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Born approximation versus the exact approach to carrier-impurity collisions
in a one-dimensional semiconductor: Impact on the mobility
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~Received 4 January 1999!

We study the collision of a one-dimensional~1D! electron with a screened Coulomb impurity in a single-
subband GaAs quantum wire. The exact reflection probability is calculated and shown to drastically differ from
the reflection probability in the Born approximation. As a result, both models also give completly different 1D
electron mobilities. Further, we introduce the exact mean-field screening and show that except for high electron
densities it leads to a quite different reflection probability than the linear mean-field~Lindhard! screening.
Finally, we show that the Boltzmann 1D mobility concept has to be replaced by a more general semiclassical
theory, if in a typical collision the backward reflection occurs with probability close to unity.
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Electrons in a semiconductor quantum wire can be view
as a one-dimensional~1D! electron gas.1 In the diffusive
limit, the mobility of such 1D electron gas is usual
evaluated1,2 from the semiclassical Boltzmann transpo
equation which regards the scattering of a 1D electron
impurities like successive collisions with individual impur
ties. Usually, the collisions are treated in Bo
approximation1,2 and the impurities are screened by the l
ear mean-field~Lindhard! screening.3

In this work the Schro¨dinger equation for the 1D electron
impurity collision problem is solved exactly and the Bo
approximation is found to fail. We also introduce the exa
mean-field screening and find that the linear mean-fi
screening is only justified at high electron densities. Fina
we show that the Boltzmann 1D mobility concept has to
replaced by a more general semiclassical theory if in a ty
cal collision the backward reflection occurs with probabil
close to unity.

We consider an infinite GaAs wire buried in AlxGa12xAs.
The wire axis is associated with thex axis, the wire cross
section in they-z plane isLy3Lz514314 nm. We assume
that only the lowest energy subband is occupied by e
trons. The electron wave function is taken
j(x,y,z)5C11(y,z)eikx/ALx, where Lx is the normaliz-
ation length, k is the wave vector, andC11(y,z)
5A2/Ly cos(py/Ly)A2/Lz cos(pz/Lz).

In semiclassical limit the classical motion of electro
wave packet is interrupted by quantum collisions with in
vidual impurities. In a 1D system this limit can only be ju
tified in presence of some phase-breaking process,4 other-
wise the impurity disorder causes the Anderson localiza
of the 1D electron wave function. We do not consider t
phase-breaking processes4 explicitly but we assume that the
are efficient enough to justify the semiclassical limit. In th
limit one usually applies the Boltzmann equation, whi
gives the 1D electron mobility1,2
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where«(k)5\2k2/2m is the electron energy,m is the elec-
tron effective mass,NL is the 1D electron density,f @«(k)# is
the Fermi distribution, andt(k) is the momentum relaxation
time. For impurities, for simplicity positioned with densit
Nimp on a line parallel to the wire, we have

1

t~k!
5Nimp E

2`

` dk8

2p
W~k,k8!

k2k8

k
, ~2!

whereW(k,k8) is the probability of scattering fromk to k8.
In Born approximation

W~k,k8!5
2p

\
uU~k2k8!u2d@«~k!2«~k8!# ~3!

~Fermi’s golden rule!, where

U~q!5 E
2`

`

dxeixqV~x2x0 ,y0 ,z0! ~4!

is the interaction matrix element—the Fourier transform
the electron-impurity interaction energy

V~x2x0 ,y0 ,z0!52eE dyE dzuC11~y,z!u2

3w~x2x0 ,y,z,y0 ,z0!, ~5!

andw(x2x0 ,y,z,y0 ,z0) is the potential at point (x,y,z) due
to the impurity positioned at (x0 ,y0 ,z0).

The linear mean-field theory of screening gives in 1
~Ref. 3!

U~q!57
G11~q,y0 ,z0!

11x~q!G11,11~q!
, ~6!

where the plus~minus! sign holds for the repulsive~attrac-
tive! interaction,

x~q!5(
k

f ~k!2 f ~k1q!

«~k!2«~k1q!
~7!

is the Lindhard polarizability function,
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G11,11~q!5E dy0E dz0uC11~y0 ,z0!u2G11~q,y0 ,z0!, ~8!

G11~q,y0 ,z0!5
e2

2pes
E dyE dzuC11~y,z!u2

3K0@ uquA~y2y0!21~z2z0!2# ~9!

is the unscreened interaction,K0@X# is the modified Besse
function, andes is the material permittivity.

The full lines in Fig. 1 showV(x2x0 ,y0 ,z0) as a func-
tion of ux2x0u, calculated by Fourier transforming Eq.~6!
back intox space. The results are obtained for an impur
positioned aty05z050. The inset to Fig. 1 shows the Frie
del oscillations.

If the scattering is not weak, instead of using Eq.~3! one
has to solve exactly the Schro¨dinger equation

F2
\2

2m

d2

dx2
1V~x20,y0 ,z0!GFk~x!5

\2k2

2m
Fk~x!, ~10!

whereFk(x) is the scattered 1D wave function. For an ele
tron arriving say from the left-hand side,

Fk~x→2`!5eikx1r ke
2 ikx, ~11a!

Fk~x→`!5tke
ikx, ~11b!

FIG. 1. Electron-impurity interaction energy versus electro
impurity distance~the inset shows the same on a different scale! for
a repulsive impurity positioned in the center of the quantum w
The electron density (NL) and temperature~T! used in the calcula-
tions are indicated. The dotted line shows the unscreened inte
tion and the full line shows the interaction screened by the Lindh
polarizability. When multiplied by21, both results hold for the
attractive interaction. The dashed line shows the repulsive inte
tion screened by exact mean-field screening~see the text!.
y

-

where R(k)5ur ku2 and T(k)5utku2 are the reflection and
transmission probabilities. To obtain exactR(k), we solve
~10! numerically with boundary conditions~11!.

We want to compare the exactR(k) with the R(k) in
Born approximation. In that approximation

Fk~x!5eikx1E
2`

1`

dx8
im

\2k
eikux2x8uV~x820,y0 ,z0!eikx8.

~12!

Comparing ~12! at x→2` with the boundary condition
~11a! one gets the Born reflection probability

R~k!5ur ku25
m2

\4k2
uU~2k!u2. ~13!

In Fig. 2 we compare the exact and Born reflection pro
abilities for an impurity screened by the Lindhard polar
ability ~see Fig. 1 for the impurity potential at 4.2 K). Wit
decreasingk the Born probability exceeds unity and diverg
for k→0, which is obviously not physical. Clearly, the exa
reflection probability does not exceed unity and, unlike t
Born result, depends on the sign of the impurity potent

-

.

c-
d

c-

FIG. 2. Reflection probability versus electron wave vector
various temperatures~T! and electron densities (NL). We assume
that the impurity is positioned in the center of the quantum wire a
the impurity potential is screened by the Lindhard polarizabili
The exact reflection probability is shown in a full line for the a
tractive interaction and in a dashed line for the repulsive interact
The Born result is shown in a dotted line. Arrows indicate the Fe
wave vectorkF or ~if kF is not defined! the mean-energy wave
vectorkm .
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Only at very largek the Born result approaches the exa
one. A small ‘‘saddle’’ atk5kF , seen forNL5108 m21

and T54.2 K, is due to the fact that in a degenerate 1D g
the Lindhard polarizability Eq.~7! is peaked atq52kF ~see
Ref. 3 for details!. For NL5107 m21 the saddle broaden
since the degeneracy is weak.

At 4.2 K, a peculiar effect is seen forNL5107 m21 in
case of the repulsive interaction. The exactR(k) resonantly
drops atk slightly below kF , i.e., the electron resonantl
tunnels through the repulsive impurity. The effect can
understood as follows. Figure 1 shows that forNL
5107 m21 the Lindhard potential exhibits a sma
(;0.3 meV) peak about 50 nm apart from the 35-m
central peak. The potential is thus a triple barrier, which c
be resonantly transparent for certain low-ener
(;0.05 meV) electrons. No resonant tunneling is seen
77 K, since the repulsive potential at 77 K~not shown in
Fig. 1! does not exhibit Friedel oscillations.

Figure 3 shows the reflection probability for a ‘‘remote
impurity positioned at pointx05y050, z0517 nm, i.e.,
separated from the quantum wire by a 10-nm spacer la
One sees again that the Born approximation fails except
very largek.

To see how the above findings affect the 1D mobility@Eq.
~1!#, we rewrite the relaxation time~2! throughR(k). Using
~3! and ~13! we get the equation

1

t~k!
52Nimp

\uku
m

R~k!, ~14!

which is more useful than Eq.~2!. First, it usesR(k) instead
of W(k,2k) and one cannot overlook the failure of the Bo
approximation@e.g., R(k).1]. Second, the failure can b
removed by using Eq.~14! with exactR(k). Table I shows
the 1D mobilities forR(k) taken from Fig. 2, Table II shows
the same forR(k) from Fig. 3 ~for comparative purpose w
keep the sameNimp as in Table I; we recall that the impur
ties are distributed with a linear densityNimp on a line par-
allel to the wire axis!. One sees that the mobility due to th
‘‘Born’’ reflections dramatically differs from the mobility
due to the ‘‘exact’’ reflections, which additionally strong
depends on the sign of the impurity potential.

FIG. 3. The same as in Fig. 2, but for a ‘‘remote’’ impurit
positioned atx05y050, z0517 nm.
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So far we have relied on the Lindhard screening@Eqs.~6!
and ~7!#. Now we argue that in a 1D system also th
Lindhard screening can fail due to the Born approximatio
In the mean-field theory, the impurity at pointr0 induces at
point x the 1D electron density

r~x,r0!5E dk

p
f ~k!$uFk~x!u22ueikxu2%, ~15!

whereFk(x) is given by Eq.~10!. The integral form of the
Poisson equation for the impurity potential reads

V~x2x0 ,y0 ,z0!57G11~x2x0 ,y0 ,z0!

1E
2`

`

dx8G11,11~x2x8!r~x8,r0!,

~16!

where G11(x2x0 ,y0 ,z0) is the Fourier transform of
G11(q,y0 ,z0) andG11,11(x2x0) is the Fourier transform of
G11,11(q). To solve Eq.~16! self-consistently with Eq.~10!,
the Lindhard model takesFk(x) in the Born approximation
and linearizesr(x,r0) with respect to V(x2x0 ,y0 ,z0),
which results in Eqs.~6! and ~7!. We introduce the exac
mean-field screening by solving Eqs.~16! and ~10! numeri-
cally without any approximation.5 Figure 1 shows such re
sults ~dashed lines! for a repulsive impurity6 at y050, z0
50. They significantly differ from the ‘‘Lindhard’’ results
especially at lower density. Figure 4 shows that forNL
5107 m21 the exact screening modifies grossly also the
flection probability~e.g., the resonant tunneling belowkF is
changed to the perfect reflection!.

What remains for discussion is the applicability of th
Boltzmann expressions~1! and ~14!. Let R(k)5R, whereR
is a constant. Equations~1! and ~14! then give m
5(p\RNLNimp /e)21f (0). ForR51 this expression gives a
nonzerom while a correct mobility should be zero becau
each electron moves back and forth between two impurit
This means that Eqs.~1! and ~14! fail to describe the semi-
classical transport, ifR(k) is close to unity in the vicinity of
kF or km . Why is this so?

TABLE I. Electron mobilities (m) for the reflection probabili-
ties from Figs. 2~a!–2~d!. Nimp5106 m21. mB is the Born result,
mA is the result for ‘‘exact’’ reflections from attractive impurities
andmR is the same for repulsive impurities.

Figure 2~a! Figure 2~b! Figure 2~c! Figure 2~d!

mB(m2/Vs) 3.306 29.0 8.69 30.01
mA(m2/Vs) 27.42 72.04 82.9 75.65
mR(m2/Vs) 2.83108 12.07 8.86 17.34

TABLE II. The same as in Table I, but for the reflection pro
abilities from Figs. 3~a! and 3~b!.

Figure 3~a! Figure 3~b!

mB(m2/Vs) 99.7 0.7873106

mA(m2/Vs) 673.9 2.633106

mR(m2/Vs) 86.87 0.2073106
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A general semiclassical description is provided by the f
lowing Monte Carlo simulation. The position~including the
x coordinate! of each impurity is generated at random a
the carriers move classically along the wire. When cross
the x position of an impurity, the carrier is reflected wit
probability R(k) or transmitted with probability 12R(k).
We simulate the mean diffusion distance (Dx2)1/2 during
time t, calculate the diffusion coefficientD, and obtainm
from the Einstein relation. ForR→1 the Monte Carlo simu-
lation gives the expected resultD→0, m→0, because the
electron is classically localized between two discrete im
rities. This effect is not present in the Boltzmann equati
which uses the concept of impurity density rather than
concept of discrete impurities. ForR<1/2 the Monte Carlo
simulation gives the samem as the Boltzmann equation an

FIG. 4. Exact reflection probability for a repulsive impuri
screened by exact mean-field screening~full lines!. The correspond-
ing results for the Lindhard screening~dashed lines! are taken from
Figs. 2~a! and 2~b!.
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justifies the latter approach. Details will be given elsewhe
here we give analytical proof forR51/2 in a nondegenerat
limit. For R51/2 the diffusion in presence of discrete imp
rities can be viewed as a random walking with an avera
step L5Nimp

21 . For N steps one hasDx25NL2, t
5NL/(\uku/m), and D(k)5Dx2/t5L\uku/m. Using D
5^D(k)& and m5eD/kBT we get the result m
5(2e/Nimp)/A2pmkBT, which can also be obtained from
Eqs.~1! and ~14!.

In summary, we have shown that the collision of a 1
electron with an impurity has to be treated exactly, not in
Born approximation. We have also shown that the ex
treatment of the collision needs to be coupled with the ex
mean-field screening of the impurity, because the lineari
mean-field theory is too inaccurate~except for high electron
densities!. Finally, the failure of the Boltzmann 1D transpo
has been demonstrated forR(k)→1 and a general semiclas
sical approach based on the concept of discrete impur
has been proposed. This paper evaluates the above effec
the ~often used1,3! single-subband model and for impuritie
positioned on a line. However, there is no good reason w
these effects should not be equally important in a reali
impurity distribution~their quantitative impact is simply too
huge! or in higher subbands2 ~we see similar effects if we
consider just the first excited subband!.
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