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General analysis of instabilities and oscillations of the sequential tunneling in superlattices
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We present a general analysis of instabilities and oscillations of the sequential tunneling current in super-
lattices, based on the current-voltage characteristic of a single barrier. Our results depend only on the presence
of a negative differential resistance region and are independent of the details of the model. We establish
general conditions for the existence of a stable oscillatory region of current-voltage characteristic of the
superlattice, and for instability leading to current self-oscillation. Our formalism permits a natural connection
to standard results of chaos theory.@S0163-1829~99!50520-1#
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Following the original suggestion of Esaki an
co-workers,1,2 there has been a great deal of experimen3

and theoretical4 work on resonant tunneling in double barri
quantum well structures and superlattices. Under the r
conditions, such structures have current-voltage charact
tics with regions of negative differential resistance~NDR!,
leading to a range of important possible applications. Ma
interesting phenomena related to the NDR have been fo
in superlattices~SL!, ranging from current-voltage oscilla
tions on the sequential resonance tunneling plateau,5–10 cur-
rent self-oscillations,11–13 and chaos.14 Self-oscillation has
been observed in both doped and undoped SL systems.10–12

The oscillation can be induced by continuous illumination
a laser light13 or by change of doping.11 Recently, it has been
shown that this self-oscillation can also be induced by app
ing an external magnetic field parallel to the SL layers.15

On the theoretical side, it is understood that theI -V os-
cillation is related to the formation of stationary electric-fie
domains16 while the current self-oscillation is attributed t
the motion of a domain boundary.17 Different theoretical
methods include the continuum model approach,16 and the
approach based on the rate equation for charge-carrier
sities in quantum wells.17 By introducing a phenomenologi
cal carrier drift velocity curve, the second approach is
pable of modeling both the formation of stationary electr
field domain and current self-oscillations. There are a
microscopic Green’s function calculations.18 While the mi-
croscopic approach would be accurate if all the microsco
parameters and mechanisms were known, it remains a c
lenge to deduce the rules of macroscopic behavior from
microscopic details. In this paper, we present a gen
analysis of instabilities and oscillations due to the existe
of NDR in superlattices, under very general conditions. W
make no assumption about the origin of the NDR, and
dispense with the concept of drift velocity, which is not we
defined in a tunneling situation. We take the single wellI -V
characteristic, containing NDR regions, as given rather t
starting from a first-principles microscopic model. This ND
may be due to any microscopic mechanism, such as
resonance tunneling,19 or the Gunn effect.20 Our goal is to
PRB 590163-1829/99/59~20!/12755~4!/$15.00
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study the consequences of this NDR in a superlattice.
will show that stationary electric-field domains, current se
oscillations, and chaos are direct consequences of the N
under certain conditions. In this sense, our analysis migh
applicable to other systems.

We consider a SL system consisting ofN quantum wells
as shown schematically in Fig. 1. An external biasU is ap-
plied between the two end wells. Current flows perpendicu
to the SL layers. We make the following basic assumptio
throughout our analysis.~1! Inside each well, the electroni
states are described fully by time-independent quantum
chanics. This implies that we assume that the well width
smaller than the coherence length.~2! Charge carriers are in
local equilibrium within each well, so that a chemical pote
tial can be defined locally. The chemical potential differen
between two adjacent wells is called the biasV between the
two wells.~3! For a given biasV between two adjacent wells
a currentI (V) passes through the barrier between them. D
ferent wells may have differentI (V) functions. Doping and
external perturbations such as a magnetic field can mo
I (V) by changing the electron states involved in transpo
Under these assumptions, we obtain two sets ofN equations.
Charge conservation gives

]ni

]t
5I i 21~m i 212m i !2I i~m i2m i 11!, ~1!

while the discrete Poisson equation gives

FIG. 1. Schematic illustration of an SL system.m i is the local
chemical potential of thei th well. mL and mR are the chemical
potential of left-hand side and right-hand side electrodes, res
tively. mL2mR5U is the external bias.
R12 755 ©1999 The American Physical Society
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m i 2122m i1m i 115kni . ~2!

Herei 51,2, . . . ,N. ni andm i are the excess charge dens
and the chemical potential ofi th well, respectively.I i(Vi) is
the tunneling current through the barrier separatingi th and
( i 11)th wells under biasVi[m i2m i 11 . k is a constant
4p l 2/e wheree and l are the permittivity and periodicity o
the SL, respectively. Furthermore,m05mL and mN115mR
are the chemical potentials of left-hand side and right-h
side electrodes. Under an external dc biasU, there is an extra
constraint

mL2mR5U. ~3!

Steady-state solutions~SSS! are determined by the following
set ofN11 equations:

I i 21~m i 212m i !2I i~m i2m i 11!50

m02mN115U. ~4!

The strategy of our analysis is as follows. We will fir
analyze the stability of a SSS in order to find conditions
instability. We then show that current self-oscillations mu
occur if all steady-state solutions are unstable. Then we s
that a SL system has unstable solutions only under cer
conditions. Let$m i%5$m i0% be a SSS. We linearize the equ
tions around the SSS. DenoteVi5m i2m i 11 ,Vi

05m i 210

2m i0, andEi5Vi2Vi
0 , we obtain the following set of equa

tions for theEi :

Ėi 211kIi 218 ~Vi 21
0 !Ei 215Ėi1kIi8~Vi

0!Ei

(
i 50

N

Ei50, ~5!

where Ėi is the time derivative ofEi , and I i8(Vi
0) is the

derivative ofI i with respect to the potential differenceVi at
Vi

0 . Putting Ei5Aie
2lt, the steady-state solution will b

stable if and only if all possiblel are positive. Otherwise
the steady solutionm i5m i0 is unstable. It is easy to show
that l satisfies the following secular equation:21

)
j 50

N

~l2a j !(
i 50

N
1

l2a i
50, ~6!

where a i5kIi8(Vi
0) is proportional to the differentia

conductance of thei th well at biasVi
0 . This is aNth order

algebraic equation withN roots. Let us order thea ’s,
a0<a1<a2•••<aN . Then one can show that Eq.~6! has
one and only one root between@a j ,a j 11#.22 Therefore, we
can make three statements about the SSS ($m i%5$m i0%). ~1!
Equation~6! has only positive roots whena i.0 for all i, i.e.,
every well is in the positive differential resistance~PDR!
region. Therefore, the SSS is stable in this case.~2! The SSS
must be unstable if two or more wells are in the NDR regio
i.e., a0,0 anda1,0. a i.0 for i>2. This statement is no
trivial. ~3! There are two possibilities when one of the we
is in the NDR region while the rest of the wells are in t
PDR region, i.e.,a0,0 anda i.0 for the rest ofi. In the
small NDR case the steady-state solution is stable if
NDR is smaller than the sum of all PDR, i.e.,21/a0

,( i 51
N 1/a i . In the large NDR case the solution is unstab
d

r
t
w
in

,

e

when the above condition is violated, i.e., the magnitude
the NDR is larger than the sum of the PDR. These statem
simply restate the well-known fact that a circuit is stable
the series dissipative resistance is larger than the nega
differential resistance. So far, our statements are gene
I (V) can be different for different wells, and depends,
general, on the material parameters, well structure, dop
concentration, and other external fields.

To proceed with our analysis, we consider the phase sp
of the biases of each well, as schematically shown in Fig
where for illustration, we consider the space to be a plane
SSS is a point in this space: in mapping language, it i
fixed point of our system, which may be stable or unstab
The question is, what is the behavior of a system when
only fixed point is unstable? Assume that the point labe
by a cross in Fig. 2 is the unstable fixed point of the syste
A small deviation from this point will produce drastic con
sequences, the direction of all flow being outwards from t
point. However, because the potential difference betw
two adjacent wells cannot exceed the applied bias, an
stable fixed point must be attractive in regions far away fr
the fixed point. Local repulsion and global attraction of t
flow requires the formation of a closed curve around
unstable fixed point. The physics is exactly the same a
chaos theory where this closed curve is called a limit cycle23

The process of generating a limit cycle from a fixed point
often called a Hopf bifurcation. In this simple case, it corr
sponds to a periodic motion of the system. More complica
behavior can occur when we do not limit the phase spac
be a plane. We shall come back to this point later.

The next natural question is, under what conditions d
our SL system have only unstable SSS? In order to show
this is indeed possible, and to establish these conditions
will consider a highly idealized model ofN21 wells sepa-
rated byN barriers similar to Fig. 1. We will assume that th
tunneling current between any two neighboring wells is d
scribed by the same piecewise linearI (V) function ~Fig. 3!

I ~V!5H aV, V<F1

aF12b~V2F1!, F1,V,F2

a~V2DF !, V>F2 .

~7!

FIG. 2. Schematic illustration of the flow of the phase point o
SL system around an unstable fixed point in the phase spac
biases on the wells. The arrows indicate the direction in which
system is driven. The closed curve is called a limit cycle and c
responds to periodic motion of the system.
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For simplicity, we assume lines 1 and 3 have the same sl
a. The I (V) curve has a negative differential conductan
~resistance! region betweenF1 andF2 ~line 2!. The negative
differential conductance is assumed to have a constant v
2b. The meanings ofDF, D f , andDI are given in Fig. 3.
Substituting thisI (V) curve into Eq.~4!, we find the follow-
ing results. ForU<NF1 or U>N(F11DF) there is a stable
SSS with the same potential differenceVi5U/N across each
barrier.I 5aU/N in the first case andI 5a(U2NDF)/N in
the second.

For the intermediate region ofU,NF1,U,NF11DF,
we have to consider the casesDF/D f ,N ~i.e., 1/b,(N
21)/a: the ‘‘small NDR’’ case! and DF/D f .N ~i.e., 1/b
.(N21)/a: the ‘‘large NDR’’ case! separately, detailed a
follows.

~a! DF/D f ,N ~small NDR!. Suppose that 0,U2NF1
,DF. Then there is a stable SSS with all barriers in a P
region of Fig. 3: one barrier hasV5(U2DF)/N1DF ~i.e.,
it is in the highV region of its characteristic! while all the
others haveV5(U2DF)/N and are in the lowV region.
The current I 5a(U2DF)/N. Similarly, if 0,U2NF1
2kDF,DF, where 0<k<N21, there is a stable SSS wit
(k11) barriers in the highV region and the remainder in th
low V region. The current isI 5a@U2(k11)DF#/N. Thus
the I (U) characteristic of the SL in this range ofU has the
well-known sawtooth form withN oscillations.10,15 No self-
oscillation can occur.

~b! DF/D f .N ~large NDR!. Now, we find that a stable
SSS is only possible ifDF2ND f ,U2NF12kDF,DF. If
0,U2NF12kDF,DF2ND f , a SSS has at least one ba
rier in the NDR region, and our previous analysis has sho
that such a solution is unstable. The system goes throu
limit cycle process which may be periodic or chaotic.

While our analysis is based on a simplified model of t
I (V) characteristic of a single barrier, we believe that o
conclusion is quite general that small, but positive and n
zero, negative differential conductance~i.e., large but finite
NDR! is conducive to self-oscillation. This result explain
why it is generally found experimentally that self-oscillatio
occurs whenDI , the peak to valley difference of theI (V)

FIG. 3. Piecewise linearI (V) curve whereV is the bias across
one barrier. Lines 1 and 3 have the same slopea. Line 2 has the
negative differential conductance2b (NDR521/b).
e,

ue

n
a

r
-

characteristic~see Fig. 3!, becomes small.15 How this small
DI is achieved—whether by illumination, doping, magne
field, or otherwise—is apparently irrelevant. Of course, d
tailed calculations are required in order to understand ho
particular factor changes theI (V) curve of a well.

It is worthwhile pointing out that our analysis does n
depend on the microscopic mechanism of the NDR. Beca
of the generality of the analysis, the results might also
applicable to other systems such as electronic circuits c
taining NDR components. In the framework of our gene
analysis, bothI (V) oscillation and current self-oscillation
can be attributed to the NDR. The facts that voltage d
occurs across a barrier and that the number of barriers
SL must be an integer lead to only unstable SSS under
tain conditions. Thus our analysis shows that the system
to undergo self-oscillation or, in principle, a possibly mo
complicated motion if the dimensionality of the unstable p
rameter space is larger than 3.23

Before we end this paper, we would like to discuss oth
possible transport behavior of a SL. We mentioned that
limit cycle, and thus the periodic motion, is the outcome
competition between local repulsion and global attraction
the flow near an unstable fixed point in phase space. A
well known in chaos theory23 that another bifurcation can
occur when the limit cycle loses stability and becomes rep
sive locally. An attracting closed tube, a 2 torus, forms
around the unstable limit cycle. This process might contin
leading to the so-called Landau-Hopf23 route to chaos. It
would be extremely interesting to investigate whether o
can realize the Landau-Hopf route in a SL system.

In summary, we present a general analysis of stability a
oscillations of sequential tunneling in superlattices based
the current-voltage characteristic of a single well. The s
tem is stable if the bias on all the individual wells are in t
positive differential resistance~PDR! region. The tunneling
current is stable when the bias of one and only one of
wells is in the negative differential resistance~NDR! region
while the bias of the rest of the wells is in the positive d
ferential resistance~PDR! region, and if the NDR is smalle
than the sum of the values of all the PDR; otherwise it
unstable. The current is unstable if the biases of more t
one well is in the NDR region. The system can undergo
limit cycle, and show oscillation in time even under a stea
voltage. We also show, from an explicit example, that a
can indeed become unstable when the negative differe
conductance region becomes almost flat.
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The authors would like to acknowledge Professor B. L. H
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lished work. This work was supported by UGC, Hong Kon
through an RGC/DAG grant.
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