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The WKBJ variational scheme developed by Bardeen et al. which simplifies the Bogoliubov
theory for inhomogeneous superconducting states, has been applied to study normal-superconduct-
ing phase boundaries in pure metals. The surface energy of a planar phase boundary at abso-
lute-zero temperature is found for various values of the Ginzburg-Landau parameter, The or-
der parameter and the magnetic field are also determined in this variational procedure. The
present theory differs from the existing ones in its being microscopic and nonlocal, but the non-
locality of our theory is found to have small, though not negligible, effects. Near the transition
temperature the free-energy expression for planar phase boundaries is examined by an asymp-

totic expansion method.

I. INTRODUCTION

A very basic concept in the theory of supercon-
ductivity is that additional energies must be as-
sociated with the formation of normal-supercon-
ducting (NVS) phase boundaries. Such surface en-
ergies are the analog of surface tensions at liquid-
vapor interfaces. As first noted by London, this
concept must be introduced even to explain one of
the most fundamental properties of superconductors,
the Meissner effect. Infact, flux exclusionfrom su-
perconductors would be impossible if no supercon-
ductors had positive surface energies to prevent
flux penetration through the formation of many
fine normal domains in the superconducting bulk.
Superconductors with positive surface energies
are now classified as type I, to distinguish them
from type-II superconductors with negative surface
energies whose magnetic properties are now known
to be very different.

The early London theory on the electrodynamics
of superconductors predicts a negative definite
surface energy for all superconductors., The first
theory which allows the possibility of a positive
surface energy is the celebrated phenomenological
theory of Ginzburg and Landau (GL).! This theory
assumes that all superconductors are characterized
by a single material constant—the GL parameter
kg. It predicts that a superconductor is type I
or II depending on whether kg, is smaller or larger
than a critical value 12,

8

The GL theory was proposed for the vicinity of
the transition temperature 7,. A rather similar
model was used by Bardeen? to investigate the sur-
face energies for temperatures near absolute zero.
Another model, based on the Gorter-Casimir two-
fluid concept and qualitatively valid at all tempera-
tures, was also briefly discussed. Thislastmodel,
together with a variant to incorporate the existence
of energy gaps in superconductors, was then investi-
gated by Lewis® using variational methods.

These studies of the surface energies in super-
conductors were all done before the successful
development of a microscopic theory of super-
conductivity by Bardeen, Cooper, and Schrieffer
(BCS).* Since then, Gor’kov® and Bogoliubov® have
formulated two alternative generalizations of the
BCS theory to inhomogeneous problems. The mi-
croscopic theories, now well established as the
correct theories of superconductivity phenomena,
involve nonlocal integral equations in general and
reduce to the local GL equations only when the
sample is dirty, or, in the case of clean samples,
when the temperature T is very close to T,. The
Bardeen-Lewis theories, being local and phenom-
enological in nature, must therefore be improved,
especially for pure superconductors at low tempera-
tures.

The microscopic theories of inhomogeneous
superconductors have so far been applied success-
fully mostly to cases when a perturbative approach
is possible due to the presence of certain small
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parameters. Examples are when T~ T, when
the sample is dirty, or when the order parameter
is everywhere small. The theories have not been
used to study the NS-wall energy for pure super-
conductors at low temperatures (except in some
limiting cases’) because no perturbative approaches
seem to be available. The hope for carrying out
such a study arose only very recently when Bar-
deen, Kiimmel, Jacobs, and Tewordt (BKJT)® re-
formulated the Bogoliubov theory into a WKBJ
variational scheme, to study isolated vortex lines
in pure superconductors. This method has since
been applied by Kiimmel® to study NS phase con-
tacts in extreme type-I superconductors (kgy,=0),
for which the magnetic field effects can be totally
ignored. A general nonlocal theory of NS-phase
boundaries valid for all kg, values is nevertheless
still lacking.

In the original Bogoliubov theory of inhomoge-
neous superconductors, the particle and hole com-
ponents of the elementary-excitation wave func-
tions satisfy two coupled second-order linear dif-
ferential equations which are now known as the
Bogoliubov equations. These equations are much
like the Schrédinger equations for a nonrelativistic
spin- 3 particle of charge 2e¢ (e being the electron
charge) moving in a vector potential A(F) and an
off-diagonal complex pair potential A(F).'® The
vector potential A must be determined self-con-
sistently via the Maxwell equations and a current
expression, The pair potential A is to be deter-
mined by a relation now known as the gap equa-
tion. Both the current expression and the gap
equation involve summations of quadratic forms
of all eigensolutions of the Bogoliubov equations
which renderthe exact solution of this set of
equations a formidable task. The BKJT refor-
mulation of this theory introduced two important
ideas:

(i) The Bogoliubov equations are solved by a
WKBJ method which reduces the two coupled
second-order linear differential equations to two
nonlinear first-order ones. We wish to empha-
size that the main purpose of this step is to remove
the rapidly oscillating factors in the wave functions,
thereby making numerical solution of the equations
much easier, rather than merely to reduce the
orders of the equations.

(ii) The self-consistent conditions on A and A
are replaced by a minumum principle on a Gibbs
free-energy functional [cf. Eq. (2.2)], treating
both A and X as trial functions. The forms of these
functions must be guessed through physical argu-
ments, allowing only a few adjustable parameters
to be determined by the minimum principle.

This WKBJ variational scheme is a powerful
tool for microscopic investigations of many basic
problems concerning pure inhomogeneous super-

conductors at low temperatures, when no perturba-
tive approaches are possible. One such problem
is the properties of isolated vortex lines already
studied by BKJT. The formation of NS-phase
boundaries is another such problem, to which we
address ourselves in the present paper.

The purposes of this work include (a) to formu-
late the NS-phase-boundary problem in the con-
text of a microscopic theory, using the BKJT re-
formulation of the Bogoliubov theory; (b) tosee how
the surface energy arises in a nonlocal theory and,
in particular, to see how nonlocality affects the
formation of a phase wall; (c) to develop a system-
atic scheme for the numerical investigation of quan-
titative aspects of the problem; and (d) to provide
a simpler, and therefore better, example for in-
vestigating a mysterious feature of the BKJT theory
first discovered by Cleary,!! namely, the appear-
ance of a series of unexpected terms in the expan-
sion of the BKJT free-energy expression in the
vicinity of T, 2 besides those terms reproducing
the GL! and Neumann-Tewordt theories, 13+

In Sec. II we show how the WKBJ method, as
introduced by BKJT, must be generalized slightly
in order to solve the Bogoliubov equations for
the NS-wall problem, We then present formulas
for calculating the density of states in such a sys-
tem for energies both below and above the equilib-
rium gap.

In Sec. III, the BKJT expression for the Gibbs
free energy is expressed in terms of the density
of states, and is rewritten, together with the re-
levant equations to be solved for its calculation,
in terms of dimensionless variables conveniently
introduced for this problem., Being properly de-
fined to contain no bulk energies, the minimum of
this free-energy functional gives directly an upper-
bound estimation of the desired surface energy of
a planar NS wall,

The wall energy of an ideal boundary, defined by
mutually complementary step functions for the
space dependence of the order parameter and the
field, is calculated in Sec. III. This simple ex-
ercise serves as a qualitative guidance to a more
elaborate numerical calculation of the surface en-
ergy at T'=0 which we present in Sec. IV. Simple
trial functions of one adjustable parameter each
are chosen for both A and A. The results are
compared with a corresponding variational study
of the GL functional. Possible improvement of
our zero-temperature calculation is discussed.

In Sec. VI, the microscopic free-energy expres-
sion for the planar-NS-wall problem is expanded
near T,, mainly to compare with a corresponding
study of the isolated-vortex-line case by Cleary!
and Jacobs.'? In our expansion, as well as in
theirs, the Ginzburg-Landau-Neumann-Tewordt!'13:14
series is recovered together with another series
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of mysterious anomalous terms as first discovered
by Cleary. The terms in the latter series have
orders in (1- T/T,)?1ying between those of the terms
of theformer. Noattempts have been successful in
resolving this puzzle, but we believe that the NS~
wall problem is a simpler, and therefore better,
example for investigating it. This follows since

in the NS-wall problem, only Cartesian instead of
cylindrical coordinates are needed, and one finds
continuous rather than discrete spectrum below
the gap.

Finally, a short conclusion is presented in Sec.
VII, and two Appendixes are attached, one on
some mathematical details, and the other present-
ing a general asymptotic-expansion formula use-
ful for the high-temperature expansion.

II. SOLUTION OF BOGOLIUBOV EQUATIONS BY WKBJ
METHOD

According to the BKJT theory,® the essential
steps for studying an inhomogeneous state in a
pure superconductor are the following:

(i) Variational forms must first be chosen for
the pair potential A(¥) and the magnetic field 'ﬁ('f‘)
which may contain some adjustable parameters.

In a special gauge the chosen form of h determines
the vector potential A,

(ii) The Bogoliubov equations, as stated below,

must then be solved by the WKBJ method:

En Un(-f) = [(zme)-l( - 1-6 - eK)Z - EF]

X U (F)+A(D) V,(F), (2.1a)
E, V(¥)= -[@m) 6V - eR)? - E;)
XV, (F)+ A*@)U,(T) . (2.1b)

In these equations, m,, e, and E are the mass,
charge, and Fermi energy of the electrons, and
U,, V, are the particle and hole components of the
quasiparticle wave functions that correspond to the
eigenenergy E,. Throughout this paper we let 77=c¢
= Boltzmann constant=1,

(iii) The resultant quasiparticle spectrum E,
should next be used to evaluate the total Gibbs free
energy of the system:

G,=-2p" 2 1n(2 coshiBE,)

Ep>0

+ [{V a(®)|?+ @) [R(F) -H,F a3, (2.2)

where 8= T, and V is the interaction parameter.
For the NS-wall problem, the applied field H, is
equal to the thermodynamic critical field H,. It
is also convenient to remove all wall-independent
energies from G, and calculate

AG=G, - Gy,

2.3)

where Gy is the corresponding free energy of a

reference system made of a normal half-space
and a separate superconducting half-space in the
Meissner state. The field is H, in the former and
zero in the latter.

(iv) Finally, the free energy G, (or equivalently

the difference AG) should be minimized with re-
spect to the adjustable parameters in A and A.
The final minimum value of the free-energy dif-
ference AG for the NS-wall problem is by defini-
tion anupper-bound estimation of the surface en-
ergy o of the phase boundary.

In this sectionwe first develop a form of the WKBJ
method to solve the Bogoliubov equations (2. 1) for the
NS-wall problem. We then obtain formulas for
calculating the density of states below as well as
above the equilibrium gap A.(7). To do so we
must first know the qualitative behavior of A and
& in such a system which is well known through
GL-theory studies.!''® Far away from the wall,
we expect A=0, 2=H_,in the normal side, and
A=A, =0 in the superconducting side. In the
wall region exact analytic solutions have been found
for A and 7 only in the limiting cases kg, =0 or o,
In both cases a sharp edge exists at which A de-
parts from zero which is actually a misleading fea-
ture not true for general kg, values. It can be
shown that, for general kq;, the sharp edge must
be rounded off into a Gaussian tail whose width is
the geometric mean of the coherence length £(T)
and the penetration depth A(T) in the GL theory.
For kgp,=0 the magnetic field does not penetrate
into the S region in the scale £(7), in which A rises
up first linearly, then to saturate at the bulk value
Aw. For kg =, the field smoothly reduces to
zero with a vanishing slope at the edge, while A
rises up initially according to the square root of
distance, both in the same scale X(T). For inter-
mediate kg, one expects  and A to vary at dif-
ferent scales, but both are likely to vary monotoni-
cally.

With the above picture in mind, we now seek the
WKBJ method to solve the Bogoliubov equations
(2.1) for the NS-phase wall. For the convenience
of our variational solution, however, we ignore
the possibility of a Gaussian tail, and assume that
the N and S regions are always separated by a
sharp edge. The original version of the WKBJ
approximation, as developed by BKJT for the iso-
lated-vortex problem,® must be modified in order
to be applicable to the present problem. The rea-
son is that in the single-vortex problem a gauge
can be found in which the vector potential A(T) is
small everywhere [more precisely one has |eA ()|
<« kg for all ¥]. One can, therefore, in that gauge
ignore completely the A% term in Eqgs. (2.1). The
condition is clearly not satisfied in the NS-wall
problem due to the presence of a normal region
of macroscopic size in a finite magnetic field H,.
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Instead, in this problem one can at most find a
gauge in which the vector potential is large in the
normal region only. But in this gauge, as we shall
see below, it is possible to modify the original
BKJT version of the WKBJ method to properly
take care of the large A% term in the normal region.
We canthenverify rigorously what we have expected
from intuition. Namely, if only one ignores all
effects associated with Landau-orbit quantization,
which are usually small in superconductors anyway,
then all results are independent of whatever hap-
pens in the normal region. This means that we
could solve the problem essentially correctly by
neglecting the A% term in Egs. (2. 1) irrespective
of its large magnitude in the normal region. An-
other point of view to this less rigorous approach
would be to imagine that we were considering a
fictitious system. Inthissystem nomagneticfields
would be applied in the normal region except right
at the boundary where their magnitudes would still
be H,. In such an alternative approach one could
use the original version of the WKBJ approxima-
tion without modification, in a suitable gauge.
Nevertheless, we do not adopt this alternative ap-
proach because we think that artifices should be
avoided if only possible. A bonus reward of our
more elaborate approach, as we shall see, is the
discovery of a partial-Landau-orbit-quantization
phenomenon, which leads to a continuous but os-
cillating density of states above tbe equilibrium
gap.

We choose our coordinates such that the sharp
edge of the phase boundary constitutes the xy plane
with the z axis pointing from the N side to the S
side. The magnetic field fi is taken to be along
the positive y axis, and the gauge is chosen such
that the vector potential & has only an x component
given by

A(2) EA,,(Z)=-1;°° n(z")dz'.

This is the gauge in which A stays small through-
out the superconducting region. For z<0, we can
write A(z)= H,(z — Xyq), Where

(2.4)

Nege=H [“1(z") dz’ (2.5)
is the effective penetration depth of the field in this
problem,

In this choice of gauge, A(z) is real. It is clear
that the eigensolutions of (2.1) are of the form

)]

The essential step of our modified WKBJ method
consists of writing £ (z) =(f,,f.)!" in the form

TR LA LA AN
f(Z)-<g_(Z)¢-(Z)) c.c. ,

where ¢, are the usual WKBJ solutions of the

(2.6)

2.7

Schrédinger equations which are obtained from Egs.
(2.1) by setting E,=0 and by switching off the pair
potential but not the vector potential:

o=l @] expli [0 k() d2'],  (2.9)
where the local wave numbers k‘*’(z) are the posi-
tive solutions of

[k, 7 eAR) P+ R2+[R) (2)]P= %, (2.9)

and z{*’ are the classical turning points where k;*'(2)
=0. For z—~c we have k2 (2) ~ &= (% - k2~ R2)V2,
We shall only consider stateswith real k,, as main-
ly only these states are affected when one turns on
the pair potential in the superconducting side. We
anticipate that g,(z) are slowly varying in the atomic
scale [more precisely, |(d/dz2)g,(2)| ~£(T)" g, (2)!]
for all solutions of (2.1) with E~AL(T) <Ep. Sub-
stituting Eq. (2.7) into (2.1) and consistently ig-
noring terms of order (k&) with respect to one,
we obtain

(2.10a)

Eg+=n; O g++A(2)Q+(Z)g_,

Eg. —+m 3o 0 () = g.+A(z)Q (2)g. , (2.10D0)

where the phase factors

Q.(2) =exp| £2ie (b,/k,) [ A(Ndz']  (2.11)

are originally of a form

exp[ ¥ f(,,)k(”dz +4 f< )k‘ Ydz'].

To obtain the simpler form (2.11) we have allowed
Ep to have a very minute K, = (kx, k,) dependence,
so that the Fermi energy at any k, always corre-
sponds to an unperturbed particle or hole level. 1
Imagining the superconducting side to have a finite
thickness D one must have

D ey ‘_
fzéﬁ)k% (" dz'=2v,7,

where v, are mtegers The phase factors then be
come exp[ +ifP (k(*’ k") dz']. One further rea-
lizes that the factors A?z), which are multiplied
by @,, vanish for z<0; and for z>0,

|eR(T)| & eH, Ny
~max {[£(T) MT) "2, E(T)"} <Ep.

One can therefore use
(for z >0)

K2 (2) = Ry €A (2) ky/ By 2.12)

to obtain the forms in Eq. (2.11).
For z <0 the general solution of (2.10) is clear-
ly of a form
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A exp[im, E [(» (k)" dz
&= ‘ ,  (2.13)
B exp[ ~im,E [ ((k;)" de]
t
where we have assumed that the classical turning
points are in the normal side as is true for essen-
tially all states of real k,o except for a negligible
portion of the Fermi surface.
For z>0 it is convenient to let

~_ [QY% 9,

8= (Ql/z g . (2- 14)
If we further assume that

“ ein(z)/z X

d= <e-in(z) /2) e”(g) ’ (2' 15)
the quantities 7(z) and £(z) must then satisfy

R an e

(2m,) lkao 7z +A(2) cosn=E+ o kR A(z), (2.16a)
m} ks, Z—ﬁ =iA(2) sin7. (2. 16b)

In obtaining Eqs. (2.16) we have again consistently
ignored (£7£)" with respect to one. Equations (2. 16)
are seen to be essentially identical to Eqs. (4.17)
and (4.18) in the paper of BKJT, except for the
dimensionless quantities used there which we shall
also introduce later,

In order to proceed further we must distinguish
between two types of solutions of Eqs. (2.10): the
“bound-state” solutions with E < A, and the “scatter-
ing-state” solutionswith E > A,

A. Bound-State Solutions

For E<A., Eq. (2.16a) should be solved together
with the boundary condition n—cos™'E/A_ as z—.
[cos™! is defined to be the principle branch, The
other solutionn ~ — cos™! E/Aisdiscarded because
the corresponding solution of (2.16b) makes g grow
exponentially as z—+ =, ] One then sees that 7 is
purely real and &, aside from a possible real in-
tegration constant, is purely imaginary. To match
the solutions for z <0 with those for z>0, we first
obtain from Eq. (2.13)

~ ‘ im, E k
(0)=ex <0t— e gin-t X )
£0) P eH, (kzl.-—ki)ﬂz
B m’maE>
exP( 2"t 2eH,
2.17
( B _ ﬂing> » )
XP\* 2~ 2em,
where we have set A=e*#2 B=¢**/2 and we have

ignored eH, A, (~£) with respect to k,(~kg) in
the arcsine function, It is then clear that continuity

of g at z=0 implies

imeE PO |

R, R
og Sin B 2 =3£(0), (2. 18a)
c y
E o
B- f—ze%h— in(0) - ?‘Zek I Al2)dz. (2.18b)
c 30 0

Since A and B must both be real in order for fh

to satisfy the same boundary condition at the clas-
sical turning points for all ESA, as when E=0,
we may set Ima= mn, ImpB=nnm, with m and n
being both even or both odd. Equation (2. 18b)
then implies that RefS=0 and that, denoting 7(0)

by 770;

mm,E - 2ek,
eH, ok

I A(z)dz=nm. (2.19)
E0) 0

The quantity 7, may be obtained by solving Eq.
(2.16a) in the region z> 0 together with the bound-
ary condition at 2=+ «, and is therefore uniquely
related to E,, and E. The density of states for
E<A, at given E,l and spin, but including both elec-
tron and hole contributions, can be obtained from
(2.19):

1 dn,(E
pr, (B)= = - —%-). 2. 20)

The corresponding density of states of the standard
reference system has contributions only from the
normal half-space and may be obtained by requiring
g(0) of (2. 17) real. The result is'®

P (B)=—= H
4

0 0
=ﬂ[im ROk dz+j (=5 dz]. (2.21)
t

‘IT

The difference in density of states between our NS
system and the standard reference system, at
given E", spin, and for E<A.(7), is therefore
simply

Apy, ()= - L 40E).

dE (2. 22)

By using Eq. (2.16a), which gives

Ng= cos'lij‘ ks A(z)

- A(2) cosn(z)) dz, (2.23)
we can also write Eq. (2.22) as

1 1
Apy, (B) =~ BE_gH7?

»

2m
+ my 1+A(2) sm17ﬂ dz, (2.24)
wk,o 0

dE

which suggests, as is borne out later, that the
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density of states for an NS system may diverge
just below the equilibrium gap.

B. Scattering-State Solutions

We now consider solutions with E>A,. For
z<0, the most general solution is still given by
(2.13). For z>0, Egs. (2.16) now require that
both 77 and £ be complex quantities. Following
BKJT, we let n=7, - in, and §=&, - i&,, so that
M, M, &1, &5 are all real functions of z. Equations
(2.16) then become a set of four coupled equations
as in the single-vortex problem:

ke AN ¢

Rz % A = x

ol (2) cosny coshmy=E+ e Az),
(2. 25a)

kg dn . :

2_;10; Tif- = A(z) sinn; sinh7,, 2. 25b)

ke 44 _ A(2) cosm, sinhmy, (2. 25¢)

m, dz

g dEy A(z) sinm, coshn,. (2. 250)

1t is clear that if (ny, 7,, &, &) forms a set of
solutions of these equations, so must also the set
ny, =My, =&, &) at the same E. Expression
]

cmE (T
A exp [z oH, (2

L mE (7 4k )]
Bexp[ leHc <2+Sln W

(2.15), therefore, now constitutes only a particular
solution, The general solution is given by

§=4,8,+A8. (2. 26)
with
~ plinizng )2 -
= (e(-i’*x*'lz)/z etttz (2.27)

where (ny, m,, &, &) satisfy Egs. (2.25) and the
boundary conditions 1, -0, 7, ~+ cosh™!(E/A.) as
z—0. (By cosh™ we again mean the principle
branch.) Since &; and £, still contain arbitrary in-
tegration constants, we may without loss of gener-
ality take A,=e'®, A_=Ce'®, with real C and p. As
before, we assume that the superconducting side has
a finite thickness D and require our solutions to sat-
isfy the same boundary condition at z= D for all
E~A-<Ep as when E=0. This is equivalent to
requiring g, real at z=+ D which gives p=m7 and

(2. 28)

with » and » being integers. Without loss of gen-
erality we may take m =0 which implies p=0. Next
we require the solutions for the regions z>0 and
z<0 to match at z=0. This gives, with I" =(ek,/k
X f:A(z) dz,

§1(2=+D)=1’lﬂ,

20)

sin-! ij’z—z)ﬂz):l =e'20 {expl 3759+ i(3M19+ T'+ &19) ]+ Cexp[= 3Mz+ (30 10+ T = £10)]1,
=Ry

(2. 29a)

=e®20 {exp[ — 10,0 i (31 19+ T = £;0)]+ C expl 1759 =i (3m0+ T+ £9)] },

where we have used 7y, Ty, &9, &30 to denote the
values of ny, 7, &, &, respectively, at z=0.
Moving the left phase factors to the right, the right
e®0 factors to the left, taking the imaginary parts
of both sides, and bearing in mind that both A and
B are real constants, we obtain

sin(¢g- Z+ ®)=Ce™"20 sin({,,+ =~ @), (2.30a)
sin(§+ E+ @)= Ce'™0 sin(¢,,— - @), (2.30b)
where
e TmE
~7 2eH, * Mo=T
and

m,E k

_Mme in-l
O en, S GE-BT -

c

Equations (2. 30a) and (2. 30b) are the analog of Eqs.
(4. 25a) and (4. 25b) of Ref. 8, butaretrickier to ana-

(2. 29p)

lyze than the latter. Rewriting Eqs. (2.30) into the
form

tant,,/tan(® - E)= (Ce"20+1) /(Ce™20 - 1),

(2.31a)
tang,o/ tan(® + E)=(Ce"20+ 1)/ (Ce™0 - 1),
(2. 31p)
we can eliminate £, to obtain
C? - 2C sinhny,, (sin20/sin2E) -1=0, (2.32)

Since ®, =, and 7,, are fixed functions of k, and

E (out not &, which is why we eliminated it), and
because Eq. (2.32) admits two real solutions for
any set of real values of 7,,, ®, and =, we con-
clude that there exist two linearly independent
§cattering states for each given set of values for
k,, E, and spin, satisfying the boundary conditions
at z=0 and at the classical turning points [at z=D
ac well if (2. 28) is further satisfied].
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We denote the two solutions of Eq. (2.32) by C;
and C,. The corresponding two solutions for &,
of (2.30) will be denoted with the superscripts (1)
and (2). These, combined with Eq. (2.28), allow
us to determine the discrete energy eigenvalues and
therefore the density of states of the scattering
states. In doing so we need the relation

D
£ (z=D)= &5+ %—f A(z) cosn, sinhm, dz
zgJ0

©

= gw+ zZ (E2 A)V2 e [A(z) cosm, sinhm,
kﬂo k’o Y

- (E%2 - 22)'2] 4z

which follows from Eq. (2.25c).
The density of states for each of the two scatter-
ing modes follows from Egs. (2.28) and (2. 33):

mD E

(2.33)

(1)

Pr, (E)=7 g§;>+ mh,, (EZ-A%)7
L me d (7 o (p2_ a2\
Tfk 15 [A(z) cosny sinhm, — (E2 - A%)V2] 4z,
(2. 34)
In Appendix A it is shown that
£o + £ = 22+ w(E), 2. 35)

where ¥(E) is a quasiperiodic function of period
eH,/m <A, and averages to zero within each peri-
od. The sum of the density of states over the two
scattering states (each being a coherent mixture

of particle and hole) is therefore

2m,D E
(E? - 0%)1/2

E)= (i) ~J_
oz, (B)= 421;, o B2 op

1 d 2m, (°
* IR < T)m(E)+—¢-k‘0 50 [A(z) cosm,

x sinhn, — (B2 — A%)Y/2] dz) , (2.36)

where we have ignored a ¥-dependent term (cf.
Appendix A).

The first two terms are easily seen to constitute
the corresponding density of states of the standard
reference system:

2m,D E
(EZ- A% *

p(R)(E)

¢ Hc s (.37

20

The difference in density of states between our
NS system and the standard reference system, at
fixed k,, spin, and for E> A, is therefore

1 d 2
a5, (B)= 5 g (=@ e
2

xs [A(z) cosm, sinhm, — (B2 — A%)/2] dz) . (2.38)
(]

A word about the neglected ¥(E) term: Its exis-

tence is clearly related to Landau-orbit quantization
which is a subject that we wish to consistently ne-
glect in this paper. It is curious to notice, how-
ever, that Landau-orbit quantization does play a
role heve even though we ave not dealing with
closed orbits! The veason is that the elementary-
excitation wave functions ave actually made of linear
combinations of openand closed ovbits due to the
possibility of multiple Andreev scattering'® at the
NS-phase boundary. That the probability of finding
a closed orbit is neither one nor zero explains why
one gets a continuous but oscillating density-of-
states function in the absence of sample-size quan-
tization. Unfortunately our magnetic field strength
is limited by the existing values for the thermo-
dynamic critical field H, of type-I superconductors
which makes observation of this partial-Landau-
quantization phenomenon difficult.

IIl. FREE ENERGY

In Sec. II we have obtained expressions for the
difference in density of states at fixed k, and spin
between our NS system and the standard reference
system [i.e., Eq. (2.22) for E<A. and Eq. (2.38)
for E>A.]. Using them, the free-energy differ-

ence can be written
267 j azk SwdE
(2,")2 " 0

x ApK”(E) In(2 cosh3 BE)

©

+ %/, L [A%(z) — A%] dz

©

+ 51; SO {(nz)-H2-H:} dz. (3.1)

Partial integration of the first term gives

©

28-1 -
+ @L;)z }' d?k, In(2 coshiBE) L dE'Ap, (EY .

o

) -
- (z_ﬂ)zs d?k, S dE tanh} BEs dE' Ap; (E'),
0 E

of which the first term vanishes since the total
number of single-particle states is unchanged
when the system turns superconducting, 2°

For E>A. we use Eq. (2. 38) to find

dE' A py, (E') = 7y (E) = 22
A ﬂk,o

XJ [A(2) cosm, sinhm, — (B2 - AZ)2] 4z
0

For E< A, Eq. (2.22) gives

f}: dE'A Pp, (El)= - f@E dE' A Py (El)
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= 77-1[770(E) - 770(0)] ’

where we have again observed the conservation of
total number of states, anticipating the %, integra-
tion in Eq. (3.1). Thus the free-energy functional
can be rewritten as a sum of four terms,

(3.2)

The first term comes from the bound-state con-
tributions:

AG=AGz+AGs+AGp+AG,.

A
AGB:%ﬁ S dak"so dE [19(0) — no(E)] tanh3 BE.
(3.3)

The second term is the scattering-state contribu-
tions:

AGS—‘};s zk"S dE tanhBE
Aw

% <2mg
k,o

- (E2-A2)'2) gz - nm(E))

; [A(2) cosm, sinhm,
0

(3.4)

The third term, which depends on the pair potential
only, corrects for the double counting of the in-
teraction energy?2:

AGp=V"1 [ [Aa%(2) - AL] dz. (3.5)

Finally, the last term takes into account the mag-
netic energy:

8G,=@n" [7 {lne) -HF-H}dz.  (3.6)

It is more convenient to introduce the following
dimensionless variables:

A=E/A, (3.7a)
¢=(2ma ea/kzo) z=(2/7) (kp/kzo)[z/§ AD], (3.7b)
F(0) = (ek,/mcA ) AR) = 5 m(k,/kp)[2e Al2) £, (T)],

(3.7c¢)
6(8)=A(z) /A, (3.74d)
where

gA(T)ZUF/WAw(T) . (8.7¢e)

[At T=0 this definition agrees with that of &,, the
BCS coherence length, Near T, £,(T)=(6/n)&(T)
of the GL theory.] We also define k.= bk,, k&,

= (BB + k)2 =y cosa,

s =b_ZT‘bI [75(0) = ng(E) )= 7~ bZ) M(E)  (3.8a)
and
ZI) | {f [6(£) cosm, sinhn,
- (A% - 1)1/2] ag¢ - 7710(E)} , (3.8b)

where in (3. 8a) we have used the identity Z,_,,,

X 1,(0) = mwhich can be verified easily by Eq. (2. 16a).
Using a method introduced by Cleary,!! it can
be established that as {— o,

Zs—=A"tC+A3D(a,bd), (3.9)
where
Cc= [ [1-0%()]d
(3.10)

D(a,b)= [;"[4(1 - 8%) - 62F% - 6] dt.

Equation (3.4) is therefore formally divergent
and requires the usual Debye frequency cutoff to
ensure finite result. Alternatively, we may follow
the idea of Ref. 8 to combine AG and AG; into a
single convergent integral by using an identity for
[N(O)V]"* [cf. Ref. 8, Eq. (8.16)]. We then ob-
tain

AG=AGg +AGgp+AGy, (3.11)

where [with N(0) = w?v;/27% being the usual elec-
tron density of states per spin at the Fermi sur-
face]:

/2 db

AGB= %gAN(O)AZwJ sinZadaJ (1—-—1-)—2717?-
o -

0
1

xj dAZ, tanhiBALA, (3.12)
(]

7/2 1 db
AGsf%EAN(O)Aig SiHZGdaj 5z
0 b (1-0%)

le dA (}:S-————(Az _cl)l,z> tanh3 A A,
(3.13)
while for AG, Eq. (3.6) is still the most convenient
form,
To find 7y(A) of Eq. (3.8a) we need to solve Eq.
(2.16a), which in dimensionless variables becomes
an
dg
The boundary condition now reads 7()=cosA,
For E>A. (i.e., A>1), Eqs. (2.25a) and (2, 25b)
are changed in dimensionless variables to

any

+0(8) cosn=A+F(£) (for A<1), (3.14)

dac +6(8) cosny coshm,=A+F(Z), (3.15a)
any _ - ;
ac - 8(¢) sinm, sinhmy,, (3. 15b)

for which the boundary conditions are 7,(«) = cosh™A,
M (0)=0. It is very convenient to introduce a third
equation to be solved together with Eqs. (3.10a) and
(3.10b):
dny
dg
with the corresponding boundary condition () =0,
Equation (3. 8b) can then be conveniently written

27 MolA),

b=xlbl

=08(¢) cosmy e2—[A - (A%2-1)"2], (3.15c)

(3.16)
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with again 7, denoting the value of 7; at {=0.

Thus our program for calculating the free-energy
difference is (i) we must solve the differential equa-
tion (3.14) for 0<A<1 and (3.15a)—(3. 15¢) for A>1
in the region £ >0 as supplemented by the boundary
conditions stated below the equations; (ii) Egs.
(3.8a) and (3.16) are then used to evaluate Zj, g;
(iii) the free-energy. difference is finally calculated
using Eqgs. (3.6) and (3.11)-(3.13).

IV. SURFACE ENERGY OF IDEAL BOUNDARY

In this section we consider an ideal phase boun-
dary for which

Az)=AL0(2),
n(z)=H_ 6(- 2),

4.1a)
4. 1b)

where

9(x)={1 x=0

0 x<0.

It is clear that for E<As, 7= Ne=cos ' A; and
for E> A, My=0, Ny=cosh™A, 7,,=0. This gives,
for the ideal boundary,

Zp=7—-2cos”!A, (4. 2a)
%s=0. (4. 2b)

Substituting these results into Egs. (3.6), (3.12),

and (3.13), one gets AGg=AG,=0, and

AG=AGy= 57&,(T) N(0) A%(T)
% fol (& 71— cos ' A) tanh($ BAa.A)dA . (4. 3)

This expression supplies an upper bound to the
surface energy of a physical NS boundary.
At T=0itis

ofideal boundary) _ %71(%71- 1) £0N(0) Azw(())

~1.79¢,[H2(0)/87], @.4)

which, as we shall see, is already a rather good
approximation to the wall energy when kg, =0.
At T~T,, we obtain

O.(ideal boundary) :(772/32TC)N(0) gA(T) A:L(T)

<(l-T/T). (4.5)

We notice that near T, the surface energy of a
physical boundary is, according to GL theory,
proportional to (1 - T/T,)*2. 1t is also worth not-
ing that the surface energy for an ideal boundary
would be infinitely large, if it were calculated from
the GL theory, indicating that the microscopic
theory suppresses rapid variations of the order
parameter much less strongly than the GL theory.

V. NUMERICAL RESULTS AT T=0°K

The ideal boundary studied in Sec. IV is expected

to be unphysical. On the other hand, after a period
of extensive search, we find that it is unlikely to
extend our analytical result to any more realistic
choice for the trial functions A(¥) and #(¥). We
therefore turn to solving this problem numerically
using the IBM 360 computer of the University of
Southern California. For the trial functions, we
take the following simple functions which reasonably
approximate the expected behavior of the boundary:

A(z)= A, tanh[dz/¢,(T)], (5.1)

h(z)= H, e~/ taT) | 5.2)
They are equivalent to

8(¢) =tanh(af), (5.3)

F({)=re™®, (5.4)
with

a= tud sina, (5. 5)

c=4$nd sina, (5.6)
and

r=—(1/2V2k) bs™! cosa. (5.7)

In the last formula,
k=k(T)=[2V2eH,(T) £*(T)]? (5.8)

is closely related to the GL parameter kg;. At
T=0 the relation is simply

k(0)=0.947kgy, - (5.9)

So far, we have completed our calculation of the
surface energy only for zero temperature. At
T=0 and with the above chosen trial functions for
A and h, we may first simplify our expression for
the free-energy difference [Eqs. (3.6) and (3.11)-
(3.13)] to

AG(d, s, k)= @8n) HE(0) £, 5(d, s, k), (5.10)
where

/2 1
o= L sin2ada L a _dgz)l s K(a, c,7)

SE2 3 s
and
K(a, ¢, n)= [ Zadh+ [ [Z5-(an)y']dA.
(5.12)

The tirst step is to solve Eqs. (3.14) and (3. 15a)—
(3.15¢), for AS 1, respectively, in the region £>0
as supplemented by their respective boundary con-
ditions at {=+ «, For large ¢, both (1 -6) and F
are small, and we can solve the equations analyti-
cally to first order in them. Using these asymptotic
solutions at a suitably large positive ¢, the equa-
tions are numerically integrated back to origin to
obtain 7,(A) for 0<A <1 and 74,(A) for A>1, Equa-
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tions (3.8a) and (3.16) are then usedto evaluate p
and Zg. It can be shown that the following expres-
sions are exact identities:

EE(O)=0,
2s1)=Z5(1) - 7.

(5.13)
(5.14)

These equations, together with the asymptotic for-
mula Eq. (3.9), serve as the best check on the ac-
curacy of our results at this stage. By improving
our computer program, we can satisfy Eqs. (5.13)
and (5. 14) up to at least five significant digits. In
Figs. 1 and 2, the quantities Zz(A) and =4(A) are
plotted for six sets of values of a, ¢, and ». It is
seen that the asymptotic formula for Z g(A), namely,
Eq. (3.9), is also obeyed very well. The next step
is to calculate K(a, c, 7) using Eq. (5.12). The A
integrals are performed numerically up to a cer-
tain value A,, beyond which the asymptotic formula
Eq. (3.9) is used in place of the exact =g. The
value of A, is always adjusted to give a fixed ac-
curacy in K. The @ and b integrations in Eq.
(5.11) can no longer be carried out straightfor-
wardly by numerical method, since it takes too
much computer time to do so. Instead, we cal-
culate a loose mesh of values for K(a, ¢, ¥) which
are then fitted with simple analytic expressions to
be used in Eq. (5.11). The errors so introduced
may not be as bad as one might have suspected
since numerical results on the mesh indicate that
K(a, c,7) is very simply behaved. In the third to
fifth columns of Table I we have listed the value

o))
T
I

FOR A=
)]

T

1

. r=5
3
a4 1
o
c
o
_ 3 s
vi
<
Vi r=1
o 21 1
% r=0
w
g = N .
o Q
W =
! l L I
6] 3 S

| 2 4 5
REDUCED ENERGY A=E/A,

FIG. 1. Plot of Zg(A) for 0=A=1 and Z5(A) for A=1
at a=c =1 and for three values of ». Dotted curve is the
asymptotic behavior (1/aA) of £g at large A which is in-
dependent of ¢ and » [see Egs. (3.8a) and (3. 8b) for the
definitions of Zp gl.

8

?O T T T T T
N =c=0l
" sok a=c |
s
o
(TR
—~ 50 _
=
%2
N
o 40 |
c
f 1/r‘5
Vi 30k N
<
v
o r=1
o 20+ — .
o
[T
=) T~1-0
~u |0 N _
W ~ X

L 1 1 L I
6] | 2 3 4 5 6

REDUCED ENERGY A =E/A,

FIG. 2. Same as in Fig. 1 but with a=¢ =0.1. Notice
the different vertical scales between Figs. 1 and 2.

of K for 4 X4 X 3=48 sets of values for a, ¢, and
7. Our first step is to fit the » dependence of K
at each ¢ and ¢ by

K() =Ko+ pyv2+ port. (5.15)

(K is by definition an even function of ».) The val-
ues of p; and p, so obtained are listed in the sixth
and seventh columns of the same table. The
smallness of p, in all cases suggests that Eq. (5.15)
must be very good at least in the regions of (a, c,7)
studied. On the other hand, it is apparent from
our numerical study that K depends monotonically
on 7. The negativeness of p,, which implies that
the expression in Eq. (5.15) will eventually reach
a maximum and then turn around to approach nega-
tive infinity as 7 increases, indicates that it is
necessarily wrong for large », Fortunately, the
turning points occur at 211 inallcases, which does
not pose a severe restriction on the validity range
of our calculation (vide infra). Of course, aphysi-
cally more acceptable approximation may be ob-
tained by replacing p,72+p,7* by, say, p;7?

X (1 =par?/py)-t. Butthis will prevent us later from
performing the @ and b integrations in (5.11) ana-
lytically, which can save us a great deal of com-
puter time. We shall thus stick to Eq. (5.15). A
surprising bonus in this fitting process is the dis-
covery that p,/p, =~ 0.37 X102 is essentially in-
dependent of a and ¢ (see the last column of Table
I). This means that AK =K(») — K, can be regarded
as a separable function:

AK=p(a/c, ) R(Y), (5.16)
where
R =72%(1 - 0.37 <1023, (5.17)
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TABLE I. Numerical values of K(a/c,c,#) [defined in Eq. (5.12)], their fitting coefficients py,py [cf. Eq. (5.15)], and
the ratio py/p;.

a/c c K(@r=0) K(r=2) Kr=4) by —py X102 = (po/py) x 102
0.50 0.25 8.169 9.432 11.30 0.3206 0.1204 0.376
0.50 0.50 4,341 4,808 5,746 0,1185 0. 0442 0.373
0.50 2.00 1.704 1,734 1.821 0.0076 0.0028 0,367
0.50 4,00 1.343 1.348 1,365 0.0013 0.0005 0,364
1.25 0.25 3.596 6.026 9.761 0.6168 0,2315 0.375
1.25 0.50 2.193 3.060 4,900 0.2200 0,0818 0,372
1.25 2.00 1.276 1.338 1.512 0.0157 0.0058 0,368
1.25 4,00 1.170 1.183 1.219 0.0033 0.0012 0.368
2,00 0.25 2,531 5.507 10.21 0, 7553 0.2833 0.375
2,00 0.50 1,704 2,776 5.204 0.2720 0.1009 0,371
2.00 2.00 1.197 1.274 1,492 0.0195 0, 0072 0,368
2,00 4.00 1,146 1,162 1.206 0.0041 0,0015 0.368
4.00 0.25 1.704 5,387 11,02 0.9348 0.3509 0.375
4,00 0.50 1,343 2.682 5,557 0,3398 0.1263 0.372
4,00 2.00 1,145 1.241 1.520 0. 0244 0,0089 0,367
4,00 4,00 1.130 1,150 1.208 0.0051 0,0019 0,367
Since =0 implies that F(£) =0, we expect K, P(p)=0.180[(1+0.959p) - (1 = 0.972p+0.926p2)"?],
to be a function of a only. The empirical formula (5. 20)
1 0.935 T(c)=(1+0.126¢)/[c(1+1.695C+1.124c?)]. (5.21)
Ky(a)21.125+ = — 5.18 : . . .
o(a) a 1+0.600a ( )

Substituting Egs. (5.16)-(5.21) into Eq. (5.11)
and using the definitions of a, ¢, and 7 in Eqgs.
(5.5)=(5.7), we can perform the b and « integra-
tions by hand and obtain

is found to have +0.2% accuracy. On the other
hand, we came across another pleasant surprise
when we found that p,(a/c, ¢) was again to a good
approximation separable [the error is roughly the

same as in (5.18)]: 5(d, s)=[1.767+1.984d% In(1 + 0. 943d) - 1. 386d""]
pila/c,c)=Pla/c)T(c), (5.19) +P(d/s)I(s)-1.5s8, (5.22)
where, with a/c (=d/s) denoted by p, with
i

1(s) = k25~ {— 4. 402 % 10 (1 + 8. 185s7)) + 4,402 X 10% (1 + 4. 28957%) In(1+ 2. 6625 + 2. 773s 2)
+1.115 (1+1.277 X 10"1s%) tan'[1.001s /(1 + 1.331s) ]}
+ k4578 {2.260 X 10* (1+9. 09757 + 2. 86052 - 3. 52657%)
—1.507X 10" (1+8.23652-9,907 X 10"'s7%) In (1+ 2.862s + 2.7735%)

—~3.818 X103 (1 - 2. 554 X 10152 — 1. 044 X 10-1s-%) tan-}[1.001s /(1 + 1. 331s)]} . (5. 23)
[

We must still minimize &(d, s) with respect to sults, we also perform an analogous variational
d and s in order to obtain the surface energy [per calculation using the GL free-energy functional
unit area and in units of (8m)H2(0) &,] of an NS - which, for pure superconductors, is presumably
phase boundary at any given k. This is carried valid at the extreme neighborhood of T,''¢:

out numerically and the result is plotted in Fig. 3

A = (8m)1 H2 T) o, 5. 24
(solid line). The difference between « = «(0) and Gar (¥, 1) = @) HY(T) E(T) Ber (4, 1), )

kg1, indicated in Eq. (5.9) is already taken into - av\ 2

account so that the horizontal axis is kg.. In Figs. Oor (¥, 1) = J- dg [3. 293< d—§> +0.609 kZ, a?y?
4 and 5 we also plot the value d; and sy of d and s ¢

that minimize G (solid lines). Figures 3-5 con- —2924 Pty (- 1)2] . (5.25)

stitute the main results of this section.
In order to grasp a physical feeling of our re- In the above expression ¢ is the (real) space-de-
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FIG. 3. Surface energy of a planar-phase wall, per
unit area and'in units of vz H2(T)/8mAL(T), plotted against
the Ginzburg-Landau parameter kg;. The solid curve is
from our microscopic variational calculation performed
for pure superconductors at T7=0. The dashed curve,
valid for T, — T < T,, is from a similar variational calcu-
lation using the Ginzburg-Landau free-energy functional.

pendent order parameter normalized to one in the
superconducting bulk, 7 is the magnetic field nor-
malized to one in the normal region, ¢=2z/£,(T),
and a(¢) =~ [;” n(¢) ag. ™

The trial functions which correspond to Egs.

T T T T T
j [do is defined by the variational trial ]
)

function A(z) = A(T)tanh (doz & (T)

~

| | 1 1 L
o] 2 4 6

FIG. 4. Plot of dy vs kg, Where £4(T)/d, measures
the thickness of the order-parameter transition region at
the phase boundary, as determined by our variational cal-
culations. As in Fig. 3, the solid curve pertains to our
calculation at 7=0 and the dashed curve is from a simi-
lar variational calculation for T=T,.

|

3 T

T —_

T T T
S, S, is defined by the variational trial —’
function h(z) = H.(T) exp (-s, z /8,(T))

FIG. 5. Plot of s vs kg, where £5(T)/s, gives the ef-
fective penetration depth [cf. Eq. (2.5)] of the magnetic
field at the phase boundary, as determined by our varia-
tional calculations, As in Fig. 3, the solid curve pertains
to our calculation at =0 and the dashed curve is from
a similar variational calculation for T= T,

(5.1) and (5. 2) are for the present case (&)
=tanh(df) and h(¢)=e*. With them, Eq. (5. 25)
can be easily simplified to

g1 (d, )= (2.195d+ 0. 667d™)+ 0. 609 kF, s

X[ “dxe® tank?(xd/s) - 1.5, (5. 26)

This expression, though much simpler, bears a
striking resemblance to Eq. (5.22). One should
particularly notice the separable functions of

(d/s) and s that appeared in both expressions, sug-
gesting that our earlier discovery of AK being a
separable function of a/c, ¢, and » might not be
purely accidental [cf, Egs. (5.16) and (5.19)].

It is not difficult to minimize Eq. (5. 26) with
respect to d and s numerically. The results
for d(kgy), dolkgL), and sy(kgy) are plotted in Figs.
3-5 as the dashed curves.

A comparison of the two sets of results for T=0
and ~T, immediately reveals that our T'=0 result
for the surface energy is not good in the high-xg;,
limit. One expects in this limit that |&| o« kg, but
our results seem to indicate a kY2 dependence.
This error is traced back to the difficulty in solving
those nonlinear differential equations at very small
values of g and/or ¢. In fact, our empirical expres-
sion for k is obtained from fitting the numerical
results in the region <4, 0.55<(a/c)<4.0, and
0.25%¢%~4.0. It turns out that the most severe
restriction comes from ¢ (= % 7s sina) 20, 25.

For sina=0. 5 it already implies s> 7! or k<5,
We must still remember that we need to integrate
over sina from 0 to 1. At present our computer
program cannot solve the equations for smaller
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a/c and/or c, but we believe that this difficulty
can be removed or at least relaxed after some
further study.

An interesting related question is the critical
value of kg, which separates type-I and type-II
superconductors. At least four definitions exist
for this k, (omitting the subscript GL for clarity).
They are that (i) H,,=H, (i.e., when k;=1//2);

(ii) the slope of the magnetization curve vs field
diverges at H, (i.e., when k,=1/V2); (iii) H,=H_;
and (iv) the surface energy o vanishes, We shall
denote them, respectively, as kg4, kg, k5, and
K., all being functions of temperature.

In the GL region (7 ~T,) all four definitions agree
giving 1/V'2~0.707. Below the GL region there is
no a priori reason that their values should still coin-
cide. In fact, recent study by Jacobs? for tem-
peratures just below the GL region, among others,
has already indicated the contrary. Our numerical
result for pure superconductors at 7=0 gives K .
(at T=0)<1.16. This should be compared with x(0)
<0.74 due to BKJT®; K,4(0)= 0. 56 due to Gor’kov,®
Helfand and Werthamer?*; and k,(0)=0 due to
Maki and Tsuzuki?® and Eilenberger.? (Only re-
sults for pure superconductors are quoted.) Our
upper-bound estimation for x,.(0) is most likely
too high, but it still suggests k..(0) > k.3(0) > k4 (0)
> Kk (0). For comparison we note that Jacobs found
the order K > K.« > Ky > K for pure superconductors
at temperatures just below the GL region.

Besides the results on o and «.,, we can draw
one more conclusion from our numerical study.

We believe that the sharp drop of d, in the range
0 <Kgg £0.5 is a genuine reflection of the nonlocal
nature of our theory, and is peculiar to pure super-
conductors of very low k near absolute zero tem-
perature, We notice that when « is small the mag-
netic field penetrates only very shallowly into the
order-parameter wall region. The order param-
eter generally obeys a self-consistent integral
equation with a kernel which depends on the field.
For dirty superconductors or for pure supercon-
ductors near the transition temperature, the range
of the kernel is much smaller than the order-param-
eter wall thickness, so that in most of the wall
region, the order parameter does not “see” the
penetrating field. For pure superconductors near
absolute zero temperature, the range of the kernel
is now comparable with the order-parameter wall
thickness, and the latter must now depend more
critically on exactly how much field has to pene-
trate the wall region. This, we believe, accounts
for the sharp k dependence of d, obtained when «
is small.

c3s

VI. EXPANSION OF MICROSCOPIC FREE ENERGY OF NS-
PHASE BOUNDARY NEAR T,

As stated in Sec. I, the BKJT theory, though

elegant and rigorous, contains a mysterious feature
which is not yet resolved. It was first discovered
by Cleary,!! and was investigated in more detail
later by Jacobs.!? It should be noted that the varia-
tional principle of BKJT was based on a general
theory of Eilenberger® which wasrigorously estab-
lished.  The WKBJ method used in solving the
Bogoliubov equations is essentially equivalent to the
semiclassical approximation [both ignoring quan-
tities of order (pp&,)"* with respect to one],? which
is also widely accepted among superconductivity
theorists, One therefore expects that the BKJT
theory, being formulated for all temperatures,
should agree with the GL theory,® and its generali-
zation by Neumann and Tewordt, 1*'!* as 7T ap-
proaches 7,. (The latter theories have long been
accepted as the correct theories near 7, ) Un-
fortunately, however, this was not exactly borne
out in the study of Cleary and Jacobs. These
authors found that near T, the free-energy expres-
sion of BKJT for an isolated-vortex line may be
expanded into a power series in [A.(T)/T] (1 - )!/,
where t=T/T,. While the lowest two-integer power
terms [proportional to (1 —¢) and (1 - £)?, respec-
tively] exactly reproduced the GL and Neumann-
Tewordt theories, the half-integer power terms of
orders (1 - )2 and (1 — £)¥2, etc. were completely
unexpected. Most serious is the term of order

(1 - $)¥2, Being lower in order than the GL free
energy, it seemingly has to vanish. But the in-
vestigations of Cleary and Jacobs strongly sug-
gested the contrary. Jacobs then suggested (but
not rigurously established) that probably the half-
integer power terms would vanish when and only
when the pair potential and the vector potential re-
presented the true equilibrium solution (i.e., when
they exactly minimized the BKJT free energy).

This is not a completely satisfactory answer since
if it were true, one might wonder why the Ginzburg-
Landau—Neumann-Tewordtfree energy should also
be minimized by that “equilibrium” state.

The above dilemma was found by studying isolated-
vortex lines in pure superconductors. The basic
problem is most likely not confined tothat particular
situation. Since in the present paper the author
has extended the BKJT theory to the plane-geom-
etry case of a NS-phase boundary, it becomes
extremely interesting to perform a parallel study
in this situation. The basic techniques in this
study will not be much different from those of
Clearly and Jacobs., But the importance of the
problem, and the fact that the present case is a
simpler and therefore better one for investigating
the dilemma, led us to decide on presenting the
details to some extent.

To begin with, our expression for the Gibbs free
energy of an NS-phase boundary is given by Eqs.
(3.11)-(3.13). While AG, should remain as it is,
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we expand AGy by writing the factor tanh3 gA LA into +3(1-0%)

its Taylor series. For expanding the scattering- Fio2, 3 p2pt

state contribution AGg,, we must first obtain the * i

following expansion by extending Egs. (3.9) and +(F'02+6(F06')2+8FF 66'1d¢ (6.3)

(3. 10)%: . . e .
(primes denote differentiations with respect to ¢).

Zs—-C/(A%=1)1/2 The expansion of AGgp is now a simple applica-
~ 3 = y R tion of the general asymptotic expansion formula
=D(a, b) A3+ E(a, b) A~ AT 6.1
(@, 0) A%+ E(e, 0) A%+ 0 (A7),  (6.1) presented in Appendix B. Combining all the steps
where described above, we obtain

D(a, b)= - fo-’[512+F252+§(1—52)2] g, (6.2) AG= i)AG“’+AGM, . 4)
is1
E(a,b)== ["[(0")2+3(80" - §(1 - 89) with
J
/2 1 db 1 « c
AGY = § gg N(0) A% sin2a daj ~——ﬂfz‘[ AZBdA+5 A(Es——g“_—'—ﬁ'z) dA] , (6.5)
0 o (1-0% 0 1 (a*-1)
e " w )
AG‘“:%BQAN(O)A‘LL sinZadaj W (f)(a,b)L u? (tanhu — ) du), (6. 6)
0 (-

3 /2 1 1 .
AG® =~ % iAN(O) A5, S sin2a das (lii—bba)ﬂzl: I Aszg dA—D(a, b)
0 0 0

C D(a,d

and

r/2 1
4 '
AGY = 3EZ- £,N(0) A‘E,S sin2«a dag =7 dbz) E(a, b)j S[tanhu — u+ su ]du), (6.8)
0
I
etc. We note that the leading term in AG'? is generalized GL theory of Tewordt! in which the
of order (1-#)""*"2instead of (1~¢)*/2 asfound in the Gibbs energy of a general inhomogeneous super-
isolated-vortex problem by Cleary and Jacobs, 3 conducting state is given. This theory has been
This difference, however, is not unexpected and nicely summarized in the paper of Neumann and
originates from the difference in geometry of the Tewordt.!* For the planar geometry case and
two problems. when the sample is pure, the free-energy expres-
Let us now investigate the two forms AG® and sion reduces to

AGY), To facilitate comparisonwith other theories,

we first change the dimensionless variables back AGyr = AGy+AGKT + AGKY » ©.11)
to natural variables and perform the @, b, and « where
integrations. This leads us to 1 )
y ) a68= 1 2 [ae (6t (1% i) 20— P}
AG® = Z(B)N(0) A% j dz[ + m283(F%+ a%r?) 6.12)
0 and

+3M-s%1, 6.9 1
AG(“— Er Q _t)HiI‘J dz{%x;’ >\‘§~[3(f’1)2

AGH =~ g;(& N(0) A% j dz( T 37"y

32(77)" 120 +3a'?+ (@'f)?+6(af )2+ 8ad'fr']
7T2 2 ;
+3a4f2 +a'2f2+6azf’2+8aa'ff']+ lga +3K3 )\z [2(ff )2_3(1 fz)(f 2+a2f2)]
x[5(fF P +3a?f*]- (1 - 6%+ i(1 - 62)> , (6.10) + 32 =722, (6.13)
where f is nothing but 8 considered as a function In the above expressions, I'= —93£(5)/98£%(3) is the
of z, and a=2eA(z). Primes now denote differ- ratio a,/a2 in Tewordt’s theory. To compare the

entiations with respect to z. Consider now the two free-energy expressions, one must first sub-
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stitute into AG®’ and AG{) the expansions
Au(T)=Augy (T [1- G+ 3D)A -D)],
('"/m 'EA(T) = gg]_,(T)[l + (%'*‘ %1—‘) (1 - t)];

(6.14)
(6.15)

@m'H2(T)=@n" B2, (D [1-1+3D)(1-9],

(6. 16)
(D)=2.(D[1-G+D)A-9], 6.17)
ks(T)= ke[l - (1+4T)A - D], (6.18)

where the quantities with the subscript GL are the
corresponding quantities in the GL region [i.e.,
expanded to lowest order in (1 - £)] which can all
be found in, say, Ref. 31. Upon using only the
lowest-order corresponding expressions in AG'
and AG{) one can then easily verify the following
equality:

AG® - AGE) AGH - AG™
@nt1-DHe, T @n 11 -f)Hg, T

_ [ 228, (F2+a?)+ 21732, (6.19)

This leads us to a similar conclusion as in Cleary’s
and Jacobs’s studies of the isolated-vortex prob-
lem. Namely, our microscopic free energy for
an NS-phase boundary to four orders in (1 - #)1/2
would precisely reproduce the Ginzburg-Landau—
Neumann-Tewordt theory, had the former not con-
tained the extra series of unexpected terms: AG'"
+ AG(S) T

The above work demonstrated that the dilemma
discussed in the beginning of this section also exists
in our extension of the BKJT theory to the planar-
geometry case of an NS-phase wall. This shall be
the sole purpose of this section since we have not
made any progress in resolving this dilemma. The
only statement about the unexpected terms that we
can make with confidence at the present time is
that they do not vanish identically for all trial func-
tions A and #. This can be easily seen from our
study of an ideal phase boundary presented in Sec.
IV. Since the planar-NS-wall case is simpler to
study than the isolated-vortex-line case in many
senses as discussed in Sec. I, we hope that the
work presented in this section could throw some
light to the final breakthrough of this outstanding
problem.

VII. CONCLUSION

In this paper we have developed a microscopic
theory of the surface energy at a plane boundary
between normal and superconducting phases. The
theory applies to pure superconductors only, and
is based upon a reformulation of the Bogoliubov
theory of Bardeen et al. which features a WKBJ

approximation in solving the Bogoliubov equations,
and a replacement of the self-consistent conditions
on the order-parameter and field distributions by
a variational principle on a Gibbs free-energy ex-
pression. Numerical methods are required to solve
some nonlinear coupled differential equations and
to the final minimization of the free-energy ex-
pression which are carried out in this paper only
for absolute-zero temperature. Results of this
numerical study, together with a corresponding
variational calculation of the surface energy near
T. using the Ginzburg-Landau free energy, in-
dicate that the surface energy for pure supercon-
ductors may be expressed as the temperature-de-
pendent factor v H2 /87%A , multiplied by a dimen-
sionless function F(ky;) of the Ginzburg-Landau
parameter kq;, with the latter having at most a
weak temperature dependence as shown in Fig. 3.
The nonlocal nature of our theory is expected to
reveal its largest effects in pure low-kg,, super-
conductors at very low temperatures. But in study-
ing this case we find that only a rapid change of
the thickness of the order-parameter transition
region at the phase boundary, as kg, increases
from zero, might be attributed to this origin. We
remark in this connection that our theory is, in
principle, valid for all kg, values, but at present
our numerical method developed at T'=0 involves
tolerable errors only for kgy, S1.

Near the transition temperature 7',, we have fur-
ther substantiated an observation made by Cleary
of a mysterious feature in the BKJT theory. Thus
it appears that not only in the isolated-vortex prob-
lem studied by Cleary and Jacobs but also in the
planar-phase-boundary case studied here, and per-
haps in all other inhomogeneous states of super-
conductivity as well, the BKJT free-energy expres-
sion will reproduce the Ginzburg-Landau-Neumann-
Tewordt free-energy expansion in (1 - T/7T,) plus
another series of unexpected terms that leads the
first series by a factor (1- T /7,2, We do not
claim to have resolved this puzzle, but suggest that
the planar-phase boundary is a better case for
studying it.
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APPENDIX A

The purpose of this Appendix is to derive Eq.
(2. 34) of the main text from Eqs. (2.30a), (2.30b),
and (2.31). We first note that the two solutions
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of Eq. (2.31) satisfy
CC=—1, (A1)
C, + C,=2 sinh7my, (sin2@ /sin2E). (A2)

Using these relations, and the fact that both(C;, £{3°)
and (G,, £{2’) are solutions of Egs. (2.31a) and
(2. 31b), we may derive

tanéfd tang® = —tan(® - Z) tan(® + Z),  (A3)

(1)

tangiy +tang? = 2 cothr,, tan(® - E)/

(sin2® /sin2= -1). (A4)

Combining these equations, one arrives at the re-
lation

tan (£{8’ + £2)) = cothn,, tan2z. (A5)

This equation may be analyzed as follows:

(i) It determines &3 + &2 only up to an arbitrary
integer multiple of 7. This additive term has no
physical meaning and may take any allowed value,
But for the convenience in calculating the density
of states, it is better chosen to give &3+ &2 a
continuous dependence on E.

(i) As E/Ao—~w, 7,y—~. Choosing the additive
term to give the simplest result in this limit, we
have

ER LR ~22 as E/A.> L. (a6)
(iii) If we write
e =2m e v, a0

then ¥ vanishes whenever 2% = $x7 for any integer
n.

(iv) If cothm,, is independent of =, then it can
be shown that ¥is a periodic function of = of period
3 7. A simple though not rigorous way to see this
is through graphic method.

(v) Since Z=mm,E/2eH, — 31,,— T, and because
70 and 7,, depend on E only in the scale A, we
conclude that ¥ is a quasiperiodic function of E with
period ~eH, /m, <A,. Theperiodis nothing but the
electron cyclotron frequency inthefield H associated
with Landau-orbit quantization (multiplied by 7).

(vi) Within each period-one can ignore the E de-
pendence of 71;, and 7,, which introduces a relative
error ~eH,/m,A.<1, With this approximation ¥
can be shown to be an odd function about the center
within each period. Thus if ¥ is multiplied by a
function of E varying in the scale A, and then in-
tegrated over a range 2A., it usually can be ne-
glected to lowest order in the above small param-
eter. This justifies our ignoring a term +7-}(d¥/
dE) in Eq. (2. 36), anticipating its role played in |
our calculation of the free-energy difference AG
in Sec. III.

APPENDIX B

In this Appendix we present a general formula
for finding the asymptotic expansion about x=0 of
the real function

@)= [ g®)ntaat, ®1)

knowing the asymptotic expansions

()= ZQ) a4, -ED =3 gy (B2)
n=1 n
h(u)= i bu?nt= IRALIOR (B3)
n=1 n

Before we present our formula we first make the
following remarks:

(i) f (x) is obviously an odd function since %(x) is
odd.

(ii) If one substitutes (B3) into (B1) and inter-
changes the summation and integration signs, one
will end up with divergent integrals. This method
therefore fails to give the expansion of f(x).

(iii) If one substitutes (B2) into (B1), interchanges
the summation with the integration, and then changes
the integration variable from ¢ to u= xf, one does not
yet obtain the desired expansion because the lower
limits of integration still depend on x. One must
either follow Cleary!! to perform partial integra-
tions, or play the trick of Jacobs!? in transforming
the integrals. Both of these procedures become
more complex when higher-order terms are handled.
It is therefore desirable to see how the general ex-
pansion looks and why it is asymptotic. To do so
we introduce the notations for partial sums and re-
mainders:

S‘é”(t)Ei?g‘“(t), (B4)
i=1
R () =g)-S™ (1), (B5)

with similar definitions for S{™(x) and R (). In
these notations the desired general formula may be
written

£ () = (sgnx) jé[bn| x| 2t ([ 7a21 R

- fol 42n-1 Sé‘,"‘“dt)+ an’ x[Zn f:u-(Zm-l)R’(ln) () du] ,

(B6)
which is manifestly odd but contains terms of even
powers in |x|.

To prove Eq. (B6) we first observe the identities

n=1

S = 5[ [T RED (RO (xt) at

i=1
+ [T PR (xt) at]

+ [T RIVO R () dt+ REP (), (BTa)
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=3[ [TREVO R () dt
i=1

+ [T PORP () at]+ REVV (), (BTH)

where the remainders are

RE™(x) = [[7 ROV () R (xt) dt,

R;2n+1)(x) = fl‘” Ri,")(t) R’f”’(xt) dt.

The identities can be easily shown by repeatedly
combining the last two terms until only one term
is left.

Since Egs. (B2) and (B3) are asymptotic expan-
sions, ® we have R{™ (f)=0(g'™ (¢)) as ¢~ = and
R™ ()= ol ™ (1)) as u~0. It is then possible to
show that

REP (@) =o( "RV () 1™ (xt) at)

RE™V () =o( [;” g™ (t) R (xt) at),

both as x—0, provided that all R{"™ and R{™ are
continuous functions with no roots within the in-
tegration range, and that all infinite integrations
converge uniformly for all | x| less than some x,
#0. Under these conditions, therefore, Eqs. (B7)

with n - « will furnish the desired asymptotic ex-
pansion of f(x) at x=0.

We must still evaluate the integrations in Egs.
(B7) for our definitions of g*™ and #®:

LT RED@ 1O () dt=b, 2% [T 12IRED() at
and

Lg ORI (t) at

© :
u -(2:-1)Rh(i) (u) du

= (sgny) a;| x| ?*
Ixl

= (sgno)a,A; | x| ¥ —a; 20 0,2k —2i — 1) 2%,
k=t+1
where A, = [” w@HDRID () du,
Substituting these relations into Eq. (B7) with

n -, we observe that

20 20 agby(2k — 26— 1) 21
i=l R=isl

) 3 i-1
=20 bx?t 7 (2i-2k-1)"a,
i=2 k=1

— S 2i.1 (1 4241 Q(i-1)
-%b;x fot SV (P at,

and we finally obtain our formula Eq. (B6).
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search Corp.
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The isomer shift (IS) of the 22.5-keV v transition of Sm!# has been studied for various
ionic, semiconducting, and metallic compounds using Mdssbauer spectroscopy. We found
changes as large as 0.9 mm/sec between trivalent and divalent compounds and 0.3 mm/sec

between metallic and ionic trivalent compounds.

The divalent compounds show a range of IS

due to covalency effects, and the intermetallic compounds, which all have Sm in the trivalent

state, show the extra electronic density due to the conduction electrons.

The IS obtained for

the semiconducting SmBg, —0.4 mm/sec, and for the chalcogenide Sm3S;, —0.19 mm/sec, are
anomalous. We calculated the difference in the mean-square charge radius between the 22,5~
keV state and the ground state 5{+2) =1.2x10"3 fm%. We also found the conduction-electron
density at the nucleus of Sm metal | ¥| 2(CE)=0.95x10%® cm™3, The solid-state and nuclear
results are discussed in the light of current theories.

INTRODUCTION

Isomer shifts (IS) in rare-earth nuclei have been
observed during the past ten years, but relatively
few measurements on IS of samarium compounds
have been reported.! We have previously published
the results® of measurements of the IS of SmB;,
and presented,? in abstract form, some results
of IS measurements on divalent, trivalent, and
intermetallic Sm compounds. This paper is the
first extensive report of these measurements.

In particular, we present here measurements
of the IS of Sm!*® in various ionic, semiconduct-
ing, and metallic compounds, and determinations
of the change of electronic density at the Sm nu-
cleus due to chemical effects. The electronic
structure of these materials is discussed in the
light of the results. We have also determined the
mean-square charge-radius change 8(v2%) = (72
- (r%) between the excited (I = 3) and ground (I=%)
states of Sm'*® and will here compare the experi-
mental value to that obtained from nuclear model

~calculations.

The shifts between centroids of Mdssbauer spec-
tra of various absorbers are usually described in
terms of an electric monopole term, resulting from

the electrostatic interaction energy between the
nuclear charge density and the electronic density
within the nuclear radius. This energy is different
for different nuclear states, because of the effec-
tive nuclear charge-radius change 6(r2), and varies
with effective electronic density, |¥(0) |2, at the
nucleus, **°

The energy shift due to this interaction is given
to a good accuracy by the formula®:®

AE=E, - E;,= %1 Ze*[ | ¥(0)|2- | ¥(0)|3] 6(»¥,
)

where E; and E, are the nuclear excitation energies
in compounds with total electron density at the
nucleus |¥(0) |2 and |¥(0) %, and Z is the nuclear
charge. The nuclear mean charge radii {(»2),, in
the excited state (e) and ground state (g) are defined
by the relation

(r®= [ p@) r2dr/ [ p()ar, ()

where p(7) denotes the nuclear charge density, and
the integral is taken over the nuclear volume. Re-
lation (1) is exact to the first order, when the elec-
tron density is constant in the region of the nu-
cleus®'® and relativistic electron densities are used.



