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Resonance tunneling through photonic quantum wells

Y. Jiang, C. Niu, and D. L. Lin
Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260-1500

~Received 19 August 1998!

The band gap in photonic materials with periodic spatial modulation of refractive index greater than unity
can actually be regarded as a potential barrier for photons. Similar to semiconductor quantum well systems due
to the electronic band-gap mismatch, a photonic quantum well can be constructed by sandwiching a uniform
medium between two photonic barriers. The transmission and reflection coefficients of light through the
photonic quantum well are calculated by a modal expansion method with anR-matrix propagation algorithm.
Resonance tunneling through the photonic quantum well structure is observed by varying either the well width
or the frequency of incident light. Resonance peaks are found within the band-gap region, and indicate the
existence of photon virtual states in the well.@S0163-1829~99!07815-7#
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I. INTRODUCTION

Ever since the idea of photonic band structure w
introduced1,2 by analogy of photons in a periodic spatial d
electric structure to electrons in crystals, this area of rese
has received much attention because of the fundamenta
terest in localization of light and potential applications of t
photonic band gap. It is well known that the electronic qua
tum well system is formed by electronic band mismatch a
is of great interest in physical properties as well as in pr
tical applications. It is possible to draw a complete analo
between electronic and photonic crystals because they
exhibit band gaps. Examples include the inhibition of spo
taneous emission in solid-state physics and electronics1 as
well as possible observation and application of strong And
son localization of photons.2 More recently, it is demon-
strated that light extraction efficiency is significantly e
hanced in spontaneous emission from a thin slab of t
dimensional~2D! photonic crystal.3

There has been a considerable amount of theoretical
experimental efforts in searching for the photonic mate
possessing band gap with notable results.4–6 For three-
dimensional~3D! photonic crystals, the first experiment
observation of band gap was made in periodic face-cent
cubic ~fcc! dielectric structures.4 But theoretical calculations
by means of the vector plane-wave expansion indicate
no true gap extends throughout the whole Brillouin zone
the fcc structure,5,6 as is explained by the symmetry consi
eration atW point in the Brillouin zone.

Several ways of breaking the symmetry atW point have
been proposed. One of them is to introduce ‘‘nonspher
atoms’’ to the fcc structure. Numerical studies of this ‘‘ne
photonic crystal’’ show the existence of a full photonic ba
gap and the result is verified by experimental observatio7

Another symmetry breaking atW point is to produce a dia
mond structure by introducing an fcc lattice to a second
structure, which also exhibits a full photonic band gap.8 It is
also found that the band-gap width is related to the degre
symmetry of the photonic structure. For 2D square and h
eycomb lattices of circular cross-sectional rods, the band
enlarges when the symmetry is reduced by adding a ro
smaller diameter into the center of each lattice unit cell.9 The
PRB 590163-1829/99/59~15!/9981~6!/$15.00
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theoretical calculation of the band gap for 2D photonic cr
tals using the plane-wave expansion method finds very g
agreement with experimental results, which are obtained
the technique of coherent microwave transie
spectroscopy.10

In this paper, we investigate the resonance tunneling
light through a photonic quantum well system. We consid
two photonic barriers with a uniform medium in between
a quantum well system for photons. A remark may be
order at this point. The tunneling problem becomes trivia
our system of photonic barriers is replaced by a superlatt
like structure composed of alternating layers of two diele
tric materials. However, the 1D tunneling system is of lit
interest in practice because it is much more difficult to o
serve band gap effects in 1 D planar cavities than in 2D
photonic crystals.11 After all, it is the experiments carried ou
on 2D photonic crystals that have prompted interests in t
oretical studies.9,12–15

There exist many mathematical techniques such as
plane-wave expansion,5,6,8,16,17the Korringa-Kohn- Rostoker
method,14,18,19the augmented plane-wave method,20 the on-
shell theory of electron diffraction,21 thekp method,22 and so
forth. Most of them are well known in the treatment of ele
tronic band structures. In addition, a numerical techniq
based on the finite difference time-domain method has b
introduced to calculate the photonic band structure of ma
rials possessing Kerr nonlinearity.23

We choose, however, the modal expansion method w
R-matrix propagation algorithm because it is inherently su
able for photonic crystals of finite thickness and is less
manding on computation resources.12,13 It has been demon
strated that the calculated light transmission coeffici
conforms well to the experimental data.10 Furthermore, the
vector nature of both electric and magnetic fields are fu
taken into account in the modal expansion technique.13 As a
matter of fact, this is crucial in the calculation of photon
band structure because the scalar plane-wave expansion
dicts a full band gap for pure fcc structures while on
pseudoband gap actually exists.

II. THEORY

We consider a photonic quantum well system consist
of two thin slabs of 2D photonic crystal with uniform optica
9981 ©1999 The American Physical Society
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medium in between. The slab of photonic crystal is an ar
of infinitely long dielectric cylinders with constant permittiv
ity «. For simplicity, the cross section of the cylinder is a
sumed to be a square of side lengtha. The spatial period of
the array of cylinders isd. Figure 1~a! shows the geometry
The crystal is infinitely periodic in thex̂ direction and the
cylinders are placed along theŷ direction. The thickness is
finite in the ẑ direction. As a photon of frequencyv within
the forbidden gap of the 2D photonic crystal falls on t
surface, the slab of photonic crystal acts as a potential
rier. Physically, the quantum well system is shown in F
1~b!, in which the height of the barrier is taken to be t
width of the band gap.

The photonic crystal can be described by a spatially v
able permittivity«~r !. In the 2D case,«(r )5«(x,z). Follow-
ing Ref. 13, we further divide the photonic crystal into su
layers in ẑ direction such that within each sublayer, th
permittivity is independent ofz, i.e., «(r )5«(x). The Max-
well’s equation can then be solved within each sublayer,
the modal expansion in real space. Let us start with the M
well’s equations

¹3E~r !5 i
v

c
H~r !, ~1a!

¹3H~r !52 i
v

c
«~r !E~r !, ~1b!

where v is the angular frequency. Because of symme
E~r ! andH~r ! do not depend ony and consequently we hav

FIG. 1. The photonic quantum well structure.~a! Schematic
diagram of the cross-sectional view for the physical arrangem
The rods are infinitely long in they direction and infinitely periodic
in thex direction.~b! The quantum well system as seen by incide
photons with frequencies within the band gap.
y
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E(r )5E(x,z), H(r )5H(x,z). The mathematical details o
the formalism can be found in Ref. 13. In what follows, on
essential steps are outlined.

Let us now divide one period of the crystal alongx direc-
tion into N segments, i.e.,Dx5d/N. After the elimination of
z componentsHz and Ez in Eq. ~1!, we obtain the coupled
equations forEx , Ey , Hx , andHy as follows:

]Ex~x,z!

]z
5aHy~x,z!

1bH Hy~x1Dx,z!2Hy~x,z!

«~x1Dx/2!

1
Hy~x2Dx,z!2Hy~x,z!

«~x2Dx/2! J , ~2a!

]Ey~x,z!

]z
52aHx~x,z!, ~2b!

]Hx~x,z!

]z
52a«~x!Ey~x,z!1b$2Ey~x,z!2Ey~x1Dx,z!

2Ey~x2Dx,z!%, ~2c!

]Hy~x,z!

]z
5a«~x!Ex~x,z!, ~2d!

where we have defineda5 iv/c, b5 ic/v(Dx)2, andX to
denote collectively allN discretex coordinates. We now in-
troduce the notation

Ẽ~x,z!5FEx~x,z!

Ey~x,z!G , ~3a!

H̃~x,z!5FHx~x,z!

Hy~x,z!G , ~3b!

A~x,z!5F Ẽ~x,z!

H̃~x,z!
G , ~3c!

in which Ex , Ey , Hx , andHy areN-dimensional vectors and
A is a 4N-dimensional vector. In terms of matrices, Eq.~2!
can be written as

]A

]z
5M ~x!A~x,z!, ~4!

where the matrixM is independent ofz within each sublayer.
After the diagonalization of matrixM, we find the solution of
Eq. ~4! as

A~X,z!5F Ẽ~X,z!

H̃~X,z!
G5S~X!eLzC

5FS11 S12

S21 S22
GFel1z 0

0 el2zG Fc1

c2
G , ~5!

where L are eigenvalues ofM (X), and S(X) is a square
matrix whose columns are eigenvectors ofM (X).

The R matrix is defined by

t.

t
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F Ẽ~X,z1!

Ẽ~X,z2!
G5R~z22z1!F H̃~X,z1!

H̃~X,z2!
G , ~6!

which relates the electric field to the corresponding magn
field at the sublayer boundaries. From Eqs.~5! and ~6!, we
can expressR(z22z1) in terms ofS andL as

R~z22z1!5FR11~z22z1! R12~z22z1!

R21~z22z1! R22~z22z1!
G

5F S11 S12

S11e
l1~z22z1! S12e

l2~z22z1!G
3F S21 S22

S21e
l1~z22z1! S21e

l2~z22z1!G21

. ~7!

The recursion formula for theR-matrix algorithm can be
derived from Eq.~7!. If both R(z22z1) and R(z32z2) are
known, it is straightforward to deriveR(z32z1) from Eq.~6!
with the continuity of electric and magnetic fields atz2 . The
results are

R11~z32z1!5R11~z32z2!1R12~z32z2!@R11~z22z1!

2R22~z32z2!#21R21~z32z2!, ~8a!

R12~z32z1!52R12~z32z2!@R11~z22z1!

2R22~z32z2!#21R12~z22z1!, ~8b!

R21~z32z1!5R21~z22z1!@R11~z22z1!

2R22~z32z2!#21R21~z32z2!, ~8c!

R22~z32z1!5R22~z22z1!2R21~z22z1!@R11~z22z1!

2R22~z32z2!#21R12~z22z1!. ~8d!

III. RESONANCE TUNNELING

Each spatial period along thez direction is divided into
two sublayers. TheR matrix for each sublayer can be foun
from Eq.~7! separately. For one period of photonic crystal
thez direction, theR matrix can be found from the recursio
algorithm~8!. Repeating the above procedure, we can eva
ate theR matrix Rb for the whole slab of the photonic ba
rier. The uniform medium or the well is treated as a spec
case of photonic crystal with«(r )5constant, theR matrix
Rw for the well then follows from Eq.~2! directly. The com-
pleteR matrix R5Rbwb for the whole quantum well system
is found by adding the second barrier. Thus,

R11
bwb5R11

b 1R12
b @R11

w 1R12
w ~R11

b 2R22
w !21R21

w 2R22
b #21R21

b
,

~9a!

R12
bwb5R12

b @R11
w 1R12

w ~R11
b 2R22

w !21R21
w 2R22

b #21

3R21
b R12

w ~R11
b 2R22

w !21R12
b , ~9b!

R21
bwb5R21

b ~R11
b 2R22

w !21R21
w @R11

w 1R12
w ~R11

b 2R22
w !21

3R21
w 2R22

b #21R21
b , ~9c!
ic

-

l

R22
bwb5R22

b 2R21
b ~R11

b 2R22
w !21R12

b

1R21
b ~R11

b 2R22
w !21R21

w @R11
w 1R12

w ~R11
b 2R22

w !21

3R21
w 2R22

b #21R12
w ~R11

b 2R22
w !21R12

b . ~9d!

On the left-hand side of the photonic well system, t
electromagnetic field is a superstition of incident wave a
reflected wave. On the right, the electromagnetic field is
transmitted wave. Applying Eq.~9! to the whole quantum
well system we find

F Ẽt~X!

Ẽr~X!1Ẽinc~X!
G5RF H̃t~X!

H̃r~X!1H̃ inc~X!
G , ~10!

whereẼinc(X), H̃ inc(X); Ẽr(X), H̃r(X); andẼt(X), H̃t(X)
are incident, reflected and transmitted electric, and magn
fields, respectively. To find the relation betweenẼ(X) and
H̃(X) in the homogeneous region, we note that in the m
mentum space

E~r !5
1

~2p!2 E d2KE~K !eiKr 1eisz, ~11a!

H~r !5
1

~2p!2 E d2KH~K !eiKr 1eisz, ~11b!

where r 15(x,y), s5@«(v/c)22K2#1/2 and K is the 2D
wave vector, the relation is particularly simple and is giv
by

H̃~K !5T~K,s!Ẽ~K !, ~12a!

T~K,s!5F 2KxKyY v

c
s 2~s21Ky

2!Y v

c
s

~s21Kx
2!Y v

c
s KxKyY v

c
s

G .

~12b!

If the incident wave propagates along thez axis, the trans-
mitted and reflected waves will, by symmetry, also propag
in the z direction and the matrixT(K,s) becomes very
simple. Hence, we can express the incident, transmitted
reflected magnetic fieldsH̃ inc(K),H̃t(K),H̃r(K) in terms of
the corresponding electric fields as

H̃ inc~K !5T1Ẽinc~K !, ~13a!

H̃t~K !5T1Ẽt~K !, ~13b!

H̃r~K !5T2Ẽr~K !, ~13c!

where we have defined

T15F0 2I

I 0 G , ~14a!

T25F 0 I

2I 0G , ~14b!
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with the N3N unit matrix I . The corresponding relations i
real space are obtained from Eq.~13! directly by the discrete
Fourier transformation

Ẽ~X!5F~X,K !Ẽ~K !, ~15a!

H̃~X!5F~X,K !H̃~K !, ~15b!

whereF(X,K) is a Fourier-transformation matrix. Thus, w
have

H̃ inc~X!5T̄1Ẽinc~X!, ~16a!

H̃t~X!5T̄1Ẽt~X!, ~16b!

H̃r~X!5T̄2Ẽr~X!, ~16c!

where we have defined the transformation

T̄15F~X,K !T1F21~X,K !, ~17a!

T̄25F~X,K !T2F21~X,K !. ~17b!

Substitute Eq.~16! into Eq. ~10!, we obtain

FR11T̄12I R12Z̄2

R21Z̄1 R22T̄22I
G F Ẽt~X!

Ẽr~X!
G5F 2R12Z̄1Ẽinc~X!

@ I2R22Z̄1#Ẽinc~X!
G .

~18!

Equation ~18! may be solved forẼt(X) and Ẽr(X), from
which we find the coefficients of transmission and reflect
for electromagnetic waves incident on the photonic quan
well system.

IV. RESULTS AND DISCUSSION

In the numerical calculation, we choose parameters
the 2D photonic crystal similar to those in experimen
measurement.10 The cylinders of the photonic crystal ar
made of aluminum ceramics with a dielectric constant 8
The lattice constant is taken to be 1.87 mm, and the sid

FIG. 2. Transmission coefficient versus the well width for
fixed frequency of 50 GHz. The incident wave is polarized para
to cylinder axes.
n
m

r
l

.
of

the cylinder’s square cross section is 0.74 mm. For the u
form medium in the well we assume the vacuum for simpl
ity. If the electric field is polarized parallel to th
rod axis, both theoretical calculation12 and experimental
measurement10 show that the photonic band gap is betwe
45 and 70 GHz for a photonic barrier of seven layers
aluminum ceramic rods.

l

FIG. 3. Transmission coefficient versus the incident light f
quency for a well width~a! w53 mm, ~b! w59 mm and~c! w
518 mm. The polarization of the incident wave is parallel to t
cylinder axes. Arrows indicate the position of band edges.
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Our numerical work indicates that the transmission co
ficient is vanishingly small for seven-layer barriers. Thus,
take three-layer barriers instead. As we shall see from
merical studies later, changes in thickness of the photo
crystal may modify somewhat the position and size of
photonic band gap. If the incident wave of frequencies
tween 40 and 70 GHz enters a slab of such 2D photo
crystals, the transmission rate still falls sharply with the p
etration depth to nearly zero. Thus, the slab generally blo
incident light. The situation becomes very different, ho
ever, when light falls on a quantum well system as sketc
in Fig. 1~b!. More specifically, we consider a photonic qua
tum well system consisting of two slabs of 2D barriers se
rated by a homogenous region of widthw. Each barrier con-
tains three layers of aluminum ceramic rods stacked in thz
direction. These rods are infinitely long in they direction and
arranged infinitely periodic in thex direction. Although inci-
dent light of frequencies between 40 and 70 GHz is bloc
by the barrier, but transmission occurs at resonant frequ
cies of the quantum well system. In other words, resona
tunneling can be observed in such systems. To check
calculation, we have reproduced the results of Ref. 12 fo
single barrier.

As it is known from both experiments and calculations
much wider band gap opens up for the parallel polarizat
than for the perpendicular polarization of theE field.10,12

Thus, we only consider the case of parallel polarization
our numerical study. For the incident wave with a fixed fr
quency of 50 GHz, we calculate the reflection coefficienr
and transmission coefficientt across the photonic quantum
well system as a function of the widthw of photonic well.
These coefficients are computed from Eq.~18! independently
and numerical results are checked against the relationr 1t
51 for every case. The error is consistently within 0.5
Figure 2 depicts the variation of the transmission coeffici
with the well width w. It is clearly observed that the reso
nance peaks occur regularly asw increases. The complet
transmission is approximately determined by the condit
Kw5np, n51,2,3, . . . . This implies that there exist pho
ton virtual states in the well.

We now investigate the variation oft with the incident
light frequency for a given well width. The transmission a
reflection coefficients are calculated as a function of the
cident frequency from 30 to 120 GHz for a fixed well widt
Le
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n

-

The polarization of the incident wave is chosen to be alo
the cylinder axis in all cases. Results for three different w
widthsw53, 9, and 18 mm are presented in Fig. 3, in whi
the band edges are marked by arrows. As is observed f
the three cases in Fig. 3, the band gap for the structure u
consideration is consistent with experimental results of R
10. The phenomenon of resonance tunneling through a p
tonic quantum well is thus similar to that in the electron
case. A number of resonance states exist in the phot
well. These virtual levels are characterized by frequenc
f n5nc/w, wheren is integer, and hence are equally spac
Whenever the frequency of the incident wave coincides w
f n , resonance occurs and the transmission reaches its
value. As the well width increases, the spacing between re
nant states narrows. Consequently, more resonance peak
pear. This is clearly shown in Fig. 3~a!, 3~b!, and 3~c!.

The resonance peaks are very sharp with a line-width
about 70 MHz. For the past couple of decades, the electr
quantum well structure has witnessed wide applications
many areas. It is quite plausible to expect that the photo
quantum well system can also find applications in practi
cases. Therefore, experimental investigation is urged to
plore the resonance tunneling through photonic quan
well structures. As a matter of fact, there should not be
sential difficulty to carry out experiments on the observat
of resonance tunneling effects with the coherent microw
transient spectroscopic technique.10

It is also noted from Fig. 3 that at the band edges,
tunneling peaks appear wider than those in the gap. Th
because the conduction bands help enhance the transmi
rate, and hence result in a wider width of the peak.

We have applied the modal expansion method with
R-matrix algorithm to calculate the light transmission a
reflection coefficients through a photonic quantum well lig
system. Resonant tunneling is found when the incident li
frequency f n5nc/w, just like the electronic tunneling
through semiconductor quantum well systems. Experime
exploration of the phenomenon is suggested. TheR-matrix
algorithm proves to be a stable and efficient method for
merical studies of photonic crystals. It is particularly suitab
for systems of finite size. In our opinion, the technique w
be useful in most theoretical investigations on photonic cr
tal applications.
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