RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 59, NUMBER 24 15 JUNE 1999-II

Calculation of the wave functions for semi-infinite crystals with linear methods of band theory
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We present a variational method to solve the Sdmger equation for a semi-infinite crystal. The complex
band structure is generated by the inverse extended linear augmented plan& -wanethod. The trial
function is continuous and smooth over the whole space and it satisfies by construction the equation
(H—E)®=0 both in the crystal and in the vacuum half-spaces. In the surface region the equation
S|(H—E)®||=0 is solved. The formalism is applicable to potentials of general shape in the surface region.
The procedure is applied to calculations of low energy electron diffraction spectra fdrithesurfaces of the
fcc metals Cu, Ag, Ni, Pd, and AIS0163-182€09)50124-Q

[. INTRODUCTION general, the calculated observablgsflected intensities in
the case of LEEDare not stable to the residual mismatch.
A semi-infinite crystal is a three-dimensior(8D) system  Furthermore, one cannot rely upon the convergence of the
with a 2D periodicity that is composed of bulk and vacuumprocedure because only a limited number of evanescent
half-spaces separated by a slab inside that the crystal poteRloch waves have satisfactory qualitflhe accuracy of the
tial changes from its bulk distribution to a constant value inwave function deteriorates rapidly with the growth of the
the vacuum. The present day methods to solve the ‘Schrdmaginary part of the Bloch vector irrespective of the com-
dinger equation for a semi-infinite solid can be divided intoPutational metho
two groups with regard to the role of the imaginary part of . Within the Bloch waves approach two methods have been
the potentialoptical potential in the computational formal- developed to treat the wave function in the surface region:

ism. The optical potential describes the inelastic scattering ppellt:)aurg artld I}lr%mzarﬁ?oriveidth: rSn(i:m:mggngquatlgtn
the electrons in the crystal and it causes the wave function t Y a step-Ly-step Integration, a ummeta 889

decav. which makes it possible to restrict the computations function as a linear combination of partial solutions that
Y, P . PUtatioNg ) m a set for all possible boundary conditions of the Dirich-
to a finite number of monolayers. That feature is exploited ing

X . . . t type. In both cases the problem splits into two parts:
the multiple-scattering approatland in the purely direct- integrating the Schtinger equation and determining the

space !'nethod%w_mch yield efficient computational schemes ,, nqary conditions for the specific solution. The latter task
for rapidly decaying wave functions, however, the computas,glves matching and it introduces an error irrespective of
tional effort grows by decreasing the value of the opticalihe quality of the integration.

potential. On the contrary, in the Bloch waves apprddch  practical treatment of the semi-infinite crystal problem
the computational effort does not depend upon the value ofiepends upon the answer to the question: what is the best
the optical potential. The latter technique is applicable alsgossible wave function for a given set of bulk partial solu-
to the case of the zero optical potential; in that case insidéions? We propose a physically transparent energy criterion:
the crystal far from surface the solution is a linear combinafor a given energyE and a given set of function¥,, we

tion of the wave functions that satisfy the bulk Safirger  construct a smoothly continuous functidn that minimizes
equation, and the problem of very low energy electronye energy deviatiofi(H —E)®| under constraints dictated
diffractior® (VLEED) is solved within the traditional no- py the physical nature of the problem. For the methods in
absorption quantum-mechanical picture. which the partial solutions are variational wave functions

In the present paper we consider the application of thenis js a natural criterion: when the quality of the trial func-
Bloch-wave based techniques to the calculation of the LEERQjo pecomes comparable to the quality of the individual

states. In such methods the trial function is constructed sepaytial solutions the inclusion of more evanescent states
rately in each of the three regions and the wave function igyould not improve the results.

usually obtained by matching the trial functions at the |, gec. I, we present the formalism of the method and in
boundary surfaces. With a finite number of bulk partial so-gec. |11 we apply the method to the analysis of the LEED

lutions (propagating and evanescent Bloch waws) the  gpectra of(111) surfaces of fcc metals.
functions cannot be matched exactly, and the approximate

wave function has a discontinuity in slofia some schemes

also in valug at the matching plane. There is no physical II. FORMALISM

criterion for deciding whether the mismatch is sufficiently

small. The very definition of mismatch is not unambiguous; The representation of the wave function for the case of a
consequently, there exist a number of matching approachgwopagating electrolLEED regime is shown in Fig. 1. In
that minimize different quantities. Several matching schemeghe bulk regionz<0, the crystal potential does not change
have been studied in Ref. 6, and it has been shown that, iffom layer to layer, in the vacuum regiom>L, it is con-
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tended functiongwhich we shall refer to aX,,, solid lines
Bulk Surface | Vacuum in Fig. 1) satisfies the Schdinger equation both in the
vacuum half-space an@vith a certain accuragyin the bulk.

The error is confined to the surface region. To compensate
for it we must add to a linear combination &, a set of
functionsUg, which are nonzero only in the surface region,

N VV\ Us(p.2)=ug(z)exdiKep], 0<z<L. 4
T Functionsug(z) go to zero with zero derivative at=0 and
T z=L. The functionsU and the coefficients of the functions

Py X, are determined by minimizing the valy¢H—E)®|,
which is an integral over the surface region,

~ L ~
lA-Bel- [ [ [A-BemFdpez

The problem is reduced to a linear algebra problem by ex-
panding the functionsg(z) in terms of odd¢,,(z) and even
7m(2) linear combinations of standing plane wavestted
lines in Fig. 1,

2mmz 2wz 5
3 —msmT, (6)

ém(2)=sin

FIG. 1. Representation of the wave functions in the variational
method. The set of Bloch functions analytically extended to the 2mmz

vacuum {,,, solid lineg is supplemented with a set of periodic 7m(Z) = COS -1, (7)

functions (¢,(z)exdiK¢p] and 7,(z)exdiK¢p], see Egs(6) and

(7); dotted liney. Gg=0 components are shown. The functioXs i

are calculated for thél11) surface of Al, forE—Er=14 eV. ®(r)= ; anXn(r)+ % [Psmém(2) + Qsmmm(2) 1€
®

stant, and in the surface region<@< L, the potential has a
2D periodicity. The LEED statab(p,z) is defined by its {a,} and{psm.dsm} cOmprise the set of variational coeffi-
energyE and the surface projection of the Bloch veckgt cients and the asymptotics of the wave functioa-at+ <« or
In the bulk the LEED state is a linear combination of propa-—o (reflected or transmitted currenis determined by the
gating and evanescent Bloch stat#s,, which for givenE  set{a,}. An important feature of this formalism is that al-
and k| are generated by the inverse extended linear aughough the potential in the surface region is not periodic in
mented plane wavéELAPW) k- p method® the z direction the wave function is represented by a number
of plane waves. Their wave vectors do not form a lattice in
, reciprocal space, and some of them are complex; however,
Wn(p,2)= gfo fsi(2)exdiKsp],  2<0. (1) the plane wave ansatz makes it straightforward to extend the
formalism to the case of a singular potential in the surface
Here Ks=k;+Gs, G being the surface reciprocal lattice region (adsorbate atoms or a reconstructed sujfdcesuch
vectors;Go=0. We now analytically continue the functions cases the plane waves can be augmented in the vicinity of the
¥, to the half-space>0. The functionsfs(z) with G5  nuclei using one of the standard APW techniques of band
#0 are extended by attaching a linear combination of twaheory. Similarly to the variational matching technifuke
tails: a “physical” tail, which has a correct asymptotics at minimization of |(H—E)®| under the constraint that the
z—+, and an auxiliary tail, which decays rapidly with the incident current is equal to unitft. EED regimé leads to a
distance from the surface. The “physical” tail system of linear equations. In the case of bounded states

pp2)=exdiKep+ikez], K2+K2=E, @) incident wavegit leads to an eigenvalue problem.

Ne—1

may be a propagating wave kg=0 or an evanescent wave Ill. TARGET CURRENT SPECTRA

Imks>0, depending of andK. The auxiliary tail To calculate the VLEED spectra of thig11) surfaces of

al(p,2) =exgiKp+ige], K§+q§= Eo, 3) fgc m'e'tals we have implementeq the abpve formalism for the
simplified case of a step potential barrier. Here the surface
is always an evanescent plane wavegyr O . The auxiliary  region is reduced to zero, the functiods are dropped, and
energyE, is taken considerably lower thaf, so that the the integration in Eq(5) extends toL=«. In Fig. 2 we
auxiliary tails decay fast and are negligible for-L. For  present the normal incidence target current spgadtet) of
G,=0 the physical parpy(z) is always propagating: it is a Cu and Ag, i.e., the portion of the incident current transmit-
linear combination of the incoming and the outgoiegntral  ted to the solid versus the energy of the incident electron
bean plane wave. Thus any linear combination of the ex-beam. The results for Ni and Pd are presented in Fig. 3.
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FIG. 2. In the right panels: the TCS spectra of (bh&l) surfaces
of Cu and Ag. The TCS obtained from the VLEED measurements
of Ref. 11 is shown by a dotted lir¢ghe curve is arbitrarily shifted
in energy. The energy positions of the TCS minima found experi-
mentally in Ref. 9 are shown by triangles; two pronounced minima
are shown by filled triangles and a weak structure is shown by an FIG. 4. Complex band structure and the target current spectrum
empty triangle. In the left panels: the real band structafk,) in  of the (111) surface of aluminum. The experimental TCS minima
theI'L direction calculated with the usual ELAPW method. Ener- (Ref. 9 are shown by triangles. Real lines of the complex band
gies are in eV relative to the Fermi level. The Bloch waves responstructureE(Imk,) for Rek, atT" and atL are shown by dots to the

sible for the transmisson of the current are marked by “error bars”;right and to the left of the real band-structure panel, respectively.
the length of the whisker is proportional to the current carried bySee also the caption of Fig. 2.

the wave. The upper end of the whisker shows the band structure

k,(E) obtained with the inverse ELAPW-p method. The devia- . loch h in th
tion of thek,(E) points from theE(k,) curves shows the error of CUTTENt carrying Bloch states the gaps in the TCS curves are
the k- p method. much wider than the forbidden energy gaps in the

K|-projected band structufa vivid example is the main TCS

The experimental spectra can be easily interpreted ifninimum of Cy. Our results for Cu and Ag agree well with
terms of the real band structure: the main miniaa26 ev  layer KKR (Ref. 1) calculations of Refs. 10 and 11, respec-
for Cu and 21 eV for Ayare due to local forbidden gaps tively. Our TCS spectrum of Cu agrees well with the mea-
formed by thd222) Bragg ref|ecti0|’%A|So the Sharp experi_ surements of Refs. 9, 10, and 12; earlier measuret’r?ents
mental minim& at 23 eV in Cu and 16 eV in Ag are caused Show an additional structure Bt- E .= 12.5 eV, which we
by the splitting of the real branches of the band structuredo not observe.

However, owing to the changing conducting properties of the Figure 4 shows the target current spectrum of Al. As in
the above cases the structures at 13 and 16 eV have a “real
™ ] band-structure origin.” Contrastingly, the minimum at

1 ~22 eV cannot be ascribed to any peculiarities of the real
band structure. The character of the current carrying band
changes steadily, and the special point at 22.3 eV is caused
by a strong effect of a branch of the complex band structure
that contributes to the LEED wave functigsee the left
panel of Fig. 4. The minimum in the TCS curve occurs close
to the turning point of the line Rk,=0 that extends from
E—EF=18.8 to 24.4 eV. There the character of the evanes-
cent state changes rapidlgE/d Im(k,) =<0, causing a void
atE—Er=22.3 eV,k,=04TL]|.

Figure 5 shows calculated TCS curves of the @)
surface for severdt vectors in the LW direction of the fcc
Brillouin zone (BZ). The sharp low energy structure is
highly dispersive: it shifts downwardby ~0.2 eV atk|
=0.04LW|) and completely disappears &f=0.16LW]|.
This behavior has been experimentally observed by Jaklevic

FIG. 3. Solid lines in the right panels show the TCS spectra ofand Davi§ and by Strocowt al.*?
the (111) surfaces of Ni and Pd. The experimental TCS minima A disagreement between theory and experiment in the en-
(Ref. 9 are shown by triangles. In the left panels: the real bandergy locations of the two characteristic TCS featugesharp
structureE(k,) in the 'L direction. See also the caption of Fig. 2. minimum followed by a broad Bragg minimymeflects the

r L 100 50
Im(k)=0
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0.226 X 2m/a and Pd(see Fig. 3the characteristic features occur at essen-
tially the same energies as in Cu and Ag, respectively, but
we see no energy shifts. We assume that the strong electron
correlation in the highly localized shells of the noble met-

als makes the one-electron model used in the present calcu-

0.170 X 2n/a ’_\/\/\
0.113 X 2x/a lations less appropriate for Cu and Ag than for the other
metals considered.
The developed method of the calculation of the electron
0.057 x 2m/a states in a semi-infinite crystal is based on solving the Schro
dinger equation in the surface region by means of a varia-
tional technique. Being a static method, it offers an interpre-
tation of LEED spectra in terms of the complex band
TN Y stru_cture. For(111) surfaces of N| Cu, Pd, ar_ld Ag the ex-
perimentally observed TCS minima are explained by the fea-
tures of the real band structure. In the TCS of Al a structure
5o s T s has been detected for which a special point in the evanescent
E-E_ (eV) part of the band structure is responsible. Thg energy loca-
¥ tions of the characteristic TCS features are in good agree-
FIG. 5. Calculated TCS spectra of thkl1) surface of Cu for ~ment with the experiment.
severak| vectors parallel to the LW line of the 3D BZ. The curves
are convoluted with a Gaussian of 1.5 eV full width at half maxi- ACKNOWLEDGMENTS
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