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Thermoelectric figure of merit of strongly correlated superlattice semiconductors
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The Anderson lattice Hamiltonian was solved using the slave-boson mean-field approximation to get the
energy bands of a strongly correlated semiconductor. The transport properties were calculated in the relaxation-
time approximation, and the thermoelectric figure of merit was obtained for the strongly correlated semicon-
ductor and a variety of superlattice structures. We found that at room temperature the dimensionless quantity
ZT, thermoelectric figure of merit multiplied by temperature, can reach nearly 1.4 for a quantum wire lattice
structure. We believe that it may be possible to find high values of the figure of merit for strongly correlated
superlattice semiconductors.@S0163-1829~99!50624-3#
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For a material to be a good thermoelectric cooler, it m
have a high value of the thermoelectric figure of meritZ1,
which is defined asZ5Q2s/K, whereQ is the thermopower
~Seebeck coefficient!, s is the electrical conductivity, andK
the thermal conductivity. The best thermoelectric mate
now known is Bi2Te3, which has ZT'1 at room
temperature.1 No materials are found at lower temperatu
with ZT larger than 1. Recently, much work has been do
on strongly correlated semiconductors~also referred to as
Kondo insulators!, and some authors suggested that this cl
of materials may be a good candidate for thermoelec
materials.2–4 Some experiments have been carried out to
to find good thermoelectric materials from strongly cor
lated semiconductors,2,5 however, so far there has been n
satisfactory result.

The strongly correlated semiconductors can be charac
ized as mixed-valence semiconductors with band gaps of
than 1000 K.6 The small value of the gap and its significa
temperature dependence have been shown to be cons
with a band structure where the hybridization between lo
f or d electrons and the conduction band is strongly ren
malized by many-body effects due to the large on-sitef or d
electron Coulomb repulsion.7,8 Near the chemical potentia
the resulting bands are almost flat.4,9 This is a close approxi-
mation of the ideal electronic structure suggested by Ma
and Sofo3 for thermoelectric materials, where the transp
distribution function is ad function centered about 2–3 k
from the Fermi energy.3

In this paper we calculate the transport properties o
strongly correlated semiconductor with an indirect gap
approximately 600 K, which we will see has properties ve
similar to those suggested by Mahan and Sofo3 for good
thermoelectric materials. Additionally we will show that
superlattice system might increase the thermoelectric fig
of merit as argued by some authors.10 Here, we also conside
the superlattice structure of the strongly correlated semic
ductor, because the indirect gap for them is proportiona
V2/W ~whereV is the hybridized matrix element andW is
the bandwidth of the conduction electrons!, one may expect
a wider indirect gap for a superlattice structure. Additiona
the DOS~density of states! will also be modified, thereby
influencing thermoelectric behavior. We expect that the c
relations and the superlattice structure will improve the th
moelectric figure of merit.
PRB 590163-1829/99/59~24!/15590~4!/$15.00
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Our calculation follows the method used by Sanch
Castro, Bedell, and Cooper.4,9 We start with the Anderson
lattice Hamiltonian, which can be written as

H5(
ks

ek
0cks

† cks1(
is

e f f is
† f is1

1

2 (
iss8

U f is
† f is f is8

† f is8

1
1

ANs
(
iks

~Ve2 ik–Ricks
† f is1c.c.!, ~1!

where cks
† is a creation operator for a conduction electr

with wave vectork located in the first Brillouin zone and
with spin s56 1

2 ; f is
† is a creation operator for a localizedf

electron centered atRi in the ith unit cell; andNs is the
number of unit cells in the crystal. We consider the caseU
5`, two electrons per primitive cell, and degeneracyN52.
We treat theU5` Anderson lattice Hamiltonian using
slave-boson formalism. Heref is

† is represented as the bilin

ear productf is
† 5 f̂ is

† bi , wheref̂ is
† is a slave fermion creation

operator representing theu f s
(1)&Ri

configuration, andbi
† is a

slave-boson creation operator representing theu f s
(0)&Ri

con-

figuration. In terms of the slave-boson operators, theU5`
Anderson lattice Hamiltonian is rewritten as

H85(
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e f f̂ is
† f̂ is

1
1

ANs
(
iks

~Ve2 ik•Ricks
† bi

† f̂ is1c.c.!

1(
i

l i S (
s

f̂ is
† f̂ is1bi

†bi21D , ~2!

where a time independent auxiliary boson fieldl i is added,
which couples to the system through the last term in
Hamiltonian and enforces the constraint of no multiple oc
pancy of anf site. Furthermore, the mean-field approxim
tion is applied to the slave-boson Hamiltonian by replac
the boson field with the expectation value over the coher
equilibrium states, namely,r 5^bi& and L5^l i&. Now the
resulting Hamiltonian has a renormalized hybridization m
trix elementṼ5rV and a renormalizedf level position ẽ f
R15 590 ©1999 The American Physical Society
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5ef1L. After changing to the Bloch representation for thf
electrons given byf̂ ks

† 5(1/ANs)( ie
2 ik•Ri f̂ is

† , a canonical
transformation is performed to the hybridized band creat
operators as follows:

Fak1s
†

ak2s
† G5F aks bks

2bks aks
GF f̂ ks

†

cks
† G ,

where ak1s
† 5ak f̂ ks

† 1bkcks
† and ak2s

† 52bk f̂ ks
† 1akcks

† ,
and with

ak
25

1

2
S 11

ek
02 ẽ f

Ek
D ~3!

and

bk
25

1

2
S 12

ek
02 ẽ f

Ek
D . ~4!

In terms of the hybridized band operators, the mean-fi
Hamiltonian simplifies to

HMF5(
kns

eknakns
† akns1NsL~r 221!, ~5!

where n51,2 is the band index andekn is the hybridized
band energy given by

ekn5
1

2
@ek

01 ẽ f1~21!nEk#, ~6!

and

Ek5@~ek
02 ẽ f !

214r 2V2#1/2. ~7!

The resulting partial density of states are given by

rcs~v!5
1

Ns
(

k
dS v2

Ṽ2

v2 ẽ f s

2eksD , ~8!

and

r f s~v!5
Ṽ2

~v2 ẽ f s!2
rcs~v!. ~9!

The equations for determining the expectation values
the boson fields are obtained by minimizing the mean-fi
energy with respect tor and L, respectively. The resulting
equations to determiner, L, and the chemical potentialm
are11,12

12r 25
1
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(
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2 nF~ek2s!#, ~10!
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n
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f
d

wherenF is the Fermi-Dirac distribution function.
The relaxation-time approximation13 is used in our calcu-

lation, thus the electrical conductivitys, the thermopowerQ,
and the thermal conductivityk are given bys5L0 , Q5
2(kB /ueu)(L1 /L0), and k5(kB

2T/e2)(L22L1L0
21L1),

whereLm is

Lm52
e2

V (
kns

]nF~ekns!

]ekns
t~ekns!vknsvknsS ekns2m

kBT D m

.

~13!

For the case of a small number of impurities, the electro
relaxation time is given by

1

tkns
5

p

\

Nimp

Ns
uV0u2S ]ekns

]eks
0 D 2

r~ekns!, ~14!

where

]ekns

]eks
0

5bk
2~ak

2! ~15!

for n51(2) andNimp is the total number of impurities. We
have assumed a value of (Nimp /Ns)V0

250.09 eV2 for the
impurity potential so that the electrical conductivity is of th
same order as the material FeSi at room temperature.

We are now in a position to calculate the thermoelec
figure of merit for bulk material. At first, the dispersion re
lation of the conduction band is assumed to be a tig
binding band expressed as follows:

eks
0 5

W

6
@cos~kxa!1cos~kya!1cos~kza!#. ~16!

To perform our calculation, we consider a cubic lattice w
a lattice constanta3583 Å3, W55.0 eV, V250.4 eV2, and
e f50.67 eV below the conduction Fermi energy, so that
indirect gap is 640 K atT50 K , consistent with the value
found for FeSi.

In Fig. 1 the dimensionless quantityZT as a function of
temperature is shown. We find thatZT is no higher than
0.02, and it is similar to the measurement on FeSi.2

FIG. 1. The temperature dependence of the dimensionless q
tity ZT for bulk material in which the conduction band is a tigh
binding band.



ry

t
i

uc
il
d
u

-
n
ly
n

m
d
tia
m

on
-

er

s

re
3

he
e
s

ed
l

nic
at-
s-
this

we
e a

t
t
s

RAPID COMMUNICATIONS

R15 592 PRB 59WENJIN MAO AND KEVIN S. BEDELL
In a tight-binding model we have particle-hole symmet
The contributions to the thermopower,Q, are opposite for
the particles and holes leading to small values ofQ andZT.
One way of increasingZT is to look for materials that are no
particle-hole symmetric. We can approximate this effect
our calculation by introducing a nearly parabolic band str
ture for the conduction band of the Anderson lattice Ham
tonian. The parameters of this band structure are adjuste
give good agreement with the transport properties in the b
three-dimensional~3D! case.

The figure of meritZ has been calculated for~i! a three-
dimensional bulk material,~ii ! a 2D multilayered superlat
tice, and~iii ! a 1D quantum wire superlattice, using a co
duction band that is nearly parabolic. For a suitab
fabricated superlattice, the conduction electrons are confi
to move within 2D quantum wells or within 1D quantu
wires, and the electrons occupy only the lowest subban
the quantum well or wire. Here we assume infinite poten
barriers and zero barrier widths, following the same assu
tion as that of Hicks and Dresselhaus.10 The dispersion rela-
tion for the conduction electrons in 3D is chosen to be

ek
05e01

W

3S p

a D 2 @ f ~kx!1 f ~ky!1 f ~kz!#, ~17!

where

f ~k!5
1

2 Fk21S 2p

a
2kD 2G

2F S Fk22S 2p

a
2kD 2G

2
D 2

1U0
G 1/2

~18!

and we letW56.0 eV, U050.1@3( p
a)

2/W#2 eV2. In the 2D
case, the dispersion relation becomes

ek
05e01

W

3S p

a D 2 @ f ~kx!1 f ~ky!# ~19!

and in the 1D case, the dispersion relation is

ek
05e01

W

3S p

a D 2 f ~kx!, ~20!

wheree0 is a constant reference energy. In our calculati
we will assume thate f is 0.67 eV below the conduction elec
tron Fermi energy so that the indirect gap atT50 K is 640
K for the 3D case.

In Fig. 2 we show the transport properties versus temp
ture for the three cases:~1! The bulk 3D case;~2! the 2D
planes forming a layered superlattice~hereafter referred to a
2D!; and ~3! the 1D quantum wire superlattice~hereafter
referred to as 1D!. In the last two of these examples we a
calculating the transport for a superlattice embedded in a
structure. In Fig. 3 we show results of our calculation of t
dimensionless quantityZT as function of temperature. W
find that at low temperature,ZT is very large, however, it ha
.
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to be noted that in our calculation, we have not includ
lattice thermal conductivity, which will dominate the tota
thermal conductivity at low temperature, thusZT could be
dramatically decreased. At room temperature, the electro
thermal conductivity is larger than or comparable to the l
tice thermal conductivity. Moreover, for superlattice sy
tems, the phonons can be scattered by the interfaces and
could reduce the lattice thermal conductivity. Therefore
expect that at higher temperature our calculation should b
good estimate forZT.

In Fig. 3 we plotZT for the 3D, 2D, and 1D cases. A
T5300 K, ZT50.2 for the bulk 3D material with an indirec
gap of 640 K. If we now form a superlattice with 2D plane

FIG. 2. The transport properties@~a! electrical conductivity,~b!
thermal conductivity,~c! thermopower# for 3D, 2D, and 1D cases in
which the conduction band is nearly parabolic band.
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or 1D wires of correlated semiconducting material we get
value of 0.65 and 1.4, respectively, forZT. To get a feel for
the importance of the correlations we performed similar c
culations in the superlattice structures with an ordinary se
conductor system. We chose an indirect gap for this se
conductor to be 640 K and adjust the effective mass of
electron and hole bands to giveZT50.2 for the 3D bulk case

FIG. 3. The temperature dependence of the dimensionless q
tity ZT for 3D, 2D, and 1D cases in which the conduction band
nearly parabolic band.
de
ys
e

l-
i-
i-
e

at T5300 K. For the 2D and 1D bulk cases we find 0.24 a
0.4, respectively, forZT. As one might expect, the correla
tions do play an important role and they become more
portant in lower dimensional superlattice structures.

The calculations we have performed suggest that an
creased thermoelectric figure of merit is expected for sup
lattice structures of correlated semiconducting materi
While the calculations are somewhat idealized they do hin
important features one should look for in designing the
materials. The band structure for the conducting electr
should not be particle-hole symmetric. The strong corre
tions are important so materials with relatively flatf or d
bands like Ce3Bi4Pt3 or FeSi should be used. If superlattic
structures can be fabricated from these materials it would
interesting to explore the role of doping on these materi
For example the best thermoelectric materials come fr
doping Bi2Te3 with Sb or Se. These materials, howeve
have not shown much improvement in theZT in a superlat-
tice structure. It would seem from our calculations that t
search for new thermoelectric materials should inclu
strongly correlated semiconductors.

We would like to thank D. A. Broido, J. R. Engelbrech
Z. Wang, and K. B. Blagoev for the discussion on this su
ject. This work was sponsored by DOE Grant N
DEFG0297ER45636.
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