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It is shown that in a pure crystal the density of states of a given point-group symmetry
{that is, belonging to a given row of a given irreducible representation of the point group) is
simply {d~/p)g'(8), where g (8) is the familiar over-all density of states, dz is the dimension-
ality of the representation, and p is the order of the group. Point-group symmetry is incor-
porated into Green's-function theory to define Green's functions which propagate excitations
of particular symmetries from shell to shell {rather than from site to site). Both simple
crystal Green's functions and two-time thermodynamic Green's functions are considered, and
the ferromagnetic-impurity problem is formulated in terms of such Green's functions {at T
=0 and at arbitrary temperatures, respectively). The analysis is illustrated explicitly for a
fcc ferromagnet with first- and second-nearest-neighbor exchange.

I. INTRODUCTION

The theory of the localized-impurity problem
(in Heisenberg ferromagnets, in electronic semi-
conductors, in phonon systems, etc. ) has been in-
vestigated extensively, '-' but the lack of appro-
priate tabulated Green's functions has hindered
applications. In a companion paper by Swendsen
and Callen, extensive tabulations have been given
for fcc next-nearest-neighbor ferromagnets, per-
mitting calculations for real systems (such as the
europium chalcogenides). As such real calcula-
tions become pra. ctical it seems useful now to
yresent certain additional observations which
simplify and facilitate the theory of the general
impurity problem.

The rationale of the work lies in the observa-
tion that translational symmetry generally is em-
phasized over point-group symmetry in pure crys-
talline systems, primarily because the transla-
tional group is both large and simple in structure
(Abelian). Introduction of an impurity destroys
the transl. ational symmetry, but (at least for many
structures) it does not alter the point-group sym-
metry. Hence it is advantageous to recast the
theory into a form which full. y exploits the point-
grouy symmetry. Appropriately defined Green's
functions propagate excitations of given symmetry
from shell to shell (rather than from site to site).
The impurity problem is automatically factored
and the matrix elements are greatly simplified.

In the investigation of the pure crystal we find
a curious and interesting theorem on the partial
densities of states. That is, the density in energy
of states of any given symmetry (i.e. , belonging
to a given rom of a given irreducible representa-
tion) is simply proportional to the over-all den-

sity of states. More specifically, let go(E) be
the conventional density of states in the pure crys-
tal, and let gor„(E) be the density of states of those
states which belong to the mth row of the irreduci-
ble representation I' of the crystal point group.
Let d~ be the dimensionality of the representation
1", and let P be the order of the point group. Then
we shall show that

sr (E) = &&rid) Z'(E)

Furthermore, we shall. see that introductiori of
an impurity with short-range interactions yer-
turbs only certain of these states, others remain-
ing totally unaffected. Again, this is in contrast
with Bloch states, all of which are perturbed by
a,ny impurity.

As we subsequently discovered, symmetry-clas
sified Green's functions had been introduced first
by Lehman and De Names, ' and later by Gautier
and Lenglart. Lehman and De Wames analyzed
the vibrational spectrum of an ioipurity in the alu-
minum or germanium lattices, in a nearest-neigh-
bor approximation. They adapted their Green's
functions to the "molecular-vibration symmetry
coordinates" of the impurity and its first-shell
neighbors, which are precisely the projections of
our point-group eigenfunctions. The work of
Gautier and Lenglart was on the el.ectron tight-
binding approximation. Their work contains the
additional complexity that the localized Wannier
states of an electron may have different internal
symmetries (s states, p states, etc ), where. as
our emphasis on the ferromagnetic impurity
problem is based on localized- spin deviations
which have only 8-like internal symmetry. On
the other hand, the complexity of spin commuta-
tion relations requires consideration of two-time
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POINT-GROUP SYMMETRY AND THE IMPURITY PROBLEM 1011

thermodynamic Green's functions in some decou-
pling approximation, such as the random-phase ap-
proximation (HPA). The theorem on the density
of states of particular symmetries is not contained
in previous work, at least to our knowledge. In
presenting the work now we retain the full discus-
sion of zero-temperature symmetry-based Green's
functions for completeness and clarity, fully ac-
know 1.edging the prior ity of Lehman and De% ames'
and of Gautier and Lenglart. e

II. DENSITY OF STATES OF GIVEN SYMMETRY IN A
PURE CRYSTAL

For simplicity of discussion consider a single
band of excitations, such as spin waves, phonons,
or s-band electrons. Assume that the space group
8 of the crystal is symmorphic —a direct product
of a translational group S and a point group 6'.
The familiar eigenstates are of Bloch form, cor-
responding to irreducible representations of the
translational group g; these states are labeled by
a wave vector k which takes values within the first
Brillouin zone.

Consider a particular wave vector k. The star of
%, denoted by k~, consists of all the wave vectors
into which% is carried by the operations of the
point group + . All the corresponding Bloch states
ar e degenerate.

For general k there are p vectors in the star
(recall that P is the order of the point group IP ).
However, there are particular values of % which
lie on symmetry planes or symmetry axes and
which therefore generate smaller stars; these val. —

ues of k are of measure zero in reciprocal space.
We focus on the preponderant majority of p-fold
stars. The p Bloch eigenfunctions associated with
such a general star are basis functions for a p-
dimensional irreducible representation of the space
group 8. Fully analogous to the Bloch functions
which reduce the subgroup &, there are particular
linear combinations of the Bloch functions which
reduce (P (but not v ). That is, particular linear
combinations of the Bloch functions of a general star
form basis functions of the irreducible representa-
tions of the point group O'. Denote these linear
combinations of Bloch states by ( I'mA, k*). Here
4* designates the particular star, I' denotes a
particular irreducible representation of (P (of
dimensionality d„), m denotes a raw of I', and

finally the additional index X is required because
there generally is more than one linear combina-
tion of the Bloch states in the star 4* which trans-
forms according to the neth row of I'. In fact, we
shall demonstrate that X can take the values 1,
2, ... , d~.

Consider now the density in energy of statesbe-
longing to the ngth row of I'. This density is de-
noted, in the pure crystal, by gor„(E). That is,

gor„(E) dE is the number of states ( I'mX, k*) with
given I' and m and with energy E in the range dE.
Then the conventional over-all density-of-states
function g~(E) is

~r
g'(E)= Z Z ~',.(E).

r m=1

Now to prove the theorem enunciated in Eq. (1),
we first observe that because special stars have
zero measure we need only consider the contribu-
tions to the density of states arising from general
(p-fold) stars. As is well known, '0 the Bloch
functions in such a star are basis functions for
the "regular representation" of the group +; the
regular representation can be defined as that rep-
resentation generated by the operations of the group,
considered themselves as "basis functions. " Since
the Bloch functions of the star are in one-to-one
correspondence with the operations of the group
(by definition of the star), it follows that the Bloch
functions also generate the regular representation.
Now the regular representation contains each ir-
reducible representation a number of times equal
to the dimensionality of the irreducible represen-
tation. ' That is, reducing the star k* we obtain
states )I'mA. , k*) with dr different values of & for
each given value of I" and m. Since each star k*
therefore contributes d„states to go (E), Eq. (1)
follows immediately [the scale factor 1/p being
determined by Eq. (2)].

An analytic formulation of the proof can be con-
structed by recalling that the density of states go(E)
is given by

g'(E) = -(1/v) im Tr(E" -X,)-',
where (E'- Ho)

' is the Green's operator of the pure
crystal. E' denotes E+ i6 and the limit 6-0 is
implicit. In a completely analogous fashion the
partial density of states go (E) is given by

g', (E)=-(1/m)ImTrP„„(E"-a,)-'P„„,
where P~m is the operator which projects out of
any state that part which is of symmetry I', m.
Since the factors can be cyclically permuted in
the trace, and since P31- =P1, we can omit one
projection operator in Eq. (4). Then taking the
trace in [k) representation,

1 (k ]P„[k)g0 (E) imp rm

Consider (k[Pr (k). We insert the projection
operator P1-m as a sum over all operations (8 of
the group

(k(P tk)= —Q I'* ((R)(kj(R ~k) = ~
Here the last equality follows because (% ( S Ik)
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clearly vanishes for all R except the identity opera-
tor, for which it is unity. Inserting Eq. (6) into

(5), and invoking Eq. (3), we again obtain the re-
sultant theorem of Eq. (1).

III. SYMMETRY STATES IN REAL SPACE; SHELL-
SYMMETRY GREEN'S FUNCTiONS

The symmetry states Irmk, k*& have useful ana-
log@ in real space. To define these states recall
that the Bloch states [k& are conjugate to a set of
localized states I 5&:

~-1/2g c ak %
l
k)

For the electron case )8) is a Wannier state but
for definiteness we sha11. refer to the conceptually
simpler case of a Heisenberg ferromagnet in which
]5& denotes a single spin deviation at the lattice
site ff. For simplicity we also restrict the dis-
cussion to a Bravais lattice (with a single magnetic
ion at each lattice point), although the formalism
permits trivial generalization. The particular
site to be occupied by the impurity (if. such be the
problem of interest) is chosen as the origin.

Consider a particular lattice site A. The "shell
of R" consists of all sites into which 5 is carried
by the operations of the point group + . By defini-
tion, then, the maximum number of sites in a shell
is equal to P. The shell of 5 will be labeled by its
radius R (two shells with the same radius would
have to be distinguished by subscripts or some
such device).

If a particular H in a shell is left invariant by a
subgroup of 6', this subgroup is called the "group
of the lattice vector 5"; in such a case the sites of
the shell are in one-to-one correspondence with the
cosets of the group of the lattice vector. It fol-
lows that the number of sites v~ in the shel. l R
must be a divisor of P, and, more stringently,
it must be equal to the index of a subgroup of 6'.
The possible numbers of points in a shell for a
cubic crystal with point groups T or T„,according-
1.y, are 1, 6, 12, 24, or 48; for a cubic crystal.
with point group 0„the permissible numbers are
1, 6, 8, 12, 24, 48.

Whereas our interest is in general stars of k,
we are interested primarily in sjecial shells of H.
This is so because the effect of an impurity is
localized, and the shells of small radius usually
contain a comparatively small number of sites.
We note here a fundamental difference between
the states in k space and those in real space; the
sites 5, and therefore the shell radii R, are dis-
crete, whereas the wave vectors k are quasicon-
tinuous for large systems. It should al.so be ob-
served that the states ) k& of a star are energy eigen-
states, subject thereby to various quantum-me-
chanica1. theorems which are not applicable to the

l5&= g [C","(R)]*lrm, R&.
rmr

(1O)

The coefficients C'sr (R) are orthonormal in both
I'm and R:

g [ C'rz" (8)j*C' z™(R) = &(r, I' ) &(m, m ) 5(l, I ),
(»)
(12)Z [C"."(R)]*C.""(R')= 6(R, R ) .

The coefficients C'~™are given for the first three
shells of the simple-cubic (sc) and fcc structures
in Tables I and II. A general expression for these
coefficients in terms of crystal harmonics (such
as the kubic harmonics of van der Laage and Bethe" )
is given in the Appendix A.

Consider now the "shell-symmetry Green's func-
tion":

G.(»R 'R) -=(rm RI+'-3') 'lrm, R

states (5 & of a shell. Analogies between k space
and real space are helpful. but 1.imited.

The states [5P (i=1,2, . . . , vz) of a given shell
R are basis functions of a v-dimensional reducible
representation of O'. Linear combinations of these
states are basis functions for irreducible repre-
sentations. We denote these linear combinations
by I rml, R&, m = 1, 2, . . . , dr. For a p-fold shell
the number of admissible l va1.ues is d~, but for
smaller shells we are not able to give a general
rule for the number of l values. However, the
completeness of the states ~ rml, R) on any shell
implies that the total number of such states for a
given R is equal to v~.

By definition the basis states are orthogonal:

(rml, Rl I' m l, R &

= 5(r, 1 ) 6(m, m ) &(l, l ) ~(R, R ), (6)

where 6(x, y) is zero unless x and y are equal, in

which case it is unity.
For small shells, near the central shell, there

is frequently only a single l value, which can there
fore be dropped from the notation. In other cases
the shell 1.abeled R can be thought of as a compos-
ite label, specifying both R and l. Therefore
we henceforth omit the index l, designating the
states simply by I rm, R&, except in a few rare
cases where the l index must be reintroduced to
avoid ambiguity.

Expressing the states ~I'm, R& as linear com-
binations of the states ~R&, by a unitary transfor-
mation,

R&=~ [': «)~IIt&

where R denotes the angular coordinates of %.In-
versely, we have
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= &1m, R(g(rm, R'&. (13)

This Green's function is independent of m, as fol-
lows from a group-theoretical theorem' on the
matrix elements of a fully symmetric operator. It
is also a consequence of the physical significance
of the Green's function as a propagator of excita-
tions; different observers, in rotated coordinate
systems, will interpret a given excitation as be-
longing to different m values, whereas the matrix
element Gr(R, R; E) is observable and must there-
fore be independent of m.

The Green's function G„(R,R;E) propagates an
excitation of symmetry I', m from the shell B to
the shell. R.

Equation (9) expresses the shell-symmetry Gr een's
function in terms of the conventional site-to-site
Green's functions G(5, 5', E) =(5 IB I5'):

G (R R' Z)= g [4 "(R)]*Cr™(R')G(%5' Z)
ggQ

(14)
or inversely,

G(5, 5';E)= Q C"„(R)[Cr™(R')]*G„(R,R';E).

(15)
Thus the shell-symmetry Green's functions are

simpl. e linear combinations of the conventional site-
to-site Green's functions. The shelL-symmetry
Green's functions for the first three shells of a pure
fcc lattice are listed in Table III; in this compila-
tion we have exploited the fact that G'(5, 5;E) is
a function only of 5 —1F, with cubic symmetry,
so that many of the Green's functions on the right-

hand side of Eq. (14) are equivalent.

IV. IMPURITY PROBLEM

Suppose a singl, e impurity to be introduced in a
crystal in such a way that the point-group sym-
metry is maintained. Then the energy eigenstates
can again be classified by the indices I'm, but
they no longer can be associated with particular
stars in reciprocal space. Accordingly, we des-
ignate the energy eigenstates by II'mX, E), where
E denotes the energy and X distinguishes the (pos-
sibly) degenerate states corresponding to a given
energy. These states form a quasicontinuum or
"band, " although one or more discrete states may
be split off the band.

There are several distinctive types of problems
of interest. In this section we inquire as to the
spatial structure of the state I I'mX, E); given the
symmetry and the energy, what is the amplitude of
the perturbed eigenstate I I'mX, E) on any given
shell or on any given site'P

In Sec. V we explore the effect of the impurity
on the general and local density in energy of the
states of a particular symmetry. This analysis is
applied to a fcc ferromagnet in Sec. VI. And fi-
nally, in Sec. VII we consider thermodynamic prop-
erties such as the magnetization (or the local mag-
netization), extending the analysis to double-time
thermodynamic Green's functions in the HPA.
Again the formalism is illustrated specifically for
a fcc next-nearest-neighbor ferromagnet at non-
zer o temperature.

I et the Hamiltonian of the impurity problem be

TABLE I. Shell symmetry states in sc and fcc crystals. Columns correspond to the localized states in the
second shell of a sc, or in the first shell of afcc crystal. For sc, R is ~2 times the lattice constant; for fcc, R is half
the lattice constant (throughout applications to fcc we measure distance in units of half the lattice constant, so that R=1).
For the zeroth, or central, shell 4 z~ (R) = 1 for I' =A~~, this is the only nonzero coefficient.

I Aiq, 1, 0; R)

ITi~l, l;R)
I Ti„,2, 1;R)

IT1„,2, 1;R)

2-3 /2 2-3/2 -3/2 2-3/2 2-3/2 2-3 /2 2~3 /2

2-3/2

2-3/2

2-3/2 2-3/2

2-3/2 2-3/2

2-3/2

2-3/2 2-3/2 2-3/2 2-3/2

2-3/2 2-3/2 2-3/2

2-3/2

2-3/2

IROR) IORR) ITLOR) I ORR) IRRO) IRRO) IRRO) IRRO ) IROR) I ORR) IROR) IORR)

2 i/2 y2 i/2 y2 1/2 y2 1/2 y2 1/2 y2-1/2 y2 1/2 y2 i/2 y2 1/2 y2 1/2 y2 1/2 y2 i/2

IE 1 2 ~ R) 21/ —23/ 2 —23/ O 0 0 0 2-3/2 2-3/2 2-3/2 2-3/2
f9 9 ~

I R 2 2. R) 2 is-1/2 2-is-1/2 2-ie-1/2 2-is-1/2 s-1/2 e-1/2 s-1/1 e-1/2 2 ie-1/2 2-ie-1/2 2-is-1/2 2 ie-1/2
g9 9 ~

IT1,1,2;R)

IT„,2, 2;R)

I T1„2,2; R)

2-f

2&f

-2|
2 i

-2f 2-i

IT&„,1,3;R)

) r2„, 2, 3;R)

t T2„,3, 3;R)

2-3 /2

2-3/2

2-3 /2 2-3»

2-3/2 2-3/2

0

2-3/2

2-3/2 2-3/2

2-3/2

2-3/2

24/2 0

2-3/2

2-3/2

2-3/2

2-3/2 2-3/2
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TABLE II. Shell-symmetry states in sc and fcc,
crystals. Columns correspond to the localized states in
the first shell pf a sc or in the second shell of a fcc crys-
tal. In each case B is to be taken as the cube edge.

IA1g, 1,0;R)

I T1„,1,1;R)

I T1tt 2, 1;R)
I T1„,3, 1;R)

I ROO )
6-1/2

2-1/2

I ROO )
6-1/2

2 1/2

I OR 0) I ORO)

6-1/2

2-1/2 2-1/2

I 00 R)
6-1/2

I 00 R)
6-1/2

2-1/2 2 1/2

Ee~ l~ 2& R) 2

I Eg, 2, 2; R) —12 —12"

2-1 21

12 1/2 12-1/2 3-1/2 3 1/2

written in the form K=X0+ V, where 3CO istheHam-
iltonian of the pure crystal. [Additive constants
can also be absorbed in 3'; it is convenient to ab-
sorb the change in energy of the ground state of the
perturbed crystal (relative to the energy of the
ground state of the pure crystal) as an additive con-
stant in K~. j Suppose further that the matrix ele-
ments (5 [ V(5') are nonzero only if R and 7t' are
in the first few shells.

Suppose that there is some representation I'which
is not supported by any of the shells within the
range of V. Then the unperturbed state [ rmX; E)o
has no amplitude of any of these shells, and it fol-
lows that the impurity cannot perturb this state.
Impurities with a range of n shells do not perturb
states of any irreducible representation which is
not containedin the first n shells.

As an example an impurity spin in a Heisenberg
ferromagnet with nearest-neighbor interactions
perturbs only those states belonging to the irreduc-
ible representations of the central ion and the
nearest-neighbor shell. For a sc crystal, there-
fore, only states of A,~, T,„, and E are perturbed
by the impurity (see Table II), whereas the seven
other representations of the cubic group are un-
perturbed. The fractional density of states so af-
fected is h (I+ 3 + 2 ) = s4, whereas ~247 of the states
of the crystal are totally unaffected.

The 0reen's- function for malism of L ifshitz~ di-
rectly demonstrates the above conclusion and pro-
vides an expl, icit solution for the perturbed states.
The Schrodinger equation

(E-xo) lrm~;E& = v

is solved formally

lr ~;z&=lr ~;z&,+(z"-x.,)-' vlr ~;z&,
(»)

where ] rmX; E) and [rmA; E)0 are the perturbed
and unperturbed states, respectively. ' The usual
procedure is to multiply by (5) and to introduce
complete sets of intermediate states [5)(5 [; this
gives a secular equation which must then be diag-

and

q„'. (R, Z) -=(rm, Rlrm~;Z&,

y"„.(R, z) -=(rm, R lrm~; z)„

V„' ~ =(I'm, R
l
Vlrm, R'&;

(2O)

then we have

$ r„(R)E) = fr~„(R,E)

+ Q Q Gor(R Riz)vs's" (r (R E) ~ (22)
R'r' R"r"

Equation (22) is of a form familiar inthe impurity
problem. But only a single symmetry enters into
the equation, so that no further factorization of a
secular equation is required. The order of the
secular equation obtained from Eq. (22) is equal to
the number of distinct amplitudes gr (R, Z) (for
fixed I' and m) in the first n shells. Thus we see

TABLE III. Shell-symmetry Green's functions for a
pure fcc lattice. The Green's functions 6 (R, E) appear-
ing in the right-hand members are the conventional site-
to-site Green's functions (depending only on coordinate
differences). The vector 8 is indicated by {R„,R~, R,),
with distance measured in units of half the cube edge.
The dependence on the energy variable is suppressed in
the notation; Q (H, ) =—G (R; E).

Alg

Gglg(Rp Rp) =G ([000))
G~ig(Rp, R1) =~/12 G ([1101)
GA1 (Rp R ) = ~6G ([200 f)

G&lg(R1&R1):G ([0001)+2G ([200]) +4G ([110])+4G (f211])+G ([2201)
GA fgN', 2, R2) =G ([000)) +G'([4o01) +«'([220])
GAi (R1&R2) =2v 2G ([1101)+2W2G ([2111)+2& 2G ([3101)

T'2g

Gz2g(R1, R1) =G (f 00)) —2G ([200)) +G ([220))

2u

Gr2u(R1, R1) = G ([0001)—2G ([1101)—G'([220)) +2G ([2111)

T1u
GT iu(Rit R1) = G'([000]) +2G'([1101)—G"([220)) —2G'(f2111)
G21u(R2 ~ R2) = G ([000)) —G'(f4o0])
G2-1„(R1,R2) =2G (f110])—2G ([310])

Eg
Gzg(RI, R1) =G ([000]) +2G (f200]) +G ([220]) -2G ([110])—2G ([211])

Pg(R2, R2) =G (f000)(+G ([400])—2G ([220))
Gzg R1 R2) =~2G ([110])+ ~2G ([310])—2v 2G ([211])

onalized by symmetry considerations. The di-
agonalization is automatic if we use the shell-sym-
metry states [rm, R). Multiplying Eq. (17) by
(I'm, R (, introducing complete sets of intermediate
states, and noting that (E" -Xo) ' and V a,re each
diagonal in I and m, we find

(rm, Rlrm~; z) =(rm, Rlrm~; z),
+ ~ &rm RI&olrm R'&«m R'IVlrm, R )

&& (rm, R lrmx; z) . (Ip)

Let
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from Tables I and II that for both fcc and sc ferro-
magnets with nearest- and next-nearest-neighbor
exchange we get a third-order secular equation
for A, symmetry (zeroth, first, and secondshells);
a second-order equation for T,„symmetry; a sec-
ond-order equation for E~ symmetry; and first-
order equations for T~„and T~, symmetries.

The matrix elements of the perturbation have a
simple form. From (21) and (9) we have

v"„,, = Z + [~„'"(ft)]*4'„';(II')&&lvp'&. (23)

In most cases the matrix element &0 [ V I@ ) is non-
zero only if 5 and 5 are identical (and within the
range of interaction of the impurity ion), ' or if
one of them is the impurity site. The matrix ele-
ment & 5 ( V ~5& is the change in energy of a spin
deviation (or electron, etc. ) on the site 5, due to
the impurity at the origin; the matrix el.ement
&0 i VI%& is the change in the transfer integral be-
tween the impurity and the site 5. The presence of
the impurity generally does not alter the transfer
integral between two other sites, since such an ef-
fect would require a three-site interaction in the
Hamiltonian.

Consider first the case in which neither of the
shells 8 nor 8 in Eq. (23) is the central shell.
Then the matrix elements &0 I V)5 & are diagonal,
and if F is supported by the shell R the orthogonality
relation (11) leads immediately to

v,'„,=&RlvlR& &(R, fl') &(I, I') =-v, ~(a, fl') ~(I, I ),

f~, f~' ~ O. (24)

If, however, R=Q, then Co is zero unless I' is the
fully symmetric representation, in which case it is
unity. Then ~'~, is simply v~', where v„, is the
number of sites in the shell A . That is,

v," = g ~„-'!'&olvl&'&= vg,'&olvlR'& =v,„, .
(25)

Summarizing, for all symmetries other than the

fully symmetric representation, V» is diagonal
in 8 (and I); its diagonal value is equal to the

change in energy of a site in the given shell due to
the presence of the impurity. For the fully sym-
metric representation, V~~„, has additional off-
diagonal matrix elements connecting the central.
site to other shells; the value of the matrix element
is Vo~ =-v„'~~&0( V(@, where v~ is the number of

sites in the shell R.
Because the matrix elements of V have such

restricted form, and because of the low order to the
secular equation, Eq. {22) iseasilysolved. There
will generally be more than one solution, corre-
sponding to different indices X. The solutions

(R, E) are the amplitudes of the perturbed
states I I'mA. ; E) on the shell symmetry states
il m, R&:

ll"mX; E) =g g r (R, E)
l
I'm, R& . (26)

Of course the state can be resolved further into
amplitudes on individual sites by Eq. (9), if de-
sired.

V. PERTURBED DENSITIES OF STATES

= ——Im Trr„(z'-X,)-',1 (2'7)

where Tr~ denotes a trace over all states of sym-
metry I', m. Then following the procedures of
Call. away, '

where det~ denotes the determinant in the basis of
states of symmetry I', m. To isolate the unper-
turbed density of states one invokes the identity

(E'-x)= (E'-x,)[l - (E'-se,) ' v],
or symbolically,

8 '= 80' (1 —Bpv),

hence

(so)

g„„(Z)= ~ g'(Z) ——Im ln det, „{1—B,V).
P 7r

(31)
As we shall see in Sec. VI, Eq. (31) is very sim-

ple to evaluate because of the highly restricted
matrix elements of V in the shell. -symmetry rep-
resentation.

Localized states outside the spin-wave band occur
when detr„(1 -gov) has a zero for some value of en-

ergy outside the band [in which case g„„(E)has a

singularity]. Such states have been investigated in

detail, ' particularly for the sc lattice. .

Frequently we are interested in the Eoegs den-

sity of states, as perturbed by the impurity. In

the case of a ferromagnet the local density of
states is related to the local magnetization. In

simple spin-wave theory this connection is direct;
in more complicated theories (as discussed in

Sec. VII) the connection is less straightforward.
But temporarily, for purposes of ilhistration, we

assume that the density of excitations is so low

(low temperature) that the spin waves can be con-
sidered as simple bosons.

Then the significance of each boson state [ I'm&; E&

Turning to the second class of problems, we con-
sider the change in the density of states of a given
symmetry, caused by the introduction of an im-
purity. As in Eq. (4), we have

g,„(z)= ——Im Trz „„(Z'-X,)-'f,„1
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is that it corresponds to one boson (one-spin
deviation), distributed over various shells with the
distribution gz [ P~(R, E) i . The statistical weight
of each state is (eo —1) '. Then the local excita-
tion density, or the local magnetization deviation,
ls

(32)

where the local density of states gg(E) is

gI(E) =- -im&5lgl5&
1

= ——Im g [Cr„"(R)]"4' (R) G(Rl, Rl;E).
I'm l l'

(33)
The local density of states ga(E) must be identical
for every site in the same shell. Therefore we
can sum the right-hand member of (36) over all
sites in the shell and divide by v~. The orthogonality
relation (11) then requires that I= I, giving

go(E) = ~~' & Zr. (» E), (34)

where gr„(R, E) is the density in energy of states
of symmetry I".m, on the shell R:

gr (R E) = ——Imp Gr(RL, R/; E) .
7T

(35)

&= &o+ &oV& = ~o+ &oV(1 —~oV)
'

~o

where

gz,„(R,E) = g z,„(R,E)

(36)

——,1m~&1'~I RISoV(I-SoV) 'Boll'~I R&.

(3'I)
The last term in Eq. (37) is evaluated by intro-

ducing summations over intermediate states. Again
suppressing the / indices (which are superfluous in
any case for our fcc next-nearest neighbor model),

g „(R,E) =g'„(R, E) —— P G „(R,R')

Vz gr2 ~ r (1 8 o V)z ~zzrr zzr ~ ~ G z (R r R) (38)

We shall now apply the foregoing analysis to a
fcc ferromagnet to illustrate the simplicity by
which all equations can be evaluated in the she1.1.—

symmetry representation.

We note that gr (R, E) is independent of m, so
that the sum over m in Eq. (34) merely multiplies
by d~.

Correspondingly, the spin deviation at a given
site is a sum of contributions [through Eqs. (32)
and (34)] from each symmetry separately.

To calculate the partial density of states gr„(R, E)
we employ the Dyson equation for the Green's-func-
tion operator

VI. FACE-CENTERED-CUBIC FERROMAGNET AT LOS(

TEMPERATURES

The definitions of the shell-symmetry states for
a fcc structure have been given in Tables I and II.
The unperturbed Green's functions have been given
in terms of the conventional site-to-site Green's
functions in Table IIl.

Consider now an Heisenberg ferromagnet with
the Hamiltonian

V, =&It,
l

Vl It, &=2(S, -S)z,+»,j, ,

V2 &It2
I
V

I
It2& = 2(So —»~2+»o ~2

(42)

(43)

As discussed below Eq. (23), these matrix elements
describe the change in energy required to produce
a spin deviation on a site in the zeroth, first, and
second shell, respectively. The off-diagonal ma-
trix elements are conveniently defined with a factor
vz'z~2 as in Eq. (25):

Voz= ~12&Ro
I

V

= 4~3([(»)'"-S]~ + (SoS)'"jzf,

v„=W6Ot,
l
via, &

= 2~6 ([(S,S)"'- S]~2+ {SoS)"'&2z,

Thus Vo, is 0 12 times the change in the transfer
matrix element taking a spin deviation from the
origin to a site in the first shell.

As indicated in Eq. (25), Vo, and Vo2 are also
the matrix elements between the indicated shells,
in the symmetry Az~. And from Eq. (24), Vo, Vz,
and Va are the matrix elements ~itkin the indicated
shells for every symmetry supported by the given
shell.

8C= —EJ„S,~ S, —2j S, ZS-zz —2j2S, ZSa ~ (39)
f 2' R

Here J;& is the unperturbed exchange, and it is
assumed to have the value J, for nearest neighbors
and J~ for next-nearest neighbors. Similarly, j&
and ja are the changes in nearest- and next-nearest-
neighbor exchange of the impurity, relative to the
host ions. The summation over R in Eq. (39) is
over all sites of the first shell; the summation over
R' is over sites of the second shell. We must also
note that the magnitude So of the impurity spin may
be different from the magnitude of the host spins.

The energy of the ground state is shifted by the
impurity, by an amount

5E = 2(S o S)S(12Jz+ 682)»oS(12jz+ 6j2).

We absorb this term in the unperturbed Hamilto-
nian. Then we easily find the following diagonal
matrix elements of the perturbing potential:

V, = &It,
l Vl r7g = 2s(12j,+6j,), (4
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Summarizing, then, the only nonzero matrix
elements are

oROoR Vo

A fg, Ri, Ri Tig Ri'Ri +g' i' 1 VT~' i'R

(48)

energy outside the spin-wave band. Calculation of
the local density of states by Eq. (38) also requires
knowledge of (1 —go V)r„. We examine this matrix
for each symmetry.

The symmetries T2, and T~ are supported only
by the first shell, so that

V»„,R., R = V„ (47) (1-goV)r~= 1 —Gz (Rz, Rz)Vz, l = T~, T~„. (51)

A+'R2'R2 VTiuo R2o R2
—VEgt R2oR2 V2 & (48)

(49)

(50)

A~, RO' Ri VOi

VAi„Ro, R2= V02 .
With the matrix elements identified we can turn

to physical problems. If we wish to calculate the
change in the density of states of a given symmetry
by Eq. (31) we must consider the matrix (1 —go V)r „.,
We also recall that discrete states exist outside the
spin-wave band if detr„(l —goV) has a zero for some

The symmetries Ti„and E» are supported only
by the first and second shells, so that (1 —goV)„„ is
of rank two:

(1 —Gz (Rz, Rz)Vz —Gz(Rz, R»V
(1-goV)r =

~

Gr (Roi Rz)Vz 1 Gr(Rot R2) Vo)

1'=T„, E . (52)

Finally the symmetry A~ leads to a matrix of
rank three:

1 —G (00)Vo- G (01)Vzo —G (02)Voo

~1 —goV4+= —G (10)Vo G (ll)Vzo G (12)Voo

—Go(20) V, —G'(21) V,o
—G'(22) V,o

—Go(01) Vz —G o(00)Voz —G (02)Vo —Go(00) Voo

1-G (11)Vz-G (10)Voz —G (12)Vo-G (00)Voo, (53)

—Go(21) Vz —G (20) Voz 1 —G (22) Vo —G (20) Voo

where we have omitted the subscript Az, (and the
argument E) in Gzz (R, R'; E)

With the shell-symmetry Green's function as-
sumed known, and with the matrix elements Vo,

Voz, etc. , given by Eqs. (41)-(45), it is now trivial
to evaluate the various matrices (1-goV)r„. The
local magnetization deviations and the changes in
the partial densities of states follow directly from
the appropriate equations of Sec. V.

At this point it is well to stress that the final
equations that we have obtained are equivalent to
those obtained by Wolfram and Callaway' and
others. 3 The virtue of our approach is threefold.
First, the factorization of (1 —goV) into matrices
for each separate symmetry has been automatic in
our approach. Second, the form of Eqs. (51)-(53)is
transparent, so that these equations canbe written
easily anddirectly (whereas theirform is quite ob-
scure when written in the representation of localized
states). Andfinally, the evaluation of the matrices
is quite simple if the various shell-symmetry Green's
functions are known. In Ref. 6 the site-to-site
Green's functions have been approximated by simple
Tchebyshev polynomial representations. The coef-
ficients in these polynomials need only tobe combined
according to Table HI to obtain polynomial repre-
sentations of the shell-symmetry Green's functions.
This convenient polynomial approximation permits
matrices such as those in Eqs. (52) or (53) to be
evaluated analytically. One can thereby obtain ap-
proximate analytic criteria for the appearance of

discrete states of particular symmetries, of the
functional form of in-band resonances, or of other
physical solutions.

VII. THERMODYNAMIC CONSIDERATIONS,
RANDOM-PHASE APPROXIMATION

Finally we consider the case of interacting spin
waves, necessitating the introduction of double-
time temperature-dependent Green's functions.
As might be expected, these Green's functions can
be accommodated to the point-group symmetry in a
manner which is formally identical to the crystal
Green's function. We exhibit the procedure within
the simple and convenient R,PA, as has been em-
ployed by Wolfram and Hall4 and by Hone, Callen,
and Walker.

The conventional retarded Green's function for
a ferromagnet is defined byi

G (R, R' „t) = —i e(t) ([S-'(t), S-„,(0)j), (54)

where 6(t) is the unit step function, the square
brackets indicate a commutator, and the angular
brackets designate a canonical average. The
Fourier transform of G(R, R';t) will be designated
by C(R, R';E), the bar distinguishing this thermo-
dynamic Green's function from the crystal Green's
function. Given the Green's function G(R, R';E) one
can calculate the local magnetization (S'-) by the
following algorithm. One first defines a "quasi-
boson" energy Q(R) by
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(
~„(yz

) z (e —1) ImG(R, R;E)
&SU

then we have

&s-„'& = SR fi. (&f1)

where &, is the Brillouin function.
The calculation of the Green's function proceeds

through the equation of motion:

G(R, R';t) = ([S-„',SN ]) 6(t)

—i8(t)&[s-„'(t),Z], Szt, (O)]&. (57)

G'(R, R' E)=&R~(E'-X) z~R'&,

(64)

where

Q(R, R")= -&sz& 6(R, R")+2Zjq-, &s*.&G(R, R" E)

—2~jam &S~d G(R', R"E)

except that the spin magnitude 8 is understood to
be replaced (self-consistently) by the thermal
average (S'). To avoid needless complexity of no-
tation we shall not signify this replacement in the
notation. The solution of Eq. (62) is, then

G (R', R";E)=ZztG (R', B; E) Q(R, R' '),

(58)

In this way one obtains the following equation of
motion of the Green's function~ "

In the RPA, furthermore, the Green's function on

the right-hand side is "decoupled":

&[s-„'(t)s-' (t) s%-(o)]&"&s-'„&&[sm (t) s="(o)]&

+ 2(S& Q /zing. tzzz. 6 (R, R";E)

—2&s'& ~ ~an AT G(R', R";E). (65)

&R R=- ~~ R-~R R (6o)

Also, let (S'& be the magnetization of a site in the
pure crystal, and

~.-=(&s'& —&s'&V&s'&.

Then equation (59) can be rewritten~

(E —2(s') Z J~.-„)G(R', R";E)

(61)

+ 2(S*)Z &y.aC(R, R";E)

=- &s„- &5(R', R") + 2 ~j -&S'-„&G(R', -R";E)

—2 Z jrz. zt(s'„)G(R, R"; E)

+ 2&s'& ~ A ~ ~ G(R', R";E)

-2&s'&+~tt~t a G(R, R";E) . (62)

However, the classical-crystal Green's function
satisfies the equations

(E —2(s') ~2-„,-zz) Go(R', R";E)

+ 2(s') Zg Jzt zz Go(R, R";E) = 5(R', R"). (63)

(E- »a-. ~ &S'-„&)G(R', R; E)+»a-'~&SR &

R

x G (R, R' ';E) = —(S' )6(R', R"). (59)

Here gg. R is the actual exchange integral between
the ions at R' and R; it differs from the host ex-
change if either R' or R is the impurity site. Now,
let 4y.y be the exchange interaction between sites
R' and R in the pure crystal, and let

At this point we introduce the shell-symmetry
Green's functions. For this purpose we define the
operator

Sz zz= Q 4'~r™(R)S%
z*

(66)

Then the two-time thermodynamic shell- symme-
try Green's function is defined by

G (R, R';t) = —ie(t)&[s;„,(t), s-,„,, (o)]& . (6V)

&& mrs™(R")G'(R',R; E)Q(R, R") (69)

Again the Green's function is independent of m, as
in Eq. (13). The physical significance of the
Green's function is the probability of finding the
set of spin deviations (66) on the R shell at time

t, after applying a set of instantaneous spin devia-
tions (of the same symmetry) to the shell R' at
time I = 0. That is, the Green's function is a prop-
agator, at temperature T, of spin deviations of a
definite pattern, from shell to shell.

The definitions (66') and (6V) lead to the analog
of Eq. (14) for either G(R, R';t) or for its Fourier
transform Gr(R, R'; E):

Gr(R, R';E)= Z Z [4g"(R)]*kg.(R')C(R, R'E)
(68)

Similarly, this equation can be inverted, precisely
as in Eq. (15). Consequently, knowledge of
Gr(R, R';E) would enable us to calculate C(R, R'; E),
and then (S-*„&by Eqs. (55) and (56).

We now show that the equation of motion (64) per-
mits us to calculate Gr(R, R'; E). We insert equa-
tion (64) into (66), to find

C, (R', R"„E)=ZZ Z [C'„", (R')]

This Green's function is identical to that defined
previously, by the equation

or

Gz (R R;E) = Q~ Gor (R R;E)Q z (R, R";E), (vo)
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where

Q (R, R''E)=g Z [C" (R)] C ".(R")Q(R, R").
R* R"*

(71)
Inserting Eq. (65) we obtain

Q „(R,R";E) = —(S~ ) &(R, R"} + 2(SZjf(s (S~,)7 R~

+(S')Z&qtt. Vq ) G„(R R" Z)
R'

—2 Z((S„')jr(R, R')

+ 2(S ) P~Jr(R R ))Gr(R', R";E). (V2)

The coefficients of the Green's functions are to be
evaluated for any R in the shell A. The quantities
jr(R, R' ) and J„(R,R'} are defined by equations
precisely analogous to Eq. (14), the relevant ex-
change constants replacing the Green's functions
in that equation.

Since Qr(R, R";E) in Eq. (70} is a function of
the Green's function itself, and also of the mag-
netization (S&) on the various shells, this equation
leads to a set of self-consistent equations. Al-
though they are considerably more complicated
than those obtained in simple spin-wave theory, they
are fully factored and fully explicit. In particular
cases they lead to explicit analytic solutions. To

demonstrate this we explicitly demonstrate the
solution of a spin impurity in a fcc ferromagnet.
Throughout the paper we have referred to the fcc,
next-nearest-neighbor ferromagnet as an illustra-
tive example of the method. We need only to as-
semble the appropriate facts required to evaluate
Eq. (60).

Consider first the quantities Zr(R, R') appearing
in Eq (6.1). As noted immediately below Eq. (V2),
these quantities are defined by equations isomor-
phic to Eq. (14). However, Sita. takes only two
values; 4, if R and R' are nearest neighbors
(R —R'= [110]or equivalent), and Jz if R and R' are
next-nearest-neighbors (R —R' = [200]or equivalent).
Hence we transcribe Table III as shown in Table
Dt'.

At this point all procedures are quite straight-
forward. We illustrate by writing Eqs. (70) and
(72) for the case of Tz, symmetry:

G' «(R«R~)=GO«(R«R~)( —(S{)+2ljg(S{)

+J,(S*)(p,+4p, ,+2p, +4p., + p, )

+ 2J'3(S') (i i+ i's + p )5] G ra(SR, RS,)

—4(S')«, (—2{,)G «{R„R,)) (72)

Solving for G~, we have

&S;)G',„(R„R,)
& 1 —Gras(R, R~)[2j,(S~)+ W,(S')(po+4p~+2pa+4ps+ p4)+4J'z(S)(p, , + ps+ i"s) —BJ3(S )p&J

We observe that Bra, depends on (SP, (Sz), . . . ,

(S;) (or ({{~"p,). These quantities must be calculat-
ed self-consistently. A practical solution is to
first assume that all p& vanish beyond some low-
ordered shell (usually the first or even the zeroth},
to find the magnetizations of all shells from this,
and if necessary, to iterate this solution once
again.

The Green's function Gr2„(R„R~) is determined
by a single self-consistent equation, analogous
to Eq. (73).

For the symmetry T~„(or for E,} there are three
Green's functions which are coupled by Eq. (70};
Gr&„(R&, R&), Gr&„(R&,R2), and Cr&„(RzsRz). Hence
these Green's functions must be obtained from the
solution of three simultaneous equations. Fortu-
nately, these equations are truncated if we assume
@3=0, as in the approximation above. Neverthe-
less, it is evident that the structure of the equations
is considerably more complicated than in the zero-
temperature case. The full prior exploitation of
symmetry is correspondingly more nearly essen-
tial.

APPENDIX

TABLE IV. Symmetry combinations of the exchange
constants for a fcc crystal.

J+fg(Rp, Rp) = 0

J~f~(Rp, Rf) =v 1.2 J,
J~f~(R p, R2) =~6J2
J~fg(Rf, Rf) =4Jf +2J2
J~~(R2, R2) =2& 2 J
JP2g(Rf, Rf) =-2 J2

Jnu(Rf Rf) =-2Jf

Jgf„(Rf, R f) = 2Jf

Jgf@(R2 t R2)
Jrfu(Rf*R2) =2Jf

Jgg(Rf, Rf) = —2Jf+2J2
J@g(R2,R2) =0
J~,(Rf, R2) =~»f

JA{g(R02 R)}
A. fg(Rp R2) =~i2
jgf~(Rf, Rf) =0

jnu(Rf Rf) =0

jr f.(Rf. Rf) ='
jrfgN2 R2) =0

jz~(g„Rf) =0
~,.(R„R,) =0

jz (Rf R2)=0

We here derive an analytic expression for the
coefficients 4„", of Eq. (9). Let us first recall
the definitions of the "crystal harmonics" 4, (x);
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these are linear combinations of the spherical
harmonics Y", (r) of degree l, such that they trans-
form according to the mth row of the F irreducible
representation of the given point group. For the

cubic group 0„the crystal harmonics are the "ku-

bic harmonics" of van der Laage and Bethe. If
(R is a rotation operator of the point group, then,

by definition,

but

Z r„.„(N)l.„„(6t)= —~(m', m"),

hence

(AV)

e,' ("Q'f. ) N=C', ("r) Z=e', ("r)l' „,(N„) .
ml

It is then evident that

~

lmf, R&=(A"„) t'see, (R)~It&,

(Al)

(A2)

Ar R Q~C,
I" (R)~s

dr

and finally

(A8)

(As)

which defines the functions I I'ml;R& .
To evaluate the normalization constant A~, we

infer from (Al) that

X'"= Z
~

C ""(R)
~

' . (A4)

The sum over the shell R can be replaced by a
sum over all operations applied to a single site
vector R, but we must then correct it by the ratio
v„/p (the ratio of the number of sites in the shell
to the number of operations in the point group).
%e have

(A8)

where A~, is a normalization constant, and where

4, "(R) is the crystal harmonic 4, " evaluated at
the angular coordinates of an ion in the shell R.
To corroborate Etl. (A2) we apply the operator 6t,
invoke Etl. (Al), and find

(AQ)

It should now be noted that the index l was intro-
duced merely as an index in the states ~

I'ml, R&,

to distinguish states corresponding to the same I',
m, and R. %e have now associated l with the
degree of the cubic harmonics in an equation such
as (A2). It does not follow that all l values are ac-
ceptable. In fact, higher values of l in the right-
hand member of Etl. (A2) merely reproduce the
same values of the crystal harmonics at the dis-
crete ionic position R, giving the same states

~
I'ml, R) as do lower values of /. This phenomenon

is completely analogous to the fact that values of
k outside the first Brillouin zone merely repeat
Bloch states inside the zone, again because of the

discrete nature of the lattice. It is in this sense
that the states ~

I'ml, R& are orthogonal in l (Eq. 8);
the orthogonality does not extend to hypothetical
higher values of l which merely repeat equivaient
states. In the body of the paper the index l is gen-
erally suppressed.
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