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The WEBJ variational scheme developed by Bardeen et al. which simplifies the Bogoliubov
theory for inhomogeneous superconducting states, has been applied to study normal-superconduct-
ing phase boundaries in pure metals. The surface energy of a planar phase boundary at abso-
lute-zero temperature is found for various values of the Ginzburg-Landau parameter. The or-
der parameter and the magnetic field are also determined in this variational procedure. The
present theory differs from the existing ones in its being microscopic and nonlocal, but the non-
locality of our theory is found to have small, though not negligible, effects. Near the transition
temperature the free-energy expression for planar phase boundaries is examined by an asymp-
totic expansion method.

I. INTRODUCTION

A very basic concept in the theory of supercon-
ductivity is that additional energies must be as-
sociated with the formation of normal-supercon-
ducting (NS) phase boundaries. Such surface en-
ergies are the analog of surface tensions at liquid-
vapor interfaces. As first noted by London, this
concept must be introduced even to explain one of
the most fundamental properties of super conductors,
the Meissner effect. Infact, flux exclusion from su-
perconductors would be impossible if no supercon-
ductors had positive surface energies to prevent
flux penetration through the formation of many
fine normal domains in the superconducting bulk.
Superconductors with positive surface ener gies
are now classified as type I, to distinguish them
from type-II superconductors with negative surface
energies whose magnetic properties are now known

to be very different.
The early London theory on the electrodynamics

of superconductors predicts a negative definite
surface energy for all superconductors. The first
theory which allows the possibility of a positive
surface energy is the celebrated phenomenological
theory of Ginzburg and Landau (GL). ' This theory
assumes that all superconductors are characterized
by a single material constant —the GL parameter
KGL. It predicts that a superconductor is type I
or II depending on whether KGL is smaller or larger
than a critical value 1/v 2.

The GL theory was proposed for the vicinity of
the transition temperature T,. A rather similar
model was used by Bardeen~ to investigate the sur-
face energies for temperatures near absolute zero.
Another model, based on the Gorter-Casimir two-
fluid concept and qualitatively valid at all tempera-
tures, was also briefly discussed. This last model,
together with a variant to incorporate the existence
of energy gaps in superconductors, was then investi-
gated by Lewis' using variational methods.

These studies of the surface energies in super-
conductors were all done before the successful
development of a microscopic theory of super-
conductivity by Bardeen, Cooper, and Schrieffer
(BCS).' Since then, Gor'kov' and Bogoliubov' have
formulated two alternative generalizations of the
BCS theory to inhomogeneous problems. The mi-
croscopic theories, now well established as the
correct theories of superconductivity phenomena,
involve nonlocal integral equations in general and
reduce to the local GL equations only when the
sample is dirty, or, in the case of clean samples,
when the temperature T is very close to T,. The
Bardeen-Lewis theories, being local and phenom-
enological in nature, must therefore be improved,
especially for pure superconductors at low tempera-
tures.

The microscopic theories of inhomogeneous
superconductors have so far been applied success-
fully mostly to cases when a perturbative approach
is possible due to the presence of certain small

Copyright 0~1972 by The American Physical Society.



CHIA-REN HU

parameters. Examples are when T= T„when
the sample is dirty, or when the order parameter
is everywhere small. The theories have not been
used to study the NS-wall energy for pure super-
conductors at low temperatures (except in some
limiting cases') because no perturbative approaches
seem to be available. The hope for carrying out
such a study arose only very recently when Bar-
deen, Kummel, Jacobs, and Tewordt (BKJT)8 re-
formulated the Bogoliubov theory into a WKBJ
variational scheme, to study isolated vortex lines
in pure superconductors. This method has since
beenappliedbyKummel to study NS phase con-
ta.cts in extreme type-I superconductors (zoL = 0),
for which the magnetic field effects can be totally
ignored. A general nonvocal theory of NS-phase
boundaries valid for all ~GL values is nevertheless
stil. l lacking.

In the original Bogoliubov theory of inhomoge-
neous super conductors, the particle and hole com-
ponents of the elementary-excitation wave func-
tions satisfy two coupled second-order linear dif-
ferential equations which are now known as the
Bogoliubov equations. These equations are much
like the Schrodinger equations for a nonrelativistic
spin- —,

' particle of charge 2e (e being the electron
charge) moving in a vector potential X(r) and an
off-diagonal complex pair potential b (r). '0 The
vector potential A must be determined self-con-
sistently via the Maxwell equations and a current
expression. The pair potential & is to be deter-
mined by a relation now known as the gap equa-
tion. Both the current expression and the gap
equation involve summations of quadratic forms
of all eigensolutions of the Bogoliubov equations
which renderthe exact solution of this set of
equations a formidable task. The BKJT refor-
mulation of this theory introduced two important
ideas:

(i) The Bogoliubov equations are solved by a
WKBJ method which reduces the two coupled
second-order linear differential equations to two
nonlinear first-order ones. We wish to empha-
size that the main purpose of this step is to remove
the rapidly oscillating factors in the wave functions,
thereby making numerical solution of the equations
much easier, rather than merely to reduce the
orders of the equations.

(ii) The self-consistent conditions on b and X
are replaced by a minumum principle on a Gibbs
free-energy functional [cf. Eq. (2. 2)], treating
both 6 and X as trial functions. The forms of these
functions must be guessed through physical argu-
ments, allowing only a few adjustable parameters
to be determined by the minimum principle.

This WKBJ variational scheme is a powerful
tool for microscopic investigations of many basic
problems concerning pure inhomogeneous super-

conductors at low temperatures, when no perturba-
tive approaches are possible. One such problem
is the properties of isolated vortex lines already
studied by BKJT. The formation of NS-phase
boundaries is another such problem, to which we
address ourselves in the present paper.

The purposes of this work include (a) to formu-
late the NS-phase-boundary problem in the con-
text of a microscopic theory, using the BKJT re-
formulation of the Bogoliubov theory; (b) to see how

the surface energy arises in a nonlocal theory and,
in particular, to see how nonlocality affects the
formation of a phase wall; (c) to develop a, system-
atic scheme for the numerical investigation of quan-
titative aspects of the problem; and (d) to provide
a simpler, and therefore better, example for in-
vestigating a mysterious feature of the BKJT theory
first discovered by Cleary, "namely, the appear-
ance of a series of unexpected terms in the expan-
sion of the BKJT free-energy expression in the
vicinity of T„' besides those terms reproducing
the GL' and Neumann-Tewordt theories. ' '

In Sec. II we show how the WKBJ method, as
introduced by BKJT, must be generalized slightly
in order to solve the Bogoliubov equations for
the NS-wall problem. We then present formulas
for ca,lculating the density of states in such a sys-
tem for energies both below and above the equilib-
rium gap.

In Sec. III, the BKJT expression for the Gibbs
free energy is expressed in terms of the density
of states, and is rewritten, together with the re-
levant equations to be solved for its calculation,
in terms of dimensionless variables conveniently
introduced for this problem. Being properly de-
fined to contain no bulk energies, the minimum of
this free-energy functional gives directly an upper-
bound estimation of the desired surface energy of
a planar NS wall. "

The wall energy of an ideal boundary, defined by
mutually complementary step functions for the
space dependence of the order parameter and the
field, is calculated in Sec. III. This simple ex-
ercise serves as a qualitative guidance to a more
elaborate numerical calculation of the surface en-
ergy at T=o which we present in Sec. IV. Simple
trial functions of one adjustable parameter each
are chosen for both & and A. The results are
compared with a, corresponding variational study
of the GL functional. Possible improvement of
our zero-temperature calculation. is discussed.

In Sec. VI, the microscopic free-energy expres-
sion for the planar-NS-wall problem is expanded
near T„mainly to compare with a corresponding
study of the isolated-vortex-line case by Cleary"
and Jacobs. ' In our expansion, as well as in
theirs, the Ginzburg-Landau-Neumann- Tewordt '3'
series is recovered together with another series
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x U (r) ~ b, (r) V'„(r), (2. la)

E„V„(r)= -[(2m,) '(8 —eX) —E~]

x V„(r)+a*(r)p„(r) . (2. 1b)

In these equations, m„e, and EJ; are the mass,
charge, and Fermi energy of the electrons, and

U„, V„are the particle and hole components of the
quasiparticle wave functions that correspond to the
eigenenergy E„. Throughout this paper we let 8= c
= Boltzmann constant = 1.

(iii) The resultant quasiparticle spectrum E„
should next be used to evaluate the total Gibbs free
energy of the system:

G, = —2P-' g ln(2 cosh-,'PE„)
&n&o

+ f & V 'I ~(r) I'+ (8~) ' [h(r) —H, ] ] d r, (2. 2)

where P= T ', and V is the interaction parameter.
For the NS-wall problem, the applied field H, is
equal to the thermodynamic critical field H, . It
is also convenient to remove all wall-independent
energies from G, and calculate

&G= Gs Gg ~ (2. 8)

where GR is the corresponding free energy of a

of mysterious anomalous terms as first discovered
by Cleary. The terms in the latter series have
orders in (1- T/T, )'~~ lying between those of the terms
of the former. No attempts have been successful in
resolving this puzzle, but we believe that the NS-
wall problem is a simpler, and therefore better,
example for investigating it. This follows since
in the NS-wall problem, only Cartesian instead of
cylindrical coordinates are needed, and one finds
continuous rather than discrete spectrum below
the gap.

Finally, a short conclusion is presented in Sec.
VII, and two Appendixes are attached, one on
some mathematical details, and the other present-
ing a general asymptotic-expansion formula use-
ful for the high-temperature expansion.

II. SOLUTION OF BOGOLIUBOU EQUATIONS BYYfKBJ
METHOD

According to the BKJT theory, ' the essential
steps for studying an inhomogeneous state in a
pure superconductor are the following:

(i) Variational forms must first be chosen for
the pair potential A(r) and the magnetic field h(r)
which may contain some adjustable parameters.
In a special gauge the chosen form of h determines
the vector potential A.

(ii) The Bogoliubov equations, as stated below,
must then be solved by the WKBJ method:

E„V„(r)= [(2m.)-'(- g -eX)'- E,]

reference system made of a normal half-space
and a separate superconducting hal. f-space in the
Meissner state. The field is H, in the former and
zero in the latter.

(iv) Finally, the free energy G, (or equivalently
the difference b G) should be minimized with re-
spect to the adjustable parameters in 6 and X.
The final minimum value of the free-energy dif-
ference ~G for the NS-wall problem is by defini-
tion anupper-bound estimation of the surface en-
ergy o of the phase boundary.

In this section we first develop a form of the WKBJ
method to solve the Bogoliubov equations (2. 1)for the
NS-wall problem. We then obtain formulas for
calculating the density of states below as well as
above the equilibrium gap 6 (T). To do so we
must first know the qualitative behavior of 6 and
h. in such a system which is well known through
GI -theory studies. " Far away from the wall,
we expect 6 = 0, h = H, in the normal side, and
6= 6, 0=0 in the superconducting side. In the
wall region exact analytic solutions have been found
for ~ and h only in the limiting cases ~«= 0 or ~.
In both cases a sharp edge exists at which ~ de-
parts from zero which is actually a misleading fea-
ture not true for general v«values. It can be
shown that, for general w«, the sharp edge must
be rounded off into a Gaussian tail whose width is
the geometric mean of the coherence length ((T)
and the penetration depth A.(T) in the GL theory.
For &GL = 0 the magnetic field does not penetrate
into the S region in the scale $(T), in which h rises
up first linearly, then to saturate at the bulk value

For I(.«= ~, the field smoothly reduces to
zero with a vanishing slope at the edge, while ~
rises up initially according to the square root of
distance, both in the same scale A(T). For inter-
mediate I(:«, one expects h and ~ to vary at dif-
ferent scales, but both are likely to vary monotoni-
cally.

With the above picture in mind, wenow seekthe
WKBJ method to solve the Bogoliubov equations
(2. 1) for the NS-phase wall. For the convenience
of our variational solution, however, we ignore
the possibility of a Gaussian tail, and assume that
the N and S regions are always separated by a
sharp edge. The original version of the WKBJ
approximation, as developed by BKJT for the iso-
lated-vortex problem, must be modified in order
to be applicable to the present problem. The rea-
son is that in the single-vortex problem a gauge
can be found in which the vector potential A(r) is
small everywhere [more precisely one has I eX(r) I

«Pz for all r]. One can, therefore, in that gauge
ignore completely the A ~ term in Eqs. (2. 1). The
condition is clearly not satisfied in the NS-wall
problem due to the presence of a normal region
of macroscopic size in a finite magnetic field H, .
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Instead, in this problem one can at most find a
gauge in which the vector potential is large in the
normal region only. But in this gauge, as we shall
see below, it is possible to modify the original
BKJT version of the WKBJ method to properly
take care of the large A~ term in the normal region.
We can then ver ify rigorously what we have expected
from intuition. Namely, if only one ignores all
effects associated with Landau-orbit quantization,
which are usually small in superconductors anyway,
then all results are independent of whatever hap-
pens in the normal region. This means that we
could solve the problem essentially correctly by
neglecting the Az term in Eqs. (2. 1) irrespective
of its large magnitude in the normal region. An-
other point of view to this less rigorous approach
wouldbe to imagine that we were considering a
fictitious system. In this system no magnetic fields
would be applied in the normal region except right
at the boundary where their magnitudes would still
be H, . In such an alternative approach one could

use the original version of the WKBJ approxima-
tion without modification, in a suitable gauge.
Nevertheless, we do not adopt this alternative ap-
proach because we think that artifices should be
avoided if only possible. A bonus reward of our
more elaborate approach, as we shall see, is the

discovery of a partial-Landau-orbit-quantization
phenomenon, which leads to a continuous but os-
cillating density of states above the equilibrium
gap,

We choose our coordinates such that the sharp
edge of the phase boundary constitutes the xy plane
with the z axis pointing from the N side to the S
side. The magnetic field h is taken to be along

the positive y axis, and the gauge is chosen such
that the vector potential A has only an x component

given by

A(z) -=A„(z) = f k(z—') dz'. (2. 4)

This is the gauge in which A stays small through-
out the superconducting region. For z &0, we can
write A(z) =H, (z —A.,«), where

&,«=H, ' f k(z ) dz (2. 6)

is the effective penetration depth of the field in this
problem.

In this choice of gauge, A(z) is real. It is clear
that the eigensolutions of (2. 1) are of the form

Schrodinger equations which are obtained from Eqs.
(2. 1) by setting E„=0 and by switching off the pair
potential but not the vector potential:

y, = [k,', &(z)]-'" exp[i j(,& k,",'(z') dz'], (2. 6)

Eg =+ k'g'(z) —g +h(z)Q (z)g, , (2. 10b)( )

e

where the phase factors

Q, (z) -=exp[ + 2i e (k„/k, ) J A(z ) dz ]

are originally of a form

(2. 11)

exp [ wi J &, &
k' dz '+ i 1 & &

k', ' dz ] .
8'g p p

To obtain the simpler form (2. 11) we have allowed

E~ to have a very minute k„= (k„k,) dependence,
so that the Fermi energy at any k, always corre-
sponds to an unperturbed particle or hole level. "
Imagining the superconducting side to have a finite
thickness D one must have

where v, are integers. The phase factors then be-
come exp[ +i f, (k' & —k', ') dz ]. One further rea-

gp 8
lizes that the factors 4 z, which are multiplied
by Q, , vanish for z & 0; and for z &0,

i
8X(r) ~„8H ~ gg

where the local wave numbers k',"(z) are the posi-
tive soluitions of

[k„+eA(z)]'+ k,'+ [k.",'(z) ]'= k,', (2. 9)

and z',"are the classical turning points where k,"'(z)

=0. For z-~ we have k', "(z)-k, = (kz —k„—k,)'
We shall only consider states with real k, , as main-

ly only these states are affected when one turns on

the pair potential in the superconducting side. We
anticipate that g, (z) are slowly varying in the atomic
scale [more precisely, i (d/dz)g, (z) l -g(T) '

~g, (z) I]
for all solutions of (2. 1) with E-r& (T) «E~. Sub-
stituting Eq. (2. 7) into (2. 1) and consistently ig-
noring terms of order (k&„g)

' with respect to one,
we obtain

Eg, = — k,", (z) —g.+ ~(z) q, (z)g, (2. 10a,)
e

i (Ogx+kyy ) ..~+ (2. 6)
-max ([$(T) A(T)]- + g(T)-'] « k .

One can therefore use
The essential step of our modified WKBJ method

consists of writing f (z) =(f„f)'" in the form k',"(z)=—k,,+ eA(z) k,/k, (for z &0) (2. 12)

/(, )
g.(z) 4.(z)
g (z)4 (z)

(2. 7)

where Q, are the usual WKBJ solutions of the

to obtain the forms in Eg. (2. 11).
For z &0 the general solution of (2. 10) is clear-

ly of a form
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(A exp[im, Ef(.)(a,", ) 'dz

(K exP [ —im, E f ( ) (Iz( ') ' dz] )
Z] 0

(2. 13)

of g at x= 0 implies

im E . ( k„.K', "" (u„-~)~ ='") (2. 18a)

where we have assumed that the classical turning
points are in the normal side as is true for essen-
tially all states of real k, except for a negligiblez0
portion of the Fermi surface.

For z&0 it is convenient to let

(2. i4)

If we further assume that

mim E . 2iek„J3- ' = —i'g(0) — " A(z) dz . (2. 18b)
eH, k,

0

Since A and 8 must both be real in order for f
to satisfy the same boundary condition at the clas-
sical turning points for all E & 4 as when E= 0,
we may set Imo(= —,'m7(, ImP= n)), with m and n

being both even or both odd. Equation (2. 18b)
then implies that Re p= 0 and that, denoting )l(0)
by p0,

&q(g)/2
it(g)J — ~~( ) /p e

e
(2. iS)

p OO

mm, E 2ek„
QQ A(z) dz= n7(. (2. ie)

the quantities )I(z) and $(z) must then satisfy

(2m, ) k, —+ d (z) cos)i= E+ —k„A(z), (2. 16a)
'n e

m, 0, —=i&(z) sin)l.d$ (2. 16b)

In obtaining Eqs. (2. 16) we have again consistently
ignored (k);)) ' with respect to one. Equations (2. 16)
are seen to be essentially identical to Eqs. (4. 17)
and (4. 18) in the paper of BKJT, except for the
dimensionless quantities used there which we shall
also introduce later.

In order to proceed further we must distinguish
between two types of solutions of Eqs. (2. 10): the
'*bound-state" solutions with E & ~ and the "scatter-
ing-state" solutions with E & ~ .

A. Bound-State Solutions

P

(2. 17)

where we have set A=8 +~, B=e '~/, and we have
ignored eK, X,«(- $ ') with respect to k, (-kz) in
the arcsine function. It is then clear that continuity

For E&h, Eq. (2. 16a) should be solved together
with the boundary condition n- cos E/r) „as z- ~.
[cos ' is defined to be the principle branch. The
other solution )i -—cos ' E/& is discarded because
the corresponding solution of (2. 16b) makes g grow
exponentially as z-+ ~. ] One then sees that )l is
purely real and $, aside from a possible real in-
tegration constant, is purely imaginary. To match
the solutions for z & 0 with those for z & 0, we first
obtain from Eq. (2. 13)

im E . q k„X(S)=sxp tz — ' sis, z "s„zs)eH,

The quantity g0 may be obtained by solving Eq.
(2. 16a) in the region z & 0 together with the bound-

ary condition at z=+ ~, and is therefore uniquely
related to k, and E. The density of states for
E& 4 at given k„and spin, but including both elec-
tron and hole contributions, can be obtained from
(2. 18):

( )
m, 1 dqo(E)

pkll
—

eH 7 dE
(2. 20)

( )
1 dr)()(E)

pall
—

7 dE

By using Eq. (2. 16a), which gives

(2. 22)

n, = cos E+ " A(z)'( E 2m ek„
k,'0 m.

—S(z) zosz((z)) dz, (2. 23)

we can also write Eq. (2. 22) as

1 1
Pg( (E)

~ (g2 E2)lz(2

'n+
& ~

1+ &(z) sing dz, (2. 24)
go ~0

which suggests, as is borne out later, that the

The corresponding density of states of the standard
reference system has contributions only from the
normal half-space and may be obtained by requiring
g(0) of (2. 17) real. The result is'2

p( z ) (E) s

eHC

)0 ~0

(k,") 'dz+ (k,'o)) 'dz . (2. 21)
)T (s)sg't

The difference in density of states between our NS
system and the standard reference system, at
given k„, spin, and for E&b (T), is therefore
simply
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density of states for an NS system may diverge
just below the equilibrium gap.

B. Scattering-State Solutions

Qgp d'gpz =b, (z) sing, sinhgz,
2m. dz

k,, dt, =b, (z) cos'g, sinhgz,

(2. 25a)

(2. 25b)

(2. 25c)

We now consider solutions with E & 4 . For
z & 0, the most general solution is still given by
(2. 13). For z & 0, Eqs. (2. 16) now require that
both g and $ be complex quantities. Following
BKJT, we let g='g, —i'gz and ) = ), —i$z, so that
g„gz, $„gz are all real functions of z. Equations
(2. 16) then become a set of four coupled equations
as in the single-vortex problem:

Qgp dingg' +b(z) cosg, coshgz=E+ " A(z),
ek„

2m~ mc

(&n~~qq &/ae ~g gq+ g~
e(-iq~np&/2 e (2. 27)

where (g„gz, $„$z) satisfy Eqs. (2. 25) and the
boundary conditions g, -0, gz-+ cosh-'(E/4 ) as
z -0. (By cosh ' we again mean the principle
branch. ) Since $, and tz still contain arbitrary in-
tegration constants, we may without loss of gener-
ality take A, = e", A = Ce", with real C and p. As
bef ore, we assume that the super conducting side has
a finite thickness D and require our solutions to sat
isfy the same boundary condition at z=D for all
E-4 «E~ as when E= 0. This is equivalent to
requiring g, real at z =+ D which gives p= mm and

(2. 15), therefore, now constitutes only a particular
solution. The general solution is given by

@=A,8,+A A (2. 26)

with

(, (z=+a) =nv, (2. 28)
kgo

diaz

= —h(z) sing, coshgz.
m dz

(2. 25d)

It is clear that if (g„gz, g„$z) forms a set of
solutions of these equations, so must also the set
(g, , —gz, —$„$z) at the same E. Expression

with m and n being integers. Without loss of gen-
erality we may take m=0 which implies p=0. Next
we require the solutions for the regions z& 0 and
z&0 to match at z=0. This gives, with F —= (ek„/k, o)
x J"A(z) dz,

A exP i ' ——sin '
~

*
~ &&8)

= e m (exP(,'UM ~ a(-,
'

q~~+ v+ 4o&]+ (:exPI- -', n~o+(( —,'g, o+ ('- (o)l },
(2. 29a.)

B exp —s
H 2+ s&n 'k -A, 1/2eH, 2 'Pp yj

=8 "(exp[ gzo i( gio+ F —t o)]+ C exp[ gzo —i( g&o+F+ &io)]]

(2. 29b)

where we have used g, o, gzo, $,o, (zo to denote the
values of g» gz, $» $z, respectively, at z=0.
Moving the left phase factors to the right, the right
e~~p factors to the left, taking the imaginary parts
of both sides, and bearing in mind that both A and
B are real constants, we obtain

sin($, o
—=+ OH) = Ce "zo sin(g, o+ = —0), (2. 30a)

sin($, + =+ O) = Ce'» sin(g, o
—"—8), (2. 30b)

where
o'mQ
2 H

and

m E
ee, (k,'-k,')'" '

Equations (2. 30a) and (2. 30b) are the analog of Eqs.
(4. 25a) and (4. 25b) of Ref. 8, butare trickier to ana-

Cz —2C sinhgzo (sin28/sin2-) —1 = 0. (2. 32)

Since O, =, and gzo are fixed functions of R„and
E (but not g, o which is why we eliminated it), and
because Eq. (2. 32) admits two real solutions for
any set of real values of g», 0, and =, we con-
clude that there exist two linearly independent
scattering states for each given set of values for
k„, E, and spin, satisfying the boundary conditions
at z = 0 and at the classical turning points [at z = D
a well if (2. 28) is further satisfied].

lyze than the latter. Rewriting Eqs. (2. 30) into the
form

tan), /tan(8 —=) = (Ce zo+ 1) /(Ce zo —1)

(2. 31a)

tang~o/ tan(8 + =) = (Ce"zo+ 1)/ (Ce"zo —I),
(2. 31b)

we can eliminate $,o to obtain
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We denote the two solutions of Eq. (2. 32) by C,
and C2. The corresponding two solutions for $,0

of (2. 30) will be denoted with the superscripts (1)
and (2). These, combined with Eq. (2. 28), allow

us to determine the discrete energy eigenvalues and

therefore the density of states of the scattering
states. In doing so we need the relation

m.
$, (z = D) = $,0+ ' ~(z) cos I, sinh I2 dz

kgp~Q

(), d()mDE
Pk)) ) dE ~10 +

2k (E2 t&,2)1/2
ZQ

oo

+ ' [~(z) cos&I1 sinh&I2 —(E2 —62„)'/2] dz.
gp ~p

(2. 34)

In Appendix A it is shown that

t(1&+((2& 2 +@(E) (2. 35)

where +(E) is a quasiperiodic function of period
eH, /m «t' and averages to zero within each peri-
od. The sum of the density of states over the two
scattering states (each being a coherent mixture
of particle and hole) is therefore

() m, 2m D E
P) 2)2)) =

H
+

k (E2 A2&1/2
II

= $,0+ —' (E2 —LP„)'/2+ '
) [6(z) cos&I, sinhq2

gQ d0 0

(E2 A2)1/2] dz (2 33)

which follows from Eq. (2. 25c).
The density of states for each of the two scatter-

ing modes follows from Eqs. (2. 28) and (2. 33):

In Sec. D we have obtained expressions for the

difference in density of states at fixed k„and spin
between our NS system and the standard reference
system [i.e. , Eq. (2. 22) for E&b,„and Eq. (2. 38)
for E & t& ]. Using them, the free-energy differ-
ence can be written

r zs

AC[4(r), A(r)] = —
2 d k„~ dE

hpz (E) ln(2 cosh-,'PE)

~00
1

V
[A2(z) —&2] dz

tence is clearly related to Landau-orbit quantization
which is a subject that we wish to consistently ne-

glect in this paper. It is curious to notice, hozo-

evex, that Landau-orbit quantization does play a
vole here even though zoe axe not dealing soith

closed oxbits~ The reason is that the elements"y-
excitation wave functions are actually made of linear
combinations of ojenand closed orbits due to the

possibility of multiple Andreev scattering'0 at the

NS-phase boundary. That the probability of finding

a closed orbit is neither one nor zero explains why

one gets a continuous but oscillating density-of-
states function in the absence of sample-size quan-

tization. Unfortunately our magnetic field strength

is limited by the existing values for the thermo-
dynamic critical field II, of type-I superconductors
which makes observation of this partial-Landau-
quantization phenomenon difficult.

III. FREE ENERGY

(~) m, 2m D It

eH 0k (E —& )
(2. 37)

The difference in density of states between our
NS system and the standard reference system, at
fixed k, spin, and for E)6, is therefore

+ /10(E) + ' [~(z) cosy,
gp „Q

x sinsss —(d' —Sz)"]dz), (2. 33)

where we have ignored a@-dependent term (cf.
Appendix A) ~

The first two terms are easily seen to constitute
the corresponding density of states of the standard
reference system:

+ —
~

([h(z) —H,] —H, j dz. (3. 1)
7? ~Q

Partial integration of the first term gives
r ~ IA

+ (2,2 d k ln(2 cosh —,'pE)
~

dE 4p2„(E)
g II p

'+oo rw

—
(2 )2 ~

d k„dEtanh —'pE
~

dE /2p (E),
Q

of which the first term vanishes since the total
number of single-particle states is unchanged
when the system turns superconducting. ~Q

For E& r5 we use Eq. (2. 38) to find
oo

dE A p2„(E ) = m
'

q, 0(E)—
kg

Qg 0

—&I&0(E)+
1 d 2m,
7t dE

ap
[~(z) cosp, sinhg2 —(E2 —LP„)' 2] dz ~

goo

x ') [s(z& cnss, sin)din —(d —n )' 1 dz). (2. 32&
~0

A word about the neglected 4(E) term: Its exis-

For E&6„, Eq. (2. 22) gives

f, dE'/2p, (E')=- f dE /2p&)))(E)
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= ~'[n. (E) —n, (0)],

where we have again observed the conservation of
total number of states, anticipating the k„ integra-
tion in Eq. (3. 1). Thus the free-energy functional
can be rewritten as a sum of four terms,

Zz-A ' C+ A 3 D(&, b),

where

(s. 9)

x q3(p) = 7(which can be verified easily by Eq. (2. 16a).
Using a method introduced by Cleary, ' it can

be established that as f- ~,

aG=aG, +aG, +~G +~G . (3 2)

The first term comes from the bound-state con-tributionss:
C= 1 [1-5'(f)]dg,

D(n, b) = f [ —,'(1 —~ ) —& E —& 3] df
(s. io)

"d eo

AGz= 3 ) d k„
I

dE[qo(0) —)1()(E)]tanh-,' pE.

(3.3}

The second term is the scattering-state contribu-
tions:

Equation (3.4) is therefore formally divergent
and requires the usual. Debye frequency cutoff to
ensure finite result. Alternatively, we may follow
the idea of Ref. 8 to combine 4G~ and 4G p into a
single convergent integral by using an identity for
[N(0)V] ' [cf. Ref. 8, Eq. (8. 16)]. We then ob-
tain

&G = &G~ + ~Gss + &G~, (3.11)

AG, = V-' J
"

[A'(z) -A'.] dz . (s. 5)

Finally, the last term takes into account the mag-
netic energy:

AG„= (Sv)-' f ([k(z) -H, ]'-lf3] dz. (s. 6)

It is more convenient to introduce the following
dimensionless variables:

A = E/A. , (3.Va)

f= (2m& /k, ) z = (2/m)(k /k„) [z/$ (T)], (3.7b)

E(&) = (ek„/mcus ) A (z) = —,
'

v(k„/k )[2eA(z) g (T)],
(3.Vc)

5(~) = A( )/~-, (3.Td)

x '
I [A(z) cosy, sinhq32m.

k„

—(E' &' )")« ni—, (~)-) (~—.4)

The third term, which depends on the pair potential
only, corrects for the double counting of the in-
teraction energy ~:

where [with N(0}= m v~/2v being the usual elec-
tron density of states per spin at the Fermi sur-
face]:

db
AG = —,'$ N(0) A sin2o.'dn

( 3 y»
+0 „() 1 —b

&P

dA Zz ta.nh-,' P A M, (3. 12)

AG» ——3' $~N(0) LP„( sin2o. do.'
db

(1 b 3)'»

Cx
(

dA &, —
(~, ()g,) tanh-,'P4&,

(s. is)
while for AGz Eq. (3. 6) is still the most convenient
form.

To find &3(A) of Eq. (3.Sa) we need to solve Eq.
(2. 16a), which in dimensionless variables becomes

—+ 5(g) costi= A+ E(f) (for A & 1). (3. 14)
dn

dg

The boundary condition now reads g(~) = cos 'A.
For E & A (i. e. , A & 1), Eqs. (2. 25a) and (2. 25b)

are changed in dimensionless variables to
where

$~ (T) = v~/7)& (T) . (3. 'Ie)

cf'gy
+ &(f) cosy, coshqz= A+ E(g), (S. i5a)

[At T= p this definition agrees with that of (o, the
BCS coherence length. Near T„)3,(T) =(v 6/7()((T)
of the Gl theory. ] We also define k„= bk„k,
-=(kz+ k3) ~3= k~ cosn,

Z, = Z [g,(0)-n, (E)l= — Z g, (E) (3.8a)
b=al bl

d"I =.-= ()(t;) sing, sinhqz, (3. 15b)

for which the boundary conditions are )13(~)= cosh A,
q, (~) =0. It is very convenient to introduce a third
equation to be solved together with Eqs. (3. 10a) and
(s. iob):

and

Z3 = p (f [5(f) cosy, sinhqz
b=+ lbl 0

—(A3 —1)'i ] dg —r/)()(E) j, (3.Sb)

' = &(f) cosy, e "3—[A —(Az —I)'»], (3. 15c)

with the corresponding boundary condition 3i3(~) = 0.
Equation (3. 8b) can then be conveniently written

where in (3.Sa) we have used the identity Z, , ), )

Z$ Z 73Q(A) y (s. i6)
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with again g,p denoting the value of g, at )= 0.
Thus our program for calculating the free-energy

difference is (i) we must solve the differential equa-
tion (3. 14) for 0 & A & 1 and (3. 15a)—(3. 15c) for A & 1
in the region f &0 as supplemented by the boundary
conditions stated below the equations; (ii) Eqs.
(3. 8a) and (3.16) are then used to evaluate Zs ~;
(iii) the free-energy difference is finally calculated
using Eqs. (3.6) and (3. 11)-(3.13).

IV. SURFACE ENERGY OF IDEAL BOUNDARY

to be unphysical. On the other hand, after a period
of extensive search, we find that it is unlikely to
extend our analytical result to any more realistic
choice for the trial functions b, (r) and h(r). We
therefore turn to solving this problem numerically
using the IBM 360 computer of the University of
Southern California. For the trial functions, we
take the following simple functions which reasonably
approximate the expected behavior of the boundary:

(5. 1)

In this section we consider an ideal phase boun-
dary for which

A(~) = A-e(~),

h(z) =H, 8(- z),

where

(4. la)

(4. 1b)

It is clear that for E«, gp= 'g = cos ' A; and
for E & 4

& Qgp = 0 p $20 = cosh-'A, g30 = 0. This gives,
for the ideal boundary,

They are equivalent to

5(i) = tanh(af),

F(C) =~e-",

with

a= znd sinG,

c= gad sinG,

r = —(n/2&2~) bs-' coso. .

(5. 2)

(5.s)

(5. 4)

(5. 5)

(5. 6)

(5. 7)

Z~ = z-2cos A,

~s =o.
(4. 2a)

(4. 2b)

In the last formula,

v = z(T) = [2 V 2 e H, (T) $
~ (T)] ' (5. 8)

Substituting these results into Eqs. (3.6), (3.12),
and (3. 13), one gets AGz=AG„=0, and

AG = AGs = —,
'

m $ ~(T) N(0) A~ (T)

x f (-,'))- cos-'A) tanh(2 PA„A)dA. (4. 3)

This expression supplies an upper bound to the
surface energy of a physical A$ boundary.

At T=0 it is

o""""""""=-'~(-'~- i) ( N(O) A'(0)

is closely related to the GL parameter ~GL. At
T'= 0 the relation is simply

Ic(0) = 0 947/coL ~ (5. 9)

AG (d, s, ~) = (8 v)
' H', (0) )o o(d, s, )):), (5. io)

So far, we have completed our calculation of the
surface energy only for zero temperature. At
T= 0 and with the above chosen trial functions for
6 and h, we may first simplify our expression for
the free-energy difference [Eqs. (3.6) and (3.11)-
(s. is)] to

-1.79)0 [H, (0)/8))), (4.4) where
which, as we shall see, is already a rather good
approximation to the wall energy when ~« = 0.

At T-T„we obtain

(m /32T )N(0) t (T) A (T)
3

2s

db
sin2o'. dn

~ (1 b2), ~z A(a, c, x)

2 ln2
(5. 11)

~ (1 —T/T, ) . (4. 5)

We notice that near T, the surface energy of a
physical boundary is, according to GL theory,
proportional to (1 —T/T, )~~~. It is also worth not-
ing that the surface energy for an ideal boundary
would be infinitely large, if it were calculated from
the GL theory, indicating that the microscopic
theory suppresses rapid variations of the order
parameter much less strongly than the GL theory.

V. NUMERICAL RESULTS AT T = O'K

The ideal boundary studied in Sec. IV is expected

a,nd

ff(g, c, ))= f' Z, dA+ f, [Tg —(«) ']dA

(5. 12)

The first step is to solve Eqs. (3. 14) and(3. 15a)-
(3.15c), for A&1, respectively, in the region 4&0
as supplemented by their respective boundary con-
ditions at f=+ ~. For large g, both (1 —5) and F
are small, and we can solve the equations analyti-
cally to first order in them. Using these asymptotic
solutions at a suitably large positive f, the equa-
tions are numerically integrated back to origin to
obtain )70(A) for 0& A & 1 and )l30(A) for A & i. Equa-
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70then used to evaluate Z&

th t th follo
nd (3.16) are en
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0

(/& 4

O

Vl
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O

Kl

2 3 4 5
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(5. 17)
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TABLE I. Numerical values of E(a/c, c, r) [defined in Eq. (5. 12)], their fitting coefficients p„p2 [cf. Eq. (5. 15)], and
the ratio p2/p~.

a/c

0, 50
0, 50
0. 50
0. 50

1.25
1.25
1, 25
1.25

2. 00
2, 00
2. 00
2. 00

4. 00
4. 00
4. 00
4. 00

0.25
0.50
2. 00
4. 00

0.25
0.50
2. 00
4. 00

0.25
0.50
2. 00
4. 00

0.25
0.50
2. 00
4. 00

Z(r=0)

8. 169
4. 341
1.704
l.343

3.596
2. 193
l.276
1.170

2. 531
1.704
1.197
1.146

1.704
1.343
1.145
1.130

Z(r=2)

9.432
4. 808
1.734
l. 348

6. 026
3. 060
1.338
1.183

5. 507
2, 776
l. 274
1.162

5. 387
2.682
l. 241
1.150

ll. 30
5. 746
1.821
1, 365

9.761
4, 900
1.512
l.219

10.21
5.204
l.492
1.206

11.02
5.557
1.520
1.208

Pf

0. 3206
0. 1185
0. 0076
0. 0013

0.6168
0. 2200
0. 0157
0. 0033

0. 7553
0.2720
0. 0195
0. 0041

0. 9348
0.3398
0. 0244
0. 0051

-p2 x10

0. 1204
0. 0442
0. 0028
0. 0005

0.2315
0.0818
0. 0058
0. 0012

0.2833
0, 1009
0. 0072
0. 0015

0.3509
0.1263
0. 0089
0. 0019

—(p2/'pi) && 10'

0.376
0.373
0.367
0. 364

0.375
0.372
0.368
0.368

0.375
0.371
0.368
0.368

0.375
0.372
0.367
0.367

Since r= 0 implies that E(g) =-0, we expect Ko
to be a function of a only. The empirical formula

Ko(a) = l. 125+—1 0. 935 (5. 18)

P, (a/c, c) = P(a/c) I'(c),

where, with a/c (= d/s) denoted by p,

(5. 19)

is found to have + 0. 2% accuracy. On the other
hand, we came across another pleasant surprise
when we found that p, (a/c, c) was again to a good
approximation separable [the error is roughly the
same as in (5. 18)j:

P(p) =0. 180[(1+0.959p) —(1 —0. 972p+0. 926p ) ],
(5. 20)

I'(c) = (1+0. 126c)/[c(1+ l. 695C+ 1.124c )]. (5 21)

Substituting Eels. (5. 16)-(5.21) into Ec[. (5. 11)
and using the definitions of a, c, and x in Eqs.
(5. 5)- (5. 7), we can perform the b and & integra-
tions by hand and obtain

&(d, s) = [l.767+ 1.984d 2 ln(1+ 0. 943d) —l. 386d ']

+ P(d/s) I(s) —1.5s-', (5. 22)

with

I(s) —~&s-4( 4 402x10 (1+8.185s-')+4. 402x10a(1+4. 289s ) ln(1+2. 662s+2. 773s )

+ l. 115 (1+ 1.277 x 10 's s) tan '[l. 001s/(1+ l. 33ls)]j

+tc s (2.260x10 (1+9.097s '+2. 860s —3. 526s )

—1.507 x 10 (1+8. 236s —9.907 x 10 's ') ln (1+ 2. 662s+ 2. 773s )

-3 818x10~(1-2 554x10-' -' 1 044x10's ') tan-'[1. 001s/(1+1. 33ls)]j. (5. 23)

We must still minimize o(d, s) with respect to
d and s in order to obtain the surface energy [per
unit area and in units of (8m) 'Hs(0) $o] of an RS-
phase boundary at any given ~GL. This is carried
out numerically and the result is plotted in Fig. 3
(solid line). The difference between v= a(0) and

~o L indicated in Eq. (5. 9) is already taken into
account so that the horizontal axis is ~«. In Figs.
4 and 5 we also plot the value do and so of d and s
that minimize o (solid lines). Figures 3-5 con-
stitute the main results of this section.

In order to grasp a physical feeling of our re-

n„(q, b) = df 3 293 +0 609 ~oLa g

—2t]'+ |]'+ ()t —1)' . (5. 25)

In the above expression t]t is the (real) space-de-

suits, we also perform an analogous variationa1.
calculation using the GL free-energy functional
which, for pure superconductors, is presumably
valid at the extreme neighborhood of T,"":

&GoL(g, h) = (8w) 'H2(T) $~(T) ftoL(tf), )t), (5. 24)
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FlG. 5. Plot of sp vs &GL, where $~(T)/sp gives the ef-
fective penetration depth [cf Eq (2 5)] of the magnetic
field at the phase boundary, as determined by our varia-
tional calculations. As in Fig. 3, the solid curve pertains
to our calculation at T=0 and the dashed curve is from
a similar variational calculation for T =—T~.

pendent order parameter normalized to one in the
superconducting bulk, A, is the magnetic field nor-
malized to one in the normal region, f =a/t~(T),
and a(t;) = —f,"h(g) d&. "

The trial functions which correspond to Eqs.

I I I I I

d, isdefined by the variational trial

,
function Q(z) =0, (T)tanh(d, z/( (T))

0

FOR Tg- T «Tc

I I

4
GL

FIG. 4. Plot of gp vs gGr, where $z(T)/dp measures
the thickness of the order-parameter transition region at
the phase boundary, as determined by our variational cal-
culations. As in Fig. 3, the salid curve pertains to our
calculation at T= 0 and the dashed curve is from a simi-
lar variational calculation for T = T~.

FIG, 3. Surface energy of a planar-phase wall, per
unit area and'in units of vJ; H~(T)/87r A„{T), plotted against
the Ginzburg-Landau parameter I(oz. The solid curve is
from our microscopic variational calculation performed
for pure superconductors at T=0. The dashed curve,
valid for T —T «T~, is from a similar variational calcu-
lation using the Ginzburg-Landau free-energy functional.

(5. 1) and (5. 2) are for the present case tt(g)
= tanh(dp) and h(f) = e '~. With them, Eq. (5. 25)
can be easil. y simplified to

&o„(d,s) = (2. 195d+0. 667d ')+0. 609 xoL s

xj dxe "tanh (xd/s) —1.5s '. (5. 26)

This expression, though much simpler, bears a
striking resemblance to Eq. (5. 22). One should
particularly notice the separable functions of
(d/s) and s that appeared in both expressions, sug-
gesting that our earlier discovery of ~ being a
separable function of a/c, c, and r might not be
purely accidental [cf. Eqs. (5. 16) and (5. 19)].

It is not difficult to minimize Eq. (5. 26) with
respect to d and s numerically. The results
for 5(aoL), do(ao„), and so(aoL) are plotted in Figs.
3-5 as the dashed curves.

A comparison of the two sets of results for T=O
and -7, immediately reveals that our T=O result
for the surface energy is not good in the high-I(. «
limit. One expects in this limit that j5 ) c ~«but
our results seem to indicate a ~GL dependence.
This error is traced back to the difficulty in solving
those nonlinear differential equations at very small
values of a and/or c. In fact, ourempiricalexpres
sion for ~ is obtained from fitting the numerical
results in the region x&4, 0. 5& (a/c) &4. 0, and
0. 25 & c-4.0. It turns out that the most severe
restriction comes from c (= —,

'
ms sino) &0. 25.

For sino=0. 5 it already implies s& m' or ~-5.
We must still remember that we need to integrate
over sine from 0 to l. At present our computer
program cannot solve the equations for smaller



6 THEORY OF SURFACE ENERGIES IN P UR E SUPER CONDUC TORS 13

a/c and/or c, but we believe that this difficulty
can be removed or at least relaxed after some
further study.

An interesting related question is the critical
value of ~GL which separates type-I and type-II
superconductors. At least four definitions exist
for this z, (omitting the subscript GL for clarity).
They are that (i) H, 2=H, (i. e. , when ~, = I/~2;
(ii) the slope of the magnetization curve vs field
diverges at H,2 (i. e. , when F2= 1/~2; (iii) H„=H„'
and (iv) the surface energy a vanishes. We shall
denote them, respectively, as Kg K~, K 3 and

v, , all being functions of temperature.
In the GL region (T-T,) all four definitions agree

giving I/v 2 "0.707. Below the GL region there is
no apxi'oui reason that their values should still coin-
cide. In fact, recent study by Jacobs for tem-
peratures just below the GL region, among others,
has already indicated the contrary. Our numerical
result for pure super conductors at T = 0 gives v,„
(at T = 0) ~ 1.16. This should be comparedwith z,3(0)
~ 0.74 due to BKJT; K„(0)= 0. 56 due to Gor'kov, ~

Helfand and Werthamer~4; and x~(0) = 0 due to
Maki and Tsuzukia' and Eilenberger. 6 (Only re-
sults for pure superconductors are quoted. ) Our
upper-bound estimation for x,„(0) is most likely
too high, but it still suggests ~,„(0)& ~,s (0) & ~„(0)
& v,2(0). For comparison we note that Jacobs found

the order ~„&x,„&v„&~,~ for pure superconductors
at temperatures just below the GL region.

Besides the results on o and ~,„, we can draw
one more conclusion from our numerical study.

We believe that the sharp drop of do in the range
0 ~ANGL ~0. 5 is a genuine reflection of the nonlocal
nature of our theory, and is peculiar to pure super-
conductors of very low x near absolute zero tem-
perature. We notice that when ~ is small the mag-
netic field penetrates only very shallowly into the
order-parameter wall region. The order param-
eter generally obeys a self-consistent integral
equation with a kernel which depends on the field.
For dirty superconductors or for pure supercon-
ductors near the transition temperature, the range
of the kernel is much smaller than the order-param-
eter wall thickness, so that in most of the wall
region, the order parameter does not "see" the
penetrating field. For pure superconductors near
absolute zero temperature, the range of the kernel
is now comparable with the order-parameter wall
thickness, and the latter must now depend more
critically on exactly how much field has to pene-
trate the wall region. This, we believe, accounts
for the sharp v dependence of do obtained when z
is small.

VI. EXPANSION OF MICROSCOPIC FREE ENERGY OF WS-

PHASE BOUNDARY NEAR Te

As stated in Sec. I, the BKJT theory, though

elegant and rigorous, contains a mysterious feature
which is not yet resolved. It was first discovered
by Cleary, " and was investigated in more detail
later by Jacobs. '~ It should be noted that the varia-
tional principle of BKJT was based on a general
theory of Eilenberger which was rigorously estab-
lished. The WEBJ method used in solving the
Bogoliubov equations is essentially equivalent to the
semiclassical approximation [both ignoring quan-
tities of order (p~)0) ' with respect to one], ~8 which
is also widely accepted among superconductivity
theorists. One theref ore expects that the BKJT
theory, being formulated for all temperatures,
should agree with the GL theory, ' and its generali-
zation by Neumann and Tewordt, ' '" as T ap-
proaches T,. (The latter theories have long been
accepted as the correct theories near T,. ) Un-
fortunately, however, this was not exactly borne
out in the study of Cleary and Jacobs. These
authors found that near T„ the free-energy expres-
sion of BKJT for an isolated-vortex line may be
expanded into apower series in [A„(T)/T) ~(1 —t)~~~,

where t= T/T, . W—hilethe lowest two-integerpower
terms [proportional to (1 —t) and (1 —t)~, respec-
tively] exactly reproduced the GL and Neumann-
Tewordt theories, the half -integer power terms of
orders (1 —t)'~2 and (1 —t)'ta, etc. were completely
unexpected. Most serious is the term of order
(1 —t)' ~. Being lower in order than the GL free
energy, it seemingly has to vanish. But the in-
vestigations of Cleary and Jacobs strongly sug-
gested the contrary. Jacobs then suggested (but
not rigurously established) that probably the half-
integer power terms wouldvanish when and only
when the pair potential and the vector potential re-
presented the true equilibrium solution (i. e. , when

they exactly minimized the BKJT free energy).
This is not a completely satisfactory answer since
if it were true, one might wonder why the Ginzburg-
Landau-Neumann- Tewordt free energy should also
be minimized by that "equilibrium" state.

The above dilemma was found by studying isolated-
vortex lines in pure superconductors. The basic
problem is most likely not confined to that particular
situation. Since in the present paper the author
has extended the BKJT theory to the plane-geom-
etry case of a ÃS-phase boundary, it becomes
extremely interesting to perform a parallel study
in this situation. The basic techniques in this
study will not be much different from those of
Clearly and Jacobs. But the importance of the
problem, and the fact that the present case is a
simpler and therefore better one for investigating
the dilemma, led us to decide on presenting the
details to some extent.

To begin with, our expression for the Gibbs free
energy of an XS-phase boundary is given by Eqs.
(3.11)-(3.13). While 4G~ should remain as it is,
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we expand AG2 by writing the factor tanh —,
' PAW into

its Taylor series. For expanding the scattering-
state contribution &G», we must first obtain the
following expansion by extending Eqs. (3.9) and

(s. lo)".
Z 2

—C/(A2 —1)~/2

=D(n, b) A-'+Z(~, b) A-'+O(A-'), (6. 1)

where

D(n, b) = —f [&"+F'&'+ —,'(1 —~ )'] df, (6. 2)

+ p(1 —~')

+ Z4~'+ -3Z'64

+ (F'/5)2+6(E6')2+BEE && ] dr (6. 3)

(6. 4)

(primesdenotedifferentiations with respect to f)
The expansion of ~G» is now a simple applica-

tion of the general asymptotic expansion formula
presented in Appendix B. Combining all the steps
described above, we obtain

&G= Q &G")+&Gd/,

with

«/2 )1 1

00" = ,'()(,ta(0)a-'.
ll

ssnsadu i p„,s
l

(10,dd+
l

dl 0s —
(ds )„s}dddb

0 «0 1 — ) „p "1

is/2 5 pe

AG'2) =-(') p2 )~N(0) &'
I

sin2(rd&
I

2 q/2 D(o(, b) u (tanhu —u) du !,
«0 „p 1 —b y0 )'

~ «/2 pi r 1

AG = ——$ N(0)&
„I

sin242 da
I

2 i/2 A ZsdA —D(42, b)[2) ~'
0 I

48 ~ .'() .0 (1 —b „p

(6. 6}

(6. 6)

C D(, b)
+

I

2
—

(A2 1)u2 Ap 1 (6.7)
41

and
*0/2 1 IHl

4
00«s= —5 nt(0)as„

l

sinsadu .
l

s us (Z(a 5)
' u'[tsnsu —u+-', u ) du),32 «0

(6.8)

+7e note that the leading term in &G'" is
of order (1—f)"~)/pinstead of (1-f)'/2 as found in the
isolated-vortex problem by Cleary and Jacobs. 30

This difference, however, is not unexpected and

originates from the difference in geometry of the
two problems.

Let us now investigate the two forms 4G ' and
~G" '. To facilitate comparison with other theories,
we first change the dimensionless variables back
to natural variables and perform the 0, b, and u

integrations. This leads us to

&G"' = C(3)N(0) A' dz [ '~'g'(f"-+ a'f ')
8m

+ —.
' (1 —f')'], (6 9)

/7[ t~ 552

7r2 2

+sa f +a pf2+6a f 2+8aa ff ]+ 12

x[5(ff ) +sa f l ——'(1 —5 )+,(1 —Il)), (5. 10)

where f is nothing but 6 considered as a function
of 2, and a —= 2eA(2). Primes now denote differ-
entiations with respect to z. Consider now the

generalized GL theory of Tewordt'~ in which the
Gibbs energy of a general inhomogeneous super-
conducting state is given. This theory has been
nicely summarized in the paper of Neumann and
Tewordt. 4 For the planar geometry case and
when the sample is pure, the free-energy expres-
sion reduces to

+GNT +Ghf + +GNT +(2) (4)

where

(6. 11)

+ 3 a f + (a f) + 6 (af ) + Saa'ff ']

+ -', /['2 4 [2(ff ')'- 3(1-f')(f"+a'f')]

+ -'f'(I f')"r/. (6 13)-
In the above expressions, I'= —93&(6)/98@(3) is the
ratio a4/a22in Tewordt's theory To comp. are the
two free-energy expressions, one must first sub-

AG„'= —H, de(/c d). [f +a f ] —(1-f ) ].

(6. 12)
and

Iss

&G[4,) = —(1 —t) ap, r de (-,'g24 X4 [S(f")'



THEORY OF SURFACE ENERGIES IN P UR E SUP ER COND UC TOR S

stitute into ~G'~' and ~G~~ the expansions

(T) = 6 o~ (T) [1 —(—,+ —', I')(1 —f)], (6. 14)

(~/~6 (,(T) = ]„(T)[1+(-.'+ —,
' r)(i —t)], (6. iS)

(4w) 'H', (T) = (4m)
' H,' „(T)[1 —(1 + -', I') (1 —f)],

(6. 16)

(6. 1V)

(6. 18)

where the quantities with the subscript GL are the
corresponding quantities in the GL region [i.e. ,
expanded to lowest order in (1 —t)] which can all
be found in, say, Ref. 31. Upon using only the
lowest-order corresponding expressions in ~G~"'
and 4G'„'T' one can then easily verify the following
equality:

(4w) '(1 —f) H, o„I' (4m) '(1 —t) H, o~ I'

dz [2 Po~ (f + a~f ) + —', (1 —f ) ] . (6. 19)

This leads us to a similar conclusion as in Cleary's
and Jacobs's studies of the isolated-vortexprob-
lem. Namely, our microscopic free energy for
an NS-phase boundary to four orders in (1 —f)'~

would precisely reproduce the Ginzburg-Landau-
Neumann-Tewordt theory, had the former not con-
tained the extra series of unexpected terms: 4G "
+ ~G"'+.".

The above work demonstrated that the dilemma
discussed in the beginning of this section also exists
in our extension of the BKJT theory to the planar-
geometry case of an NS-phase wall. This shall be
the sole purpose of this section since we have not
made any progress in resolving this dilemma. The
only statement about the unexpected terms that we
can make with confidence at the present time is
that they do not vanish identically for all trial func-
tions ~ and h. This can be easily seen from our
study of an ideal phase boundary presented in Sec.
IV. Since the planar-NS-wall case is simpler to
study than the isolated-vortex-line case in many
senses as discussed in Sec. I, we hope that the
work presented in this section could throw some
light to the final breakthrough of this outstanding
problem.

VII. CONCLUSION

In this paper we have developed a microscopic
theory of the surface energy at a plane boundary
between normal and superconducting phases. The
theory applies to pure superconductors only, and
is based upon a reformulation of the Bogoliubov
theory of Bardeen et al. which features a WKBJ

approximation in solving the Bogoliubov equations,
and a replacement of the self-consistent conditions
on the order-parameter and field distributions by
a variational principle on a Gibbs free-energy ex-
pression. Numerical methods are required to solve
some nonlinear coupled differential equations and
to the final minimization of the free-energy ex-
pression which are carried out in I;his paper only
for absolute-zero temperature. Results of this
numerical study, together with a corresponding
variational calculation of the surface energy near
T, using the Ginzburg-Landau free energy, in-
dicate that the surface energy for pure supercon-
ductors may be expressed as the temperature-de-
pendent factor v~H~ /8m~6 multiplied by a dimen-
sionless function V(x«) of the Ginzburg-Landau
parameter vo~, with the latter having at most a
weak temperature dependence as shown in Fig. 3.
The nonlocal nature of our theory is expected to
reveal its largest effects in pure low-~«super-
conductors at very low temperatures. But in study-
ing this case we find that only a rapid change of
the thickness of the order-parameter transition
region at the phase boundary, as z« increases
from zero, might be attributed to this origin. We
remark in this connection that our theory is, in
principle, valid for all vG& values, but at present
our numerical method developed at T = 0 involves
tolerable errors only for KGg ~1.

Near the transition temperature T„we have fur™
ther substantiated an observation made by Cleary
of a mysterious feature in the BKJT theory. Thus
it appears that not only in the isolated-vortex prob-
lem studied by Cleary and Jacobs but also in the
planar-phase-boundary case studied here, and per-
haps in all other inhomogeneous states of super-
conductivity as well, the BKJT free-energy expres-
sion will reproduce the Ginzburg-Landau-Neumann-
Tewordt free-energy expansion in (1 —T/T, ) plus
another series of unexpected terms that leads the
first series by a factor (1 —T/T, ) '~~. We do not
claim to have resolved this puzzle, but suggest that
the planar-phase boundary is a better case for
studying it.
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APPENDIX A

The purpose of this Appendix is to derive Eq.
(2. 34) of the main text from Eqs. (2. 3Oa), (2. 30b),
and (2. 31). We first note that the two solutions
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of Eq. (2. 31) satisfy

ClCq = —1,

C, + C2= 2 sinh)ipp (sin20/sin2=).

(Al)

(A2)

APPENDIX B

In this Appendix we present a general formula
for finding the asymptotic expansion about x= 0 of
the real function

tan(,'(')' tan(Ip& ———tan(8 —:-)tan(8 + =),

tanplp + tan)Ip = 2 cothrt2p tan(8 —:.)/

(A3)

(sin28/sin2- —1) . (A4)

Using these relations, and the fact that both(C„$1&p&&)

and (C2, $()2p&) are solutions of Eqs. (2. 3la) and

(2. 31b), we may derive

f(x) = f,
"

g(t)a(xt) dt,

knowing the asymptotic expansions

(t) g t -(2n+1& Q (n&(t)
n=l n

h(u) = Q b„u'" '=- Q I)'"'(u) .
n=l n

(Bl)

(B2)

(B3)

Combining these equations, one arrives at the re-
lation

tan()Ip" + (1&p)) = coth)72p tan2=. (As)

This equation may be analyzed as follows:
(i) It determines $()p)&+ $I2p& only up to an arbitrary

integer multiple of m. This additive term has no
physical meaning and may take any allowed value.
But for the convenience in calculating the density
of states, it is better chosen to give $&lp&+ $,'p& a
continuous dependence on E.

(ii) As E/t& - ~, )ipp -~. Choosing the additive
term to give the simplest result in this limit, we
have

g
(1 ) + ~

(2 &

(iii) If we write

$)p +$)p =2 +'fl(1& (2)

as E/ t&» l. (A6)

(A7)

then + vanishes whenever 2== —,'nm for any integer

(iv) If coth)lpp is independent of =, then it can
be shown that 4 is a periodic function of = of period

A simple though not rigorous way to see this
is through graphic method.

(v) Since == 2m, E/2eH, —2q, p
—I', and because

Qlp and q~p depend on E only in the scale ~„, we

conclude that 4 is a quasiperiodic function of E with

period -eH, /m, «& . Theperiodis nothing but the
electron cyclotron frequency in the field H, associated
with Landau-orbit quantization (multiplied by If).

(vi) Within each period one can ignore the E de-
pendence of q, p and happ which introduces a relative
error -eH, /m, t&. «1. With this approximation 4
can be shown to be an odd function about the center
within each period. Thus if + is multiplied by a
function of E varying in the scale 4 and then in-
tegrated over a range ~ 4, it usually can be ne-
glected to lowest order in the above small param-
eter. This justifies our ignoring a term + 2 '(d4'/
dE) in Eq. (2. 36), anticipating its role played in
our calculation of the free-energy difference &G

in Sec. III.

Before we present our formula we first make the
following remarks:

(i) f (x) is obviously an odd function since I)(u) is
Qdd.

(ii) If one substitutes (B3) into (Bl) and inter-
changes the summation and integration signs, one
will end up with divergent integrals. This method
therefore fails to give the expansion of f (x).

(iii) If one substitutes (B2) into (Bl), interchanges
the summation with the integration, and then changes
the integration variable from t to u= xt, one does not
yet obtain the desired expansion because the lower
limits of integration still depend on x. One must
either follow Cleary" to perform partial integra-
tions, or play the trick of Jacobs'~ in transforming
the integrals. Both of these procedures become
more complex when higher-order terms are handled.
It is therefore desirable to see how the general ex-
pansion looks and why it is asymptotic. To do so
we introduce the notations for partial sums and re-
mainders:

S(n) (t)
—P g(&)(t) (B4)

1=1

R,'"'(t) g(t) —S&,
"& (t), (Bs)

with similar definitions for S&"&(u) and R&" (u)). In
these notations the desired general formula may be
written

f (x) = (sgnx) P [b„~ x~2" '
( f t2" ' R'," "dt

n=i

f t 2n-1 S&n-1& dt) +
~

X
I

2n f -(2n+1) R(n) ( ) d ]

(B6)
which is manifestly odd but contains terms of even
powers in ]x(.

To prove Eq. (B6) we first observe the identities

n-1

f(„) g ( f"R (&- ) (t)@ && (xt)
i~1

+ f, g"&(t)R(&) (xt) dt]

+ f R~" '(t) I)'"'(xt) dt+Rq "'(x), (B7a)
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=P [ f, R,"-"(t)b"'(xt) dt
i=1

+ f, g"'(t)R„'"( t) «j+R"""'(x), (B7b)

with n- ~ will furnish the desired asymptotic ex-pansionn

of f (x) at x = 0.
We must still evaluate the integrations in Eqs.

(B7) for our definitions of g("' and b("'.

where the remainders are

R""'(x)= f-" R'" "(t)R'"'(xt) «
1

Rg ""(x)=- f,
"

R,'"'(t) R„"'(xt) dt.

The identities can be easily shown by repeatedly
combining the last two terms until only one term
is left.

Since E(ls. (B2) and (B3) are asymptotic expan-
sions, '~ we have R,'"'(t) = o(g'"'(t)) as t- ~ and
R„'"'(u) = o(h("'(u)) as u -0. It is then possible to
show that

R&( "'(x) = o( f,
"R'" "(t) b("'(xt) dt),

R,"""'(x)=o( f, g'"'(t)R„'"'(xt) «),
both as x-0, provided that all R~"' and R„'"' are
continuous functions with no roots within the in-
tegration range, and that all infinite integrations
converge uniformly for all (x) less than some xo
e0. Under these conditions, therefore, Eqs. (B7)

f R(i-1&(t) b(i)(xt) dt b x2n-1 f t2n-1R((-1)(t) dt

and

f g""(t)R„'(xt) dt

=(sgnx) a(~ x~" f u "' " „"() du

= (sgnx)a;A, Ix~
' —a, g b~(2k —2i —1)-'x '-',

where A, =—I" u '"'R„"'(u) du.
Substituting these relations into E(I. (B7) with

~-~, we observe that

Z Z a;b„(2k —2i —1) x ' '
]=I y=f+1

=gb;x '' P (2i —2k —1)'a

= g b x" '.t' t"-'S" "(t-)dt-
oi=1

and we finally obtain our formula E(I. (B6).
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Mossbauer Isomer Shifts in Sm'~9 Compounds
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The isomer shift (IS) of the 22. 5-keV y transition of Sm~4~ has been studied for various
ionic, semiconducting, and metallic compounds using Mossbauer spectroscopy. We found

changes as large as 0.9 mm/sec between trivalent and divalent compounds and 0.3 mm/sec
between metallic and ionic trivalent compounds. The divalent compounds show a range of IS
due to covalency effects, and the intermetallic compounds, which all have Sm in the trivalent
state, show the extra electronic density due to the conduction electrons. The IS obtained for
the semiconducting SmB6, -0.4 mm/sec, and for the chalcogenide Sm3S4, -0.19 mm/sec, are
anomalous. We calculated the difference in the mean-square charge radius between the 22. 5-
keV state and the ground state 6(x ) =1.2 &&10 fm . We also found the conduction-electron
density at the nucleus of Sm metal ) 4'[ (CE) =0. 95&&10 cm . The solid-state and nuclear
results are discussed in the light of current theories.

INTRODUCTION

Isomer shifts (IS) in rare-earth nuclei have been
observed during the past ten years, but relatively
few measurements on IS of samarium compounds
have been reported. ' We have previously published
the results2 of measurements of the IS of SmB6,
and presented, ' in abstract form, some results
of IS measurements on divalent, trivalent, and
intermetallic Sm compounds. This paper is the
first extensive report of these measurements.

In particular, we present here measurements
of the IS of Sm' in various ionic, semiconduct-
ing, and metallic compounds, anddeterminations
of the change of electronic density at the Sm nu-
cleus due to chemical effects. The electronic
structure of these materials is discussed in the
light of the results. We have also determined the
mean-square charge-radius change 5(r ) =(r, )
—(r, ) between the excited (I = —',) and ground (I=+z)
states of Sm'49 and will here compare the experi-
mental value to that obtained from nuclear model
calculations.

The shifts between centroids of Mossbauer spec-
tra of various absorbers are usually described in
terms of an electric monopoleterm, resultingfrom

the electrostatic interaction energy between the
nuclear charge density andthe electronic density
within the nuclear radius. This energy is different
for different nuclear states, because of the effec-
tive nuclear charge-radius change 5(r~), and varies
with effective electronic density, ~ +(0) )~, at the
nucleus. 4'

The energy shift due to this interaction is given
to a good accuracy by the formula '

~Z=Z, -Z, =-', ~ Ze'I (~(0)(', —~+(0)(,']V( ')r,

(I)
where E, and E~ are the nuclear excitation energies
in compounds with total electron density at the
nucleus I+(0) l~ and l@(0) (22, and Z is the nuclear
charge. The nuclear mean charge radii (r ), ~ in
the excited state (e) and ground state (g) are defined
by the relation

(r') = f p(r) r'dr/f p(r) dr,

where p(r) denotes the nuclear charge density, and
the integral. is taken over the nuclear volume. Re-
lation (1) is exact to the first order, when the elec-
tron density is constant in the region of the nu-
cleus' and relativistic electron densities are used.


