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A cluster updatdthe “operator loop’) is developed within the framework of a numerically exact quantum
Monte Carlo method based on the power series expansion of-@kp) (stochastic series expansjohe
method is generally applicable to a wide class of lattice Hamiltonians for which the expansion is positive
definite. For some important models the operator-loop algorithm is more efficient than loop updates previously
developed for “worldline” simulations. The method is here tested on a two-dimensional anisotropic Heisen-
berg antiferromagnet in a magnetic fie[§0163-18209)50722-4

The path-integral formulation of quantum statistical me-as the loop updates developed within the worldline scheme.
chanics is a useful starting point for numerical studies ofin addition, the method overcomes the problems discussed
interacting many-body systems in cases where positive defabove; all interactions are taken into account in the loop
niteness can be assured. Monte Carlo algorithms based @®@nstruction, there does not appear to be any problems re-
the “Trotter decomposition®? in discrete imaginary time, lated to freezing, and the algorithm is very easily imple-
commonly referred to as “worldline” methods, have beenmented for a wide range of models.
used extensively for studies of quantum spins and bosons, as For definiteness and sake of simplicity, the operator-loop
well as fermions in one d|mens|dm h|gher dimensions the algorithm will here be described for simulations of the an-
fermion path integral is not positive definittRecently, two ~ isotropic S=1/2 Heisenberg model in a magnetic field, de-
important technical developments have lead to significantlfined in standard notation by the Hamiltonian
more efficient simulation algorithms. A generalizaﬁom:_t‘ 1
cluster updates used in classical Monte Carlo simulations _ oz Tioto— 1 o—oty | z
can reduce the autocorrelation times of some simulations by H_J@ED AS"SjJFZ(S1 S *TSS) hZ s @
orders of magnitud®/ thereby enabling studies of models in o o . . o
parameter regimes where standard local updating schemes ¥éere(i.j) denotes a pair of interacting spins on a lattice in
not efficiently explore the configuration space. Algorithms@ny number of dimensions. In addition to serving as an illus-
have also been constructed that work directly in the imagifration for a general SSE operator-loop algorithm, simulation
tematic errors without extrapolations. present with other loop algorithms are avoided. With the

There are, however, still unresolved issues for these imstandard worldiine loop algorithms, freezing occurs for
proved algorithms. For some important models the loop?>1."" The loop construction also does not take into ac-
schemes do not take into account all interactions in the syscount a nonzero magnetic field™= hence making simula-
tem, and hence am posterioriacceptance probability has to tions of largen>0 systems problematic. In the present algo-
be assigned after the loop clusters have been constrlitted. fithm, h is explicitly taken into account in the loop
This degrades the simulation efficiency. Some loop algoconstruction and simulation results show that1 poses no
rithms also break down due to “freezind;**> when the Problems. _ o
probability is high for a single cluster to encompass the For the construction of the SSE configuration space the
whole system. It is also often a nontrivial task to construct artiamiltonian is first written as
algorithm for a new Hamiltonian — it would clearly be de- M
sirable to have a more general method. _

Here a general loop-type updating scheme is constructed H= _‘Jz‘l [Hip=Hzpl, 2
within the “stochastic series expansioniSSH (Refs. 8 and
14) framework. This approach to quantum simulations iswhere Hi, and H,,, are symmetric bond operators corre-
based on sampling the diagonal matrix elements of the poweponding to an interacting spin p&ir(b),j(b));
series expansion of exp(BH) and is related to a less gen-
eral method proposed by Handscofilhe SSE scheme is
as general in applicability as the worldline method, and like
the continuous time variant, it is numerically exdtttere is
also a strong relationship between the two methétSSE 1 .
algorithms have been applied to numerous problems over the H26=5(Sit)Sioy + SimySiw))- 3
past several years, but so far only local updating schemes
have been used. The “operator-loop” algorithm introducedThe constantC only shifts the energy and can be chosen to
here has the same favorable effects on autocorrelation timessure a positive definite expansion for any nonfrustrated lat-

h
— Z Z Z Z
H1p=C~ASi)Sip) t53(Sim + Simy)s
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tice. The number of spins in the system is denotedNpthe

number of bond®1 =Nd for a cubic lattice ind dimensions.
The partition functiorz=Tr{e #"! is expanded as

(- ,8)”

-5 3 2 o) @

in the basi|a)}={|S],S; ~)}. This expansion con-
verges exponentially fon~Ng. A truncation ath=L of

this order is imposed, and a unit operatdg =1 is intro-
duced to rewrite Eq(4) a$**

(L—n)
33 L) e
whereS, denotes a sequence of operator indices;

S =[a1,b1]1,[az,b2]5, ... [aL,b ], (6)

with a;e{1,2} andb; {1, ... M}, or[a;,b;]=[0,0], andn
denotes the number of ncE@O] elements inS_. In prin-
ciple, each term in Eq5) should be multiplied by a factor
(—1)"2, wheren, is the total number of2,b] elements in
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FIG. 1. (a) Representation of aM(«,S,), with n=7, for a
four-spin system. The vertical solid and dashed lines indicate the
spin states acted on by the operatdis, which are represented by
the horizontal bars(b) shows the allowed vertices, corresponding
to the nonzero matrix element$0).

L-n+1
M B(ap(p)|[H1p| ap(p))

where P>1 should be interpreted as probability one. The
state| «(0)) is stored at the beginning of an updating cycle.
Each time an off-diagonal operafd®,b], is encountered the

P([1b],—[0,0]p) =

8

S, . However, for a nonfrustrated lattice this number mustcorresponding spins are flipped so that the states in(&q.
always be even for the matrix element to be nonzero. Theraill be available when needed.

fore, choosingC in Eq. (3) such that all matrix elements of

The second, new type of update is carried out with

H,, are positive, the expansion is positive definite. A Montefixed. Itis then convenient to disregard §f&0] unit opera-
Carlo procedure can therefore be used to sample the terni@r elements irS_ and instead work with sequencgg con-

(«,S) according to their relative weights. Previoudfy,
sampling schemes were devised basedipiocal substitu-
tions of single diagonal operator),0],«++[1,b],, and (ii)

pairs of diagonal and off-diagonal
[1,b]p1[1,b]p2H[2,b]p1[2,b]p2. The diagonal update) will

also be used here. The new operator-loop update involves
any number of diagonal and off-diagonal operators and is

much more efficient than the simple pair updéte

It is convenient to introduce the notatiga(p)) for states
obtained by acting otw) in Eq. (5) with the firstp elements
of the operator string,

p
p))~11 Ha, pla). (7)

and to define state$ay(p)) =[S (P).S{n)(P)) on the
bonds. For a contributing terrtu(L))—|a(0))—|a>

The simulation starts with some random stat¢ and an
“empty” operator string[0,0],, ... [0,0]. . L is chosen ar-

bitrarily and adjusted during the equilibration phase of the

simulation so that it will always be larger than the highest

reached(hence leading to no detectable truncation érror

The diagonal updatg0,0],«[1,b], is carried out sequen-
tially at each positionp=1,... L for which [a,,b,]

=[0,0] or [1,b]. Such an update changes the expansio
powern by +1. Acceptance probabilities that satisfy detailed

balance are obtained using E§) and the fact that there are
M random choices fob in the — direction*

Mﬁ(“b(p)|H1b|ab(p)>

P([0,01,—[1b]y) = -

taining only the Hamiltonian operatof4 b] and[2,b]. The
propagation index will in the following refer to this re-
duced sequence. Further, full bond operators including both

operators the diagonal and off-diagonal terms are defineli=H,

+H,y,. The matrix element in Eq5) can then be written as

M(a,sn>=pf:[l<abp<p>|pr|abp<p—1>>. €]
The nonzero matrix elements are
(L L[Hpll, 1)=C—AlA=h/(2J),
(1.7[HplT,1)=C—A/4+h/(2)),
(L THpl L, 1) =(T,L[Hp|T,1)=C+A/4, (10

<T!l|Hb|l!T>:<l!T|Hb|T!l>:1/2

C should be chosen such that all diagonal matrix elements
are larger thar(or equal t9 zero.M(«,S,) can be graphi-
caIIy represented as a set ofvertices connected to the
propagated spins, as shown in Fida)lfor a system with
four spins. Two spin states “enter” each vertex, and “exit”
in either the same states or flippéthe direction of the

I{)ropagation is clearly irrelevantThe allowed types of ver-

ices, corresponding to the nonzero matrix eleméb@s, are
shown in Fig. 1b). Figure 1a) displays all the full spin
states at each “event,” but clearly there is much redundant
information in this picture. The spin states at the four “legs”
of the n vertices completely specify the full spin configura-
tion (except for spins that happen not to be connected to any
verteX. In order to carry out the operator-loop update, a
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FIG. 2. The four paths on a vertex in the case of the entrance
point being the low-left leg. The entrance and exit legs are indicated
by the arrows. The spins at these legs are flipped in the process; the 0.15 1

states at the other legs remain unchanged. 2 ‘,/\
0.1 ]

linked list of the vertices with their four spin states is con-

structed using the current stdte) and the index sequence 0.05

S, . The list is doubly linked, so that it is possible to move in
either direction from any leg of a given vertex to the leg of
the next or previous vertex connected to the same spin. 0 . e
The principles of the operator-loop update are now quite 0 0.5 1 1.5 2
simple to state: One of the vertices is first chosen at ran- ™
dom, and one of its four legs is randomly selected as the
entrance point. One of its legs is then chosen as the exit poir|1_}eisenberg model with anisotropy parameter 0, 0.5, 1, 2, and 4
from the vertex, according to probabilities to be specified(tOIO 0 bottor. R
below. The four possible vertex paths, in the case of the
entrance being the low-left leg, are illustrated in Fig. 2. The ] . ) ] )
spins at both the entrance and exit legs are flipfdte that ~ the diagonal single-operator update is carried out at all posi-
the entrance and the exit can be the same leg, R, ;h  tions in S, with diagonal operators. The linked list of verti-
which case the net effect is no spin flip; only a reversal ofces is then constructed and a number of loop updates are
direction of movement in the li§tThe chosen exit leg points Performed. The typical size of a loop depends strongly on the
to a leg of another vertex in the linked list, the spin at whichmodel parameters. The number of loops to be constructed in
is also ﬂ|pped From this vertex, an exit |eg is again ChOSen,eaCh CyCle is therefore chosen such that on average a total of
which points to another vertex, etc. After some varying num-~{n) Vvertices are visited. The updated vertices are finally
ber of steps, the exit of the last visited vertex will point to themapped onto the corresponding operator indi@b] and
original entrance point of the update. The loop then closed/ritten into S, .
and the result has been to flip all the spins along the random To demonstrate the efficiency of the new algorithm, re-
path followed in the process. Since the operator list is ults are next presented for two different cases where previ-
periodic structure [because |a(n))=|«(0))], any state ous loop algorithms have encountered difficulfié$®the an-

|a(p)) can be affected in the update, and the sum over statdgotropic model in zero field and the isotropic case with a
|) in Eq. (5) is therefore, implicitly, also sampled in the field. The estimators for various observables of interest have

process. been discussed in detail in Ref. 14. The correctness of the

The probabilities for the four different choices of exits Simulation code was verified by comparing results for a 4
from a given visited vertex are proportional to the matrix X4 lattice with exact results obtained by diagonalizing the
elements(10) for the resulting vertices, i.e., when the en- Hamiltonian. The results to be presented next were obtained
trance and exit spins have been flipped. It is intuitively cleatusing lattices sufficiently large to eliminate finite-size ef-
that this operator-loop procedure satisfies detailed baland€cts. For the lowest temperatures considereds &4 spins
and, in combination with the diagonal single-operator up-Were typically used, and on the order of°lpdating cycles
date, is ergodic in the grand canonical ensentfiletuating ~ Were carried out.

FIG. 3. Magnetic susceptibility vs temperature for the zero-field

total z component of the magnetizatiprincluding all wind- The susceptibility x=B((2;S))%)/N, for h=0 is shown
ing number sectors. A rigorous proof will not be presentedn Fig. 3 for severalA values. Unlike with the standard
here. worldline loop algorithnf:® there are no problems with

Note that one of the path&@—(c) in Fig. 2 will always “freezing” for A>1. The exponential decay ¢f to O as
have zero probability, since the Hamiltoniéh) does not T—0O0 for A>1 reflects the presence of a spin gap. For the
contain operator§,+Sj+ or S'S; . The probability of the isotropic case 4 =1), the results are in perfect agreement
“bounce” process(d) is always in principle nonzero. How- Wwith previous calculation¥® For the XY model A=0), a
ever, in some cases it is possible to exclude this path. Coriemperature-independent behavior is seen at low temperature
sider theXY model in zero field, i.,e A=h=0.1fC=1/2is (T/J=<0.2), in agreement with a prediction of chiral pertur-
chosen, all the nonzero matrix elements in EG€) equal  bation theory’’ Quantitatively, the T-independent value
1/2. Detailed balance is then satisfied also by only choosingshould bey=ps/c?, wherep is the spin stiffness andthe
with equal probabilities, among the two allowed paths-  spin-wave velocity” The resulty=0.2095(3) obtained here
(c). For the isotropic Heisenberg model, i4+=1,h=0,and at T/J=0.05 is consistent with this prediction and recent
with C=1/4, the bounce can also be neglected. The onlyground-state calculations gf andc.'®
allowed path is then always the “switch and reversg) The magnetizatiorm=(X;S{)/N, is shown for an isotro-
(which corresponds to a substitutipt,b]—[2,b] in terms  pic interaction and several strengths of the magnetic field in
of the operators ir§ ), and hence the loop construction is Fig. 4. In all cases, there is a maximumrmbetweenT/J
completely deterministic in this important case. =0.5 and 1, reflecting the crossover between high-

A full updating cycle consists of the following steps: First temperature independent spin behavior and antiferromag-
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02 [ ' ' ' ] cluding external fields, are taken into account in the loop
’ construction, thus eliminating the need farposteriori ac-
ceptance probabilities that restrict the applicability of the
0.15 | previous method¥ Like the continuous-time version of the
worldline algorithm®*! the SSE method is completely ap-
proximation free. The configuration space is, however, dis-
E o1l i crete, and the only floating point operation required in the

—/ﬁ—‘\ simulation is the generation of uniformly distributed random

numbers. In the continuous-time worldline algorithtn&ton

0.05 e ] the other hand, high-precision values of imaginary times
have to be manipulated. One can therefore expect that the

T operator-loop algorithm is faster in many cases, in particular

0 0 0'5 1 1'5 p for the uniform Heisenberg model, where the loop construc-

tion is deterministic. It is also interesting to note that certain

expectation values have simpler estimators in the SSE frame-
FIG. 4. Magnetization vs temperature for the isotropic Heisen-work than for worldline methods:

berg model A=1) in magnetic fieldh/J=2, 1, 1/2, 1/4, and 1/8 The method has here been demonstrated for the aniso-

(top to botton. tropic Heisenberg in a magnetic field. Generalizations to

other models with two-body interactions are straightforward.

The vertices depicted in Fig. 1 only involve other degrees of

zero-field susceptibility in Fig. )3 Note the shallow mini- freedom at the “legs.” For example, for Hubbard-type mod-
mum at lower temperatures févJ<1, reflecting the tem- els the legs can have charge=1 a’nd spins==1, ors
=+1,

peratun_a scale at which the short-range antlferromagnetlc:0 andc=0,2. The paths in Fig. 2 involve changing these
correlations are the strongest.

The simulations are very efficient for any strength of thequantum numbers by some valuesc(ds) at the entrance

field, since eh>0 is taken into account in the loop construc- leg, and by 60".55) at an exit leg in the same _d!rectlon
tion. With other loop algorithm$&2° an a posteriori accep- [paths(a) and (b) in Fig. 2] or (= &c,~ ) at an exitin the

. : . h reverse directiorjpaths(c) and (d)]. Implementation for a
:g?aﬁenfa:g225!%(?:5(‘::13:9223?%insegrgot:aliz)?l(ij';tzsecl:rr]eggacshrtz?ﬁ-ew model thus essentially involves specifying all allowed
. L S ) : R’/ertices, i.e., all nonzero matrix elements of ty@e).
idly with increasing field strength, leading to an autocorrela-
tion time which increases exponentially whiT.2 Previous This work was supported by the NSF under Grant No.
simulation$? were therefore restricted to/T<4. Figure 4 DMR-9712765. Part of the research was carried out during
shows results up th/T=40, and there are no signs of in- visits at the Institut Romand de Recherche Ntumee en
creasing autocorrelation times even for much higher valuesPhysique des MateriaudRRMA), Lausanne, Switzerland,

To conclude, the operator-loop algorithm introduced hereand the School of Physics, the University of New South
has several advantages over other loop methods suggestéthles, Sydney, Australia. | thank these institutions for their
recently*1° The most important is that all interactions, in- hospitality and financial support.
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