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Coulomb drag as a signature of the paired quantum Hall state
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Motivated by the recent Coulomb drag experiment of M. P. Lillyet al. @Phys. Rev. Lett.80, 1714~1998!#,
we study the Coulomb drag in a two-layer system with Landau-level filling factorn51/2. We find that the drag
conductivity in the incompressible paired quantum Hall state at zero temperature can be finite. The drag
conductivity is also greatly enhanced aboveTc , at which the transition between the weakly coupled compress-
ible liquids and the paired quantum Hall liquid takes place. We discuss the implications of our results for the
recent experiment.@S0163-1829~99!51712-8#
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A double-layer system of two-dimensional electron ga
~2DEG! allows an unusual measurement of scatter
mechanism.1,2 If there is no tunneling between the two la
ers, momentum can be transferred only via electron-elec
scattering due to the interlayer Coulomb interaction. As
result, if a current is driven through one of the subsyste
~active layer!, then another current is induced in the oth
system~passive layer!. The magnitude of the induced curre
is a measure of the interlayer scattering rate. In real exp
ments, an induced voltage is measured in the passive l
where no current flows. The ratio between the measured v
age in the passive layer and the driven current in the ac
layer is the so-called transresistivity or the drag resistivity
the case of a double-layer 2DEG system in the absenc
external magnetic field, only the quasiparticles within an
ergy band of widthkT near the Fermi surface participate
scattering processes. This leads to aT2 temperature depen
dence of the drag resistivity at low temperatures.3,4 When the
filling fraction becomes one-half in the presence of hi
magnetic fields, the 2DEG in each layer supports an unu
form of compressible liquid.5 Namely, the quasiparticles o
the half-filled Landau level are composite fermions, whi
are the electrons with Chern-Simons flux quanta attache
them. Chern-Simons field fluctuations due to the den
fluctuations of electrons lead to a more singular low-ene
interlayer scattering rate.6–8 Theoretically it was found tha
the drag resistivity goes asT4/3 for a pure system andT2lnT
for a diffusive system.

Recently, Coulomb drag measurement was done
double layers of half-filled Landau levels.1 In the experi-
ment, it was indeed found that the drag resistivity is mu
enhanced compared to that of 2DEG in the zero magn
field. However, even though the temperature dependence
be fit to T4/3 for a range of intermediate temperatures, t
experiment revealed much richer physics at low tempe
tures. It was observed that~a! the drag resistivity has a mini
mum at a certain temperature below which the drag beco
very sensitive to disorder and the applied current; and~b! the
drag resistivityseemsto be finite at the zero temperature.
PRB 590163-1829/99/59~12!/7825~4!/$15.00
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Motivated by this experiment, we study the Coulomb dr
in the paired quantum Hall state limit. Incompressible pair
quantum Hall states with two electron species were s
gested some years ago, based on both numerical simula
and effective action approaches.9–12 In particular, it was sug-
gested that, in double layers of Landau-level filling factorn
51/2, composite fermions in one layer can establish the p
ing correlation with composite fermions in the other lay
below a certain temperature,Tc .12 Though such a pairing
correlation of composite fermions, which is responsible
the incompressibility of the paired quantum Hall state,does
not lead to conventional long-rang order of electrons, it do
introduce short-range pairing correlation of electrons, i
quantum fluctuations of electron pairs. The following que
tion arises: How does the short-range pairing correlation
veloped by electrons in the incompressible phase affect
Coulomb drag?

In this paper, we study the transport properties of t
incompressible phase and the temperature dependenc
various transport coefficients. We find the following resul
~i! At T50, the drag conductivity can be finite in the incom
pressible paired quantum Hall state. Its temperature dep
dence forT,Tc strongly depends on disorder.~ii ! Above
Tc , the drag conductivity is enhanced bys12

xx}(e2/
\)(kFl )22T/(T2Tc). HerekF

215 l B is the Fermi wavelength
and much shorter than the mean free path of the electronl .
The Hall drag conductivity exhibits a similar enhanceme
near Tc . We also obtain the drag resistivities below a
aboveTc . We discuss the implications of these results to
experiment and suggest that the observed anomaly coul
interpreted as a signature of the formation of an incompre
ible double-layer paired quantum Hall state at low tempe
tures.

In the framework of composite fermion theory,3 the re-
sponse functions of electrons can be expressed in term
those of composite fermions; as a consequence, the in-p
conductivity, Hall conductivity, and drag conductivity, a
well as Hall drag conductivity can be expressed in terms
the composite fermion polarizabilities:
R7825 ©1999 The American Physical Society



d
ns

a
id
r
a

n

y
r
in

th

on
th

ia

ed

s,

nt

The

1,

RAPID COMMUNICATIONS

R7826 PRB 59FEI ZHOU AND YONG BAEK KIM
s11,12
xx 5

Im

2V
lim

V,Q→0
S p2

cc

11c2p2
ccp2

dd
6

p1
cc

11c2p1
ccp1

ddD
s11,12

xy 5
e2

8p\
lim

V,Q→0
S c2p2

ddp2
cc

11c2p2
ccp2

dd
6

c2p1
ddp1

cc

11c2p1
ccp1

ddD ,

~1!

where p6
cc5p11

cc( iV,Q)6p12
cc( iV,Q), p6

dd5p11
dd( iV,Q)

6p12
dd( iV,Q). pab

dd andpab
cc denote the density-density an

current-current polarization matrices of composite fermio
respectively, defined in the space of the layer indexa,b
51,2. c5 i4p/Q comes from the Chern-Simons transform
tion. In the incompressible double-layer quantum Hall liqu
limit, we introduce the Green’s functions of composite fe
mions defined in a generalized Nambu space in Matsub
representation12

Ĝ5S G̃, F̃

F̃1, 2G̃
D , G̃5S G11, 0

0, G22
D ,

F̃5S 0, F12

F21, 0 D . ~2!

HereG̃ and F̃ are defined in layer-index space,

G11,225
iv1jp

v21D21jp
2

, F12,215
D

v21D21jp
2

, ~3!

where jp5p2/2m2eF and v5(2n11)pT. We first con-
sider the clean limittD@1, wheret is the elastic mean free
time. D is determined by the self-consistent equationD(v)
5T(Vg(V)F12(v2V), whereg(V) is the interaction con-
stant in the interlayer particle-particle channel. The exter
field vertices are renormalized accordingly,13,14 as shown in
Fig. 1~a!. To simplify the calculation we neglect the energ
dependence ofg12(V) and D. We also ignore intralaye
Fermi liquid renormalization effects. To the leading order
the small parameterD/eF , whenvFQ,V!D, the diagrams
in Fig. 1~a! yield

Ĝ05 t̂31 t̂2

VD

V21vs
2Q2

, Ĝ5vF , ~4!

where vs5vFa0(T)/A2, vF is the Fermi velocity, and
a0(T) is a temperature-dependent constant.a0(T50)51
and for T;Tc ~whereD;0), a0(T)5A7z(3)D/2p2T!1.
z(x) is the Riemannz function

t̂25S 0, t1

2t1 , 0 D , t̂35S t0 , 0

0, 2t0
D ,

where t0 , t1 are the unity matrix andx-component Pauli
matrix in the layer space, respectively. We have chosen
Coulomb gauge¹•A50 so that the vertex corrections toĜ
are zero. It is worth emphasizing that the vertex correcti
in Ĝ0 are essential for preserving the gauge invariance of
theory.

The polarizability can be calculated in terms of the d
grams in Fig. 1~b!. Taking into accountĜ,Ĝ,Ĝ given in Eqs.
,

-

-
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~2! and~4!, we obtain the results in the incompressible pair
quantum Hall liquid limit. At low temperaturesT<Tc in the
limit vFQ<V!D, we have

p1
dd~ iV,Q!5e2

]n

]m Fa1~T!
vs

2Q2

2V21vs
2Q2

1b2~T!J1~V,Q!G ,

p2
dd~ iV,Q!5e2

]n

]m
b1~T!J1~V,Q!,

p1
cc~ iV,Q!52

Nse
2

m
@12b1~T!J2~V,Q!#,

p2
cc~ iV,Q!52

Nse
2

m
@12a1~T!2b2~T!J2~V,Q!#.

~5!

Here]n/]m5m/2p is the thermodynamic density of state
m is the mass of composite fermions, andNs is the superfluid
density. b1(T)'b2(T) and b2(T)512a1(T); a1(T) is
given by

a1~T!5H 122ApT

D
expS 2

D

T D , T!Tc ,

pD

4T
, Tc2T!Tc .

~6!

J1,2 have the following forms:

FIG. 1. ~a! Diagrams for vertex corrections. Solid lines represe

the composite fermion Green’s functionsĜ defined in Nambu
space; shaded triangles represent the renormalized vertices.
wavy line stands for the irreducible interaction vertex.~b! Diagrams
for the polarization of composite fermions.~c! Diagrams for the
drag conductivity above the critical temperatureTc . Solid lines
with index 1, 2 are composite fermion Green’s functions in layers
2, respectively.



te
-

tr

rg

vi

rs
on
nt
d

-
on
si

io

s

flu

n

ne
-

o

de

,

wa

he

e
der.
le

uc-

t in

on

ite
f
nd

i-
the
o-
of
he

he

-
.

a-

rag
tiv-

RAPID COMMUNICATIONS

PRB 59 R7827COULOMB DRAG AS A SIGNATURE OF THE PAIRED . . .
J15S ]n

]m D 21

(
p

nF~ep1Q!2nF~ep!

2V1jp1Q2jp1 id
,

J25
2m

Ns
(

p
vF

2 nF~ep1Q!2nF~ep!

2V1jp1Q2jp1 id
, ~7!

which were studied in detail in Ref. 3. WhenV@vFQ,
J1,2}Q2/V2.

The results in Eqs.~5!, ~6!, and~7! can be interpreted in
terms of two-fluid model.p1

dd is the sum of the condensa
contribution, which is proportional toa1, and the quasipar
ticle contribution, which is proportional tob1,2. p1

cc is de-
termined mainly by the condensate component. Asymme
cal polarizationsp2

cc , p2
dd have contributions mainly from

thermally excited quasiparticles. AtT!Tc , the quasiparticle
contributions are exponentially small because of the ene
gap in the spectrum. At temperatures close toTc , the con-
densate contribution becomes small. Following Eqs.~5!, ~6!,
and ~7!, we find thats11

yy50, s11
xy5e2/4p\ for this incom-

pressible paired quantum Hall state. The drag conducti
also vanishes in this limit,s12

yy5s12
xy50 at T,Tc .

In the presence of random impurity potentialsV1,2(r )
in layer 1, 2, the composite fermions in different laye
experience different random potentials. Composite fermi
in layer 1 have to pair with those in layer 2 with a differe
spectrum. In this case the Hamiltonian acquires ad
tional terms: 1

2 @V1(r )1V2(r )#(c1
†c11c2

†c2)1 1
2 @V1(r )

2V2(r )#(c1
†c12c2

†c2). Herec1 ,c2 are the composite fer
mion operators in layers 1 and 2, respectively. The sec
term acts like a random Zeeman magnetic field on compo
fermions and effectively leads to the suppression ofD. The
impurity potentials pin the Chern-Simons flux in space3 and
break the time-reversal symmetry of the composite ferm
system. This results in a further suppressionD. Thus, in the
strong disorder limit, the underlying composite fermion sy
tem becomes gapless.

In the weak disorder limit,tD@1, the energy gap of the
quasiparticles remains open. The change of the super
densityNs and the sound velocityvs is proportional to 1/tD
and is negligible. However, the quasiparticle contributio
are dramatically changed. The longitudinal polarizationJ1
5DQ2/ iV takes the diffusion form, while the transverse o
J25t21/( iV1t21) is Drude-like. Taking these into ac
count, we find

s12
xx5

b1kFl

11b1b2~kFl !2

e2

\
, s12

xy5
21

11b1b2~kFl !2

e2

8p\

~8!

in the weak disorder limit atT<Tc . b1,2 are given by Eq.
~6!, with D evaluated in the presence of disorder. SinceD,
which appears in the low-temperature asymptotic forms
b1,2, is a function of the elastic scattering ratet21 itself, the
drag conductivity as a function of temperature strongly
pends on disorder. WhenT becomes close toTc , s12

xx

5(1/kFl )e2/\ ands12
xy52(1/kFl )2e2/\. On the other hand

they become exponentially small whenT goes to zero. A
similar temperature dependence of the drag conductivity
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also found in electron-hole double-layer system.13 It is easy
to confirm that, in both the pure and disordered limit, t
following equalities hold:

s11
xx2s12

xx50, s11
xy2s12

xy5
e2

4p\
. ~9!

Equation~9! can be attributed to the incompressibility of th
paired quantum Hall state and does not depend on disor

In the limit tD!1, the energy gap in the quasipartic
spectrum disappears. In this case,b1,2 become of order unity
even atT50 and the exponential decay of the drag cond
tivity at low temperatures does not occur. As a result, forT
<Tc , s12

yy'(1/kFl )e2/\, s12
xy'(1/kFl )2e2/\, remaining fi-

nite even at zero temperature. It is worth pointing out tha
generalD has energy dependence. However, note thatp1

dd in
Eq. ~5! manifests the existence of the Bogoliubov-Anders
mode in the spontaneously symmetry-broken state andp1

cc

reflects the off-diagonal long-range order in the compos
fermion system. Thus, Eq.~8! follows as a consequence o
the incompressibility of the paired quantum Hall state a
does not depend on the detailed structure ofD.

At high temperatures, the double-layer composite ferm
ons are weakly coupled with each other. However, when
critical temperatureTc is approached, the current-current p
larizability diverges due to the strong pairing fluctuations
composite fermions in the two layers. This is similar to t
situations discussed in Ref 15. We findp12

cc( iV,0)
5 iVs12

CF in the V→0 limit, where

s12
CF5

e2

128\

h2D2

T3 E d2QE
0

1`

dV
Q2ImLR~V,Q2!

sinh2S V

2TD
F ImLR1

64T2h22D22

p3~ l 221Q2!Q2
ImCS 1

2
1

iV1hDQ2

4pT D G .

~10!

Hereh57j(3)/2p3Tt andC is the digamma function. The
effective interlayer interaction is calculated in terms of t
diagrams in Fig. 1~c!,

LR~V,Q2!5S T2Tc

T
1

p

8

hDQ21 iV

T D 21

. ~11!

We assume the temperature is close toTc andT2Tc!t21.
To leading order int(T2Tc), the contribution from the sec
ond term in Eq.~10! is negligible. Taking into account Eqs
~1! and ~10! we obtain

s12
xx5

p

4~kFl !2

T

T2Tc

e2

\
, s12

xy5
2p

8~kFl !3

T

T2Tc

e2

\
.

~12!

Meanwhile s11
xx5(2p/kFl )e2/\ and s11

xy5e2/4\ in zeroth-
order perturbation theory with respect to the pairing fluctu
tions. WhenT/(T2Tc);kFl , s12

xx;s11
xx and the perturbation

method breaks down.
In experiments, the drag resistivity is measured. The d

resistivity tensor can be obtained by inverting the conduc
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ity tensor presented above. AtT.Tc , taking into account
Eq. ~12!, we get the corresponding drag resistivity

r12
xx5

p

4~kFl !2

T

T2Tc

\

e2
, ~13!

which increasesas the temperature is decreased towardTc .
The Hall drag resistivity is always zero in this model. T
contribution discussed in the previous papers,6,7 without tak-
ing into account the contribution from the pairing fluctu
tions, is a monotonicallydecreasingfunction of temperature
i.e., (l BT/deF)4/3\/e2. Here d is the interlayer spacing, as
sumed to be larger than the magnetic length. Since the
tribution due to pairing fluctuationsdiverge as Tc is ap-
proached, we find that as far as

T

T2Tc
>~kFl !2S l BT

deF
D 4/3

, ~14!

the result discussed here always overwhelms the contr
tions in Refs. 6 and 7.Tc is estimated as (l B /d)2eF in Ref.
12. Whend@ l B andTc!eF , Eq.~14! can be easily satisfied
Thus the drag resistivity can develop a minimum as a fu
tion of temperature aroundTc .

At T,Tc , following Eq. ~8!, we obtain

r11
xx5r12

xx5
2

b1~T!kFl

\

e2
, ~15!

which indicates that the drag resistivity diverges at low te
peratures in the weak disorder limit when a gap still exis
In the strong disorder limit,b1 is of order unity even atT
50 andr12

xx remains finite atT,Tc . We therefore sugges
that the transition between the incompressible paired qu
tum Hall state and the weakly coupled compressible dou
layer state could be responsible for the anomalous temp
ture dependence of the drag resistivity observed in
experiment.1

In Ref. 1, no pronounced divergence was observed at
temperatures. Instead, drag resistivity was shown to be s
rated at low temperatures. This at first seems to indicate
n-

u-

-

-
.

n-
e-
ra-
e

w
tu-
at

a gapless limit was reached in the experiment. In Ref. 1d
; l B;kF

21;200 Å ; the in-plane longitudinal resistance
close to 3000V and l;kF

21 . Indeed, this yieldstD;1, im-
plying a gapless situation. However, to derive Eqs.~8! and
~9!, we have assumed that, in the low-temperature ph
thermal fluctuations are negligible. WhenuT2Tcu/Tc
<1/kFl , fluctuations are strong and the results in Eqs.~8!
and ~13! are invalid. This sets the limit of the theory whe
compared with the experimentquantitatively. For the situa-
tion wherekFl;1, the transition regime where thermal flu
tuations are large could be of the same order asTc . It is
plausible that the lowest temperature in the experimen
still in the critical regime and the low-temperature incom
pressible phase discussed in this paper was smeared o
Ref. 1. To distinguish the gapless situation and the ther
fluctuation effects, we suggest studying double-layer syste
with d@ l B , where the gapless limit can be reached (tD
,1), while teF is still greater than unity so that the critica
regime is narrow.

Further complications arise when the pairing wave fun
tion also becomes inhomogeneous in space in the presen
macroscopic inhomogeneities in the sample. The drag
rent is then carried by electron pairs traveling along the p
colating paths, which are strongly dependent on impu
configurations and the amplitude of applied currents. Fina
in the strong disorder limit, the mean-field approach is qu
tionable due to strong quantum phase fluctuations pre
even at zero temperature. Solutions to these complicat
remain open.

Recently we became aware of a related work where
effect of the pairing fluctuation is also studied.16 The discrep-
ancy between some of the results in our initial manusc
and those of Ref. 16 was due to different bounda
conditions.17
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