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Nonlocality in mesoscopic Josephson junctions with strip geometry
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We study the current in a clean superconductor–normal-metal–superconductor junction of lengthd and
width w in the presence of an applied magnetic fieldH. We show that both the geometrical pattern of the
current density and the critical currentI c(F), whereF is the total flux in the junction, depend on the ratio of
the Josephson vortex distancea05F0 /Hd and the ranger;AdjN of the nonlocal electrodynamics@F0

5hc/2e, jN5\vF/2pT, andr (T→0);d#. In particular, the critical current has the periodicity of the super-
conducting flux quantumF0 only for r ,a0 and becomes, due to boundary effects, 2F0 ~pseudo!periodic for
strong nonlocality,r .a0. Comparing our results to recent experiments of Heidaet al. @Phys. Rev. B57, R5618
~1998!# we find good agreement.@S0163-1829~99!50414-1#
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Quantum-mechanical interference effects render the e
trodynamics of mesoscopic samplesnonlocal. In particular,
nonlocality is a key element entering the understand
of the magnetic response and the transport in S
junctions (s-wave-superconductor–normal-metal–s-wave-
superconductor junctions! and SN-proximity sandwiches
The strength and relevance of the nonlocality in general
pends on the dimensions of the system, the normal-m
coherence lengthjN5\vF/2pT, and the elastic-scatterin
length.1–3 In this paper we show how the different leng
scales enter the magnetotransport problem of a mesosc
SNS junction to produce a shift in the~pseudo!periodicity of
the critical current fromF0 to 2F0.

After the discovery of the Josephson effect ins-wave-
supercoductor–insulator–s-wave-superconductor~SIS! tun-
nel junctions,4 interest turned to metallic links of the SN
type,5 where the current is conveniently described in terms
Andreev states trapped within the normal-metal region.6 For
a wide junction, the current density and the supercurren
the presence of a magnetic fieldH have been calculated b
Antsyginaet al.,7 who found aF0 periodicity in the critical
current. Continuous progress in nanofabrication technol
made it possible to investigate mesoscopic supercondu
semiconductor heterostructures; see Ref. 8 for a st
of the fluctuations in the critical current and its quantizati
in a superconducting quantum point contact. Recen
Heida et al.,9 investigating S-2DEG-S junctions~s-wave-
superconductor – two - dimensional - electron - gas –s- wave -
superconductor junctions! of comparable widthw and length
d, have measured a 2F0 periodicity of the critical current
instead of the standardF0. A first attempt to explain this
finding is due to Barzykin and Zagoskin.10 Considering the
point-contact geometry of Fig. 1~a! with open boundary con
dition in the metal, they indeed recover a 2F0 periodicity in
the limit w/d→0. However, the experiment of Heidaet al.9

is carried out in the strip geometry of Fig. 1~b! and involves
dimensionsw;d of the same order. In the present paper,
determine the critical currentI c through a clean SNS junc
tion in the presence of an applied magnetic fieldH, taking
proper account of the reflecting boundaries in the norm
metal characteristic for the strip geometry of Fig. 1~b!.
PRB 590163-1829/99/59~14!/9027~4!/$15.00
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We find that the periodicity of the critical current chang
from F0 to 2F0 as the flux through the junction increase
At low temperatures the crossover to the 2F0 periodic cur-
rent appears at a flux;F0w/d, thus explaining the result o
Heidaet al.,9 who found a 2F0 periodic pattern for all fields
in devices withw/d;1.

In our derivation, we neglect screening effects by the
duced supercurrent, which is justified as long asH
.A8F0 j c /cd8, wherej c denotes the critical current densit
of the junction andd85d12l with l the penetration depth
of the two bulk superconductors.11 Since all the length scale
in our system~the dimensionsw and d, the normal-metal
coherence lengthjN) are much larger than the Fermi wav
length lF , we base our calculations on the Eilenberg
equations12 for the quasiclassical Green’s functions and e
tract the current density in the standard way.3

The SNS junction we study is sketched in Fig. 1. In t
quasiclassical formulation, the current density in a poinP

FIG. 1. ~a! Junction with a point-contact~open! geometry as
discussed in Ref. 10, wherew is the width of the twosuperconduct-
ors. ~b! The junction studied here has a strip geometry withw the
width of thenormal conductor.~c! The magnetic fieldH is applied
in the z direction and the coordinate system is chosen symme
with respect to the junction center. The current density in the po
P involves contributions from all trajectoriesG parametrized by the
anglew. ~d! The phase differenceg along the trajectoryG can be
expressed through the enclosed fluxf; using the trajectoryG0 as
our reference, the flux through the areas above~below! G0 contrib-
utes with a positive~negative! sign.
R9027 ©1999 The American Physical Society
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results from contributions over alltrajectoriesof quasiparti-
cles connecting one interface to the other throughP. In a
junction of infinite width, all trajectories go straight throug
the junction. In the case of a finite junction, boundary co
ditions at the normal-metal–vacuum boundary have to
applied, which we idealize through the assumption of spe
lar reflections. Furthermore, we adopt the usual approxi
tions: perfect Andreev reflections at the SN interfaces an
coherence lengthj0 in the two superconductors withj0!d,
allowing for a steplike approximation of the order parame
D.1,7,13 The quasiclassical Green’s function is calculated
matching the partial solutions in N and S at the interfac
For the current densityj , we arrive at a generalization of th
results of Antsyginaet al.7 Explicitly, for finite temperatures
with d@jN , j takes the form,

j ~x,y!

j c,T
5

21

A2p
E

2p/2

p/2

dw p̂
sin~g!d

AjNl ~w!
expS d2 l ~w!

jN
D , ~1!

while in the low-temperature limit,d!jN ,

j ~x,y!

j c,0
5

4

p2 (
k51

`
~21!k

k E
2p/2

p/2

dw p̂ sin~kg!
d

l ~w!
, ~2!

wherep̂5„cos(w), sin(w),0…, l (w)5d/ cos(w) is the length of
a trajectory with slopew, and the critical current densities a

j c,T5r j c,0 expS 2
d

jN
D and j c,05

ne2

mc

F0

2d
. ~3!

In Eq. ~3!, n denotes the electron density in the normal co
ductor andr'12/p for T!Tc , limT→Tc

r;12T/Tc . While

in the low-temperature limit all harmonics sin(kg)
(k51,2, . . . ) contribute to the current density,13 at finite
temperatures, thermal smearing of the Andreev levels le
to a suppression of the higher harmonics} exp(2kd/jN) and
only the first term} sin(g) survives. An individual trajectory
contributes with a weight} exp(2l/jN) at finite- and}d/ l in
the low-temperature limit. In a wide junction,g takes the
form,7

g~x,y;w!5g02
2p

F0
Hd8@y2x tan~w!#. ~4!

The more general expression derived here results in
gauge-invariant phase difference

g~x,y;w!5Dw2
2p

F0
E

G
A•ds, ~5!

whereDw denotes the phase difference between the two
perconductors andG is the path which goes through the poi
(x,y) with slopew. Combining the current expressions~1! or
~2! and ~5! with the Maxwell equation ¹2A5
24p j @A,Dw#/c, we obtain the transverse vector-potentialA
and thus can solve the full screening problem; in the cas
a tunnel junction~where the trajectories are reduced to t
one with w50), numerica and analytic calculations ha
been given by Owen and Scalapino.14

In the following, we neglect screening and concentrate
junctions with the strip geometry of Fig. 1~b!, including the
~reflecting! trajectoriesG in Eqs.~1! and~2!. We express the
-
e

u-
a-
a

r
y
s.

-

ds

e

u-

of

n

gauge-invariant phase difference~5! in terms of the fluxf
enclosed byG and the reference pathG0 and obtain,

g~x,y;w!5g02
2pf~x,y;w!

F0
, ~6!

where for negligible screeningf(x,y;w)5HA(x,y;w) and
A is the properly weighted enclosed area, see Fig. 1~d!. The
areaA is calculated as a function of the number of refle
tions the trajectoryG undergoes~in the following called the
‘‘order’’ of the trajectory!. The point-contact geometry o
Fig. 1~a! then is described by the order-zero trajector
alone,10 while in the strip geometry of Fig. 1~b!, higher or-
ders have to be included.

The geometrical pattern in the current densityj depends
strongly on the sample dimensionsd and w, the normal-
metal coherence lengthjN , and the applied fieldH. At finite
temperature, the current density inP draws its weight from
trajectories withw,AjN /d, allowing us to introduce the
transverse nonlocality ranger 5AjNd ~in the low-
temperature limit,w;1 and we definer 5d). This range of
nonlocality has to be compared to the scalea05F0 /Hd8 of
transverse variations inj ~see Fig. 2!: For weaknonlocality,
r ,a0, the flow is uniform alongx with amplitude j c and
changes direction on a distancea0/2 going up they axis. This
contrasts with thestrongly nonlocal caser .a0, where the
current density forms domains of left and right going circu
flow. While the local case is similar to that in a tunnel jun
tion, the pattern in thenonlocal situation reminds of the usua
vortex structure in a superconductor, see Fig. 3. Explici
for finite temperatures withd@jN , the current density of the
order-zero trajectories is given by

FIG. 2. The ‘‘bow ties’’ of width r display the ensemble o
trajectories contributing to the current density in a given point. T
arrows indicate the current flow.~a! For weak nonlocality,r ,a0,
the current flows straight through the junction.~b! The strong non-
locality, r .a0, leads to the formation of vortexlike domains o
circular flow.

FIG. 3. The current density ford/jN53, r /a0'3.5, and
F/F053. Apart from the vortexlike domains in the middle pro
duced by order-zero trajectories, additional circular flow is set
by the order-one trajectories.
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j x~x,y!

j c,T
52sinS g02

2py

a0
Dexp@2a~x!#,

j y~x,y!

j c,T
52cosS g02

2py

a0
D jN

d

2px

a0
exp@2a~x!#, ~7!

where

a~x!52
d

jN
1AS d

jN
D 2

1S 2px

a0
D 2

. ~8!

For weak nonlocality,a0,r , the exponent remains approx
mately constant in the normal part,a(x)'a(0), leading to a
uniform current flow, while for strong nonlocality,a0.r ,
a(x) grows as x approaches the interfaces,a(6d/2)
@a(0), such that the current concentrates in the middle
the junction. Fora0.r , the higher order trajectories lead to
refinement of the current pattern, see Fig. 3~similar results
are obtained in the low-temperature limit!.

The ratio r /a0 and its associated characteristic curre
pattern manifest themselves in the~pseudo!periodicity of the
critical current,

I c~F!5max
g0

E
2w/2

w/2

dy jx~0,y;g0 ,F!, ~9!

versus fluxF5Hd8w in the junction. In the case of wea
nonlocality, r ,a0, the relevant contribution to the critica
current comes from the order-zero trajectories resulting
F0 periodicity. For strong nonlocality,r .a0, higher orders
are relevant andlift the order-zero result as shown in Fig.
— the periodicity of the critical current changes to 2F0 ~the
crossover lies within the negligible screening regime ifj c
,f0/cd3). To be specific, we discuss in detail the orders
1, and 2 for the case of finite temperatures withd@jN ~the
qualitative arguments ford!jN are similar!.

For w.r .a0, the critical current due to the order-ze
trajectories takes the form,15

FIG. 4. The critical current ford/jN55 and w/d51/3. The
solid curve shows the full critical current and the dashed curves
the contributions from the orders 0, 1, and 2. The orders 0 an
oscillate with periodicity 2F0, while the second order decreas
monotonically, remaining always positive. The current pattern p
duced by the orders 0 and 1 is lifted by the order 2 contributio
and the critical current attains the periodicity 2F0.
f

t

a

,

I c
~0!~F!52

A2I c,T

Ap

w

r

cos~pF/F0!

~pF/F0!2
, ~10!

where I c,T5w jc,T . For the first-order trajectories, we nu
merically find again a 2F0 ~pseudo!periodic contribution.
Both components vanish with field}1/F2. The second- and
all following even-order trajectories exhibit a large curre
amplitude of orderj c on a scalea0}1/F in the junction
center (0,0), a consequence of thew independence of the
gauge-invariant phase differenceg along trajectories through
(0,0). Their contribution scales}1/F and therefore domi-
nates over the zeroth- and first-order terms at large eno
fields — as the strongly nonlocal limit witha0,r is reached,
the periodicity changes over to 2F0. Samples with a smal
width w,r are always in the strongly nonlocal limit an
their current pattern is 2F0 periodic throughout the entire
field axis. At low temperatures, the conditionw,r trans-
forms into the geometric requirementw,d. In the very limit
w/d→0 the periodic modulation disappears and the solut
goes over into the zero-field result,I c(F)→I c(0). Thecom-
plete classification is given in Table I.

Recently, Heidaet al.9 observed such a 2F0 periodicity in
striplike (w;d) S-2DEG-S junctions made from Nb elec
trodes in contact with InAs operating at low temperatu
T50.1 K ~similar junctions have been constructed
Takayanagiet al., see Ref. 8!. As the total flux through the
junction is difficult to determine in the experiment, Heidaet
al. had to infer their 2F0 periodic structure from a fit on fou
samples with different ratiosw/d ranging from 0.9 to 2.2.

re
1

-
,

FIG. 5. The critical current in the low-temperature limit,d
!jN , for w/d50.8, 0.9, 1.1, 1.5~from top to bottom!. Successive
plots have been offset by 0.35. Measured data~Ref. 9, diamonds!
are shown for the casew/d50.9.

TABLE I. The periodicity of the critical current is controlled
by the three parametersw/d, w/r , andr /a0. The table has to be
read as a flow chart, starting at the top row and selecting
proper condition proceeding down the rows. Note that alwa
w/d,w/r .



on
nt
su

a
c

d

e
rip

the

p

at-

RAPID COMMUNICATIONS

R9030 PRB 59LEDERMANN, FAUCHÈRE, AND BLATTER
In Fig. 5, we present the results of our numerical calculati
for the strip geometry, where we have properly taken i
account the finite penetration depth of the flux into the
perconducting banks. While geometries withw/d,1 clearly
exhibit a 2F0 periodicity throughout the entire field region,
F0-component starts to develop at low fields in wide jun
tions. The comparison with the data of Heidaet al. (w/d
50.9) gives a satisfactory description of the pseudoperio
structure.

In conclusion, we have demonstrated that the current d
sity and the critical current in a clean SNS junction with st
geometry depend crucially on the ratior /a0 between the
nonlocality ranger and the vortex distancea0. The period of
.
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the critical current depends not only on the dimensions of
junction and the normal-metal coherence lengthjN , as it is
the case in a point-contact geometry,10 but also on the ap-
plied magnetic fieldH. In particular, we obtain a 2F0 peri-
odicity in the whole current pattern atw;d, whereas for a
point-contact geometry, the 2F0 periodicity is reached only
in the limit w/d→0.10 The numerical results for the stri
geometry are in agreement with the experiment of Heidaet
al.9 For wider junctions, we predict a crossover from aF0 to
a 2F0 periodicity at high fields.

We thank D. Agterberg and V. Geshkenbein for stimul
ing discussions throughout this work.
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