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Quantum fluctuations in the cohesive force of metallic nanowires
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Based on the recent free-electron model for cohesion in narrow metallic constrictions by Stafford,
Baeriswyl, and Bu¨rki @Phys. Rev. Lett.79, 2863~1997!# we calculate the quantum fluctuations in the cohesive
force versus elongation. The fluctuations are dominated by states near the Fermi energy, thus explaining their
apparently universal magnitude of order«F /lF . We present numerical results for the force fluctuations in a
simple geometry and show that they are well described by the contributions of a few classical periodic orbits
in the Balian-Bloch trace formula for the density of states of transverse motion.@S0163-1829~99!51812-2#
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The mechanical properties of atomic size constrictions
tween two reservoirs of standard metals, for example
have been the subject of intensive research in the past
years.1–3 In particular, simultaneous measurements of the
hesive force and the electrical conductance4,5 have shown a
striking correlation between the mechanical and transp
properties. In a regime where the cohesive force is linea
the elongation~‘‘elastic stage’’!, the electrical conductanc
exhibits plateaus similar to those found in two-dimensio
quantum point contacts in semiconductor heterostructure6,7

By contrast, both the conductance and the elastic force
idly decrease in the narrow regime between two conducta
plateaus~‘‘yielding stage’’!. These observations were orig
nally explained4 in terms of abrupt atomic rearrangemen
that appear with increasing elongation and indeed class
molecular dynamics simulations8–10 seem to support this
point of view. On the other hand, the apparent similar
between the conductance plateaus found here and in s
conductor quantum point contacts together with the str
correlation between conductance and force suggests
elastic and yielding stages in the cohesive force may ap
even for a smooth constriction geometry as a result of cha
ing the number of discrete transverse modes for
electrons.11

This suggestion has recently been developed by Staff
Baeriswyl, and Bu¨rki.12 It is based on viewing the transvers
eigenstates of the conduction electrons as delocalized ch
cal bonds that provide both conductionand cohesion. Re-
markably, a corresponding free-electron model qualitativ
accounts both for the average cohesive force and for
abrupt steps in the force of order«F /lF that are caused by
successively cutting off the discrete electronic modes in
constriction. Now it is evident that any purely electron
model is an idealization of the true experimental situati
For instance, possible atomic rearrangements that re
themselves through a hysteretic behavior of the force4 are
neglected. A realistic electronic description moreover has
account for the strong deviations from a naive conducta
quantization picture arising from the rather small value of
Fermi wavelength that makes the electronic motion sensi
to defects even on an atomic scale.13 Nevertheless, the
simple free-electron model of Stafford, Baeriswyl, and Bu¨rki
not only provides an intuitive explanation of the observ
behavior but also gives a correct order of magnitude estim
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of the relevant forces, in the same way perhaps as the m
sured bulk modulus of many metals is roughly determined
the ground-state Fermi gas pressure of the conduc
electrons.14

In our present work we discuss the fluctuations in t
cohesive force that arise from the discreteness of the e
tronic eigenstates for motion in the direction transverse to
elongation.15 As shown by Stafford, Baeriswyl, and Bu¨rki,
the electronic cohesive forceF of a constriction of lengthL
is obtained from theT50 free-electron grand canonical po
tential

V52
8

3

«F

lF
E

0

L

dzE
0

«F
dE r'~E,z!~12E/«F!3/2 ~1!

simply via F52]V/]L. Here r'(E,z) is the differential
density of states~DOS! for the transverse motion of the elec
trons at a given cross section (z5const). Within a semiclas-
sical description, which is valid as long as the Fermi wav
lengthlF is much smaller than the constriction widthR, the
DOS may be split into an averager̄'(E,z) and a fluctuating
contributiondr'(E,z). The latter vanishes if averaged ov
an energy range much larger than the spacingD(z) between
successive transverse eigenstates. Assuming the deform
occurs at constant total volumeV, the average cohesive forc
F̄ that is associated with the average DOS has only
contributions forlF!R:12,16

F̄52
«F

lF
FkF

8

]S

]LU
V

2
4

9G . ~2!

Here the dominant contribution is associated with the~elec-
tronic contribution to the! surface tension, giving a cohesiv
force proportional to the change in surface areaS with elon-
gation L. In addition there is a universal contributio
(4/9)(«F /lF) to the average cohesive force that is co
pletely independent of the geometry.16 It arises from the to-
pological term in the Weyl expansion for the integrat
DOS,17 and leads to a weakening of the cohesion compa
to the macroscopic surface tension contribution. As is e
dent from Eq.~2!, the average cohesive force does not d
pend on the detailed geometry of the nanosize constric
that will presumably vary significantly between different r
alizations of an experiment. Regarding the force fluctuatio
R7849 ©1999 The American Physical Society
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dF that arise from the fluctuating part of the DOS, it w
found in the numerical calculations12 that the precise form o
dF is specific to the shape of the cross section but does
depend on the detailed form of the constriction radiusR(z)
versusz. Remarkably, the rms amplitude of these fluctu
tions turned out to have a universal magnitude

IdF rms'0.3
«F

lF
~3!

independent of geometry. In order to understand these ob
vations, we note first thatdF is determined by the fluctua
tions in the DOS oftransversemotion. Following recent
work15,18,19 we may therefore assume a simple cylindric
form R(z)5const for the constriction with a radiusR that
scales likeL21/2 in order to fulfill the constraint of constan
volume. Since the discrete eigenenergies«n for transverse
motion all scale likeR22, we have]«n /]L5«n /L. It is then
easy to show from Eq.~1! that in this simple geometry th
fluctuations of the cohesive force at fixed total volume
given by

dFuV5
8

3

«F

lF
E

0

«F
dE dr'~E!S 12

5

2

E

«F
D S 12

E

«F
D 1/2

. ~4!

Here dr'(E) is the fluctuating transverse DOS at the n
rowest point of the constriction, which also determines
conductanceG. Now, in contrast toG which is a property of
the states directlyat the Fermi energy, the cohesive forc
obviously depends onall the states with energies betwee
zero and «F . The numerical calculations,12,19 however,
which show that the force oscillations are directly correla
with the conductance, indicate thatdF is dominated by the
states near the Fermi energy. Indeed, this observation ca
understood easily from Eq.~4!, at least on a qualitative leve
Since the fluctuating DOSdr'(E) is a rapidly oscillating
function that varies on a scale of the order of the mean le
spacingD!«F , the contributions todFuV in Eq. ~4! from
energies between zero and close to«F cancel. It is only in a
small range of several level spacings near the upper inte
tion limit, where the factor (12E/«F)1/2 changes rapidly on
a scale on which the DOS varies. Therefore only the con
bution todF from a few states below the Fermi energy su
vives in Eq.~4!. As a result,dF rms(dF) is expected to be o
order «F /lF independent of the constriction radiusR, a
property which has been verified numerically up to valu
kFR5200 by Stafford, Baeriswyl, and Bu¨rki.12,20 By con-
trast, if all the states from zero up to«F were to contribute to
the force fluctuations,dF would scale as the fluctuations i
the total number of statesN(«F) below the Fermi energy
Assuming Poisson statistics, appropriate for a classically
tegrable transverse motion,21 one hasNrms(«F)5N̄1/2(«F)
;kFR. The force fluctuations would thus increase with t
constriction radius, in contradiction with the results
Stafford, Baeriswyl, and Bu¨rki.12

For a quantitative confirmation of our arguments abo
we have calculated numerically the force fluctuations t
follow from Eq. ~4! for a cylindrical constriction with radius
R(L)5R0AL0 /L. The corresponding results fordF in units
of the fundamental force«F /lF'1 nN are shown in Fig. 1
for a wire that is stretched fromkFR530 down tokFR52.
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Clearly, the force fluctuations are independent ofkFR, with
an average magnitudedF rms50.6«F /lF , which is of the
same order as the topological contribution to the force,
~2!.22 The apparently complicated dependence of the fo
fluctuations on the elongation can in fact be simply und
stood as arising from only a few classical periodic orbits
electrons in the assumed circular cross section of the w
Indeed, as is well known, the fluctuations in the DOS arou
its average value can generally be represented in terms
sum over classical periodic orbits in a semiclassical appro
mation. For integrable systems such a connection betw
the quantum-mechanical DOS and classical mechanics
first found by Balian and Bloch.23 Specifically, for a circle
the periodic orbits are regular polygons. They may be ch
acterized by their number of verticesv and their winding
numberw. Obviously we havev>2w. If there is a common
divisor n betweenv andw, the orbit is ann-fold repetition
of a primitive periodic orbit~see Fig. 2 for some elementar
examples!. Introducing an anglefvw5pw/v, the length of a
periodic orbit isLvw52vR sinfvw from simple geometry.
The oscillating contribution to the DOS of a circular billiar
can then be represented as24

FIG. 1. Comparison of the fluctuating part of the cohesive fo
dF with dFsc, calculated with three periodic orbits (v52,3,4, w
51).

FIG. 2. Closed classical periodic orbits in a circular billiard wi
reflecting walls. Between consecutive reflections the trajectory
lows straight lines. The winding numberw and the number of ver-
ticesv of the particular orbits are given as tupel (v,w) ~after Balian
and Bloch, Ref. 23!.
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dr'
sc~E!5

2

D
~pkER!21/2(

w51

`

(
v52w

`

f vw

sin3/2fvw

Av

3sinS kELvw23v
p

2
13

p

4 D . ~5!

Here D5\2/mR2 is the unit of energy andf vw51 for v
52w or f vw52 for v.2w the number of different periodi
orbits through an arbitrary point within the circle. Using t
semiclassical approximation~5! in our expression~4! for the
force oscillations, we find that the details of the exact
merical result fordF are essentially explained by includin
only the three simplest periodic orbitsv52,3,4w51 in the
circle ~see Fig. 1!. Extending the series to all the 16 orb
with v<10 andw<2, the agreement between the semicl
sical and fully quantum-mechanical calculation becomes
sentially exact. The fact that only a few periodic orbits a
required to describe the force oscillations is a consequenc
the integration over all energies in Eq.~4!, which suppresse
the DOS fluctuations on very short scales associated
longer periodic orbits.

Finally, it is interesting to point out that the approxim
tion of simply adding the Weyl and trace formula contrib
tion to the DOS, which apparently works very well for o
present problem, is not always valid as has been shown
recently by Bhaduriet al.25

In conclusion, we have studied the quantum fluctuati
in the cohesive force of metallic nanowires that arise fr
the discreetness of the electronic motion in the transv
direction. It has been shown that only a few states below
Fermi energy contribute to these fluctuations, supporting
prediction of universal force fluctuations dF rms
5const«F /lF first found by Stafford, Baeriswyl, an
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Bürki.12 Unfortunately even in our simple geometry we ha
not found an analytical derivation of this result. Indeed,
our semiclassical approach, if we substitute Eq.~5! into Eq.
~4! and then change the integration variable toE/D it is not
evident that the fluctuations are independent ofkFR. There-
fore the issue of force fluctuations and in particular th
geometry dependence deserves further investigation. The
tailed structure of the force fluctuations reflects the class
periodic orbits in a given cross section that we have assu
to be circular here. It would clearly be of interest to gen
alize our results to the case of chaotic motion in the tra
verse direction where the eigenvalues obey random ma
theory rather than Poisson statistics. Similarly to the situat
of persistent currents in ballistic billiard structures, we e
pect that the force fluctuations will besmaller if the trans-
verse motion is chaotic.26 Experimentally, the observation o
the quantum fluctuations in the cohesive force as well as
closely related charge fluctuations of ordere predicted very
recently by Kassubeket al.19 would constitute a crucial tes
of the electronic model of cohesion in metallic nanowires
opposed to a classical mechanical model.

We acknowledge David A. Wharam for carefully readin
the manuscript.

Note added in proof.We learned that Yannouleas
Bogacheck, and Landman@Phys. Rev. B57, 4872 ~1998!#
have also discussed oscillatory contributions to the force
conductance of metallic nanowires in a semiclassical
proximation. Very recently, Yanson, Yanson, and V
Ruitenbeek @cond-mat/9902254~unpublished!# have ob-
served shell effects in metallic nanowires which may be
plained with periodic orbit theory.
,
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