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Broken symmetries in scanning tunneling images of carbon nanotubes

C. L. Kane and E. J. Mele
Department of Physics, Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvan

~Received 22 February 1999!

Scanning tunneling images of carbon nanotubes frequently show electron distributions that break the local
sixfold symmetry of the graphene sheet. We present a theory of these images that relates these anisotropies to
the off-diagonal correlations in the single-particle density matrix, and allows one to extract these correlations
from the observed images. The theory is applied to images of the low-energy states reflected at the end of a
tube or by point defects, and to states propagating on defect free semiconducting tubes. The latter exhibit a
switching of the anisotropy in the tunneling image with the sign of the tunneling bias.
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Scanning tunneling microscopy and spectroscopy i
powerful tool for studying the structural and electronic pro
erties of carbon nanotubes at the atomic scale. Severa
perimental groups have reported tunneling images of isola
single wall carbon nanotubes1,2 and of tubes packed into
bundles or ‘‘ropes.’’3 In some cases these measureme
have allowed a direct determination of the diameters
wrapping vectors for the tubes and these observations, c
bined with scanning tunneling spectroscopy, have confirm
the idea that the semiconducting or conducting behavior
tube is controlled by its wrapping vector.1,2

However, scanning tunneling microscopy~STM! images
of these systems obtained at low bias voltages conta
number of surprising features. At low bias voltages the i
ages rarely display the full sixfold lattice symmetry ev
when the underlying graphene lattice is undistorted. Inste
these images frequently contain a broken symmetry in
form of ‘‘striped’’ patterns in which maxima in the electro
density are observed in bond chains that spiral around
tube.1–3 In some images superlattice structures are pre
with a period commensurate with but larger than that of
underlying graphene sheet.4 Moreover, energy resolved im
ages of short tubes show standing waves characteristi
individual eigenstates that also have a period longer than
of the graphene lattice.5

In special cases broken translational or rotational sym
tries obtained in an STM image can be attributed to asy
metries in the tunneling tip.6 In this paper we point out tha
asymmetric images are expected even in anideal tunneling
experiment and contain important information about the lo
lying electronic states in these systems. The asymmetries
interference patternsthat are sensitive to the coherence b
tween the ‘‘forward’’ and ‘‘backward’’ moving electronic
states propagating on the tube walls. This can arise f
backscattering from tube ends, from various defects on
tube walls, and even from propagation in a translationa
invariant potential on a semiconducting tube. We show t
these interference patterns in the tunneling images are fin
prints that directly probe the off-diagonal correlations in t
single-particle density matrix. We provide a theory for e
tracting these correlations from the observed images. T
effect is illustrated with several examples of the tunnel
densities of states calculated for defect free tubes and
tubes with point defects.
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The low-lying electronic states on a carbon nanotube
derived from the propagating states near the ‘‘Fermi poin
of an isolated graphene sheet located at the Brilloun-z
corners shown in the lower panel of Fig. 1.7,8 There are two
inequivalent points that we will refer to as K5K0 and K8
52K0. Wrapping the graphene sheet into a cylinder
quires that the electronic wave functions satisfy perio
boundary conditionsC(rW1TW m,n)5C(rW) whereTW m,n5mtW1

1ntW2 gives the wrapping vector around the tube circumf
ence expressed in terms of the two primitive graphite tra
lation vectorstW15(1/2,A3/2) andtW25(21/2,A3/2). When

FIG. 1. Low-energy electronic spectra for a conducting tube~a!
and for a semiconducting tube~b!. The lower panel~c! shows the
momenta in the first two stars in reciprocal space that describe
local tunneling density of states in an STM experiment.
R12 759 ©1999 The American Physical Society
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mod(m2n,3)50 the Bloch wavesexactly atthe K and K8
points are allowed quantized waves on the tube. This lead
the metallic band structure in Fig. 1~a!. In contrast, when
mod(m2n,3)5(1,2) the allowed quantized waves do n
intersect K and K8, which leads to a semiconducting gap
the electronic spectrum as shown in Fig. 1~b!.

The spectrum of Fig. 1~a! describes the propagatin
modes of a defect free conducting tube. However, th
waves can be reflected from tube ends or from defects a
the tube. The interference between the forward and backw
moving waves produces a spatial modulation of the cha
density. Since the carbon nanotubes have two forward
backward moving channels~associated with the K and K8
points shown in Fig. 1! the resulting interference pattern
have a particularly rich structure. The coherent superposi
of the forward and backward moving components of
scattering states produces off-diagonal correlations in
density matrix at energyE,

rab~E!5^ca
†d~E2H!cb&, ~1!

whereH is the Hamiltonian anda is a four component index
specifying the left and right moving bands at the K and8
points.

To derive the local tunneling density of states from t
density matrix in Eq.~1! we represent the Bloch wave
ca(rW) as a sum atomic orbital centered on sitestWm in cells
TW n

ca~rW !5(
m,n

gmaeikWa•TW nf ~rW2tWm2TW n!, ~2!

wheregma are the amplitudes for the Bloch state on sitesm.
These Bloch waves can be represented as an expansi
reciprocal lattice vectors

ca5(
m,n

gmae2 i (kWa1GW n)•tWmF~ ukWa1GW nu!ei (kWa1GW n)•rW. ~3!

For tunneling from a tip that is smooth on a scale of t
atomic spacing,F(q) decreases rapidly for largeq. In the
following we will truncate this expansion, keeping onlyGW ’s
in the lowest ‘‘star’’ ofkWa1GW . This becomes exact when th
STM tip is sufficiently high above the surface.9 Including
higher Fourier components does not significantly change
conclusions. We also assume the tip is isotropic, so wit
the first starF(ukW1GW u) is independent ofGW .

The local density of states at energyE can be expressed

r~rW,E!5ca* ~rW !rab~E!cb~rW !. ~4!

It is useful to characterize the tunneling image in terms of
longest wavelength Fourier components. Coupling betw
bands at the same K point leads to images with the per
icity of the lattice. These are described by Fourier com
nents in the first star of reciprocal lattice vectorsqW 1i5GW i ,
indicated in Fig. 1. On the other hand, coupling between
two K points leads to modulations with aA33A3 superlat-
tice, which are described by the ‘‘A3’’ star, qW A3i5KW i . The
discussion is further simplified by projecting onto the ‘‘tr
angular harmonics’’ defined in each star to be
to
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e2p imn/3E d2re2 iqW pn•rWr~rW !, ~5!

with p51 or A3 andm521,0,1. Combining Eqs.~1!–~5!
yields a simple expression for the Fourier compone
rpm(E) in terms of the density matrixrab(E).

We first consider the effects of reflection either from t
end of the tube or from an impurity. The reflection of wav
associated with the K and K8 points is characterized by a 2
32 matrix of complex reflection amplitudes. This matr
contains three independent amplitudes labeledr a , r b , and
r m in Fig. 1~a!. These describe, respectively, large mome
tum scattering from K→K8, K8→K, and small momentum
scattering at the K and K8 points. The equality between th
two amplitudes described byr m follows from time-reversal
symmetry. These reflection amplitudes depend on the
tailed structure of the scatterer, although for special h
symmetry scatterers its form can be constrained by sym
try. In the following, we consider an infinitely long tube, s
that the density matrix is diagonal in the basis of scatter
states, which are a superposition of incoming and reflec
waves.

The large momentum scattering amplitudesr a and r b il-
lustrated in Fig. 1 produce a modulation of the tunneli
density of states~TDOS! in the A3 star. For a conducting
tube we find that the TDOS measured at energyE and at a
distance x from a point scatterer has the Fouri
coefficients10

rA30~E!5
1

2
N~E!~r be2iQx2r a* e22iQx!,

rA361~E!5
1

2
N~E!e6 iu~r be2iQx1r a* e22iQx!, ~6!

whereN(E) is the density of states,Q5E/\vF , vF is the
Fermi velocity, andu is the chiral angle that orients th
zigzag bond direction with respect to the tube axis~i.e., u
50 defines a tube with an armchair wrapping!. The depen-
dence of the TDOS onr a and r b is most clearly seen for
tunneling at low bias (E'0). TheQ dependence in Eq.~5!
arises from the fact that the scattered states at nonzero en
are not located precisely at the Fermi points.

As an example in Fig. 2 we display the calculated TDO

FIG. 2. Local tunneling densities of states for a@10,10# tube in
the presence of reflection from point defects. The left panel show
tunneling image that is modulated in aA33A3 pattern and the right
panel shows a ‘‘primitive’’ 131 spiral striped pattern that breaks
mirror symmetry of the armchair tube.
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at E50 for the valuesr a5r b51 on an armchair tube. Th
scattering amplitudes produce aA33A3 modulation of the
tunneling image in which the bond charges are enhanced
superlattice of bonds oriented along the circumferential
rection of the tube. SimilarA33A3 modulations occur in the
presence of impurities on the surface of graphite.11 Those
patterns follow from the two-dimensional scattering betwe
the K and K8 points in the graphite plane.

The small momentum backscattering amplitudesr m pro-
ducecell periodicmodulations of the TDOS that can non
theless break the rotational symmetry of the image. Th
effects are produced by a modulation of the Fourier com
nents of the TDOS in the first star of reciprocal lattice ve
tors GW n shown in Fig. 1. Using the expansion in triangul
harmonics in Eq.~5! we find10

r10~E!5N~E!~211 iA3 Re@r me2iQx# !

r161~E!57 iN~E!e6 iu Im@r me2iQx#. ~7!

Interesting structure in the TDOS is produced by the ima
nary part ofr161. This generally occurs for any chiral tub
with uÞ0, but it canalso occur for a nonchiral armchai
tube,u50, when theq'0 backscattering amplituder m de-
velops a nonvanishing imaginary part. This leads to the
terference pattern shown in the right panel of Fig. 2, in wh
a bond density wave is deflected into a spiral pattern aro
the axis of the armchair tube. We find that a reflection a
plitude with this symmetry can be produced by any po
defect or end cap which breaks the two sublattice symm
of the underlying graphene sheet.

Semiconducting tubes with mod(m2n,3)Þ0 have a gap
in the low energy spectrum as shown in Fig. 1~b!. This gap
arises from a coherent superposition of forward and ba
ward moving components that is required for the wave fu
tion to satisfy periodic boundary conditions around the tu
waist. Exactly at the band edges one obtains a perfect st
ing wave that contains an equal admixture of forward a
backward propagating waves. Note, however, that the ba
scattering responsible for these states does not result
reflection from an isolated point defect, but instead ari
from the presence of a ‘‘mass’’ operator in the low-ener
Hamiltonian8 that preserves the lattice translational symm
try, and breaks its rotational symmetry. Remarkably, th
symmetry of this ‘‘mass’’ term depends sensitively on t
wrapping vector and allows one to distinguish mod(m
2n,3)51 from mod(m2n,3)52 tubes. To do this we de
fine the chiral indexs5(21)mod(m2n,3). Then we find that
the tunneling density of states for a semiconducting tu
with chiral indexs, chiral angleu, and gap 2D is given by10

r10~E!52N~E! r161~E!56 isN~E!e6 iuD/E. ~8!

In Fig. 3 we display tunneling densities of states calcula
for the band-edge states (E56D) on tubes with wrapping
indices @m,n#5@12,7#, @14,6#, and @17,0# ~zigzag!. These
three tubes have a common chiral indexs51 and chiral
angles that vary between 8.6° and 30°. The band-edge s
imaged at positive and negative bias havecomplementary
structures, that is, the superposition of the two images g
an image with perfect sixfold symmetry although each ima
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separately breaks the sixfold symmetry. For chiral ang
nearu'0 the tunneling images consist of a series of comp
mentary spiral stripes. However, the TDOS chang
smoothly as a function of chiral angle, so that as one
proaches the zigzag structure the negative energy state
enhanced in a pattern of isolated bonds in the structure, w
the density for the positive energy states is confined t
connected zigzag bond chain. Note that the symmetry bre
ing terms inr161 depend on the product of the chiral inde
and the energy. Thus for a@12,8# tube that has a chiral inde
21 the symmetries of the positive and negative energy s
tions are reversed.

Figure 3 shows that for semiconducting tubes the tunn
ing images obtained near the band edges break the l
point symmetry of the graphene sheet, and that for a gi
tube the sign of the symmetry breaking is switched by
versing the bias of the tunneling tip. Observation of suc
reversal in the tunneling image would provide a striki
identification of the chiral indexs of a semiconducting tube
even when the wrapping indices@n,m# cannot be resolved
Moreover, this reversal would clearly distinguish this effe

FIG. 3. Complementary tunneling densities of states for the
band edges of three semiconducting chiral tubes with the same
ral index. The left panel gives the image for tunneling into a ba
edge state at negative energy (E52D), and the right panel gives
the corresponding image at positive energy (E5D). The images are
for tubes with wrapping indices@12,7# ~top!, @14,6# ~middle!, and
@17,0# ~bottom!. In each case the image is rotated so that the t
axis is directed along the horizontal.
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from a tip artifact.6 We should note that several experimen
have already suggested that a tube in contact with a cond
ing substrate can be doped ‘‘p’’ type1 and so one needs t
correct such a measurement for the offset in the chem
potential for any such unintentionally ‘‘doped’’ tube. On
also needs to ensure that the tunneling is carried out in
energy window where only one azimuthal subband is acc
sible, since the symmetries of the tube eigenstates alter
in successive conduction or valence subbands, tendin
suppress the anisotropy in the tunneling images.

The data presented in Figs. 2 and 3 demonstrate that s
ning tunneling images of carbon nanotubes are very sens
to the nodal structure of the underlying electronic state9

Indeed at low energy these images are probing the inte
structure ofindividual ~or at best a small number! of elec-
tronic eigenstates on the tube surface. The appearanc
these broken symmetry patterns in a tunneling image d
not imply large structural perturbations to the covale
graphene network. Indeed the data presented here are c
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lated for structures that areall unstrained and perfectly lo
cally sixfold symmetric. These density patterns do requ
coherence between forward and backward propaga
waves. In fact a quantitative analysis of these images ca
used to extract off-diagonal correlations in the density ma
in Eq. ~1! responsible for these patterns. These data can
be used to extract the scattering matrix, which character
the internal structure and symmetry of various scatter
centers, and to identify the wrapping vector for semicondu
ing tubes. Finally, we remark that the off-diagonal corre
tions responsible for these patterns could also arise du
interactions with a substrate, interactions between tubes
rope or due to electron-electron interactions.
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