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Broken symmetries in scanning tunneling images of carbon nanotubes
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Scanning tunneling images of carbon nanotubes frequently show electron distributions that break the local
sixfold symmetry of the graphene sheet. We present a theory of these images that relates these anisotropies to
the off-diagonal correlations in the single-particle density matrix, and allows one to extract these correlations
from the observed images. The theory is applied to images of the low-energy states reflected at the end of a
tube or by point defects, and to states propagating on defect free semiconducting tubes. The latter exhibit a
switching of the anisotropy in the tunneling image with the sign of the tunneling bias.
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Scanning tunneling microscopy and spectroscopy is a The low-lying electronic states on a carbon nanotube are
powerful tool for studying the structural and electronic prop-derived from the propagating states near the “Fermi points”
erties of carbon nanotubes at the atomic scale. Several esf an isolated graphene sheet located at the Brilloun-zone
perimental groups have reported tunneling images of isolategorners shown in the lower panel of Fig”4 There are two
single wall carbon ananotubje% and of tubes packed into jnequivalent points that we will refer to as=KK, and K’
bundles or “ropes.” In some cases these measurements- K  Wrapping the graphene sheet into a cylinder re-
have allowed a direct determination of the diameters angires that the electronic wave functions satisfy periodic
wrapping vectors for the tubes and these observations, com- . R - > -
bined with scanning tunneling spectroscopy, have confirmegoundary conditions (r+Tp ) =W(r) where Ty, ,=mmn,
the idea that the semiconducting or conducting behavior of a N7 gives the wrapping vector around the tube circumfer-
tube is controlled by its wrapping vectbf. ence expressed in terms of the two primitive graphite trans-

However, scanning tunneling microscofTM) images lation vectors;—l=(1/2,\/§/2) and ;—2:(—1/2,\/5/2)_ When
of these systems obtained at low bias voltages contain a
number of surprising features. At low bias voltages the im- En
ages rarely display the full sixfold lattice symmetry even
when the underlying graphene lattice is undistorted. Instead, Jm 0.5 m
these images frequently contain a broken symmetry in the
form of “striped” patterns in which maxima in the electron . N °'5/>\1
density are observed in bond chains that spiral around the / -°-5/ Ta
tubel=3 In some images superlattice structures are present
with a period commensurate with but larger than that of the @)
underlying graphene shekMoreover, energy resolved im-
ages of short tubes show standing waves characteristic of
individual eigenstates that also have a period longer than that o5
of the graphene lattice.

In special cases broken translational or rotational symme-
tries obtained in an STM image can be attributed to asym-
metries in the tunneling tip.In this paper we point out that
asymmetric images are expected even indeal tunneling
experiment and contain important information about the low-
lying electronic states in these systems. The asymmetries are
interference patternghat are sensitive to the coherence be-
tween the “forward” and “backward” moving electronic
states propagating on the tube walls. This can arise from
backscattering from tube ends, from various defects on the
tube walls, and even from propagation in a translationally
invariant potential on a semiconducting tube. We show that
these interference patterns in the tunneling images are finger-
prints that directly probe the off-diagonal correlations in the
single-particle density matrix. We provide a theory for ex-
tracting these correlations from the observed images. This FIG. 1. Low-energy electronic spectra for a conducting t(@e
effect is illustrated with several examples of the tunnelingand for a semiconducting tukie). The lower panelc) shows the
densities of states calculated for defect free tubes and fanomenta in the first two stars in reciprocal space that describe the
tubes with point defects. local tunneling density of states in an STM experiment.
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mod(m—n,3)=0 the Bloch wavegxactly atthe K and K
points are allowed quantized waves on the tube. This leads ti
the metallic band structure in Fig(a. In contrast, when
mod(m—n,3)=(1,2) the allowed quantized waves do not
intersect K and K, which leads to a semiconducting gap in *
the electronic spectrum as shown in Figh)l o
The spectrum of Fig. () describes the propagating
modes of a defect free conducting tube. However, these
waves can be reflected from tube ends or from defects along,
the tube. The interference between the forward and backwart
moving waves produces a spatial modulation of the charge ) N )
density. Since the carbon nanotubes have two forward and F!G- 2. Local tunneling densities of states fof 1,10 tube in
backward moving channel@ssociated with the K and 'K the presence of reflegtlon from pomt defects. The left panel §howsa
points shown in Fig. JLthe resulting interference patterns tunneling image that is modulated in/8x /3 pattern and the right

have a particularly rich structure. The coherent superpositioﬁn?rnrg'rSsh%;"';;rupgfr?ﬁ:i; r];:: rlla?f’;Lag:mped patter that breaks a
of the forward and backward moving components of the y y '

scattering states produces off-diagonal correlations in the 9
. . 1 ) = R .
density matrix at energg, iy ezﬂ,mn,gf dre - 19on (7). ®)

Pom™3 =
pap(E)=(YLS(E—H) ), (1)

whereH is the Hamiltonian and is a four component index
specifying the left and right moving bands at the K and K
points.

with p=1 or 3 andm=—1,0,1. Combining Eqs(1)—(5)
yields a simple expression for the Fourier components
ppm(E) in terms of the density matrig,z(E).
. . . We first consider the effects of reflection either from the
To derive the local tunneling density of states from theg, g of the tube or from an impurity. The reflection of waves
den§|ty matrix in Eq.(1) we represent the BJOCh WaveS associated with the K and'Kpoints is characterized by a 2
$4(r) as a sum atomic orbital centered on sitgsin cells  x2 matrix of complex reflection amplitudes. This matrix
Th contains three independent amplitudes labelgdr,, and
rm in Fig. 1(@). These describe, respectively, large momen-
@) tum scattering from K-K’, K'—K, and small momentum
scattering at the K and Kpoints. The equality between the
. ) two amplitudes described by, follows from time-reversal
whereyn, are the amplitudes for the Bloch state on sites  symmetry. These reflection amplitudes depend on the de-
These Bloch waves can be represented as an expansionlied structure of the scatterer, although for special high
reciprocal lattice vectors symmetry scatterers its form can be constrained by symme-
try. In the following, we consider an infinitely long tube, so
Y= ymae KatC) TmE (K +G, )eika*Cn T (3)  that the density matrix is diagonal in the basis of scattering
m,n states, which are a superposition of incoming and reflected

For tunneling from a tip that is smooth on a scale of the' oo~
; p The large momentum scattering amplitudgsandry, il-

atomic spacingF(q) decreases rapidly for large. In the lustrated in Fig. 1 produce a modulation of the tunneling

following we will truncate this expansion, keeping orys density of stateTDOS) in the /3 star. For a conducting
in the lowest “star” ofk,+ G. This becomes exact when the tube we find that the TDOS measured at endfggnd at a

STM tip is sufficiently high above the s_u_rfa&dncluding distance x from a point scatterer has the Fourier
higher Fourier components does not significantly change ougpefficients®
conclusions. We also assume the tip is isotropic, so within

the first starF(|k+G|) is independent o6.
The local density of states at enerfycan be expressed

¢a( F) = % ’Ymaeika'Tnf(F_ ;m_ -r-n)!

1 H .
po(E)= EN(E)(rbez'QX— e 2iQx),

p(FE) =% (1) pas(E) (). (4)

It is useful to characterize the tunneling image in terms of its
longest wavelength Four.ier components. Coupling betW,eerhereN(E) is the density of stateQ=E/Avg, v is the
pqnds at the same K point leads to Images W'th.the perIOdlfermi velocity, andé is the chiral angle that orients the
icity of the lattice. These are described by FOl{I’Ier Eompo'zigzag bond direction with respect to the tube afis.,

nents in the first star of reciprocal lattice vectef§=Gi, =0 defines a tube with an armchair wrappinghe depen-
indicated in Fig. 1. On the other hand, coupling between thgjence of the TDOS om, andr, is most clearly seen for

two K points leads to modulations with @f V3 superlat-  tunneling at low bias E~0). TheQ dependence in E45)

tice, which are described by they3” star, 03 =K;. The arises from the fact that the scattered states at nonzero energy
discussion is further simplified by projecting onto the “tri- are not located precisely at the Fermi points.

angular harmonics” defined in each star to be As an example in Fig. 2 we display the calculated TDOS

1 ) ) .
pa=1(E)=5N(E)e™ (rye®P+rie ), (6)
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at E=0 for the values ,=r,=1 on an armchair tube. The

scattering amplitudes produce\® X /3 modulation of the

tunneling image in which the bond charges are enhanced in \ '

superlattice of bonds oriented along the circumferential di- !

rection of the tube. Similag3x \/3 modulations occur in the t
presence of impurities on the surface of graphit@hose

patterns follow from the two-dimensional scattering between S

the K and K points in the graphite plane.

The small momentum backscattering amplitudgspro-
ducecell periodic modulations of the TDOS that can none-
theless break the rotational symmetry of the image. These
effects are produced by a modulation of the Fourier compo-
nents of the TDOS in the first star of reciprocal lattice vec-

tors én shown in Fig. 1. Using the expansion in triangular
harmonics in Eq(5) we find°

p1o(E)=N(E)(—1+i3 Rer 7))

p1+1(E)=FiN(E)e™ "’ Im[r,e¥?]. (7

Interesting structure in the TDOS is produced by the imagi-
nary part ofp;. 1. This generally occurs for any chiral tube
with 6#0, but it canalso occur for a nonchiral armchair
tube, #=0, when theq~0 backscattering amplitudg,, de-
velops a nonvanishing imaginary part. This leads to the in-
terference pattern shown in the right panel of Fig. 2, in which
a bond density wave is deflected into a spiral pattern arounc
the axis of the armchair tube. We find that a reflection am-
plitude with this symmetry can be produced by any point
defect or end cap which breaks the two sublattice symmetry
of the underlying graphene sheet.

Semiconducting tubes with moal—n,3)#0 have a gap

FIG. 3. Complementary tunneling densities of states for the two

in the low energy spectrum as shown in Figb)1l This gap be}qd dedgeTshofltr;tree selmipondtjhcting Chir?l tutbes V;'.ith t.hf sarge ((:jhi'
arises from a coherent superposition of forward and back’[:(‘j '2 ft);'te af n‘z gtailx?:e%;res e_|£nagaen dozhgr:’?ehltnge:rqe? aiv:: i

ward moving components that is required for the wave func- 9 1°ga gﬁ ): ght p g
tion to satisfy periodic boundary conditions around the tubeTthe chresmﬂdmg |m§ge_a:jposut|;/e7ener5y=(1A4) éThe.gE?ges adre
waist. Exactly at the band edges one obtains a perfect starfIr tubes with wrapping indicegl2,7] (top), [14.6] (middle), an

. . . 17,0 (bottom). In each case the image is rotated so that the tube
ing wave that contains an equal admixture of forward and, i< is directed along the horizontal.

backward propagating waves. Note, however, that the back-

scattering responsible for these states does not result fro . .
reflection from an isolated point defect, but instead arisesgqa parately breaks the sixfold symmetry. For chiral angles

» " . hearf~0 the tunneling images consist of a series of comple-
from the presence of a “mass” operator in the low-energy

Hamiltoniar? that preserves the lattice translational symme-mentary spiral stripes. However, the TDOS changes

trv. and breaks its rotational symmetry. Remarkably. the smoothly as a function of chiral angle, so that as one ap-
v, P " y v o Y proaches the zigzag structure the negative energy states are
symmetry of this “mass” term depends sensitively on the

wrapping vector and allows one to distinguish i( enhanced in a pattern of isolated bonds in the structure, while

. the density for the positive energy states is confined to a
—n,3)=1 from modfn—n,3)=2 tubes. To do this we de- . . )
fine the chiral indexs=(— 1)™M-13) Then we find that connected zigzag bond chain. Note that the symmetry break

the tunneling density of states for a semiconducting tubei:g terms inpy.., depend on the product of the chiral index
with chiral indexs, chiral angles, and gap 2 is given by® ndthe energy. Thus for fL2,8] tube that has a chiral index

—1 the symmetries of the positive and negative energy solu-
— — +ig tions are reversed.

p1olE)=—N(E) p1:1(E)==isN(E)e"'"A/E. (8) Figure 3 shows that for semiconducting tubes the tunnel-
In Fig. 3 we display tunneling densities of states calculatedng images obtained near the band edges break the local
for the band-edge state& € = A) on tubes with wrapping point symmetry of the graphene sheet, and that for a given
indices [m,n]=[12,7], [14,6], and [17,0] (zigzag. These tube the sign of the symmetry breaking is switched by re-
three tubes have a common chiral index1 and chiral versing the bias of the tunneling tip. Observation of such a
angles that vary between 8.6° and 30°. The band-edge statesversal in the tunneling image would provide a striking
imaged at positive and negative bias ha@mplementary identification of the chiral indes of a semiconducting tube,
structures, that is, the superposition of the two images givesven when the wrapping indicégs,m] cannot be resolved.
an image with perfect sixfold symmetry although each imageMoreover, this reversal would clearly distinguish this effect
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from a tip artifac® We should note that several experimentslated for structures that am@l unstrained and perfectly lo-
have already suggested that a tube in contact with a conduatally sixfold symmetric. These density patterns do require
ing substrate can be doped “p” typ@nd so one needs to coherence between forward and backward propagating
correct such a measurement for the offset in the chemicalaves. In fact a quantitative analysis of these images can be
potential for any such unintentionally “doped” tube. One ysed to extract off-diagonal correlations in the density matrix
also needs to ensure that the tunneling is carried out in aj Eq. (1) responsible for these patterns. These data can then
energy window where only one azimuthal subband is accesse ysed to extract the scattering matrix, which characterizes
sible, since the symmetries of the tube eigenstates altemnajRe internal structure and symmetry of various scattering
in successive conduction or valence subbands, tending enters, and to identify the wrapping vector for semiconduct-

suppress the anisotropy in the tunneling images. ing tubes. Finally, we remark that the off-diagonal correla-

The data presented in Figs. 2 and 3 demonstrate that SCaflons responsible for these patterns could also arise due to

ning tunneling images of carbon nanotgbes are very Sens't'vﬁeﬁteractions with a substrate, interactions between tubes in a
to the nodal structure of the underlying electronic states.

Indeed at low energy these images are probing the internaPP€ ©' due to electron-electron interactions.

structure ofindividual (or at best a small numbebf elec- It is a pleasure to thank W. Clauss and A.T. Johnson for
tronic eigenstates on the tube surface. The appearance bélpful discussions of their STM images. This work has been
these broken symmetry patterns in a tunneling image doesupported by the NSF under Grants Nos. DMR 95-05425,
not imply large structural perturbations to the covalentDMR 96-32598, and DMR 98-02560, and by the DOE under
graphene network. Indeed the data presented here are caldarant No. DE-FG02-84ER45118.
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