as shown by the solid line in Fig. 1. We
shall discuss this calculation further below.

III. MAGNETIC SUSCEPTIBILITY

Because of the simplicity of the two-level struc-
ture, the crystal-field-only magnetic suceptibility
of the J= —,

' manifold may be calculated analytical-
13

X = (~/~)f (~/~),

f (x) = (1+2e ") [z~+26e "~ +32(1 —e ")/21x],

where 4 is the crystal field splitting, defined to
be positive when the ground state is the 1",. When

we introduce exchange in the molecular field ap-
proximation, we find

~/X= &/f (&/&) -8, (2)

The curve of y
' vs 7.

' is simply shifted rigidly by
The enhanced magnetic susceptibility of CeB6

thus cannot be accounted for in this form of the
molecular field approximation.

Nickerson and White pointed out that there is no
reason to believe that the exchange coupling is the
same for the two crystal field levels3: The rare-
earth hexaborides are thought to be indirect-ex-
change magnets, and the overlap between conduc-
tion-electron and ion wave functions is manifestly
different because of the different spatial distribu-
tions of ionic charge in the two crystal field levels.
They combined this physical insight with the full
form of the Heisenberg Hamiltonian

K = 8 Z,. (so s,. + -,') (3)

in the molecular field approximation to obtain a
fit to the data on CeB~ (Fig. 2).

Nickerson and White argued that it was important
to retain the constant term —,

' in the Heisenberg

Hamiltonian, because the exchange differed in the
two crystal field levels. In second-quantized form,
the constant term becomes proportional to the
square of the number operator for the excited
state. ' The presence of this population-dependent
term makes the effective crystal field level sepa-
ration dependent upon the population of the upper
level. Using their fitted parameters, ' we find an
effective crystal field splitting of about 700 K at
room temperature. With this large a separation,
it is hard to see how the slope of the magnetic sus-
ceptibility could be the free-ion slope, except by
accident. In addition, at low temperatures, the
specific heat would not rise to the values we have
observed.

On theoretical grounds, moreover, the use of
the ~ term in the Heisenberg Hamiltonian seem
dubious. In spirit, the Nickerson-White model is
a physical approximation to the higher-order ex-
change Hamiltonian described by Birgeneau et al."
As Birgeneau et al. note, however, the orbital de-
grees of freedom lead to the possibility of, e. g. ,
off-diagonal exchange. These complications may
be expressed by rewriting Eq. (3), including an
orbital operator equivalent similar to the well-
known operator equivalents of crystal field theory.
When the orbital operator is expanded, the constant
term is inextricably mixed in with the spin-depen-
dent ones. Thus, it is far from obvious that the
constant term has the value —,', nor is it clear that
this is the salient term to extract from the expan-
sion.

In the face of these uncertainties, we deemed it
worthwhile to adopt a cruder phenomenological
procedure. Taking the kernel of the Nickerson-
White proposal, we let 8~ in Eq. (2) be temperature
dependent according to

~0~= n0~77+n 88,8n7=(1+2e ) ', ns=1 —n, ,

(4)
where n7(na) is the probability that a given ion is in

the 17(r8) state and 0, and 88 are fitting param-
eters symbolizing the different exchange interac-
tions of the two levels. This trivially generalized
molecular field approximation yields the solid curve
in Fig. 2 with &=70 K, O~, = -5 K, and 08=-140 K.
Above liquid-helium temperatures, the curve
is quite insensitive to the value chosen for O, .
The important result is the much smaller crys-
tal field splitting needed to fit the data.

The question now arises of why CeBS does not
order at a much higher temperature than observed,
since the exchange in the I'8 is quite strong. In the
molecular field limit, we write

T„=&o„&= -a(O/~(0), (5)

where Q is the wave vector describing the spin ar-
rangement in the ordered phase. In the J= —', mani-
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fold with a I'7 ground state, we must have

O~ 2= 2b,/(

for ordering to occur at a temperature of order
02. For ( =1, we are at the verge of ordering,
with the parameters chosen to fit the magnetic sus-
ceptibility. Although crude, this molecular field
consideration alerts us to the possibility that CeBH

might barely miss ordering at some high tempera-
ture, and thus that fluctuations and short-range
order may be very important.

IV. DECORATED ISING MODELS

The molecular field approximation predicts that
the response of a magnetic system to applied fields
is different from the no-exchange response at all
temperatures. Above the ordering temperature,
where there is no long-range order, however, the
specific heat in the molecular field approximation
is identical to the specific heat in the absence of
exchange. In order to calculate a realistic spe-
cific-heat curve, then, one needs to include short-
range order explicitly. The possibility of a crys-
tal field splitting of 70 K encouraged us to study
the influence of short-range order on the Schottky
peak shown by the broken line in Fig. 1, since
above 10 K the Schottky curve represents the data
fairly well. In addition, the simplicity of the 4f
configuration permits the straightforward formula-
tion of a decorated Ising model for simple-cubic
cerium Lattices such as CeB6.

Onsager's solution of the two-dimensional Ising
problem has stimulated analytic and approxima-
tional attacks on the three-dimensional analog,
until it is now safe to say that the magnetic Ham-
iltonian

X= 2 as,'s,'-gp. ,@AH',.
(i2 j&

is the best understood of all many-body magnetic
models. The spin operators in Eg. (V) are spin —,

'

operators taking the values +1, and the first sum
is over all pairs of nearest neighbors.

Moreover, the Ising model can be related to
more complex magnetic Hamiltonians, and thus the
wealth of knowledge accumulated in the study of the
Ising system can be used to shed light on these
harder problems. The essential point to be ex-
ploited is the simplicity of the diagonal interaction
s';s,'. The joint spin states (s', , s&) can only take
the values (+, +), (+, -), (-, +), and (-, —). ~ This
restriction to only four states enables one to re-
write the partition function of a complex model
system in terms of a modified (or "decorated" )

Ising partition function. The Ising partition func-
tion and the thermodynamic properties derived
from it are known as functions of the transforma-
tion variables, so that the statistical-mechanical

Several kinds of transformations on the Ising
lattice have been discovered. We shall discuss
here the decoration process schematically illus-
trated in Fig. 3. The transformation enables
one to write the partition function of the total sys-
tem (ionic and Ising spins) in the form of the parti-
tion function of an Ising system with direct bonds
between the Ising spins. This technique was ap-
parently discovered by Naya in 1S54, used by Syozi
and Nakano, and extensively discussed by Fishers
in a study of the properties of two-dimensional
Ising nets in applied fields.

First, consider the partition function for an
Ising-spin system:

g Q Ks&s +L&s +L2s2
I

&sg, s2&

where

K=A/kT, L, = IL;H/I2T .

p. , is the magnetic moment of the jth Ising spin,
and the sum is over all nearest-neighbor pairs
(HI I s2) ~

Now consider the partition function for an ion
interacting with a pair of Ising spine (left-hand
side of Fig. 3). The ion energy levels depend on
the state of the Ising spins (s„s2), the applied
field, and perhaps other variables. We write
schematically

z„„= Z y, , (a),
g~, g~=+1

(ff) Q e Hg(sgys2pH-)ItST
SgS~

We now use the fact that there are only four spin
states, and thus only four g's for a given applied
field. By inspection, the quantities

++ ~ + +
= t)'++ 0 /0+ 0-+ ~—-

allow us to write

FIG. 3. Decoration transformation.

properties of the complex system then become
available for study. A further simplification for
antiferromagnetic models was discovered by Fish-
er. For certain kinds of antiferromagnetic cou-
pling, the partition function of the decorated lattice
in applied field is related to the partition function
of the underlying Ising lattice at zero field. The
magnetic susceptibility and magnetization are thus
derivable from the zero-field Ising results alone.

A. Decoration
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g g &s~sg+5Lgsg+6L ps'roN-J e (i2)

for each of the four possible spin states. Thus,
Z«N is proportional to a term in Eq. (8), if we
identify the K's and set

L)=LO+5L'= ($0+5&))H/kT

where p, o is the undecorated moment of the Ising
spin.

With one ion per Ising bond, and N ions in the
system, we may now write the total partition func-
tion as

Z = ZioN =f Zs (K, L), (14)

where Zl is the Ising partition function with ex-
change coupling J = A7.'K and magnetic moment

p = kZL/H= pp+ g~ 5 pg, The number of Ising spins
per ion is determined by the geometry, as we il-
lustrate in Sec. IV 8.

We have thus factored the total partition function
into a, piece f, which depends only on the transfor-
mation [Eq. (11)], and an Ising partition function,
which depends on the variables K and L, defined
by Eq. (11). If we know Z, (E, L) from, say, a
high-temperature series expansion, then we may
calculate the thermodynamic quantities from the
series.

If there is no exchange, the (E,.) are independent
of (s„s~). All the g's are equal in this case, and
we have K=GL, =5L, =O and (putting p,,=O)

Z fN (14' )

We have now reduced the evaluation of the parti-
tion function Z to a pair of discrete problems: (i)
We need to find the appropriate underlying Ising
lattice, for which we need the appropriate series
formulas for the derivatives of Zz, (ii) we must
write a model ion-Ising coupling, in order to find
the E,

B. Ising Lattice

The magnetic ions in the rare-earth hexaborides
form a simple-cubic lattice. The decoration pro-
cess puts an ion on every bond between Ising spins,
and there is a bond between every pair of nearest
neighbors in the Ising lattice. Our task, then, is
to find an Ising lattice which, when decorated,
yields a sc lattice. As Fig. 4 shows, a bcc lattice
is the proper starting point. We may check this
intuitive guess by computing the number of ions per
ionic unit cell: —,

' (Ising cell/ionic cell) x 2 (spine/
Ising cell) x 4 (bonds/spin) x (ion bond) = 1 ion/ionic
cell, the proper number for a sc lattice. Since the
primitive vectors of the decorated lattice are those
for sc symmetry, we have indeed found the right
Ising lattice to decorate. (We have used the fact
that each ion corresponds to —,

' of an Ising spin.
Thus, when there are N ions in the ion lattice, there

are ,' N—Ising spine in the Ising lattice. )
In general, finding the correct underlying Ising

lattice for a given ionic lattice is not easy. The
decoration transformation takes a bond, which is
associated with a direction in space, and replaces
it with a point. The point symmetry of the ions,
in consequence, is not necessarily a subgroup of
the Ising-lattice point group, as was the case for
our sc ion lattice. For example, decorating a sc
Ising lattice yields ions which are eightfold co-
ordinated, as in a bcc lattice, but the ion point
group is tetrahedral (considering nearest neighbors
only).

Having found the proper Ising lattice, we must
now look at the magnetic coupling needed to produce
antiferromagnetic order. If we alternate the ion-
Ising bonds as shown in Fig. 4, we ensure that the
ion nearest neighbors will be oppositely oriented
at 7 = 0, producing a two-sublattice antiferromag-
net. That is, we require that an ion have ferro-
magnetic (+) coupling to one of its Ising-spin neigh-
bors, antiferromagnetic (-) to the other, in the
pattern shown. Reversing the sign of the ion-Ising
exchange then leaves the lattice invariant, in con-
trast to the usual kind of magnetic exchange. This
pattern of coupling is the generalization of the
model used by Fisher' to analyze the two-dimen-
sional Ising net. As Fisher showed, the alternating
coupling scheme amounts to assuming that the
magnetic moments of the Ising spins are zero; we
shall return to this point below in discussing the
partition function. In particular, the Ising spins
are not coupled to an applied field. It is this fea-
ture which permits analysis of the decorated sys-
tem using only the zero-field properties of the
Ising lattice.

C. Partition Function

The E,. are the eigenvalues of the mixed Hamil-
tonian

K XQF +Rex+Kg y

where Xc~ is the crystal fieM Hamiltonian deduced
from some physical model'4 —which may not be re-
lated to the Ising-lattice symmetry. X~ is the Zee-
man Hamiltonian and X,„contains the ion-Ising
coupling.

A simple form for the exchange energy is the
"superexchange" coupling

E.„=AcF 8 (s, —sa),

where Q c~ is a coupling parameter which may de-
pend on crystal field level, S is the spin of the
ionic crystal field state, and the s,. are the Ising
spins. We have explicitly included the alternating
coupling needed for antiferromagnetic order. The
alternating coupling makes the Ising state (s„sF)
= (-, +) the ground state of the system, thus leading
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to antiferromagnetic order.
Thus,

E (sg q s2 ) B)= Ecp +8cp S (sg sg) gpss IrcTz

(»)
The alternating coupling implies that P „=g, so
that hL, = aL~ from Eg. (11). If we set F0=0 so
that the Ising spins have no (undecorated) moment,
then 1.=0, and we have

the case. Spiral ordering cannot be accommodated
in the model.

(iv) Higher-degree exchange" is also not in-
cluded, though this is in principle remediable by a
more sophisticated form for the energy than Eq.
(17).

Point (ii), first noted by Fisher, is important
for discussions of the magnetic properties. In the
Heisenberg Hamiltonian, the interaction is

Z fNZ///4 (A)
Q( sg'(2/ 9j/ s/ —gi"BH) (21)

Here Zl „„is the zero-field Ising partition function
for N Ising spins in a bcc lattice, and we have ex-
plicitly accounted for the symmetry.

The thermodynamic functions may be straight-
forwardly evaluated from Eq. (18). For example,
the entropy is

S =E lnZ -Kp(s/8 p} lnZ

= NZ[lnf+ ,' Z, (Z}]-—mP

&& [(s/8 p) ln f+ —,
' (BK/& p)(u(&) ], (19)

where ~ = (BZ//BK)/Z/ is the internal energy of the
Ising lattice. As P-O, the second term vanishes,
f-28+1, and Z/ ~„-2, so we see that the mag-
netic entropy approaches

SM„o ——Nk[ln(2 j+ 1) + ~ In2] (20)

Thus, the decorated Ising model releases slightly
more entropy than the Heisenberg direct-exchange
model. The excess for J'= —', is about 10% at infinite
temperature.

At finite temperatures, the decorated Ising model
gives us a way to calculate the thermodynamics
exactly. The model thus trades off intuitive "rea-
sonableness" for precision. In particular, the
following physical criticisms may be made:

(i) The energy [Eq. (17}]is certainly only a
schematic form for the true eigenvalue. The ex-
change parameters 4c~ are thus meant to be il-
lustrative rather than representative of any true
exchange coupling constants.

(ii) The response of the Ising spins to the ions
is qualitatively unlike the polarization of the itiner-
ant conduction electrons in the Ruderman-Kittel
model. In particular, the Ising spins do not respond
to an applied fieM, and there is no "molecular
field" component in the magnetic response. This
aspect of the model is discussed further below.

(iii) The geometrical arrangement of the ion-Is-
ing bonds puts first, second, and third ion neighbors
on an equivalent footing in the sense that each of
these is linked to the ion by two ion-Ising bonds.
While this may not be a bad approximation for in-
direct exchange via conduction electrons, the uni-
axial character of the Ising spins, which permits
only a two-sublattice antiferromagnet, confines the
spin arrangement of the ions more than is actually

so that, in an applied field, the polarization of the
system adds to the applied field. The polarization
term, when thermally averaged, yields the molec-
ular field approximation. In the present model, the
ion-ion coupling occurs via the nonmagnetic (i. e. ,
zero-moment) Ising spins, and the polarization
term is absent. Fisher showed that this has a
drastic effect on the magnetic susceptibility: In
the high-temperature expansion of the susceptibility,
the leading term is the Curie law C/T. The first
correction is of order (8/kT), instead of (8/kT),
as one finds in the direct-exchange case. This
means that to leading order the paramagnetic Curie
temperature is zero.

In the case of the rare-earth hexaborides, the
anomalously enhanced susceptibility, which we have
interpreted as evidence of temperature-dependent
exchange interactions, cannot be fitted by a decor-
ated Ising model for this reason. ~ Calculations of
the decorated-Ising-model susceptibility show only
minor deviations from the crystal-field-only values.
We have, therefore, restricted our discussion of
the magnetic response to the molecular field
scheme. Nonetheless, as we shall see below, the
fluctuation effects on the specific heat are quite out-
standing, and the decorated Ising model is illumi-
nating in the study of these fluctuations.

V. FLUCTUATION-INDUCED SPECIFIC HEAT

The eigenvectors and eigenvalues given by Wang
and Cooper permit us to write down explicit for-
mulas for the E, in Eq. (17) and compute the g func-
tions of Eq. (10). As shown by the discussion
above, the problem is then reduced to a computer
calculation.

In accord with the ¹ickerson-White model, we
permit the exchange parameters in Eq. (17) to de-
pend on the crystal field level, calling them J~ and

Je, corresponding to the I'7 and I"8 levels. J'7 is
essentially fixed by the ordering temperature. For
T„=(2. 3 + 0. 1) K, we find J~ = (l. 39 + 0. 05} K. Using
the same criterion of 7„=(2. 3+ 0. 1) K and Z~
= 1.39K, we mapped out the allowed range of Js and A.

The values J8= 12. 5 K, 6 = 70 K fall well within the
allowed region, and are taken to be representative. '
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A. Phase Diagra~

As a preliminary, we follow Fisher~ a d l
e e avior of the interaction parameter K d f d

y q. ( ). Recall that for the undecorated anti-
c ine

ferromagnetic Ising lattice —K plays the role of P,
the inverse temperature [see Eq. (9)]. Physicall
then —K meas ures the order —both long range and
short range-of the Ising lattice d th
o he system as a whole. The contours of constant
-K in Fig. 5 thus serve to delineate the phas d'

gram of the decorated Ising lattice. At -K=K
=0. 221 V 16, the bcc Ising lattice orders. Th

C

the h

8. us~

between *

e cavy contour labeled K marks the b dC e oun ary
e een antiferromagnetic and param t'magne ic

p ases. The solid triangles mark peaks in the
magnetic susceptibility measured at different
fields, ' indicating that in CeB6 the antiferromagnet-

than
paramagnet phase boundary curves more h l

an the K, contour in our model. The rapid de-
crease of the ordering temperature as the field
rises is characteristic of spiral magnets, because
their m netic or
as at

ag
' order is not so rigid in applied f' ldie s

or example,two-sublattice antiferromagnet for
is. Spiral ordering has also been found in PrB6
by neutron scattering and inferred for EuB6'

Now consider the behavior at zero field. A
increaseeases, —K at first decreases, and then has a
peak at about 25 K. Although the peak value of —K
is too low to produce ordering, it does show the
recurrence of significant short-range order as th

ate becomes thermally populated. In effect
the Isin lsing attice cools as the temperatu ' t
the eak. Thipe . is behavior is a precise statement of
the notion that eBB6 barely misses ordering" at
higher temperatures, which was express d Se .sse in c.

In an appbed field, we see a gradual suppression
of the short-range order as the field '

intuitivel ex
e ie is raised, as

in itively expected. The short-range order at
about 25 K eK persists to surprisingly large fields be-
cause of the strong exchange in the 't d t t

8. Specific Heat

In the absence of exchange Z= ", d, an we have

C„=Nkp 2 lnf2 22

the Schottky anomaly is shown by the broken line in
ig. 1. When the exchange is included

C„=Xkt3 ~ lnf+ —(u(K)
8 1 a2k

Bp 4 ep
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FIG. 5. Contours of constant -K
in the H-T plane. Heavy curve marked
K~ separates the antiferromagnetic
and paramagnetic phases. Triangles
mark the peaks in the magnetic suscep-
tibility of CeB6, as a function of tem-
perature, in different fields. Data
due to Hull, Ref. 5.
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where c*(K) and u&(K) are the specific heat and in-
ternal energy of the Ising lattice.

Equation (23) with J,= 1.39, J,= 12. 5, and 6
=70 K is plotted as the solid curve in Fig. I. In-
stead of falling to zero above the ordering tem-
perature, as predicted by both the molecular field
approximation and the no-exchange Schottky curve,
the specific heat in the decorated Ising model falls
to a minimum of above 1 J/mole K near 6 K. At
higher temperatures, the Schottky peak is some-
what depressed and broadened, though the curves
are similar in magnitude and shape.

Although the calculated curve reproduces the
qualitative behavior displayed by the data, the mag-
nitude of the specific heat is still too small, typi-
cally by a factor of 2 below 10 K. This is some-
what worrying since the principal contributions to
the entropy come from this region. Measurements
to higher temperatures in both CeB6 and LaB6 (to
permit subtraction of the lattice specific heat)
would show whether the rapid release of entropy
at low temperature signals an anomalously large
entropy, or rather an inadequacy in our decorated
Ising model.

The exact calculation described above in a foot-
note shows that same specific-heat curve as the
solid line in Fig. 1 when the exchange in the J,
=+ —,

' states in the I'8 quartet is strong.

VI. SUMMARY

The bulk magnetization and specific heat pro-
vide cogent evidence that CeB6 would have a I'7
ground state in the absence of exchange interac-
tions, with a I'8 excited state about 70 K higher in
energy. The anomalous enhancement of the mag-
netic susceptibility below 150 K can be explained
in this framework by assuming that the exchange
in the Fe is stronger than that in the l 7, as pointed
out by Nickerson and White. 3 The magnetic sus-
ceptibility is not a sensitive quantitative measure
of the crystal field splitting, as shown by our re-
formulation of the Nickerson-White model; rather,
it seems to be sensitive primarily to the details of
the exchange interaction.

By contrast, the specific heat has a Schottky
anomaly whose peak is not appreciably shifted from

the no-exchange value of 0.44, even though the
peak is slightly decreased in height, and the low-'
temperature shoulder is strongly smeared by ex-
change-induced fluctuations. Such smearing, long
a part of the experimental folklore, has been ex-
plicitly displayed by an exact calculation of the
fluctuation-induced specific heat using the decorated
Ising model. The striking qualitative feature of
the decorated-Ising-model calculation is that it
demonstrates that short-range order can be induced
by exchange in an excited crystal field state, as
that state becomes thermally populated.

In principle, the type of analysis we have used
in this discussion can now be extended to PrB6 and
NdB6. Both compounds have crystal-field-split
energy spectra, and for both measurements of the
magnetic susceptibility and specific heat have been
done. ' The greater complexity of the energy-
level schemes of the Pr ' and Nd ' ions, however,
precludes quantitative comparison. Qualitatively,
both compounds show large specific heat above the
magnetic -ordering temperatures, indicating sub-
stantial short-range order in the paramagnetic
phase.

Deviations from the Curie-Weiss law have also
been found in the magnetic susceptibilities of
Eu86 and Gd86. ' The rare-earth ions in these
compounds, however, are in the spherically sym-
metric S,&~ state, and thus cannot be split by crys-
tal fields. In Eu86, the specific heat displays
only weak short-range-order contributions, and
the entropy is in accord with the expected eightfold
degeneracy of the ground state. The question re-
mains, then, of whether the anomalous susceptibil-
ity below liquid-nitrogen temperatures in these
compounds is in fact due to changes in the effective
strength of the exchange interaction. We have, in
this discussion, assumed a Heisenberg-like form for
the exchange; theoretical investigations of the ef-
fect of discarding this assumption would be inter-
esting.
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