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Quantum fluctuations in the cohesive force of metallic nanowires
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Based on the recent free-electron model for cohesion in narrow metallic constrictions by Stafford,
Baeriswyl, and Biki [Phys. Rev. Lett79, 2863(1997)] we calculate the quantum fluctuations in the cohesive
force versus elongation. The fluctuations are dominated by states near the Fermi energy, thus explaining their
apparently universal magnitude of ordgr/\. We present numerical results for the force fluctuations in a
simple geometry and show that they are well described by the contributions of a few classical periodic orbits
in the Balian-Bloch trace formula for the density of states of transverse m@861.63-182899)51812-3

The mechanical properties of atomic size constrictions beef the relevant forces, in the same way perhaps as the mea-
tween two reservoirs of standard metals, for example Ausured bulk modulus of many metals is roughly determined by
have been the subject of intensive research in the past fethe ground-state Fermi gas pressure of the conduction
years!~3In particular, simultaneous measurements of the coelectrons:*
hesive force and the electrical conductdttteave shown a In our present work we discuss the fluctuations in the
striking correlation between the mechanical and transporgohesive force that arise from the discreteness of the elec-
properties. In a regime where the cohesive force is linear ifronic eigenstates for motion in the direction transverse to the
the elongation(“elastic stage”, the electrical conductance elongation:> As shown by Stafford, Baeriswyl, and”Bd,
exhibits plateaus similar to those found in two-dimensionalthe electronic cohesive forde of a constriction of length.
guantum point contacts in semiconductor heterostrucfifres. is obtained from th&'=0 free-electron grand canonical po-
By contrast, both the conductance and the elastic force ragential
idly decrease in the narrow regime between two conductance 8 . .
plateaus“yielding stage”). These observations were origi- 0= €F J dzJ F dE p, (E,2)(1—E/sp)¥? (1)

0 0

nally explained in terms of abrupt atomic rearrangements 3\
that appear with increasing elongation and indeed classical, ) ] ] )
molecular dynamics simulatiohs? seem to support this SIMpPly via F=—0d0/4L. Herep, (E,2) is the differential
point of view. On the other hand, the apparent similaritydensity of state¢DOS) for the transverse motion of the elec-
between the conductance plateaus found here and in senffons at a given cross section= const). Within a semiclas-
conductor quantum point contacts together with the strongic@l description, which is valid as long as the Fermi wave-
correlation between conductance and force suggests thE9thAg is much smaller than the constriction wid#) the
elastic and yielding stages in the cohesive force may appe&©OS may be split into an average (E,z) and a fluctuating
even for a smooth constriction geometry as a result of changeontributionp, (E,z). The latter vanishes if averaged over
ing the number of discrete transverse modes for then energy range much larger than the spadifg) between
electronst! successive transverse eigenstates. Assuming the deformation
This suggestion has recently been developed by Staffordccurs at constant total volunv the average cohesive force
Baeriswyl, and Btki.? It is based on viewing the transverse F that is associated with the average DOS has only two
eigenstates of the conduction electrons as delocalized chemientributions for\ p<R: 1216
cal bonds that provide both conductiamd cohesion. Re-
markably, a corresponding free-electron model qualitatively
accounts both for the average cohesive force and for the e
abrupt steps in the force of ordeg /A that are caused by
successively cutting off the discrete electronic modes in thdlere the dominant contribution is associated with (hlec-
constriction. Now it is evident that any purely electronic tronic contribution to thesurface tension, giving a cohesive
model is an idealization of the true experimental situationforce proportional to the change in surface ateaith elon-
For instance, possible atomic rearrangements that reveghtion L. In addition there is a universal contribution
themselves through a hysteretic behavior of the fbare  (4/9)(er/\g) to the average cohesive force that is com-
neglected. A realistic electronic description moreover has tpletely independent of the geometfyit arises from the to-
account for the strong deviations from a naive conductanceological term in the Weyl expansion for the integrated
quantization picture arising from the rather small value of theDOS}’ and leads to a weakening of the cohesion compared
Fermi wavelength that makes the electronic motion sensitivéo the macroscopic surface tension contribution. As is evi-
to defects even on an atomic scileNevertheless, the dent from Eq.(2), the average cohesive force does not de-
simple free-electron model of Stafford, Baeriswyl, and#u pend on the detailed geometry of the nanosize constriction
not only provides an intuitive explanation of the observedthat will presumably vary significantly between different re-
behavior but also gives a correct order of magnitude estimatalizations of an experiment. Regarding the force fluctuations
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SF that arise from the fluctuating part of the DOS, it was 2 ' ' . - T
found in the numerical calculatiotfsthat the precise form of 15kF % 5 :
SF is specific to the shape of the cross section but does not
depend on the detailed form of the constriction radR{g)

versusz. Remarkably, the rms amplitude of these fluctua- < 05k | SRR
tions turned out to have a universal magnitude S ok
&
€ -0.5 ¥
I (SF,mS~O.3)\—F (€)) e i
independent of geometry. In order to understand these obser- 15 5 10 15 20 25 30
vations, we note first thafF is determined by the fluctua- ke
tions in the DOS oftransversemotion. Following recent FIG. 1. Comparison of the fluctuating part of the cohesive force
work™81%we may therefore assume a simple cylindrical sF with sF°¢, calculated with three periodic orbits €2,3,4, w
form R(z) =const for the constriction with a radil® that =1).

scales likeL ~Y2in order to fulfill the constraint of constant

volume. Since the discrete eigenenergiesfor transverse Clearly, the force fluctuations are independenkeR, with

motion all scale likeR™2, we havede ,/dL=¢,/L. Itis then an average magnitudéF, =0.6ez /A, which is of the
i is gj R
easy to show from Eq(1) that in this simple geometry the same order as the topological contribution to the force, Eq.

g?vceurJ\att);?ns of the cohesive force at fixed total volume are(z)_zz The apparently complicated dependence of the force

fluctuations on the elongation can in fact be simply under-
8 s [or 5 E E\12 stood as arising from only a few classical periodic orbits of
5F|v=§)\—f de 5pJ_(E)( 1- > —) ( 1- —) (4)  electrons in the assumed circular cross section of the wire.
FJO EF EF Indeed, as is well known, the fluctuations in the DOS around
Here 6p, (E) is the fluctuating transverse DOS at the nar—'tS average ValL.Je can _ger_1erally b_e repres‘_ented_m terms Of_ a
rowest point of the constriction, which also determines jtgSum over cla§3|cal periodic orbits in a sem|cIaSS|_caI approxi-
: mation. For integrable systems such a connection between

conductance. Now, in contrast td which is a property of the quantum-mechanical DOS and classical mechanics was
the states directhat the Fermi energy, the cohesive force first found by Balian and Block Specifically, for a circle

obviously depends oall the states with energies between the periodic orbits are regular polygons. They may be char-

zero andee. The numerical calculationlS;™ however, cterized by their number of vertices and their windin
which show that the force oscillations are directly correlated® y I . 9
numberw. Obviously we have =2w. If there is a common

with the conductance, indicate th8F is dominated by the Visor n betweens andw. the orbit is am-fold repetition

states near the Fermi energy. Indeed, this observation can g 2 primitive erri]gdic orb,il(see Fia. 2 for some elgmentar

understood easily from E@4), at least on a qualitative level. P perio 9- y
exampleg. Introducing an angle,,,= 7w/v, the length of a

Since the fluctuating DOSp, (E) is a rapidly oscillating I . o . :
function that varies on a scale of the order of the mean lev erlod|c. Ort.)'t 'SLUW._ ZU.RS"W’“W from S|mplg geometry.
he oscillating contribution to the DOS of a circular billiard

spacingA<eg, the contributions toSF|y, in Eq. (4) from

energies between zero and closestocancel. It is only in a can then be representedas

small range of several level spacings near the upper integra-

tion limit, where the factor (+ E/eg)Y? changes rapidly on

a scale on which the DOS varies. Therefore only the contri-

bution to 6F from a few states below the Fermi energy sur-

vives in Eq.(4). As a result,oF ,{ 5F) is expected to be of

order e /¢ independent of the constriction radil® a 21) (.1)
)

property which has been verified numerically up to values
keR=200 by Stafford, Baeriswyl, and Bki.}>?° By con-
trast, if all the states from zero up #@ were to contribute to
the force fluctuationsgF would scale as the fluctuations in

(4,1) (5,1)
) )

the total number of statedN(eg) below the Fermi energy. (4,2) (5,2 (6,2 (7,2
Assuming Poisson statistics, appropriate for a classically in-
tegrable transverse motiéh,one hasN,,{&r)=N"4(&F)
~kgR. The force fluctuations would thus increase with the
constriction radius, in contradiction with the results of
Stafford, Baeriswyl, and Bii.*?

(6,3) (7,3) (8,3)

For a quantitative confirmation of our arguments above,
we have calculated numerically the force fluctuations that £ 2 closed classical periodic orbits in a circular billiard with
follow from Eq. (4) for a cylindrical constriction with radius  refiecting walls. Between consecutive reflections the trajectory fol-
R(L)=RovVLo/L. The corresponding results féF in units  |ows straight lines. The winding number and the number of ver-
of the fundamental forcer/A~1 nN are shown in Fig. 1 ticesv of the particular orbits are given as tupel W) (after Balian
for a wire that is stretched frokzR=30 down tokgR=2. and Bloch, Ref. 28
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2 » @ sin¥2 ¢ Burki.'? Unfortunately even in our simple geometry we have
SpSYE)= K(TrkER)*l’ZZ > fp——— not found an analytical derivation of this result. Indeed, in
w=1v=2w Vo our semiclassical approach, if we substitute E5).into Eq.

(4) and then change the integration variableEta\ it is not
evident that the fluctuations are independenkgR. There-

fore the issue of force fluctuations and in particular their
geometry dependence deserves further investigation. The de-
tailed structure of the force fluctuations reflects the classical

orb|t_s thro_ugh an arb_ltrary point within the c!rcle. Using the periodic orbits in a given cross section that we have assumed
semiclassical approximatiag®) in our expressiori4) for the ; .

S . . to be circular here. It would clearly be of interest to gener-
force oscillations, we find that the details of the exact nu-

merical result for6F are essentially explained by including alize o(;;_r retgults tr? thetr(]:ase_ of Ch?OtIC n;)onon In dthe trar:g-
only the three simplest periodic orbits=2,3,4w=1 in the verse direction where Ihe eigenvaiues ovey random matrix

circle (see Fig. 1 Extending the series to all the 16 orbits theory rather than Poisson statistics. Similarly to the situation
with v=<10 andwiz the agreement between the semiclasOf persistent currents in ballistic billiard structures, we ex-

sical and fully quantum-mechanical calculation becomes edpect that t_he force flg%%tuat|on§ will bemallerif the trans-
sentially exact. The fact that only a few periodic orbits are/€rse motion is chaotiC. Experimentally, the observation of

required to describe the force oscillations is a consequence er quantum fluctuations in the cohesive force as well as the
the integration over all energies in Ed), which suppresses © osely related charge fluctuations of or@epredicted very

19
the DOS fluctuations on very short scales associated wit 1
longer periodic orbits.

Finally, it is interesting to point out that the approxima-
t?on of simply adding the Weyl and trace formula contribu-  \y/e acknowledge David A. Wharam for carefully reading
tion to the DOS, WhICh apparently_ works very well for our {he manuscript.
present problem, is not always valid as has been shown very
recently by Bhaduret al?® Note added in proof.We learned that Yannouleas,

In conclusion, we have studied the quantum fluctuation8Bogacheck, and LandmdiPhys. Rev. B57, 4872 (1998]
in the cohesive force of metallic nanowires that arise fromhave also discussed oscillatory contributions to the force and
the discreetness of the electronic motion in the transverseonductance of metallic nanowires in a semiclassical ap-
direction. It has been shown that only a few states below theroximation. Very recently, Yanson, Yanson, and Van
Fermi energy contribute to these fluctuations, supporting th&uitenbeek [cond-mat/9902254(unpublished] have ob-
prediction of universal force fluctuations 6F,,s  served shell effects in metallic nanowires which may be ex-
=consteg/\g first found by Stafford, Baeriswyl, and plained with periodic orbit theory.

inl kel — 30— +3— 5
xsin| Kel,w—=3v 5 +37 /. )

Here A=#2/mR2 is the unit of energy and,,=1 for v
=2w or f,,=2 for v>2w the number of different periodic

ﬁecently by Kassubekt al.”® would constitute a crucial test
of the electronic model of cohesion in metallic nanowires as
opposed to a classical mechanical model.
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