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The scaling functions for the S=2 Ising, S=2 Heisenberg, and S= Heisenberg models are
compared with experimental measurements of h(g) on the insulating ferromagnets CrBr3
(S= 2) and EuO (S = 2), with the metallic ferromagnet Ni and with the conducting alloy Pd3Fe
(in both disordered and ordered states). The data agree much better with our Heisenberg
Inodel h{x) than with the Ising model h(x). Comparison with experimental data is made by
using plots of scaled magnetization Ms M/H—— vs scaled temperature es ——e/H
which has the virtue that all points fall upon a single curve and log-log plots need not be
resorted to. We proceed to consider the extent to which the equation of state depends upon
parameters appearing in the Hamiltonian {the "universality" question). We find that our
calculations indicate that h(x), if properly normalized, does not depend on lattice structure
and is very likely independent of spin quantum number S. Moreover, the fact that our
calculated h4) agrees with data on CrBr3 (for which there exists considerable lattice
anisotxopy) and on EuO (for which there exists nonnegligible next-nearest-neighbor inter-
actions) suggests the further conjecture that h(z) might be independent of these features
of the Hamiltonian. By contrast, the change in h(g) on going from Ising coupling (0 =1)
to Heisenberg coupling (D=3) was quite substantial, and indeed would seem to account

, for the fact that earlier workers did not obtain agreement between the Ising model h(g) and
experimental data on magnetic systems. We conclude with the working hypothesis that the
scaling function depends principally on spin dimensionality D and on lattice dimensionality d.

I. INTRODUCTION

In Paper I of this work, ' we utilized high-tem-
perature series expansions of H(e, M) to calculate
the scaling function for the S= —,

' Ising model [bcc,
fcc, and simple cubic (sc) lattices], for the 8= —,

'
Heisenberg model (fcc and bcc lattices), and for
the S= ~Heisenberg model (fcc lattice only). We
anticipated that the accuracy of our expressions,
limited by the number of known terms in the series,
is of the order of a few percent. Accordingly, we
feel that the expressions derived in I are suffi-
ciently accurate to be worth comparing with each
other and with experiment. In Sec. II, we under-
take a comparative study of the seal. ing functions
for the Ising, S= —,

' He|senberg, and S= ~ Heisen-
berg model. s, with particular emphasis being
placed upon the question "upon what features of an
interaction Hamiltonian does the seal. ing function
depend?" In Sec. III we shall compare the results
of our calculations with experimental measure-
ments of the scaling function on Crar~, EuO, Ni,
and PdsFe (both the disordered and the ordered
alloys). In Sec. 1V we summarize the present
work and present our conclusions.

II. COMPARATIVE STUDY OF SCALING FUNCTIONS
', FORS = 5 ISING, S = 5 HEISENBERG, AND S =~

HEISENBERG MODELS

A. Universality of Critical Properties

There have been many "conjectures" ' about
the extent to which h(x) depends upon parameters

of the systems, such as type of lattice and mag-
nitude of the spin quantum number, if in fact h(x)
depends at all upon these parameters t This ques-
tion is related to similar questions regarding the
critical-point exponents ' and other singulari-
ties'3'4 pertinent to the critical region. Most of
the detailed evidence germane to these questions
comes from the study of certain model systems. "

In particul, ar, there has been almost no detailed
evidence concerning what features of a system the
scaling function h(x) might depend upon, since the
scaling function has hitherto been calculated only
for the d= 2 and d= 3 Ising models. 3 Gaunt and
Domb observed that h(x) differed drastically for
the two different lattice dimensionalities, d= 2 and
d= 3.a Gaunt and Domb also calculated h(x) for the
bcc, sc, and fcc lattices (though they do not display
the results of their calculation), and they state
that the scaling functions agree to within the ac-
curacy of their calculation (about 10%).3

We have varied the parameters "spin-space
dimensionality" D (with D=1 and D=3 correspond-
ing, respectively, to the Ising and Heisenberg
models), lattice structure, and spin quantum num-
ber S. From Fig. 1 it is clear that our calculated
scaling functions depend strongly upon D, even
when the normalized plots h(x)/k(0) vs (x+ xc)/xo
are compared. In Secs. IIB and IIC we examine
in detail the question of whether our calculated
functions h(x) depend upon lattice structure and
spin quantum number.
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TABLE II. Comparison of the normalized scaling
functions of the S=2 Heisenberg model for the fcc and
bcc lattices.

O
5

0
0 2

( x+ xo) /xo

FIG. 1. Comparison of the normalized scaling func-
tions h(x)/h(0) plotted vs (x+xo)/xo, for the three ferro-
magnetic models —the Ising model and S=2 and S=~
Heisenberg models.
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B. Independence of Normahzed Scajing Function
with Respect to Lattice Structure

l. Ising Model

TABLE I. Comparison of the normalized Ising-mod-
el scaling functions for the three cubic lattices.
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The noxmaEized Ising-model scaling functions
h(x}/h(0) are compared as functions of (x+ xo}/x~
in Table I for the bcc, fcc, and sc lattices [using
Etls. (2. lla), (81), and (83) of I]. In obtaining the
expressions for h, (x) in (Bl) and (83), we chose

values of c (corresponding to points on the phase
boundary) that imply corresponding values of the
exponent q [cf. Eq. (2. 9) of I] as close as possible
to the believed' value q= 1. At the same time, we
could not choose c too large or we woul. d not be in
the critical region (cf. discussion in Sec. II of I).
It turned out that for aLl three lattices c=0.6-0. V,

implying q ~ 1.07. Any larger values of c would
result in similar values of q, but the range of va-
lidity of the corresponding expressions for h, (x)
would be too small for the present comparison. In
particular, our choice c= 0. 64 for the fcc lattice
(which has the smallest amplitude 8 in M = B~ e

~

s}

might be a little too large, and this is very likely
the cause for the slight discrepancy in Table I for
higher values of (x+ xo)/xo. Nevertheless, it is
evident that the disagreement is at most 2/q, and

we can conclude that our calculations support the
conjecture that normalized plots of h, (x)/h, (0) vs
(x + xo)/xo are, in fact, independent of lattice struc-
ture for the Ising model.

2. Heisenberg Model

For the 8= —,
' Heisenberg model, we compare in

Table II normalized plots of h, (x)/h, (0) for the fcc
and bcc lattices, using Etls. (3.7) and (85) of I,
respectively. [As discussed in Sec. IIID of I, the
expansion for the sc lattices is not sufficiently
well behaved to obtain a reliable expression for
h, (x}.] From Table II it appears that the normalized
scaling function is also lattice independent for the
S= —,

' Heisenberg model. This result is not too sur-
prising, as the coincidence of the phase boundaries
for the fcc and bcc lattices had been noticed pre-
viously. "
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As was made clear in Secs. III and IV of I, the
critical-point exponents for the S= & and S= ~
Heisenberg models are not yet firmly established,
but it is at least possible that these exponents are
independent of spin quantum number. Therefore
we consider in this section the question of whether
the corresponding scaling functions h(x) are spin
independent, .

Figure 1 compares the normalized scaling func-
tions h(x)/It(0) for the S= a and S= ~ Heisenberg
models; also shown for comparison is the Ising-
model scaling function. ' One observes that for all
negative values of x [i.e., for all values of the
abscissa (x+ xo)/xo& 1) corresponding to T& T, ],
and for small positive values of x, there is almost
no difference between S= —,'- and S = ~-Heisenberg-
model cases (cf. also Table III). Hence we are
led to conclude that for T & T, any spin dependence
of the scaling function is sufficiently small ( 2/o)
that it is within the accuracy of our calculation of
a(x).

Qn the other hand, for larger positive values of
x the discrepancy increases very slowly and hence
we cannot infer that for T & T, the spin independence
of the b(x) function is confirmed by our calculations.
For example, if (x+ xa)/xo =—50, then h(x)/h(0) for
the S= ~ Heisenberg model is 5/o larger than for the

TABLE III. Comparison of the normalized scaling
functions of the S = 2 and S = ~ Heisenberg models, fcc
lattice.

g+x, )/xo
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0.625
0.750
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0.07
0.17
0.28
0.41
0.55
0.69
0.84
1.16
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2. 25
2.44

h(x) /h(0)

0.06
0.16
0.27
0.40
0.53
0.68
0.84
1.17
1.35
1.53
1.72
l.92
2. 12
2o 32
2.53

Thus our calculations support the conjecture
that the normalized scaling function is independent
of detailed lattice structure for both the S= —,

' Ising
and S = —,

' Heisenberg models. The S= ~ Heisenberg
model was studied only for the fcc lattice, since
only for this case were the appropriate series avail-

)le.ss

C. Possible Independence of Normalized Scaling Function
with Respect to Spin Quantum Number S

S=-,' case, providing we use p=0. 35, y=1.40, and

5 = 5 for both models; this selection was made be-
cause a necessary condition for k(x) being indepen-
dent of S is that the exponents be independent of S
[cf. Eq. (S.9) of I, which implies h(x) -x" for large
x]

In summary, then, we have seen that any spin
dependence of It(x) may be within the error of our
calculation and hence may be spurious. In particu-
lar, for the region of x corresponding to T& T,
(-x, &,x & 0), we find that the discrepancy between
It(x) for S = —,

' and S= ~ Heisenberg models is within
1-2/o. Of course, we know of no argument which
says that if h(x) is spin independent for T & T, it
should also be spin independent for T & T„but it
might surprise us if h(x) were spin independent for
T & T, but spin dependent for T & T,.

III. COMPARISON OF CALCULATED SCALING FUNCTIONS
WITH EXPERIMENTAL RESULTS

M(~'~, ) "H)=) M{s,H) . (S. I)

The "scaling parameters" a, b in Eq. (3. 1) are un-
specified, but they may be related to critical-point
exponents. For example, by setting X= I e )

' ' and
choosing H = 0 in (3. 1) we find that M(s, 0) c ) a )

' '
and a= I/P; similarly by setting X= )H )

' ' and

choosing e = 0 in (3. 1) we find that M(0, H) c H' '
and b= 5. Equation (3. 1) thus becomes

M(~'"a, ) 'H) =)M(e, H}. (3.2)

If we follow the argument leading up to Eq. (2. 4) of
I, we argue that (S. 2) must be valid for all values
of X and hence, in particular, for the choice
& =- (c/H}' ~', (3.2) becomes

M(a &H)/H = M(c e/H' ', c)/c (S. 3)

Equation {3.3) says that plots of "scaled magnetiza-
tion" M=—M(e, H)/H ~s vs "scaled temperature"
g—:f,/H' ~' should be described by the function
M(c' s'e, c)/c', which is essentially the magnetiza-
tion function for a constant but small (if c is smal!)

A. Plots of Scaled Magnetization itf/Ht s vs
Scaled Temperature e/H

In Sec. IIA of I we assumed that the magnetic
field H(s, M) is a generalized homogeneous function
in the critical region [cf. Eq. (2. 2) of I]. Now if
one formulates the scaling hypothesis by means of
the essentially equivalent hypothesis that a thermo-
dynamic potential (e. g. , the Gibbs potential G) is a
generalized homogeneous function, then one can
straightforwardly show that all. its Legendre trans-
forms and derivatives are also generalized homo-
geneous functions. In particular, the magnetization
M(e, H) = (SG/SH) r is also a generalized homogeneous
function-i. e. , there exist two numbers a and b

such that, for all positive values of the number ~,
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FIG. 2. Comparison of the scaling function of the
S= 2 Heisenberg model calculated in this work (solid
curve) with the experimental results of Ref. 23 for GrBr3
(small circles). The region between 1.2 and l. 6 of the
abscissa corresponds to a range where the theoretical ex-
pressions for h~(x) and A2(x) [Eqs. (3.7a) and (3.19)of I,
respectively] overlap. For smaller values of the abscissa
the solid curve is calculated only according to h&(g),
whereas for the larger values it was calculated by using
k2(g) only.

value of the magnetic field. In other words, Eq.
(3. 3) states that the scaled magnetization M/H' '
is a function of only one variable, the scaled tem-
perature a/H' ~~'.

It turns out ~ that plots of the experimental data
in the form M/6"~' vs &/H ~ ' have some advan-
tages over the original presentations of experi-
mental results, namely, all experimental data
can be captured within one curve for both regions,
T & T, and T & T„without breaking the curve into
two parts and without using a log-log plot. This
advantage arises from the fact that with current
equipment it is difficult to make measurements for
II arbitrarily close to zero and hence the ordinate
M/H'~' and the abscissae/If'~~' never become
extremely large. Furthermore, data do not ap-
pear clustered in a certain region, ' nor does the
behavior of the corresponding curve become dom-
inated by the value of only one critical-point ex-
ponent.

Therefore we will compare our calculations of the
scaling functiona~ with the experimental results in
the form of plots M/H' '(=-I/O' ') against s/H' ~'

(= x/h' ~z'). In doing this we will deal only with the
normalized quantities h(x)/h(0) and x/x, (cf. Appen-
dix A of I).

Chromium Tribromide (CrBr3)

Since CrBrs was the first insulating magnet for
which accurate measurements germane to the scal-
ing-law equation of state mere made, ~' we treat
this material first. Now chromium has S= —,',

so we compared the experimental data for the
scaling function with both the S= ~ and the S-- ~
Heisenberg calculations, and also with the S= —,

'
Ising-model calculation. The data disagreed
strongl. y with the Ising-model calculation, and dis-
agreed with the S= ~ Heisenberg model in those
regions where the S= —,

' and S= ~ Heisenberg cal-
culations are slightly distinguishable. %'e show
in Fig. 2 the S= —,'-Heisenberg-model calculation
compared with the data.

It is important to emphasize that there are «
adjustable parameters whatsoever used in the
Heisenberg-model. calcul. ation, so we found the
agreement to be rather gratifying and even perhaps
somewhat surprising when one remembers that the
critical-point exponents of CrBrs(P=0. 368, y
= l. 215, and 5= 4. 28) are not at all close to the
values used in our calculations for the S= —,

' Heisen-
berg model (P=0. 385, y=1.43, and 5=4. 71). This
difference in exponents is likely to be the reason
for the slight discrepancy between the "tails" of
the experimental and theoretical curves in Fig. 2.
For example, at very large x we have h(x) -x" [cf.
Eq. (3. 8) of I] and hence [h(x)] ~~ - x "~ for the be-
havior of the ordinate in Fig. 2. Using the values
of the exponents quoted above, me expect experi-
mental and theoretical curves to behave as g

and x 0'3O4, respectively, and one can notice that
the experimental points do indeed lie somewhat
above the theoretical curve in Fig. 2.

Figure 3 shows an enlarged region of Fig. 2
centered about x= 0 (corresponding to 7'= T,). The
curve labeled 1 in Fig. 3 is the S= —,

' Heisenberg
calculation from Fig. 2, while the curve labeled 2
in Fig. 3 is the same functional form, Eq. (3.7a)
of I, as curve 1 except that we have used P= 0. 35
and 6= 5 rather than P= 0. 385 and 6=4. 71 (cf. the
discussion in Sec. III B of I). We note that the two

curves are barely distinguishable in this region,
though the discrepancy between them is somewhat

larger in the region T& T, (x& 0) than in the region
7'& 7', (x& 0). Also shown in Fig. 3 is the scaling
function calculated for the Ising model and one sees
rather dramatically how much more closely the
data are fit by the Heisenberg model than by the
Ising model.

According to our understanding of the universality
hypothesis, the fact that Crar3 has a rather large
amount of "lattice anisotropy

"2' [different coupling
strengths in different directions, the coupl. ing in
the z direction (J,) being about 17 times weaker
than in the xy plane (J'„„)]does not mean that the
scaling function should be any different from the
"isotropic" case (J,= J„,). Since we cannot easily
calculate the scaling function for the case of ar-
bitrary lattice anisotropy, we cannot test this hy-
pothesis. theoretically, but the fact that our isotropic
cal.culation agrees as well as it does with the ex-
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dinate that is slightly larger than unity when the
abscissa value is zero (recall that for T= T„H
= h(0)M'). However, the value of h(0) used was
h(0) =7.6 &10 ~ (cgs units), which is the value quoted
in Ref. 25. Nevertheless, when we undertook to
independently determine (from the actual data of
Ref. 26) a value for h(0) using plotting techniques
of the sort described in Sec. IIIA, we were led to
estimate h(0) =6. 99 &&10 6, a value about 8/o smaller
than the value stated in Ref. 25. Using our smaller
value of h(0), the experimental data were replotted
as is shown in Fig. 4(b). The reader will note that
the data now extrapolate to the point h(x)/h(0) = 1
for x=0, and that, in fact, the data lie somewhat
closer to the S= ~ h(x) than they do to the S= —', h(x).
Of course, the differences may well be within the
computational or experimental error bars.

It might be somewhat surprising that the agree-
ment between measured and calculated scaling
functions is as good as it is for EuO, since the
measured exponents were P= 0. 368 and 6=4.46,
while the exponents used in the calculation were

FIG. 3. Enlarged portion of Fig. 2. The curve labeled
1 is the same curve as that in the previous figure, i.e. , it
corresponds to the S= ~ Heisenberg model with P =0.385
and P =4.71; the curve numbered 2 corresponds to the
same model but the estimates P=0.35 and 5=5 were used
in its construction. The broken curve corresponds to the
Ising-model scaling f'unction.

1.8 o-

1,6 (a)—

perimental data for CrBrs (for which J,/J„, = —,'7)
suggests that if there is a dependence of the scaling
function upon lattice anisotropy, this dependence
is very weak.

C. Europium Oxide {EuO)

A second ferromagnet for which accurate experi-
mental data have very recently been obtained is
EuO. ~' Europium oxide has spin quantum number
S= z, and hence in Fig. 4(a) we compare the data
with both the S= —,

' and the S= ~ scaling functions.
%e were somewhat surprised to note that the data
agree slightly better with the S= —,

' scaling function
than with the S= ~ scaling function, since many au-
thors have found that S= ~is a better approximation
to EuO than is S= ~.

One reason for this might be that the scaling
function h(x) is, in fact, spin independent, in which
case the small disagreement between the calculated
functions for S= —,

' and S= ~ is spurious. Another
possible reason for the data agreeing better with
S= —,

' than with S= ~ is that the normalization ampli-
tude h(0) might not have been properly chosen for
the data, and, indeed, the reader can observe by
careful inspection of Fig. 4(a) that the experimental
data do appear to extrapolate to a value of the or-

0.6
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FIG. 4. Comparison of the scaling functions calculated
in this work for the 8= 2 and 8= ~ Heisenberg models with
the experimental results of Ref. 25 for EuO. Parts (a)
and (b) of the figure differ in the normalization constant
h(0) accepted for the experimental data (cf. text).
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FIG. 5. Comparison of the scaling functions of the
S=2 (dotted curve) and S= ~ (solid curve) Heisenberg
models with the experimental results (Ref. 26) for Ni.
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FIG. 6. Comparison of the scaling function of the S=~
Heisenberg model (solid curve) with the experimental
results (Ref. 28) for the Pd3Fe alloy in the disordered
state.

P=0. 385 and 5=4. 71 for the S= —,
' case and P=0. 38,

6=4. 63 for the S= ~case. Besides, EuO has next-
nearest-neighbor interactions that are of magnitude
almost comparable to the nearest-neighbor inter-
actions, 3' while our calculations were for the near-
est-neighbor Hamiltonians (3. 1) and (4. 1). Con-
cerning this point, perhaps we should remark that
it is at least possible that the scaling function h(x)
is independent of the strength of second-neighbor
interactions since a necessary condition for this
to be so, the invariance of the critical-point ex-
ponents, has been established. '

D. Nickel (Ni)

We will next compare our calculated scaling
functions with experimental results26 for ¹i,the
first ferromagnet for which the scaling-)aw equa-
tion of state was tested. 7 This comparison appears
here near the end since our calculations have been
done for models which presumably describe insu-
lating ferromagnets, whereas Ni is a nzetal, and
hence it might seem unrealistic to expect agree-
ment between the theoretical and experimental
results. However, Fig. 5 reveals indeed a good
agreement of the Ni data with calculated scaling
functions for both the spin= —,

' and spin= ~ Heisen-
berg models.

The agreement is somewhat better with the clas-
sical Heisenberg model, which may be due to the
fact that the critical exponents~' of Ni (p=0. 378
and 5=4. 58) are closer to the values for S= ~
(P= 0. 38 and 5 =4. 63) than to those for 8= —,

'
(p=0. 385 and 5=4. V1).

We find that comparison with experimental re-
sults for ¹isuggests very strongly that insulating
or conducting properties of a material are not
important near the critical. point as regards the
normalized scaling function h(x).

E. PaHadium-Iron AHoy (Pd3 Fe)

Figure 6 shows rather good agreement between
experimental data ' for the conducting alloy Pd3Fe
in its disordered state with our calculated scaling
function for the S=—,

' Heisenberg model. In con-
trast, the data for the ordered alloy shown jn
Fig. '7 are in rather poor agreement with the Heis-
enberg-model calculation.

VVhat is the interpretation of these results Y One
possible interpretation is that the interactions in
the random alloy may be rather short range, and
indeed the measured critical-point exponents P
=0.364 and 5=4. 61 are rather close to those for
the nearest-neighbor Heisenberg model, Eq. (3. 1)
of I. On the other hand, the interactions in the
Ordered alloy might be quite long range, 3 and in
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x ( h(x) I-~~IS~
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FIG. V. Comparison of the scaling function of the S=2
Heisenberg model (solid curve) with the experimental
results {Ref. 28) for the Pd3Fe alloy in the ordered state.
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fact the measured critical-point exponents p= 0.444
and 5 = 3.64 are considerably closer in magnitude
to the predictions P= —,

' and 5= 3 of the Curie-Weiss
or "mean-field theory" which corresponds to each
spin interacting with every other spin with a force
of equal magnitude. It is precisely this case of
"infinite-range interactions" that, according to our
understanding, the universality hypothesiss'" would
predj, ct different behavior. Thus the agreement of
experiment and Heisenberg model in Fig. 6 and the
disagreement in Fig. 7 might, in fact, be consistent
with the universality prediction that systems with
short-range interactions have different critical
properties from systems whose interactions are
infinite in range. ' '

In summary, then, we have seen that the nearest-
neighbor isotropic Heisenberg-model equation of
state [Eqs. (3.7a) and (3.19) of I for S= —,

' and Eq.
(4. 8) of I for S = ~] appears to be adequate for a
wide range of physical systems: (i) CrBr~ (a
rhombohedral two-sublattice ferromagnet ' with
S= —,

' and J,/J„, =,'~ ), (ii) EuO (a S=+~ semiconducting
magnet with next-nearest-neighbor interactions),
(iii) Ni (a metallic ferromagnet), and (iv) disor-
dered Pd3Fe alloy.

Thus we see that the scaled equation of state,
when properly normalized, appears to be indepen-
dent of many specific physical parameters. ' The
one case of disagreement, ordered Pd3Fe alloy, is
thought to correspond to an example of infinite-
range interactions for which case the universal-
ity hypothesis would indeed predict that the nearest-
neighbor models considered in this work would be
inadequate.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a method for cal-
culating, directly from high-temperature series
expansions, the scaling function h(x) = H/M', where
x =-e/M' ~~. Previous calculations of h(x) required
the use of /os-temPexatuxe series as well, and

hence were restricted to the Ising model; we found .

that our calculation agreed with this previous
work. ' Our method is made possible by directl. y
utilizing the assumed property of the magnetic
field H(e, M) being a generalized homogeneous
function.

Most magnetic materials are thought to be better
described by the Heisenberg model, so we pro-
ceeded to calculate h(x) for the S= —,

' and S= ~
Heisenberg models. In order to obtain numerical.

results we had to infer the magnitude of the ex-
ponent 6 from estimates of other exponents and
"scaling relations" such as P+ 6= 4 and P(5+ 1)
=2P+y. Comparison of experimental results for
Crar3, EuO, Ni, and disordered Pd3Fe with our
calculated h(x) functions reveals discrepancies
never larger than 10% and in most cases much
better. For the comparison we followed previous
workers~ and normalized h(x) by h(0) and x by xo

[where xo is defined by h( —xo) = 0].
Our calculations also support the conjecture

that the scaling function might not depend upon the
lattice structure and spin quantum number 8, at
least to within the accuracy of our calculational
procedure. To get more definite support concern-
ing this "universality hypothesis, "one would have
to make more accurate calculations, and this woul. d
require using longer series than are currently
available. The fact that our calculated h(x) agree
with data on CrBr~ (for which there exists con-
siderable lattice anisotropy) and on EuO (for which
there- exist nonnegligible next-nearest-neighbor
interactions) suggests the further conjecture that
h(x) might be independent of these features of
the Hamiltonian. By contrast, the change in h(x) on
going from Ising (D= 1) to Heisenberg (D= 3) coupling
was quite substantial, as also is the change on going
from 6 = 2 to d = 3 (observed in Ref. 3). Accordingly,
we put forth the working hypothesis that the scaling
function depends principally on spin dimensionality
(or "symmetry number") D and on lattice dimension-
ality d.

We hope that our calculated expressions for h(x)
will prove useful to those wishing to compare ex-
perimental data with model systems. We also
hope that the method presented in I will prove ap-
plicable to other model systems (e. g. , the planar-
spin model of helium), and work along these lines

30is in progress.
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