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Born approximation versus the exact approach to carrier-impurity collisions
in a one-dimensional semiconductor: Impact on the mobility
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Institute of Electrical Engineering, Slovak Academy of Sciencébrd¥skacesta 9, 842 39 Bratislava, Slovakia

(Received 4 January 1999

We study the collision of a one-dimensior(dD) electron with a screened Coulomb impurity in a single-
subband GaAs quantum wire. The exact reflection probability is calculated and shown to drastically differ from
the reflection probability in the Born approximation. As a result, both models also give completly different 1D
electron mobilities. Further, we introduce the exact mean-field screening and show that except for high electron
densities it leads to a quite different reflection probability than the linear meantfiegldhard screening.
Finally, we show that the Boltzmann 1D mobility concept has to be replaced by a more general semiclassical
theory, if in a typical collision the backward reflection occurs with probability close to unity.
[S0163-18289)50716-9

Electrons in a semiconductor quantum wire can be vieweavheree (k) =#%2k?/2m is the electron energyn is the elec-
as a one-dimensiongllD) electron gas. In the diffusive  tron effective masd\, is the 1D electron density[ e (k)] is
limit, the mobility of such 1D electron gas is usually the Fermi distribution, and(k) is the momentum relaxation
evaluated? from the semiclassical Boltzmann transporttime. For impurities, for simplicity positioned with density
equation which regards the scattering of a 1D electron oMy, on a line parallel to the wire, we have
impurities like successive collisions with individual impuri-
ties. Usually, the collisions are treated in Born 1 f“ dk’ WOk K’ k—k' 5
approximatioh? and the impurities are screened by the lin- k) ™) 2w (kKD = @
ear mean-fieldLindhard screening. ) N )

In this work the Schidinger equation for the 1D electron- WhereW(k,k") is the probability of scattering frorkto k”.
impurity collision problem is solved exactly and the Born [N Born approximation
approximation is found to fail. We also introduce the exact

. . . . . 2w
mean-field screening and find that the linear mean-field W(k,k")= =—|U(k—k")|28[e(k)—&(k")] 3)
screening is only justified at high electron densities. Finally, h
we show that the Boltzmann 1D _mobiI_ity concept has to b‘?(Fermi’s golden rulg where
replaced by a more general semiclassical theory if in a typi-
cal collision the backward reflection occurs with probability % ,
close to unity. U(q)= f dxe€*IV(x—Xo,Yo,20) (4)

We consider an infinite GaAs wire buried in/&a, _,As. -

The wire axis is associated with theaxis, the wire cross is the interaction matrix element—the Fourier transform of
section in they-z plane isLy XL ,=14X14 nm. We assume the electron-impurity interaction energy
that only the lowest energy subband is occupied by elec-

trons. The electron wave function is taken as Vix— — ol av| dzw 2
£(x,y,2)=V,(y,2)€*/L,, where L, is the normaliz- (X=X0.,Y0.29)=—€| dy| dzZ¥y(y,2)|

ation length, k is the wave vector, andW¥(y,2)

— \2IL, cosmylL,)\2IL, cos(rzIL). X @(X=X0.Y:2.Y0.20), ®)

In semiclassical limit the classical motion of electron andp(x—x,,y,2,Y0,20) is the potential at point(,y,z) due
wave packet is interrupted by quantum collisions with indi-to the impurity positioned atq,Yq,Zo).

vidual impurities. In a 1D system this limit can only be jus-  The linear mean-field theory of screening gives in 1D
tified in presence of some phase-breaking protesther- (Ref. 3

wise the impurity disorder causes the Anderson localization

of the 1D electron wave function. We do not consider the G11(0,Y0,20)

phase-breaking proceséexplicitly but we assume that they U(g)==+ 1+ ()G 14q) (6)
are efficient enough to justify the semiclassical limit. In that s

limit one usually applies the Boltzmann equation, whichwhere the plugminus sign holds for the repulsivéattrac-

gives the 1D electron mobiliﬁ? tive) interaction,
f(k)—f(k+q)
2 X=2 W)
et foc dkk2 « J o(00] @ x e(k)—e(k+q)
= - - T - to y
o Nm? J-o 7 de is the Lindhard polarizability function,
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FIG. 1. Electron-impurity interaction energy versus electron- 107 108 107 103
impurity distancgthe inset shows the same on a different sctile
a repulsive impurity positioned in the center of the quantum wire. k (1/m)

The electron densityN, ) and temperaturél) used in the calcula- ) B

tions are indicated. The dotted line shows the unscreened interac- FIG- 2. Reflection probability versus electron wave vector at
tion and the full line shows the interaction screened by the Lindhard/@rious temperaturegl) and electron densitiesN¢). We assume
polarizability. When multiplied by—1, both results hold for the thatthe impurity is positioned in the center of the quantum wire and
attractive interaction. The dashed line shows the repulsive interadl® impurity potential is screened by the Lindhard polarizability.

tion screened by exact mean-field screer(see the text The exact reflection probability is shown in a full line for the at-
tractive interaction and in a dashed line for the repulsive interaction.
The Born result is shown in a dotted line. Arrows indicate the Fermi

Gy ll(q):J dYOJ d 2|V 11(Y0.20)|2G11(0,Y0, Z0) (8) wave vectorkg or (if kg is not definedl the mean-energy wave

vectork,.
e? —ir |2 12 -
_ 2 where R(k)=|r,|* and T(k)=]t,|* are the reflection and
G11(.Y0,2%0) Zwesf dyf dZ¥1(y,2)] transmission probabilities. To obtain exatk), we solve

5 5 (10) numerically with boundary conditiond 1).
XKollalV(y—yo)+(z=20)*]  (9) We want to compare the exaf(k) with the R(k) in
is the unscreened interactiokiy[ X] is the modified Bessel Born approximation. In that approximation
function, ande, is the material permittivity. . -
The full lines in Fig. 1 show/(x—Xq,Y0,Z) as a func- __jikx LI r_ ikx'
tion of [x—x,|, calculated by Fourier transforming E€f) Pulx) =T+ ffoc dx ﬁzke VO =00, 20)€™
back intox space. The results are obtained for an impurity (12)
positioned atyo=2z7=0. The inset to Fig. 1 shows the Frie-
del oscillations.
If the scattering is not weak, instead of using E3).one
has to solve exactly the Scllinger equation

Comparing (12) at x— —o with the boundary condition
(119 one gets the Born reflection probability

m2

RIO=[rd*=—2 5

2
2 g 2 u(2k)2 13

~om a2 TVX=0Y0,20) | Pu(X) = 5 —Pu(x), (10
dx In Fig. 2 we compare the exact and Born reflection prob-

_ _ decreasing the Born probability exceeds unity and diverges
O (x— — o) =eX4r e 1k (11a  for k—0, which is obviously not physical. Clearly, the exact

' reflection probability does not exceed unity and, unlike the
D (x— o) =t,e'*, (11b Born result, depends on the sign of the impurity potential.
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TABLE I. Electron mobilities ) for the reflection probabili-
ties from Figs. 2a8)—2(d). Njmp= 10° m . ug is the Born result,

(b)-.  T=4.2K

—-

3,10 ua is the result for “exact” reflections from attractive impurities,
= 3 and ug is the same for repulsive impurities.

B 10° ¢

e g Figure Za) Figure 2b) Figure Zc) Figure Zd)

b= -1

o

c 10 g we(M?/Vs) 3.306 29.0 8.69 30.01

2 1021 wa(m?/Vs) 27.42 72.04 82.9 75.65

§ E ur(m?/Vs)  2.8x10° 12.07 8.86 17.34

©

—
o-
w

So far we have relied on the Lindhard screenikgs.(6)
and (7)]. Now we argue that in a 1D system also the
Lindhard screening can fail due to the Born approximation.
In the mean-field theory, the impurity at poinf induces at

o ] _ pointx the 1D electron density
FIG. 3. The same as in Fig. 2, but for a “remote” impurity

positioned atky=Yy,=0, zo=17 nm.

10

dk _
picto)= | 0000, a9
Only at very largek the Born result approaches the exact
one. A small “saddle” atk=kg, seen forN,=10° m™!  where®(x) is given by Eq.(10). The integral form of the
and T=4.2 K, is due to the fact that in a degenerate 1D gadoisson equation for the impurity potential reads
the Lindhard polarizability Eq(7) is peaked atj=2kg (see

Ref. 3 for details. For N, =10" m™! the saddle broadens V(X=X0,Y0,20) = F G11(X—X0,Y0,Z0)
since the degeneracy is weak. -
At 4.2 K, a peculiar effect is seen fo¥, =10" m~* in +J’ dx' Gy 14X=X")p(x' 1),
case of the repulsive interaction. The exR¢k) resonantly —
drops atk slightly below kg, i.e., the electron resonantly (16)

tunnels through the repulsive impurity. The effect can be

understood as follows. Figure 1 shows that fo&f, ~ Where Gii(X—Xo.Y0,20) is the Fourier transform of
=10' m™! the Lindhard potential exhibits a small G11(d.Y0.20) and Gy 1(X—Xo) is the Fourier transform of
(~0.3 meV) peak about 50 nm apart from the 35-meVGi111(d). To solve Eq.(16) self-consistently with Eq(10),
central peak. The potential is thus a triple barrier, which carthe Lindhard model take$(x) in the Born approximation
be resonantly transparent for certain low-energyand linearizesp(x,ro) with respect toV(X—Xg,Yo,2o),
(~0.05 meV) electrons. No resonant tunneling is seen awhich results in Eqs(6) and (7). We introduce the exact
77 K, since the repulsive potential at 77 (Kot shown in Mean-field screening by solving E¢d.6) and (10) numeri-

Fig. 1) does not exhibit Friedel oscillations. cally without any approximatiof.Figure 1 shows such re-
Figure 3 shows the reflection probability for a “remote” Sults (dashed linesfor a repulsive impurity at y,=0, z,
|mpur|ty positioned at pOinth:yOZO,Zo: 17 nm, i_e_, =0. They Significantly differ from the “Lindhard” results

separated from the quantum wire by a 10-nm spacer IayeF%Sp(‘;Cia'|_yl at lower density. Figure 4 shows that féy
One sees again that the Born approximation fails except forr10° m™~~ the exact screening modifies grossly also the re-

very largek. flection probability(e.g., the resonant tunneling beldw is
To see how the above findings affect the 1D mobilig.  changed to the perfect reflectjon
(1)], we rewrite the relaxation time?) throughR(k). Using What remains for discussion is the applicability of the
(3) and(13) we get the equation Boltzmann expressiond) and(14). Let R(k) =R, whereR
is a constant. Equationg1l) and (14) then give u
1 h|K| = (thNLNimp/e)*lf(O). ForR=1 this expression gives a
m=2NimpW R(k), (14  nonzerou while a correct mobility should be zero because

each electron moves back and forth between two impurities.
which is more useful than Eq2). First, it usesR(k) instead  1his means that Eq¢l) and (14) fail to describe the semi-

of W(k, —k) and one cannot overlook the failure of the Born classical transp_ort, |_IR(k) is close to unity in the vicinity of
approximation[e.g., R(k)>1]. Second, the failure can be Kr OF Km. Why is this so?

removed by using Eq.14) with exactR(k). Table | shows
the 1D mobilities forR(K) taken from Fig. 2, Table 1l shows
the same foR(k) from Fig. 3 (for comparative purpose we
keep the sam&l,,, as in Table I; we recall that the impuri-

TABLE Il. The same as in Table I, but for the reflection prob-
abilities from Figs. 8a) and 3b).

ties are distributed with a linear densit,, on a line par- Figure 33 Figure 3b)
allel to the wire axig One sees that the mobility due to the we(m?/Vs) 99.7 0.78% 10°
“Born” reflections dramatically differs from the mobility wa(m?/Vs) 673.9 2.6X%10°
due to the “exact” reflections, which additionally strongly wr(M?/Vs) 86.87 0.20% 10°

depends on the sign of the impurity potential.
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(b) justifies the latter approach. Details will be given elsewhere,
here we give analytical proof fdR=1/2 in a nondegenerate
limit. For R=1/2 the diffusion in presence of discrete impu-
rities can be viewed as a random walking with an average
step L=Nj5. For N steps one hasAx?=NL?t
=NL/(%|k|/m), and D(k)=Ax?/t=L#|k|/m. Using D
L =(D(k)) and u=eD/kgT we get the result u
"I ¢kF g = (2€e/Nijmp)/V2mmksT, which can also be obtained from
WY TR BT BRI, ) Egs.(1) and(14).
107 108 10’ 108 In summary, we have shown that the collision of a 1D
electron with an impurity has to be treated exactly, not in the
k (1/m) Born approximation. We have also shown that the exact
treatment of the collision needs to be coupled with the exact
mean-field screening of the impurity, because the linearized
mean-field theory is too inaccuratexcept for high electron
densitie$. Finally, the failure of the Boltzmann 1D transport
has been demonstrated fek) —1 and a general semiclas-
sical approach based on the concept of discrete impurities
has been proposed. This paper evaluates the above effects for
the (often use&? single-subband model and for impurities
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reflection probability

FIG. 4. Exact reflection probability for a repulsive impurity
screened by exact mean-field screerifiod) lines). The correspond-
ing results for the Lindhard screenifidashed lingsare taken from
Figs. 4a) and 2b).

A general semiclassical description is provided by the fol-
lowing Monte Carlo simulation. The positigincluding the
x coordinatg of each impurity is generated at random and ositioned on a line. However, there is no good reason wh
the carriers move classically along the wire. When crossin h p h Id b ’ v i good i Y
the x position of an impurity, the carrier is reflected with . ese effects should not be equally important in a realistic

probability R(k) or transmitted with probability  R(k).  mPurity distribution(their quantitative impact is simply too
We simulate the mean diffusion distancax®)Y'2 during huge or in higher subbandswe see similar effects if we

. e . . consider just the first excited subband

time t, calculate the diffusion coefficierld, and obtainu

from the Einstein relation. FdR— 1 the Monte Carlo simu- M.M. acknowledges support from the J. W. Fulbright
lation gives the expected resut—0, u—0, because the Commission and from the University of lllinois at Urbana
electron is classically localized between two discrete impu-during his stay at the Beckmann Institute. He thanks Profes-
rities. This effect is not present in the Boltzmann equationsor Karl Hess for his kind hospitality and for numerous im-
which uses the concept of impurity density rather than theortant discussions. M.M. and P.V. were also supported by
concept of discrete impurities. F&<1/2 the Monte Carlo the Grant Agency of the Slovak Academy of Sciences, Con-
simulation gives the same as the Boltzmann equation and tract No. 2/4057/97.
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