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Thermoelectric figure of merit of strongly correlated superlattice semiconductors
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The Anderson lattice Hamiltonian was solved using the slave-boson mean-field approximation to get the
energy bands of a strongly correlated semiconductor. The transport properties were calculated in the relaxation-
time approximation, and the thermoelectric figure of merit was obtained for the strongly correlated semicon-
ductor and a variety of superlattice structures. We found that at room temperature the dimensionless quantity
ZT, thermoelectric figure of merit multiplied by temperature, can reach nearly 1.4 for a quantum wire lattice
structure. We believe that it may be possible to find high values of the figure of merit for strongly correlated
superlattice semiconductos50163-18209)50624-3

For a material to be a good thermoelectric cooler, it must Our calculation follows the method used by Sanchez-
have a high value of the thermoelectric figure of m&l  Castro, Bedell, and Coop&?.We start with the Anderson
which is defined aZ=Q?a/K, whereQ is the thermopower lattice Hamiltonian, which can be written as
(Seebeck coefficiepto is the electrical conductivity, anid

the thermal conductivity. The best thermoelectric material 1 +

now known is BjTe;, which has ZT~1 at room H:kza_ ‘EECEGCKU”L% erflofig+ 5 E Uflofiof iy fior
temperaturé. No materials are found at lower temperature oo

with ZT larger than 1. Recently, much work has been done 1 .

on strongly correlated semiconductdia@so referred to as +—= 2 (Ve"k‘RiclUfiUch.c.), D
Kondo insulators and some authors suggested that this class N Tz

‘rﬁatn;?ﬁgz‘?fsgﬁi 2e 2r'g1c:aonc'i[sCr?:deldt?éznf%;::?:(;rgoilfoci?%here cl, is a creation operator for a conduction electron
als. Xperl v ! u Ywith wave vectork located in the first Brillouin zone and

to find good thermoelectric materials from strongly corre-"". el 1. gt . .
lated semiconductors> however, so far there has been no with spins=3; fj, is a creat_|on OPerator for a Iopahzéd
satisfactory result. electron centered &R; in the ith unit cell; andNg is the
The strongly correlated semiconductors can be characteRumber of unit cells in the crystal. We consider the cdse
ized as mixed-valence semiconductors with band gaps of less >, two electrons per primitive cell, and degeneraty 2.
than 1000 K& The small value of the gap and its significant We treat theU=c Anderson lattice Hamiltonian using a
temperature dependence have been shown to be consiststave-boson formalism. Heré(, is represented as the bilin-
with a band structure where the hybridization between locagar product| =/ b;, wheref] is a slave fermion creation

f or d electrons and the conduction band is strongly renor- o (1) : ; T
. ; operator representing thé configuration, and; is a
malized by many-body effects due to the large on-sited P P g e, >Ri g !

electron Coulomb repulsioff Near the chemical potential Sl@ve-boson creation operator representing| ), con-
the resulting bands are almost ff&tThis is a close approxi- figuration. In terms of the slave-boson operators, thex
mation of the ideal electronic structure suggested by MahaAnderson lattice Hamiltonian is rewritten as
and Sofd for thermoelectric materials, where the transport
distribution fun_ction is ad function centered about 2—3 kT H’zz EECloCkUJFE Efﬂafio
from the Fermi energy. ke o

In this paper we calculate the transport properties of a
strongly correlated semlponducto_r with an |nd|rect_ gap of +i 2 (Ve’”"Ricl b-TfiUJrc.c.)
approximately 600 K, which we will see has properties very \/N—s et ol
similar to those suggested by Mahan and Sdfwr good
thermoelectric materials. Additionally we will show that a
superlattice system might increase the thermoelectric figure
of merit as argued by some authd?ddere, we also consider . . o
the superlattice structure of the strongly correlated semicorwhere a time independent auxiliary boson figldis added,
ductor, because the indirect gap for them is proportional tgvhich couples to the system through the last term in the
VZ/W (whereV is the hybridized matrix element a¥ is ~ Hamiltonian and enforces the constraint of no multiple occu-
the bandwidth of the conduction electrgnene may expect Pancy of anf site. Furthermore, the mean-field approxima-
a wider indirect gap for a superlattice structure. Additionally,tion is applied to the slave-boson Hamiltonian by replacing
the DOS(density of stateswill also be modified, thereby, the boson field with the expectation value over the coherent
influencing thermoelectric behavior. We expect that the corequilibrium states, namely,=(b;) and A=(\;). Now the
relations and the superlattice structure will improve the therrésulting Hamiltonian has a renormalized hybridization ma-
moelectric figure of merit. trix elementV=rV and a renormalized level position e;

+2 M| 2 R +bib—1], 2
] o
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=¢+A. After changing to the Bloch representation for the 0.020
electrons given byf} =(1/\/Ng=e Rl  a canonical
transformation is performed to the hybridized band creation
operators as follows: 0.015 1
allo’ Ao Bko’ :f\lg' -
+ |= P N 0ot f
Ao, _Bktr Ayy Cko
where alloz ak’fio_l— Bkcla and aEZO': - Bk’flo'—i_ akcloﬂ
and with 0008 1
1 6k_~6f
2_ ‘ . .
X%~ o 1+ Ex ) 3 00005 100.0 200.0 300.0
T(K)
and
FIG. 1. The temperature dependence of the dimensionless quan-
1 eE—Ef tity ZT for bulk material in which the conduction band is a tight-
R - binding band.
Bk 2 Ek (4) g
In terms of the hybridized band operators, the mean-fielgvheren is the Fermi-Dirac distribution function.
Hamiltonian simplifies to The relaxation-time approximatibhis used in our calcu-
lation, thus the electrical conductivity, the thermopowe®,
and the thermal conductivity are given byo=L,, Q=
MF _ t 2_ !
HUP= 2, endlan@os TN 1) 8 (e (Ly/Lg),  and  k=(KET/E)(Lo—LyLg Ly),
) ) ) o whereL, is
wheren=1,2 is the band index ane,, is the hybridized
band energy given by _ e_2 INE(€kng) o ey €ene— 2\ ™
1 m Vv “~ aekno T\ €kno) VknoVkno kBT
eun=5 ekt et (—1)"Eq, (6) (13
For the case of a small number of impurities, the electronic
and relaxation time is given by
0 ~
Ev=[(eg—€)?+4r2v2]H2, (7 1 7 Nimp, 5[ 9€kno
. . . . :z N |V0| 0 p(Ean)1 (14)
The resulting partial density of states are given by Tkno s €kor
1 V2 where
pC(r(w): N_ 2 5( w— ~ - e-k(r) ’ (8)
s k w— €
" o0 _ g2(ad) 15
and aeﬁa K\ ¥k
V2 for n=1(2) andN;y,, is the total number of impurities. We
Pw(@jﬁpw(a’)- (9 have assumed a value oNf,,/Ng)V§=0.09 e\? for the
W~ €54

impurity potential so that the electrical conductivity is of the
me order as the material FeSi at room temperature.

. . . a
The equations for determining the expectation values of We are now in a position to calculate the thermoelectric

the boson fields are obtained by minimizing the mean-field, . . . X .
energy with respect to and A, respectively. The resulting df|gure of merit for bulk material. At first, the dispersion re-

equations to determing A, and the chemical potential ""?“OP of the conduction band is 'assumed to be a tight-
ardl12 binding band expressed as follows:

W
1—r2=NikE[aEUnF<eklg)+ﬁﬁgnF<ekzg>]. (10 k=g [0skia) ootk Feosa)]. (16

S
To perform our calculation, we consider a cubic lattice with
A 1 > V? a lattice constana®=83 A®>, W=5.0 eV, VV?=0.4 e\, and
N, & E_ko[nF(EklU)_ Ne(€izq) ], (1) ¢ =0.67 eV below the conduction Fermi energy, so that the
indirect gap is 640 K aT =0 K, consistent with the value
and found for FeSi.
In Fig. 1 the dimensionless quanti&T as a function of
_ temperature is shown. We find thZfl is no higher than
% [ne(eiar) +Neleir) =2, 12 0.02, and it is similar to the measurement on FeSi.

1
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In a tight-binding model we have particle-hole symmetry. 100
The contributions to the thermopowep, are opposite for @
the particles and holes leading to small valueQandZT. a0 | PR
One way of increasingT is to look for materials that are not ///
particle-hole symmetric. We can approximate this effect in € e
our calculation by introducing a nearly parabolic band struc- é‘: 6or . e
ture for the conduction band of the Anderson lattice Hamil- £ e
tonian. The parameters of this band structure are adjusted to = 4of s »
give good agreement with the transport properties in the bulk o 7 o
three-dimensional3D) case. a0l //' |
The figure of meritZ has been calculated fdr) a three- ' V P - 1D
dimensional bulk material(i) a 2D multilayered superlat- //
tlce,_and(m) a 1D quantum wire superlz_ittlce, using a con- 00,5 Ty 2000 200
duction band that is nearly parabolic. For a suitably T(K)
fabricated superlattice, the conduction electrons are confined 1000
to move within 2D quantum wells or within 1D quantum ’
wires, and the electrons occupy only the lowest subband of (o) /,/
the quantum well or wire. Here we assume infinite potential v
barriers and zero barrier widths, following the same assump- 1/
tion as that of Hicks and DresselhadsThe dispersion rela- g e ‘
tion for the conduction electrons in 3D is chosen to be S . v ’
Vs
2 w
0 wW E 7 -
&= €0t 2l (ko +Tky) + k)], 17 “ VR
3 g ’/'/ ; ! 1D
where T 350
0.0 + .
2 0.
2
f(k)==|k®+ ——k) }
a 2000.0
2 2 2 1/2
o[22
n UO (18) 1500.0 |
2
<
and we letW=6.0 eV, Uy=0.13(D?/W]? eV2. In the 2D S|
case, the dispersion relation becomes 5,1
W
ek=€ot 2l f (ko +f(ky)] (19) |
3 —
a

0.0

and in the 1D case, the dispersion relation is

0 FIG. 2. The transport properti¢&) electrical conductivity(b)
€= €T o\ 2 f(ky), (20 thermal conductivity(c) thermopowe}for 3D, 2D, and 1D cases in
3 which the conduction band is nearly parabolic band.

a

wheree¢, is a constant reference energy. In our calculationto be noted that in our calculation, we have not included
we will assume that; is 0.67 eV below the conduction elec- lattice thermal conductivity, which will dominate the total
tron Fermi energy so that the indirect gapTat0 K is 640  thermal conductivity at low temperature, thdg could be
K for the 3D case. dramatically decreased. At room temperature, the electronic
In Fig. 2 we show the transport properties versus temperahermal conductivity is larger than or comparable to the lat-
ture for the three case$l) The bulk 3D case(2) the 2D tice thermal conductivity. Moreover, for superlattice sys-
planes forming a layered superlatti¢teereafter referred to as tems, the phonons can be scattered by the interfaces and this
2D); and (3) the 1D quantum wire superlatticghereafter could reduce the lattice thermal conductivity. Therefore we
referred to as 1D In the last two of these examples we are expect that at higher temperature our calculation should be a
calculating the transport for a superlattice embedded in a 3[good estimate foZ T.
structure. In Fig. 3 we show results of our calculation of the In Fig. 3 we plotZT for the 3D, 2D, and 1D cases. At
dimensionless quantit¢ T as function of temperature. We T=300 K, ZT=0.2 for the bulk 3D material with an indirect
find that at low temperatur&T is very large, however, it has gap of 640 K. If we now form a superlattice with 2D planes
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' ' atT=300 K. For the 2D and 1D bulk cases we find 0.24 and
0.4, respectively, foZ T. As one might expect, the correla-

i tions do play an important role and they become more im-
j portant in lower dimensional superlattice structures.

| The calculations we have performed suggest that an in-
creased thermoelectric figure of merit is expected for super-
lattice structures of correlated semiconducting materials.
While the calculations are somewhat idealized they do hint at
important features one should look for in designing these
materials. The band structure for the conducting electrons
should not be particle-hole symmetric. The strong correla-
tions are important so materials with relatively flaor d
bands like CgBi,Pt; or FeSi should be used. If superlattice
structures can be fabricated from these materials it would be
interesting to explore the role of doping on these materials.
For example the best thermoelectric materials come from
doping BipTe; with Sb or Se. These materials, however,
have not shown much improvement in tA& in a superlat-

. _ . . tice structure. It would seem from our calculations that the
or 1D wires of correlated semu;onductmg material we get th earch for new thermoelectric materials should include
valu_e of 0.65 and 1.4, respect'lvely, fom. To geta f.eell for strongly correlated semiconductors.

the importance of the correlations we performed similar cal-
culations in the superlattice structures with an ordinary semi- We would like to thank D. A. Broido, J. R. Engelbrecht,
conductor system. We chose an indirect gap for this semiZ. Wang, and K. B. Blagoev for the discussion on this sub-
conductor to be 640 K and adjust the effective mass of thgect. This work was sponsored by DOE Grant No.
electron and hole bands to gi¥d'= 0.2 for the 3D bulk case DEFG0297ER45636.

FIG. 3. The temperature dependence of the dimensionless qua
tity ZT for 3D, 2D, and 1D cases in which the conduction band is
nearly parabolic band.
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