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General analysis of instabilities and oscillations of the sequential tunneling in superlattices
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We present a general analysis of instabilities and oscillations of the sequential tunneling current in super-
lattices, based on the current-voltage characteristic of a single barrier. Our results depend only on the presence
of a negative differential resistance region and are independent of the details of the model. We establish
general conditions for the existence of a stable oscillatory region of current-voltage characteristic of the
superlattice, and for instability leading to current self-oscillation. Our formalism permits a natural connection
to standard results of chaos thedr$0163-1829)50520-]

Following the original suggestion of Esaki and study the consequences of this NDR in a superlattice. We
co-workers!? there has been a great deal of experiméntal will show that stationary electric-field domains, current self-
and theoretic&lwork on resonant tunneling in double barrier oscillations, and chaos are direct consequences of the NDR
quantum well structures and superlattices. Under the righgnder certain conditions. In this sense, our analysis might be
conditions, such structures have current-voltage characterigpplicable to other systems.
tics with regions of negative differential resistan@¢DR), We consider a SL system consistingdfquantum wells
leading to a range of important possible applications. Manyas shown schematically in Fig. 1. An external biass ap-
interesting phenomena related to the NDR have been foun@lied between the two end wells. Current flows perpendicular
in superlatticesSL), ranging from current-voltage oscilla- t0 the SL layers. We make the following basic assumptions
tions on the sequential resonance tunneling platedigur-  throughout our analysigl) Inside each well, the electronic
rent self-oscillationd!~*® and chaod? Self-oscillation has States are described fully by time-independent quantum me-
been observed in both doped and undoped SL systéitts. chanics. This implies that we assume that the well width is
The oscillation can be induced by continuous illumination ofSmaller than the coherence lengt®) Charge carriers are in
a laser light® or by change of dopindt Recently, it has been local equilibrium within each well, so that a chemical poten-

shown that this self-oscillation can also be induced by applyfial can be defined locally. The chemical potential difference
ing an external magnetic field parallel to the SL layers. ~ between two adjacent wells is called the biabetween the

On the theoretical side, it is understood that thé os-  two wells.(3) For a given bia®/ between two adjacent wells,
cillation is related to the formation of stationary electric-field @ currenti (V) passes through the barrier between them. Dif-
domaing® while the current self-oscillation is attributed to ferent wells may have differe{V) functions. Doping and
the motion of a domain boundaty.Different theoretical €xternal perturbations such as a magnetic field can modify
methods include the continuum model approdchnd the (V) by changing the electron states involved in transport.
approach based on the rate equation for charge-carrier deknder these assumptions, we obtain two setN efjuations.
sities in quantum well§’ By introducing a phenomenologi- Charge conservation gives
cal carrier drift velocity curve, the second approach is ca-
pable of mpdeling both the formati_on pf stationary electric- ﬂ:|i—1(,U~i—1—Mi)—|i(Mi—Mi+1), 1)
field domain and current self-oscillations. There are also at
microscppic Green'’s function calculatioﬁ’SWhile th_e mi- while the discrete Poisson equation gives
croscopic approach would be accurate if all the microscopic

parameters and mechanisms were known, it remains a chal-

lenge to deduce the rules of macroscopic behavior from the — u BN

microscopic details. In this paper, we present a general Ko n| p, /%\ T
analysis of instabilities and oscillations due to the existence B .”_i_’_, e U

of NDR in superlattices, under very general conditions. We
make no assumption about the origin of the NDR, and we
dispense with the concept of drift velocity, which is not well
defined in a tunneling situation. We take the single well
characteristic, containing NDR regions, as given rather than F|G. 1. Schematic illustration of an SL system. is the local
starting from a first-principles microscopic model. This NDR chemical potential of théth well. u, and ug are the chemical
may be due to any microscopic mechanism, such as offpotential of left-hand side and right-hand side electrodes, respec-
resonance tunneling, or the Gunn effect® Our goal is to tively. u, — ur=U is the external bias.
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Mi—1= 2t pie =Ky (2 Vv,
Herei=1,2,... N. n; andy; are the excess charge density

and the chemical potential oth well, respectivelyl;(V;) is
the tunneling current through the barrier separatithgand

(i+1)th wells under biasVj=pu;—ui+1. K is a constant &/ {
4112/ e wheree and| are the permittivity and periodicity of al
the SL, respectively. Furthermorgy=pw, and uyi1= ur —

are the chemical potentials of left-hand side and right-hand
side electrodes. Under an external dc hiashere is an extra

constraint
ML~ ur=U. 3 v,
Steady-state solutiorlSSS are determined by the following
set ofN+ 1 equations: FIG. 2. Schematic illustration of the flow of the phase point of a
SL system around an unstable fixed point in the phase space of
o= i) = Li(pmi—pi+1)=0 biases on the wells. The arrows indicate the direction in which the

(4) system is driven. The closed curve is called a limit cycle and cor-
responds to periodic motion of the system.

The strategy of our analysis is as follows. We will first L ) )
analyze the stability of a SSS in order to find conditions forwhen the above condition is violated, i.e., the magnitude of
instability. We then show that current self-oscillations mustthe NDR is larger than the sum of the PDR. These statements
occur if all steady-state solutions are unstable. Then we sho®iMmPply restate the well-known fact that a circuit is stable if
that a SL system has unstable solutions only under certaif/® Series dissipative resistance is larger than the negative

conditions. Let z1;} ={uio} be a SSS. We linearize the equa- differential resistance. So far, our statements are general.
tions around the SSS. Denotd = — i1 VPZMiqo (V) can be different for different wells, and depends, in

general, on the material parameters, well structure, doping
concentration, and other external fields.
To proceed with our analysis, we consider the phase space
- , 0 _f 7 (\/0 of the biases of each well, as schematically shown in Fig. 2,
Bioat kI (Vi) Bi =B kI (VI)E, where for illustration, we consider the space to be a plane. A
N SSS is a point in this space: in mapping language, it is a
i:zo Ei=0, (5)  fixed point of our system, which may be stable or unstable.
The question is, what is the behavior of a system when its
where E; is the time derivative off;, and |i’(V?) is the only fixed point is unstable? Assume that the point labeled
derivative ofl; with respect to the potential differensg at by @ cross in Fig. 2 is the unstable fixed point of the system.
V0. Putting E;=Ae ™, the steady-state solution will be A small deviation from this point will produce drastic con-
stable if and only if all possible. are positive. Otherwise, S€duences, the direction of all flow being outwards from this

the steady solutions;= u;o is unstable. It is easy to show point. However, because the potential diffgrenc_e between
that\ satisfies the following secular equatith: two adjacent wells cannot exceed the applied bias, an un-

stable fixed point must be attractive in regions far away from
N N the fixed point. Local repulsion and global attraction of the
H ()\—aJ)E =0, (6) flow requires the formation of a closed curve around the
=0 =0 A—a unstable fixed point. The physics is exactly the same as in
where ai:kh'(ViO) is proportional to the differential chaos theory where this closed curve is called a limit c§tle.
The process of generating a limit cycle from a fixed point is
often called a Hopf bifurcation. In this simple case, it corre-
sponds to a periodic motion of the system. More complicated
behavior can occur when we do not limit the phase space to
be a plane. We shall come back to this point later.

The next natural question is, under what conditions does
our SL system have only unstable SSS? In order to show that
this is indeed possible, and to establish these conditions, we
will consider a highly idealized model df —1 wells sepa-
rated byN barriers similar to Fig. 1. We will assume that the
tunneling current between any two neighboring wells is de-
scribed by the same piecewise lind&¥) function (Fig. 3

Mo~ pn+1=U.

— Wig, andE; =Vi—Vi°, we obtain the following set of equa-
tions for thekE;:

conductance of théth well at biasV?. This is aNth order
algebraic equation withN roots. Let us order thex’s,
ag<a;<a,---<ay. Then one can show that E) has
one and only one root betwe¢w; ,aj+1].22 Therefore, we
can make three statements about the SG&H&{ uio}). (1)
Equation(6) has only positive roots whesm, >0 for all i, i.e.,
every well is in the positive differential resistan€EDR)
region. Therefore, the SSS is stable in this cé2eThe SSS
must be unstable if two or more wells are in the NDR region,
i.e., p<0 anda;<0. ;>0 fori=2. This statement is not
trivial. (3) There are two possibilities when one of the wells
is in the NDR region while the rest of the wells are in the

PDR region, i.e.ay<<0 anda;>0 for the rest ofi. In the aV, V<F,
small NDR case the steady-state solution is stable if the
NDR is smaller than the sum of all PDR, i.es 1/ag (V)= aF1=B(V—Fy), F<V<F; (7)

<3N 1/a;. In the large NDR case the solution is unstable a(V—AF), V=F,.
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characteristiqsee Fig. 3 becomes smalf How this small

1 Al is achieved—whether by illumination, doping, magnetic

field, or otherwise—is apparently irrelevant. Of course, de-

tailed calculations are required in order to understand how a

L AF J < particular factor changes tH¢V) curve of a well.

RIS 3 It is worthwhile pointing out that our analysis does not
depend on the microscopic mechanism of the NDR. Because
of the generality of the analysis, the results might also be
applicable to other systems such as electronic circuits con-
taining NDR components. In the framework of our general
analysis, bothl (V) oscillation and current self-oscillation
can be attributed to the NDR. The facts that voltage drop
occurs across a barrier and that the number of barriers in a
SL must be an integer lead to only unstable SSS under cer-
tain conditions. Thus our analysis shows that the system has
to undergo self-oscillation or, in principle, a possibly more
complicated motion if the dimensionality of the unstable pa-

For simplicity, we assume lines 1 and 3 have the same slop&2Meter space is larger thar 3. _ _
a. The (V) curve has a negative differential conductance Before we end this paper, we would like to discuss other
(resistanceregion betweerfr; andF, (line 2). The negative possible transport behavior of a SL. We mentioned that the
differential conductance is assumed to have a constant valdinit cycle, and thus the periodic motion, is the outcome of
— B. The meanings oAF, Af, andAl are given in Fig. 3. competition between local rgpulsmn and global attraction of
Substituting this (V) curve into Eq(4), we find the follow-  the flow near an unstable fixed point in phase space. As is
ing results. FoU<NF; or U=N(F,+AF) there is a stable well known in c_ha_os theofy that an_o_ther bifurcation can
SSS with the same potential differende= U/N across each occur when the limit cycle loses stability and becomes repul-
barrier.| = «U/N in the first case anti=«(U—NAF)/N in  Sive locally. An attracting closed tube 2 torus, forms
the second. around the unstable limit cycle. This process might continue,
For the intermediate region df,NF,<U<NF,+AF, leading to the so-called Landau-Hépfroute to chaos. It
we have to consider the casasF/Af<N (i.e., 13<(N  Would be extremely interesting to investigate whether one
—1)/a: the “small NDR” case and AF/Af>N (i.e., 13  ¢an realize the Landau-Hopf route in a SL system.
>(N—1)/a: the “large NDR” case separately, detailed as In summary, we pre;ent a ge_nergl analysis (_)f stability and
follows. oscillations of sequential tunneling in superlattices based on
(8 AF/Af<N (small NDR. Suppose that €U—NF; the current-voltage characteristic of a single well. The sys-
<AF. Then there is a stable SSS with all barriers in a PDREM Is stable if the bias on all the individual wells are in the
region of Fig. 3: one barrier hag=(U— AF)/N+AF (i.e., positive_differential resistanc@PDR) region. The tunneling
it is in the highV region of its characteristionhile all the ~ CUTéNt is stable when the bias of one and only one of the
others haveV=(U—AF)/N and are in the low/ region.  Wells is in the negative differential resistan@¢DR) region
The currentl=a(U—AF)/N. Similarly, if 0<U—NF; while Fhe b|§ls of the rest Of. the wellg is in the p_osmve dif-
—KAE<AF, where 0<k<N— 1. there is a stable SSS with ferential resistanc@DR) region, and if the NDR is smaller

(k+ 1) barriers in the higlv region and the remainder in the than the sum of the v_alues of all _the PD.R; otherwise it is
low V region. The current i$=a[U — (k+ 1)AF]/N. Thus unstable. The current is unstable if the biases of more than

the 1 (U) characteristic of the SL in this range of has the one well is in the NDR region. .Th? system can undergo a
well-known sawtooth form withN oscillationsi®25 No self- limit cycle, and show oscillation in time even under a steady
oscillation can occur voltage. We also show, from an explicit example, that a SL

(b) AF/Af>N (Iarée NDR. Now, we find that a stable can indeed become unstable when the negative differential

SSS is only possible &F — NAf<U—NF,—kKAF<AF. If conductance region becomes almost flat.
0<U-NF;—KAF<AF—NATf, a SSS has at least one bar- One of us(X.R.W.) would like to thank Professor P.
rier in the NDR region, and our previous analysis has showrSheng for drawing his attention to this problem and for much
that such a solution is unstable. The system goes through\aluable advice. He also wants to thank Professor M. Sturge
limit cycle process which may be periodic or chaotic. for many useful suggestions and comments, and for a critical

While our analysis is based on a simplified model of thereading of the manuscript. He would also like to thank the
(V) characteristic of a single barrier, we believe that ourhospitality of the Center for Theoretical Sciences, Taiwan.
conclusion is quite general that small, but positive and nonThe authors would like to acknowledge Professor B. L. Hao
zero, negative differential conductang@ee., large but finite and Professor C. S. Ting for stimulating discussions, and Dr.
NDR) is conducive to self-oscillation. This result explains J. N. Wang and Dr. B. Q. Sun for communicating unpub-
why it is generally found experimentally that self-oscillation lished work. This work was supported by UGC, Hong Kong,
occurs whenAl, the peak to valley difference of tH¢V) through an RGC/DAG grant.
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FIG. 3. Piecewise linear(V) curve whereV is the bias across
one barrier. Lines 1 and 3 have the same slapéine 2 has the
negative differential conductance (NDR=—1/p3).
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