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Calculation of the wave functions for semi-infinite crystals with linear methods of band theory
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We present a variational method to solve the Schro¨dinger equation for a semi-infinite crystal. The complex
band structure is generated by the inverse extended linear augmented plane wavek•p method. The trial
function is continuous and smooth over the whole space and it satisfies by construction the equation

(Ĥ2E)F50 both in the crystal and in the vacuum half-spaces. In the surface region the equation

di(Ĥ2E)Fi50 is solved. The formalism is applicable to potentials of general shape in the surface region.
The procedure is applied to calculations of low energy electron diffraction spectra for the~111! surfaces of the
fcc metals Cu, Ag, Ni, Pd, and Al.@S0163-1829~99!50124-0#
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I. INTRODUCTION

A semi-infinite crystal is a three-dimensional~3D! system
with a 2D periodicity that is composed of bulk and vacuu
half-spaces separated by a slab inside that the crystal po
tial changes from its bulk distribution to a constant value
the vacuum. The present day methods to solve the Sc¨-
dinger equation for a semi-infinite solid can be divided in
two groups with regard to the role of the imaginary part
the potential~optical potential! in the computational formal-
ism. The optical potential describes the inelastic scatterin
the electrons in the crystal and it causes the wave functio
decay, which makes it possible to restrict the computati
to a finite number of monolayers. That feature is exploited
the multiple-scattering approach1 and in the purely direct-
space methods,2 which yield efficient computational scheme
for rapidly decaying wave functions, however, the compu
tional effort grows by decreasing the value of the opti
potential. On the contrary, in the Bloch waves approac3,4

the computational effort does not depend upon the value
the optical potential. The latter technique is applicable a
to the case of the zero optical potential; in that case ins
the crystal far from surface the solution is a linear combi
tion of the wave functions that satisfy the bulk Schro¨dinger
equation, and the problem of very low energy electr
diffraction5 ~VLEED! is solved within the traditional no
absorption quantum-mechanical picture.

In the present paper we consider the application of
Bloch-wave based techniques to the calculation of the LE
states. In such methods the trial function is constructed s
rately in each of the three regions and the wave function
usually obtained by matching the trial functions at t
boundary surfaces. With a finite number of bulk partial s
lutions ~propagating and evanescent Bloch waves,Cn) the
functions cannot be matched exactly, and the approxim
wave function has a discontinuity in slope~in some schemes
also in value! at the matching plane. There is no physic
criterion for deciding whether the mismatch is sufficien
small. The very definition of mismatch is not unambiguou
consequently, there exist a number of matching approac
that minimize different quantities. Several matching schem
have been studied in Ref. 6, and it has been shown tha
PRB 590163-1829/99/59~24!/15609~4!/$15.00
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general, the calculated observables~reflected intensities in
the case of LEED! are not stable to the residual mismatc
Furthermore, one cannot rely upon the convergence of
procedure because only a limited number of evanesc
Bloch waves have satisfactory quality.~The accuracy of the
wave function deteriorates rapidly with the growth of th
imaginary part of the Bloch vector irrespective of the co
putational method.6!

Within the Bloch waves approach two methods have b
developed to treat the wave function in the surface regi
Appelbaum and Hamann7 solved the Schro¨dinger equation
by a step-by-step integration, and Hummel and Bross8 sought
the function as a linear combination of partial solutions th
form a set for all possible boundary conditions of the Diric
let type. In both cases the problem splits into two par
integrating the Schro¨dinger equation and determining th
boundary conditions for the specific solution. The latter ta
involves matching and it introduces an error irrespective
the quality of the integration.

Practical treatment of the semi-infinite crystal proble
depends upon the answer to the question: what is the
possible wave function for a given set of bulk partial so
tions? We propose a physically transparent energy criter
for a given energyE and a given set of functionsCn we
construct a smoothly continuous functionF that minimizes
the energy deviationi(Ĥ2E)Fi under constraints dictate
by the physical nature of the problem. For the methods
which the partial solutions are variational wave functio
this is a natural criterion: when the quality of the trial fun
tion becomes comparable to the quality of the individu
partial solutions the inclusion of more evanescent sta
would not improve the results.

In Sec. II, we present the formalism of the method and
Sec. III we apply the method to the analysis of the LEE
spectra of~111! surfaces of fcc metals.

II. FORMALISM

The representation of the wave function for the case o
propagating electron~LEED regime! is shown in Fig. 1. In
the bulk region,z,0, the crystal potential does not chang
from layer to layer, in the vacuum region,z.L, it is con-
R15 609 ©1999 The American Physical Society
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stant, and in the surface region, 0,z,L, the potential has a
2D periodicity. The LEED stateF(r,z) is defined by its
energyE and the surface projection of the Bloch vectorki .
In the bulk the LEED state is a linear combination of prop
gating and evanescent Bloch states,Cn , which for givenE
and ki are generated by the inverse extended linear a
mented plane wave~ELAPW! k•p method,6

Cn~r,z!5 (
s50

NF21

f sn~z!exp@ iK sr#, z,0. ~1!

Here K s5ki1Gs , Gs being the surface reciprocal lattic
vectors;G050. We now analytically continue the function
Cn to the half-spacez.0. The functionsf sn(z) with Gs
Þ0 are extended by attaching a linear combination of t
tails: a ‘‘physical’’ tail, which has a correct asymptotics
z→1`, and an auxiliary tail, which decays rapidly with th
distance from the surface. The ‘‘physical’’ tail

ps~r,z!5exp@ iK sr1 iksz#, Ks
21ks

25E, ~2!

may be a propagating wave Imks50 or an evanescent wav
Im ks.0, depending onE andKs

2 . The auxiliary tail

as~r,z!5exp@ iK sr1 iqsz#, Ks
21qs

25E0 , ~3!

is always an evanescent plane wave Imqs.0 . The auxiliary
energyE0 is taken considerably lower thanE, so that the
auxiliary tails decay fast and are negligible forz.L. For
Gs50 the physical partp0(z) is always propagating: it is a
linear combination of the incoming and the outgoing~central
beam! plane wave. Thus any linear combination of the e

FIG. 1. Representation of the wave functions in the variatio
method. The set of Bloch functions analytically extended to
vacuum (Xn , solid lines! is supplemented with a set of period
functions „jm(z)exp@iK sr# and hm(z)exp@iK sr#, see Eqs.~6! and
~7!; dotted lines…. Gs50 components are shown. The functionsXn

are calculated for the~111! surface of Al, forE2EF514 eV.
-

g-

o

-

tended functions~which we shall refer to asXn , solid lines
in Fig. 1! satisfies the Schro¨dinger equation both in the
vacuum half-space and~with a certain accuracy! in the bulk.
The error is confined to the surface region. To compens
for it we must add to a linear combination ofXn a set of
functionsUs , which are nonzero only in the surface regio

Us~r,z!5us~z!exp@ iK sr#, 0,z,L. ~4!

Functionsus(z) go to zero with zero derivative atz50 and
z5L. The functionsUs and the coefficients of the function
Xn are determined by minimizing the valuei(Ĥ2E)Fi ,
which is an integral over the surface region,

i~Ĥ2E!Fi5E
0

LE
Vs

u~Ĥ2E!F~r!u2 dr dz. ~5!

The problem is reduced to a linear algebra problem by
panding the functionsus(z) in terms of oddjm(z) and even
hm(z) linear combinations of standing plane waves~dotted
lines in Fig. 1!,

jm~z!5sin
2pmz

L
2m sin

2pz

L
, ~6!

hm~z!5cos
2pmz

L
21, ~7!

F~r !5(
n

anXn~r!1(
sm

@psmjm~z!1qsmhm~z!#eiKsr.

~8!

$an% and $psm,qsm% comprise the set of variational coeffi
cients and the asymptotics of the wave function atz→1` or
2` ~reflected or transmitted current! is determined by the
set $an%. An important feature of this formalism is that a
though the potential in the surface region is not periodic
thez direction the wave function is represented by a num
of plane waves. Their wave vectors do not form a lattice
reciprocal space, and some of them are complex; howe
the plane wave ansatz makes it straightforward to extend
formalism to the case of a singular potential in the surfa
region ~adsorbate atoms or a reconstructed surface!. In such
cases the plane waves can be augmented in the vicinity o
nuclei using one of the standard APW techniques of ba
theory. Similarly to the variational matching technique6 the
minimization of i(Ĥ2E)Fi under the constraint that th
incident current is equal to unity~LEED regime! leads to a
system of linear equations. In the case of bounded states~no
incident waves! it leads to an eigenvalue problem.

III. TARGET CURRENT SPECTRA

To calculate the VLEED spectra of the~111! surfaces of
fcc metals we have implemented the above formalism for
simplified case of a step potential barrier. Here the surf
region is reduced to zero, the functionsUs are dropped, and
the integration in Eq.~5! extends toL5`. In Fig. 2 we
present the normal incidence target current spectra~TCS! of
Cu and Ag, i.e., the portion of the incident current transm
ted to the solid versus the energy of the incident elect
beam. The results for Ni and Pd are presented in Fig. 3.
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The experimental spectra can be easily interpreted
terms of the real band structure: the main minima~at 26 eV
for Cu and 21 eV for Ag! are due to local forbidden gap
formed by the~222! Bragg reflection.9 Also the sharp experi-
mental minima9 at 23 eV in Cu and 16 eV in Ag are cause
by the splitting of the real branches of the band structu
However, owing to the changing conducting properties of

FIG. 2. In the right panels: the TCS spectra of the~111! surfaces
of Cu and Ag. The TCS obtained from the VLEED measureme
of Ref. 11 is shown by a dotted line~the curve is arbitrarily shifted
in energy!. The energy positions of the TCS minima found expe
mentally in Ref. 9 are shown by triangles; two pronounced mini
are shown by filled triangles and a weak structure is shown by
empty triangle. In the left panels: the real band structureE(kz) in
the GL direction calculated with the usual ELAPW method. Ene
gies are in eV relative to the Fermi level. The Bloch waves resp
sible for the transmisson of the current are marked by ‘‘error bar
the length of the whisker is proportional to the current carried
the wave. The upper end of the whisker shows the band struc
kz(E) obtained with the inverse ELAPWk•p method. The devia-
tion of thekz(E) points from theE(kz) curves shows the error o
the k•p method.

FIG. 3. Solid lines in the right panels show the TCS spectra
the ~111! surfaces of Ni and Pd. The experimental TCS minim
~Ref. 9! are shown by triangles. In the left panels: the real ba
structureE(kz) in the GL direction. See also the caption of Fig.
in

.
e

current carrying Bloch states the gaps in the TCS curves
much wider than the forbidden energy gaps in t
ki-projected band structure~a vivid example is the main TCS
minimum of Cu!. Our results for Cu and Ag agree well wit
layer KKR ~Ref. 1! calculations of Refs. 10 and 11, respe
tively. Our TCS spectrum of Cu agrees well with the me
surements of Refs. 9, 10, and 12; earlier measuremen13

show an additional structure atE2Evac512.5 eV, which we
do not observe.

Figure 4 shows the target current spectrum of Al. As
the above cases the structures at 13 and 16 eV have a ‘
band-structure origin.’’ Contrastingly, the minimum
;22 eV cannot be ascribed to any peculiarities of the r
band structure. The character of the current carrying b
changes steadily, and the special point at 22.3 eV is cau
by a strong effect of a branch of the complex band struct
that contributes to the LEED wave function~see the left
panel of Fig. 4!. The minimum in the TCS curve occurs clos
to the turning point of the line Rekz50 that extends from
E2EF518.8 to 24.4 eV. There the character of the evan
cent state changes rapidly,dE/d Im(kz)5`, causing a void
at E2EF522.3 eV,kz50.4uGLu.

Figure 5 shows calculated TCS curves of the Cu~111!
surface for severalki vectors in the LW direction of the fcc
Brillouin zone ~BZ!. The sharp low energy structure
highly dispersive: it shifts downward~by ;0.2 eV at ki
50.08uLWu) and completely disappears atki50.16uLWu.
This behavior has been experimentally observed by Jakl
and Davis9 and by Strocovet al.12

A disagreement between theory and experiment in the
ergy locations of the two characteristic TCS features~a sharp
minimum followed by a broad Bragg minimum! reflects the
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FIG. 4. Complex band structure and the target current spect
of the ~111! surface of aluminum. The experimental TCS minim
~Ref. 9! are shown by triangles. Real lines of the complex ba
structureE(Im kz) for Rekz at G and atL are shown by dots to the
right and to the left of the real band-structure panel, respectiv
See also the caption of Fig. 2.



pa
fo

en-
but
tron

lcu-
er

ron
ro

ria-
re-
nd
-
ea-
ure
cent
ca-

ree-

V.
r to

ldt-
.

s
xi-

RAPID COMMUNICATIONS

R15 612 PRB 59E. E. KRASOVSKII AND W. SCHATTKE
self-energy corrections to the band energies. Such discre
cies have turned out to be noticeable only for Cu and Ag;
both metals the experimental structures occur;0.7 eV
higher in energy than the theoretical ones~see Fig. 2!. In Ni

FIG. 5. Calculated TCS spectra of the~111! surface of Cu for
severalki vectors parallel to the LW line of the 3D BZ. The curve
are convoluted with a Gaussian of 1.5 eV full width at half ma
mum. The experimental normal-incidence TCS curve~Ref. 12! is
shown by a dotted line~the curve is arbitrarily shifted in energy!.
l.
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and Pd~see Fig. 3! the characteristic features occur at ess
tially the same energies as in Cu and Ag, respectively,
we see no energy shifts. We assume that the strong elec
correlation in the highly localizedd shells of the noble met-
als makes the one-electron model used in the present ca
lations less appropriate for Cu and Ag than for the oth
metals considered.

The developed method of the calculation of the elect
states in a semi-infinite crystal is based on solving the Sch¨-
dinger equation in the surface region by means of a va
tional technique. Being a static method, it offers an interp
tation of LEED spectra in terms of the complex ba
structure. For~111! surfaces of Ni, Cu, Pd, and Ag the ex
perimentally observed TCS minima are explained by the f
tures of the real band structure. In the TCS of Al a struct
has been detected for which a special point in the evanes
part of the band structure is responsible. The energy lo
tions of the characteristic TCS features are in good ag
ment with the experiment.
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11I. Bartoš, M. A. Van Hove, W. F. Chung, Z. He, and M. S
Altman, Surf. Sci.402-404, 697 ~1998!.

12V. N. Strocov and H. I. Starnberg~unpublished!.
13L. R. Bedell and H. E. Farnsworth, Surf. Sci.41, 165 ~1973!.


