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Nonlocality in mesoscopic Josephson junctions with strip geometry
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We study the current in a clean superconductor—normal-metal—superconductor junction ofdergth
width w in the presence of an applied magnetic fieldWe show that both the geometrical pattern of the
current density and the critical currein{ @), where® is the total flux in the junction, depend on the ratio of
the Josephson vortex distaneg=®,/Hd and the range ~+/d&y of the nonlocal electrodynamidsb
=hcl2e, éy=hve/2aT, andr(T—0)~d]. In particular, the critical current has the periodicity of the super-
conducting flux quantun®, only for r <ay and becomes, due to boundary effect®,2Apseudgperiodic for
strong nonlocalityr >a,. Comparing our results to recent experiments of Heidal. [Phys. Rev. B57, R5618
(1998] we find good agreemenitS0163-18209)50414-1

Quantum-mechanical interference effects render the elec- We find that the periodicity of the critical current changes
trodynamics of mesoscopic samplesnlocal In particular, from ®, to 2d, as the flux through the junction increases.
nonlocality is a key element entering the understandingit low temperatures the crossover to thé g periodic cur-
of the magnetic response and the transport in SN$ent appears at a flux ®ow/d, thus explaining the result of
junctions  6-wave-superconductor—normal-metsiwave- Heidaet al.,’> who found a 2b, periodic pattern for all fields
superconductor junctionsand SN-proximity sandwiches. in devices withw/d~1.

The strength and relevance of the nonlocality in general de- |n our derivation, we neglect screening effects by the in-
pends on the dimensions of the system, the normal-met&tuced supercurrent, which is justified as long &s
coherence lengthéy=%v/2nT, and the elastic-scattering ~ V8®Pojc/cd’, wherej. denotes the critical current density
length=3 In this paper we show how the different length Of the junction andi’=d+2\ with \ the penetration depth
scales enter the magnetotransport problem of a mesoscogit the two bulk superconductofs Since all the length scales
SNS junction to produce a shift in tpseudgperiodicity of in our system(the dimensionsv and d, the normal—metal
the critical current fromb,, to 2, coherence lengtlfy) are much larger than the Fermi wave-

After the discovery of the Josephson effect stwave- Iength_ Mg, we base our ca_lculauons ,on the. Eilenberger
) equation®’ for the quasiclassical Green’s functions and ex-
supercoductor—insulatos-wave-superconducto(SIS) tun- h density in th dard 3
nel junctions? interest turned to metallic links of the SNS tract the current density in the standard way. -
tvoeS wh t,h £ iently d ibed in t ¢ The SNS junction we study is sketched in Fig. 1. In the
ype, where the current 1S conveniently described In terms 0quasiclassical formulation, the current density in a péint
Andreev states trapped within the normal-metal redi6ior

a wide junction, the current density and the supercurrent in (@ © .
the presence of a magnetic fidilihave been calculated by He y 1
Antsyginaet al.,” who found a®, periodicity in the critical E % TIW tox w
current. Continuous progress in nanofabrication technology —Y. }4

made it possible to investigate mesoscopic superconductor- S 3 NS |y
semiconductor heterostructures; see Ref. 8 for a study (®) )

of the fluctuations in the critical current and its quantization ; .
in a superconducting quantum point contact. Recently, : !
Heida et al.® investigating S-2DEG-S junctionés-wave- S| N IW S
superconductor — two - dimensional - electron - gaswave - | 1
superconductor junction®f comparable widtlw and length ; —Y-
d, have measured ad®, periodicity of the critical current d A d A
instead of the standard,. A first attempt to explain this
finding is due to Barzykin and Zagoskif.Considering the
point-contact geometry of Fig(d) with open boundary con-
dition in the metal, they indeed recover &g periodicity in

FIG. 1. (a) Junction with a point-contacfopen geometry as
discussed in Ref. 10, whereis the width of the twasuperconduct-
ors. (b) The junction studied here has a strip geometry witthe

L - ) 9 width of thenormal conductor.(c) The magnetic fieldH is applied
the limit w/d—0. However, the experiment of Heiaa al in the z direction and the coordinate system is chosen symmetric

is carried out in the strip geometry of Figld and involves it respect to the junction center. The current density in the point
dimensionsv~d of the same order. In the present paper, Wep inyolves contributions from all trajectorids parametrized by the
determine the critical current, through a clean SNS junc- angle. (d) The phase difference along the trajectoryl” can be
tion in the presence of an applied magnetic fieldtaking  expressed through the enclosed figix using the trajectony’, as
proper account of the reflecting boundaries in the normalour reference, the flux through the areas abdetow) T’y contrib-
metal characteristic for the strip geometry of Figb)l utes with a positivénegative sign.
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results from contributions over dilajectoriesof quasiparti- T
cles connecting one interface to the other throlghn a D
. . e e s . . . . — -
junction of infinite width, all trajectories go straight through a | m— w
the junction. In the case of a finite junction, boundary con- v —

o S "IN S S
ditions at the normal-metal-vacuum boundary have to be
applied, which we idealize through the assumption of specu- () d ‘

lar reflections. Furthermore, we adopt the usual approxima-

tions: perfect Andreev reflections at the SN interfaces and a FIG. 2. The "bow ties” of widthr display the ensemble of
coherence lengtl, in the two superconductors with,<d, trajectories contributing to the current density in a given point. The
allowing for a steplike approximation of the order parametera/rows indicate the current flowi) For weak nonlocalityy <a,,

A L7183 The quasiclassical Green’s function is calculated byhe c_urrent flows straight through th_e junctidh) Th_e strong non-
matching the partial solutions in N and S at the interfaces!ocality. r>ao, leads to the formation of vortexlike domains of
For the current density, we arrive at a generalization of the Ccireular flow.

results of Antsyginat al.” Explicitly, for finite temperatures , , ) .
with d> ¢y, j takes the form, gauge-invariant phase differen¢® in terms of the flux¢

enclosed byl" and the reference paif, and obtain,

jxy) =1 (2 (pf)sin(y)dex d—|(¢)) W s trgie)
Jer 2w ] -2 Vénl(e) I YXYi@)=Y0" — g (6)

o
while in the low-temperature limitd<< &y,

Jc,0 772 k=1 k

—y

— /2 de FA)Sin(ky)m, (2 areaA is calculated as a function of the number of reflec-
a trajectory with slopep, and the critical current densities are Fi9- 1@ then is described by the order-zero trajectories
and jeo=r 54 O The geometrical pattern in the current dengitgepends
ductor andp~ 12/ for T<T,, limy_1 p~1-T/T.. While  temperature, the current density fndraws its weight from
temperatures, thermal smearing of the Andreev levels leademperature limito~1 and we defing =d). This range of
contributes with a weight exp(—1/&,) at finite- and=d/l in  r<a,, the flow is uniform alongx with amplitudej. and
o current density forms domains of left and right going circular
Y(X.Yi@)=vo~ qTOHd'[y_X tan(e)].
ortex structure in a superconductor, see Fig. 3. Explicitly,

where for negligible screening(x,y; ¢)=HA(X,y;¢) and
j(xy) 4 * (_1)kfw/z d A is the properly weighted enclosed area, see FHid.. The
® tions the trajectoryl” undergoegin the following called the
wherep= (cosg), sin(),0), | (¢)=d/ cosf) is the length of ~ ~order” of the trajectory. The point-contact geometry of
alone’® while in the strip geometry of Fig. (), higher or-
. , d ne? @, ders have to be included.
Je,T=P)co€XP — a
o strongly on the sample dimensiomsand w, the normal-
In Eq. (3), n denotes the electron density in the normal con-metal coherence lengt,, and the applied fieltH. At finite
in the low-temperature limit all harmonics sk  trajectories withe<<\/£&y/d, allowing us to introduce the
(k=1,2,...) contribute to the current density,at finite  transverse nonlocality ranger=+é&yd (in the low-
to a suppression of the higher harmonicexp(—kd/&) and  nonlocality has to be compared to the scale= ®,/Hd’ of
only the first terme< sin(y) survives. An individual trajectory transverse variations in(see Fig. 2 For weaknonlocality,
the Ic7>w-temperature limit. In a wide junctiory takes the changes direction on a distanag/2 going up they axis. This
form, contrasts with thestrongly nonlocal case >a,, where the
(4) flow. While the local case is similar to that in a tunnel junc-
tion, the pattern in theorlocal situation reminds of the usual
or finite temperatures witd> &y, the current density of the
order-zero trajectories is given by

The more general expression derived here results in th
gauge-invariant phase difference

2
7(x,y;qo)=Aqo—3fA~ds, 5
oJTI I e T T T et e o e ~
< S s e e e o b e —p e b —a . s e ~ N
) I I i e e S
whereA ¢ denotes the phase difference between the two su- S ANt NN
R i . RNV P S S 0 T A N T U
percont_juctors anB is the_ path which goes through the point 0 HNNS AR SRSS S INNE AN
(x,y) with slopecp._Comblnlng the current expr_essmﬁs) or NN S e A AN
(2 and (5 with the Maxwell equation VA= NN IR e A A SR
—47j[A,A¢]/c, we obtain the transverse vector-potenfal 1R IIIIIIIIIIIICIIII0 A
and thus can solve the full screening problem; in the case of rIoIToTTTTTTTITIIIIIL

a tunnel junction(where the trajectories are reduced to the
one with ¢=0), numerica and analytic calculations have
been given by Owen and Scalapitfo. FIG. 3. The current density fod/éy=3, r/ag=~3.5, and

In the following, we neglect screening and concentrate orp/d,=3. Apart from the vortexlike domains in the middle pro-
junctions with the strip geometry of Fig(H), including the  duced by order-zero trajectories, additional circular flow is set up
(reflecting trajectoried” in Egs.(1) and(2). We express the by the order-one trajectories.



RAPID COMMUNICATIONS

PRB 59 NONLOCALITY IN MESOSCOPIC JOSEPHSON ... R9029
1.0 ' N ' 0.1 TABLE |. The periodicity of the critical current is controlled
—all orders 10x% by the three parameters/d, w/r, andr/a,. The table has to be
~ read as a flow chart, starting at the top row and selecting the
o~ proper condition proceeding down the rows. Note that always
= 0.05 w/d<wir.
>
- ratio value
w/d >1 | <1 —+0
0.0 \\' PR = ; 0.0 w/r >1 <1
N e . r/d <1 >1
0 2 4 6 8 (7)/ Po period ®, 20, none

FIG. 4. The critical current fod/éy=5 andw/d=1/3. The
solid curve shows the full critical current and the dashed curves are
the contributions from the orders 0, 1, and 2. The orders 0 and 1 |(CO)(<D): _ \/EIC’T ﬂ cog P/ Po) ,
oscillate with periodicity #,, while the second order decreases \/; r(m®/dy)?
monotonically, remaining always positive. The current pattern pro-

duced by the orders 0 and 1 is lifted by the order 2 contributions'Where lc1=Wjc 1. For the first-order trajectories, we nu-

and the critical current attains the periodicitgpg. merically find again a @, (pseudgperiodic contribution.
Both components vanish with field1/®2. The second- and

all following even-order trajectories exhibit a large current
exd — a(x)], amplitude of orderj, on a scaleayx1/® in the junction
center (0,0), a consequence of theindependence of the
gauge-invariant phase differengealong trajectories through
EN 27X (0,0). Their contribution scaleg1/® and therefore domi-
q a—oeXF[— a(X)], (7))  nates over the zeroth- and first-order terms at large enough
fields — as the strongly nonlocal limit witly<<r is reached,
the periodicity changes over tod. Samples with a small
width w<r are always in the strongly nonlocal limit and
g1z > their current pattern is ®, periodic throughout the entire
_) + (8) field axis. At low temperatures, the condition<r trans-
én forms into the geometric requirement<d. In the very limit
w/d— 0 the periodic modulation disappears and the solution
For weak nonlocalitya,<r, the exponent remains approxi- goes over into the zero-field result(d®)—1(0). Thecom-
mately constant in the normal pad(x)~ a(0), leadingto a  plete classification is given in Table I.
uniform current flow, while for strong nonlocalityo>r, Recently, Heidat al.® observed such a®, periodicity in
a(x) grows asx approaches the interfacesy(=d/2)  striplike (Ww~d) S-2DEG-S junctions made from Nb elec-
> a(0), such that the current concentrates in the middle ofrodes in contact with InAs operating at low temperatures
the junction. Foly>r, the higher order trajectories lead to a T=0.1 K (similar junctions have been constructed by
refinement of the current pattern, see FigssBnilar results  Takayanagkt al., see Ref. 8 As the total flux through the
are obtained in the low-temperature lipnit junction is difficult to determine in the experiment, Heiela
The ratior/a, and its associated characteristic currental. had to infer their @, periodic structure from a fit on four

pattern manifest themselves in tieseudgperiodicity of the  samples with different ratiow/d ranging from 0.9 to 2.2.
critical current,

(10

Ix(X,y) . ( 27y
==sin yo— —
Ao

JeT

Mz_co{ _2my
Jer o Qo

where

27X

d
a(X)=——+ a

én

2.0 j j ' T 0.2
w/2 . -
Ic(<1>)=maXJ dy jx(0y;v0,®), (9) = 10x 015
Yo —-w/2 o Ve
< Ne—

versus fluxd=Hd'w in the junction. In the case of weak
nonlocality, r<a,, the relevant contribution to the critical
current comes from the order-zero trajectories resulting in a
®, periodicity. For strong nonlocality,>a,, higher orders 0.5
are relevant andft the order-zero result as shown in Fig. 4
— the periodicity of the critical current changes td@g (the
crossover lies within the negligible screening regimg f

—_
o

N—~_—]0:05

< ¢o/cd®). To be specific, we discuss in detail the orders 0, 0 & 4 6 8 ¢/
1, af\d 2 for the case of finite tempgrgtures vdth &y (the FIG. 5. The critical current in the low-temperature limit,
qualitative arguments fad < £y are similaj. <&y, forw/d=0.8, 0.9, 1.1, 1.5from top to bottor. Successive

For w>r>ay, the critical current due to the order-zero plots have been offset by 0.35. Measured d#ef. 9, diamonds
trajectories takes the form, are shown for the case/d=0.9.
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In Fig. 5, we present the results of our numerical calculationsghe critical current depends not only on the dimensions of the
for the strip geometry, where we have properly taken intgunction and the normal-metal coherence length as it is
account the finite penetration depth of the flux into the suthe case in a point-contact geomet?hybut also on the ap-
perconducting banks. While geometries withd<1 clearly  plied magnetic fielcH. In particular, we obtain a®, peri-
exhibit a 2b, periodicity throughout the entire field region, a odicity in the whole current pattern at~d, whereas for a
®o-component starts to develop at low fields in wide junc-point-contact geometry, thed®, periodicity is reached only
tions. The comparison with the data of Heidaal (w/d iy the limit w/d—0.1% The numerical results for the strip

=0.9) gives a satisfactory description of the pseudoperiodi<§]eometry are in agreement with the experiment of Heitla

Smlet“re' usi have d dthat th g al.® For wider junctions, we predict a crossover fronbg to
n conclusion, we have demonstrated that the current dens oy, *oriadicity at high fields.

sity and the critical current in a clean SNS junction with strip
geometry depend crucially on the ratida, between the We thank D. Agterberg and V. Geshkenbein for stimulat-
nonlocality range and the vortex distanca,. The period of ing discussions throughout this work.
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15|n the opposite case>w>a,, we are in the limitv/d—0, where
the order-zero critical current is given by the result conjectured
in Ref. 9.



