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Stochastic series expansion method with operator-loop update
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A cluster update~the ‘‘operator loop’’! is developed within the framework of a numerically exact quantum
Monte Carlo method based on the power series expansion of exp(2bH! ~stochastic series expansion!. The
method is generally applicable to a wide class of lattice Hamiltonians for which the expansion is positive
definite. For some important models the operator-loop algorithm is more efficient than loop updates previously
developed for ‘‘worldline’’ simulations. The method is here tested on a two-dimensional anisotropic Heisen-
berg antiferromagnet in a magnetic field.@S0163-1829~99!50722-4#
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The path-integral formulation of quantum statistical m
chanics is a useful starting point for numerical studies
interacting many-body systems in cases where positive d
niteness can be assured. Monte Carlo algorithms base
the ‘‘Trotter decomposition’’1,2 in discrete imaginary time
commonly referred to as ‘‘worldline’’ methods, have be
used extensively for studies of quantum spins and boson
well as fermions in one dimension~in higher dimensions the
fermion path integral is not positive definite!.3 Recently, two
important technical developments have lead to significa
more efficient simulation algorithms. A generalization4 of
cluster updates used in classical Monte Carlo simulatio5

can reduce the autocorrelation times of some simulations
orders of magnitude,6,7 thereby enabling studies of models
parameter regimes where standard local updating scheme
not efficiently explore the configuration space. Algorithm
have also been constructed that work directly in the ima
nary time continuum,8–11 thus producing results free of sys
tematic errors without extrapolations.

There are, however, still unresolved issues for these
proved algorithms. For some important models the lo
schemes do not take into account all interactions in the
tem, and hence ana posterioriacceptance probability has t
be assigned after the loop clusters have been constructe7,12

This degrades the simulation efficiency. Some loop al
rithms also break down due to ‘‘freezing,’’4,13 when the
probability is high for a single cluster to encompass
whole system. It is also often a nontrivial task to construct
algorithm for a new Hamiltonian — it would clearly be de
sirable to have a more general method.

Here a general loop-type updating scheme is constru
within the ‘‘stochastic series expansion’’~SSE! ~Refs. 8 and
14! framework. This approach to quantum simulations
based on sampling the diagonal matrix elements of the po
series expansion of exp(2bH) and is related to a less gen
eral method proposed by Handscomb.15 The SSE scheme i
as general in applicability as the worldline method, and l
the continuous time variant, it is numerically exact~there is
also a strong relationship between the two methods!.11 SSE
algorithms have been applied to numerous problems ove
past several years, but so far only local updating sche
have been used. The ‘‘operator-loop’’ algorithm introduc
here has the same favorable effects on autocorrelation t
PRB 590163-1829/99/59~22!/14157~4!/$15.00
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as the loop updates developed within the worldline sche
In addition, the method overcomes the problems discus
above; all interactions are taken into account in the lo
construction, there does not appear to be any problems
lated to freezing, and the algorithm is very easily imp
mented for a wide range of models.

For definiteness and sake of simplicity, the operator-lo
algorithm will here be described for simulations of the a
isotropic S51/2 Heisenberg model in a magnetic field, d
fined in standard notation by the Hamiltonian

H5J(
^ i , j &

FDSi
zSj

z1
1

2
~Si

1Sj
21Si

2Sj
1!G2h(

i
Si

z , ~1!

where^ i , j & denotes a pair of interacting spins on a lattice
any number of dimensions. In addition to serving as an ill
tration for a general SSE operator-loop algorithm, simulat
results for this model will show explicitly that problem
present with other loop algorithms are avoided. With t
standard worldline loop algorithms, freezing occurs f
D.1.4,13 The loop construction also does not take into a
count a nonzero magnetic fieldh,12 hence making simula-
tions of largeh.0 systems problematic. In the present alg
rithm, h is explicitly taken into account in the loop
construction and simulation results show thatD.1 poses no
problems.

For the construction of the SSE configuration space
Hamiltonian is first written as

H52J(
b51

M

@H1,b2H2,b#, ~2!

where H1,b and H2,b are symmetric bond operators corr
sponding to an interacting spin pair^ i (b), j (b)&;

H1,b5C2DSi (b)
z Sj (b)

z 1
h

2J
~Si (b)

z 1Sj (b)
z !,

H2,b5
1

2
~Si (b)

1 Sj (b)
2 1Si (b)

2 Sj (b)
1 !. ~3!

The constantC only shifts the energy and can be chosen
assure a positive definite expansion for any nonfrustrated
R14 157 ©1999 The American Physical Society
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tice. The number of spins in the system is denoted byN; the
number of bondsM5Nd for a cubic lattice ind dimensions.

The partition functionZ5Tr$e2bH% is expanded as

Z5(
a

(
n50

`
~2b!n

n!
^auHnua&, ~4!

in the basis$ua&%5$uS1
z ,S2

z , . . . ,SN
z &%. This expansion con-

verges exponentially forn;Nb. A truncation atn5L of
this order is imposed, and a unit operatorH0,051 is intro-
duced to rewrite Eq.~4! as8,14

Z5(
a

(
SL

bn~L2n!!

L! K aU)
i 51

L

Hai ,biUaL , ~5!

whereSL denotes a sequence of operator indices;

SL5@a1 ,b1#1 ,@a2 ,b2#2 , . . . ,@aL ,bL#L , ~6!

with aiP$1,2% andbiP$1, . . . ,M %, or @ai ,bi #5@0,0#, andn
denotes the number of non-@0,0# elements inSL . In prin-
ciple, each term in Eq.~5! should be multiplied by a facto
(21)n2, wheren2 is the total number of@2,b# elements in
SL . However, for a nonfrustrated lattice this number m
always be even for the matrix element to be nonzero. Th
fore, choosingC in Eq. ~3! such that all matrix elements o
H1,b are positive, the expansion is positive definite. A Mon
Carlo procedure can therefore be used to sample the te
(a,SL) according to their relative weights. Previously,14

sampling schemes were devised based on~i! local substitu-
tions of single diagonal operators,@0,0#p↔@1,b#p , and ~ii !
pairs of diagonal and off-diagonal operato
@1,b#p1

@1,b#p2
↔@2,b#p1

@2,b#p2
. The diagonal update~i! will

also be used here. The new operator-loop update invo
any number of diagonal and off-diagonal operators and
much more efficient than the simple pair update~ii !.

It is convenient to introduce the notationua(p)& for states
obtained by acting onua& in Eq. ~5! with the firstp elements
of the operator string,

ua~p!&;)
i 51

p

Hai ,bi
ua&, ~7!

and to define statesuab(p)&5uSi (b)
z (p),Sj (b)

z (p)& on the
bonds. For a contributing term,ua(L)&5ua(0)&5ua&.

The simulation starts with some random stateua& and an
‘‘empty’’ operator string@0,0#1 , . . . ,@0,0#L . L is chosen ar-
bitrarily and adjusted during the equilibration phase of
simulation so that it will always be larger than the highesn
reached~hence leading to no detectable truncation erro!.
The diagonal update@0,0#p↔@1,b#p is carried out sequen
tially at each positionp51, . . . ,L for which @ap ,bp#
5@0,0# or @1,b#. Such an update changes the expans
powern by 61. Acceptance probabilities that satisfy detail
balance are obtained using Eq.~5! and the fact that there ar
M random choices forb in the→ direction;14

P~@0,0#p→@1,b#p!5
Mb^ab~p!uH1,buab~p!&

L2n
,

t
e-

ms

es
is

e

n

P~@1,b#p→@0,0#p!5
L2n11

Mb^ab~p!uH1,buab~p!&
, ~8!

where P.1 should be interpreted as probability one. T
stateua(0)& is stored at the beginning of an updating cyc
Each time an off-diagonal operator@2,b#p is encountered the
corresponding spins are flipped so that the states in Eq~8!
will be available when needed.

The second, new type of update is carried out withn
fixed. It is then convenient to disregard the@0,0# unit opera-
tor elements inSL and instead work with sequencesSn con-
taining only the Hamiltonian operators@1,b# and@2,b#. The
propagation indexp will in the following refer to this re-
duced sequence. Further, full bond operators including b
the diagonal and off-diagonal terms are defined;Hb5H1,b
1H2,b . The matrix element in Eq.~5! can then be written as

M ~a,Sn!5 )
p51

n

^abp
~p!uHbp

uabp
~p21!&. ~9!

The nonzero matrix elements are

^↓,↓uHbu↓,↓&5C2D/42h/~2J!,

^↑,↑uHbu↑,↑&5C2D/41h/~2J!,

^↓,↑uHbu↓,↑&5^↑,↓uHbu↑,↓&5C1D/4, ~10!

^↑,↓uHbu↓,↑&5^↓,↑uHbu↑,↓&51/2.

C should be chosen such that all diagonal matrix eleme
are larger than~or equal to! zero. M (a,Sn) can be graphi-
cally represented as a set ofn vertices connected to th
propagated spins, as shown in Fig. 1~a! for a system with
four spins. Two spin states ‘‘enter’’ each vertex, and ‘‘exi
in either the same states or flipped~the direction of the
propagation is clearly irrelevant!. The allowed types of ver-
tices, corresponding to the nonzero matrix elements~10!, are
shown in Fig. 1~b!. Figure 1~a! displays all the full spin
states at each ‘‘event,’’ but clearly there is much redund
information in this picture. The spin states at the four ‘‘legs
of the n vertices completely specify the full spin configur
tion ~except for spins that happen not to be connected to
vertex!. In order to carry out the operator-loop update,

FIG. 1. ~a! Representation of anM (a,Sn), with n57, for a
four-spin system. The vertical solid and dashed lines indicate
spin states acted on by the operatorsHb , which are represented b
the horizontal bars.~b! shows the allowed vertices, correspondin
to the nonzero matrix elements~10!.
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linked list of the vertices with their four spin states is co
structed using the current stateua& and the index sequenc
SL . The list is doubly linked, so that it is possible to move
either direction from any leg of a given vertex to the leg
the next or previous vertex connected to the same spin.

The principles of the operator-loop update are now qu
simple to state: One of then vertices is first chosen at ran
dom, and one of its four legs is randomly selected as
entrance point. One of its legs is then chosen as the exit p
from the vertex, according to probabilities to be specifi
below. The four possible vertex paths, in the case of
entrance being the low-left leg, are illustrated in Fig. 2. T
spins at both the entrance and exit legs are flipped.@Note that
the entrance and the exit can be the same leg, Fig. 2~d!, in
which case the net effect is no spin flip; only a reversal
direction of movement in the list.# The chosen exit leg point
to a leg of another vertex in the linked list, the spin at whi
is also flipped. From this vertex, an exit leg is again chos
which points to another vertex, etc. After some varying nu
ber of steps, the exit of the last visited vertex will point to t
original entrance point of the update. The loop then clo
and the result has been to flip all the spins along the rand
path followed in the process. Since the operator list is
periodic structure @because ua(n)&5ua(0)&#, any state
ua(p)& can be affected in the update, and the sum over st
ua& in Eq. ~5! is therefore, implicitly, also sampled in th
process.

The probabilities for the four different choices of exi
from a given visited vertex are proportional to the mat
elements~10! for the resulting vertices, i.e., when the e
trance and exit spins have been flipped. It is intuitively cle
that this operator-loop procedure satisfies detailed bala
and, in combination with the diagonal single-operator u
date, is ergodic in the grand canonical ensemble~fluctuating
total z component of the magnetization!, including all wind-
ing number sectors. A rigorous proof will not be presen
here.

Note that one of the paths~a!–~c! in Fig. 2 will always
have zero probability, since the Hamiltonian~1! does not
contain operatorsSi

1Sj
1 or Si

2Sj
2 . The probability of the

‘‘bounce’’ process~d! is always in principle nonzero. How
ever, in some cases it is possible to exclude this path. C
sider theXY model in zero field, i.e.,D5h50. If C51/2 is
chosen, all the nonzero matrix elements in Eqs.~10! equal
1/2. Detailed balance is then satisfied also by only choos
with equal probabilities, among the two allowed paths~a!–
~c!. For the isotropic Heisenberg model, i.e.,D51, h50, and
with C51/4, the bounce can also be neglected. The o
allowed path is then always the ‘‘switch and reverse’’~c!
~which corresponds to a substitution@1,b#↔@2,b# in terms
of the operators inSL), and hence the loop construction
completely deterministic in this important case.

A full updating cycle consists of the following steps: Fir

FIG. 2. The four paths on a vertex in the case of the entra
point being the low-left leg. The entrance and exit legs are indica
by the arrows. The spins at these legs are flipped in the process
states at the other legs remain unchanged.
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the diagonal single-operator update is carried out at all p
tions in SL with diagonal operators. The linked list of vert
ces is then constructed and a number of loop updates
performed. The typical size of a loop depends strongly on
model parameters. The number of loops to be constructe
each cycle is therefore chosen such that on average a tot
;^n& vertices are visited. The updated vertices are fina
mapped onto the corresponding operator indices@a,b# and
written into SL .

To demonstrate the efficiency of the new algorithm,
sults are next presented for two different cases where pr
ous loop algorithms have encountered difficulties:12,13the an-
isotropic model in zero field and the isotropic case with
field. The estimators for various observables of interest h
been discussed in detail in Ref. 14. The correctness of
simulation code was verified by comparing results for a
34 lattice with exact results obtained by diagonalizing t
Hamiltonian. The results to be presented next were obtai
using lattices sufficiently large to eliminate finite-size e
fects. For the lowest temperatures considered, 64364 spins
were typically used, and on the order of 106 updating cycles
were carried out.

The susceptibility,x5b^(( iSi
z)2&/N, for h50 is shown

in Fig. 3 for severalD values. Unlike with the standard
worldline loop algorithm,4,13 there are no problems with
‘‘freezing’’ for D.1. The exponential decay ofx to 0 as
T→0 for D.1 reflects the presence of a spin gap. For
isotropic case (D51), the results are in perfect agreeme
with previous calculations.16 For theXY model (D50), a
temperature-independent behavior is seen at low tempera
(T/J&0.2), in agreement with a prediction of chiral pertu
bation theory.17 Quantitatively, the T-independent value
should bex5rs /c2, wherers is the spin stiffness andc the
spin-wave velocity.17 The resultx50.2095(3) obtained here
at T/J50.05 is consistent with this prediction and rece
ground-state calculations ofrs andc.18

The magnetization,m5^( iSi
z&/N, is shown for an isotro-

pic interaction and several strengths of the magnetic field
Fig. 4. In all cases, there is a maximum inm betweenT/J
50.5 and 1, reflecting the crossover between hig
temperature independent spin behavior and antiferrom

e
d
the

FIG. 3. Magnetic susceptibility vs temperature for the zero-fi
Heisenberg model with anisotropy parameterD50, 0.5, 1, 2, and 4
~top to bottom!.
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netic correlations developing at lowerT ~also seen in the
zero-field susceptibility in Fig. 3!. Note the shallow mini-
mum at lower temperatures forh/J<1, reflecting the tem-
perature scale at which the short-range antiferromagn
correlations are the strongest.

The simulations are very efficient for any strength of t
field, since ah.0 is taken into account in the loop constru
tion. With other loop algorithms,4,10 an a posteriori accep-
tance probability has to be assigned for updates in which
total magnetization changes. This probability decreases
idly with increasing field strength, leading to an autocorre
tion time which increases exponentially withh/T.12 Previous
simulations12 were therefore restricted toh/T&4. Figure 4
shows results up toh/T540, and there are no signs of in
creasing autocorrelation times even for much higher valu

To conclude, the operator-loop algorithm introduced h
has several advantages over other loop methods sugg
recently.4,10 The most important is that all interactions, in

FIG. 4. Magnetization vs temperature for the isotropic Heis
berg model (D51) in magnetic fieldsh/J52, 1, 1/2, 1/4, and 1/8
~top to bottom!.
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cluding external fields, are taken into account in the lo
construction, thus eliminating the need fora posteriori ac-
ceptance probabilities that restrict the applicability of t
previous methods.12 Like the continuous-time version of th
worldline algorithm,9–11 the SSE method is completely ap
proximation free. The configuration space is, however, d
crete, and the only floating point operation required in t
simulation is the generation of uniformly distributed rando
numbers. In the continuous-time worldline algorithms,9–11on
the other hand, high-precision values of imaginary tim
have to be manipulated. One can therefore expect that
operator-loop algorithm is faster in many cases, in particu
for the uniform Heisenberg model, where the loop constr
tion is deterministic. It is also interesting to note that certa
expectation values have simpler estimators in the SSE fra
work than for worldline methods.11

The method has here been demonstrated for the an
tropic Heisenberg in a magnetic field. Generalizations
other models with two-body interactions are straightforwa
The vertices depicted in Fig. 1 only involve other degrees
freedom at the ‘‘legs.’’ For example, for Hubbard-type mo
els the legs can have chargec51 and spins56 1

2 , or s
50 andc50,2. The paths in Fig. 2 involve changing the
quantum numbers by some values (dc,ds) at the entrance
leg, and by (dc,ds) at an exit leg in the same directio
@paths~a! and~b! in Fig. 2# or (2dc,2ds) at an exit in the
reverse direction@paths~c! and ~d!#. Implementation for a
new model thus essentially involves specifying all allow
vertices, i.e., all nonzero matrix elements of type~10!.
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