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Optical conductivity of the quasi-one-dimensional organic conductors:
The role of forward scattering by impurities
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We calculate the average conductivitys(v) of interacting electrons in one dimension in the presence of a
long-range random potential~forward scattering disorder!. Taking the curvature of the energy dispersion into
account, we show that weak disorder leads to a transport scattering rate that vanishes asv2 for small frequency

v. This implies Ims(v);D̃c /v and Res(v);D̃ct for v→0, whereD̃c is the renormalized charge stiffness
and the timet is proportional to the strength of the impurity potential. These nontrivial effects due to forward
scattering disorder are lost within the usual bosonization approach, which relies on the linearization of the
energy dispersion. We discuss our result in the light of a recent experiment.@S0163-1829~99!02315-2#
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In a recent measurement of the frequency-dependent
ductivity s(v) of quasi-one-dimensional organic conducto
of the (TMTSF)2X-series, Schwartzet al.1 found that for
small frequenciesv the data could be fitted by

s~v!5
Dc

G~v!2 ivm* ~v!/mb

, ~1!

whereDc is the bare charge stiffness, and where the tra
port scattering rateG(v) and the effective mass enhanc
mentm* (v)/mb are given by

G~v!5G01
l0av2

11a2v2
, ~2!

m* ~v!

mb
511

l0

11a2v2
. ~3!

The quadratic frequency dependence in Eqs.~2! and ~3! is
characteristic of Fermi liquids in three dimensions. Expr
sions of this type were used by Sulewskiet al.2 in their study
of the compound UPt3 , which is a three-dimensional Ferm
liquid with heavy mass. The experimentally obtain
values1,3 for a sample consisting of (TMTSF)2PF6 are
G0 /(2pc)50.56 cm21, l051, and 1/(2pca)51 cm21.
Schwartzet al.1 speculated that the physical origin of th
quadratic frequency dependence of the second term in
~2! is inelastic electron-electron scattering in a clean thr
dimensional Fermi liquid. The physical picture is that at s
ficiently low temperatures, there is a crossover from o
dimensional behavior at higher energies to a regi
characterized by three-dimensional phase coherence: this
consequence of the finite coupling between the chains.4 Ex-
perimental evidence for the existence of such a crossove
the organic conductors has also been given by Moseret al.5

via dc transport measurements. However, the authors of
1 emphasized that the interpretation of the frequency dep
dence in Eqs.~2! and ~3! in terms of Fermi-liquid theory
PRB 590163-1829/99/59~15!/9961~4!/$15.00
n-

s-

-

q.
-

-
-
e
s a

in

ef.
n-

leads to an anomalously small value of 1/a. Moreover, the
Fermi surface of the organic conductors is nested, so that
should expect a scattering rate linear inv,6 in disagreement
with the experimental result.1 In this paper we would like to
point out that there exists an alternative~and in our opinion
physically more plausible! explanation for the quadratic fre
quency dependence of the scattering rate and the finite e
tive mass renormalization in the organic conductors, nam
forward scattering by impurities. As we shall show below,
this interpretation of the data also leads to a natural expla
tion of the anomalously small value of 1/a seen in the
experiment.1

As discussed in Ref. 7, in the quasi-one-dimensional
ganic conductors it is natural to expect that the disorder
tential seen by the electrons on the chains is weak and slo
varying along the chain. Such a potential can be modelled
a Gaussian random potentialU(x) with zero average and
long-range correlator

U~x!U~x8!5g0C~x2x8!, ~4!

where the overline denotes averaging over the disor
Here, g0 is a measure of the strength of the disorder, a
C(x) is assumed to have a maximal rangej that is large
compared with (2kF)21, wherekF is the Fermi wave vector
In other words, we assume thatC(x) is a finite positive
constant foruxu&j, and vanishes foruxu@j. For conve-
nience we normalizeC(x) such that its Fourier transform

C̃~q!5E
2`

`

dxeiqxC~x! ~5!

is dimensionless. The above properties ofC(x) imply that
C̃(q) vanishes ifuquj@1. The inverse ofj can be identified
with the maximal possible momentum transfer between t
electrons due to scattering by the impurity potential. T
requirementj21!2kF means that impurities do not give ris
to backward scattering, i.e., the random potential is do
nated by the forward scattering. If this problem is treated
9961 ©1999 The American Physical Society
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means of the usual bosonization approach~with linearized
energy dispersion!, one finds that forward scattering disord
does not affect the conductivity at all.8,9 It is also possible to
confirm this result by directly expanding the average cond
tivity in powers of the impurity potential.For linearized en-
ergy dispersionone easily verifies that all impurity correc
tions cancel. This is a consequence of the closed-l
theorem,10,11 which is well known in the context of the
Tomonaga-Luttinger model.12 The closed-loop theorem im
plies that at long wave lengths all closed fermion loops w
more than two external legs vanish after symmetrization.10,11

For this cancelation to take place, it is irrelevant whether
external legs represent the dynamic Coulomb interaction
static impurity lines. However, the closed-loop theorem
only valid if the energy dispersione(k) is linearized close to
the Fermi points6kF , which amounts to ignoring the qua
dratic and higher terms in the expansion

e~6kF1q!2e~6kF!56vFq1
q2

2mb
1O~q3!. ~6!

Here vF is the Fermi velocity andmb is the band mass
Clearly, in order to calculate the leading effect of forwa
scattering disorder on the conductivity it is insufficient
work with linearized energy dispersion, as it is done usua
in the bosonization approach.

We now present a simple calculation of the effect of fo
ward scattering disorder on the conductivity of an interact
electron gas in one dimension. We assume that the elec
gas is metallic and focus on energy scales smaller than
sible spin gaps, so that we can ignore backward and umk
scattering. In principle, one could try to treat the nonline
terms in the energy dispersion within the framework
bosonization, as it was recently done in a different contex
Ref. 13. However, there is a much simpler and physica
more transparent solution to our problem. According
Götze and Wo¨lfle,14 in the perturbative calculation of th
conductivity it is often useful to introduce the memory fun
tion M (v) by setting

s~v!5
iD c

v1M ~v!
, ~7!

and calculatingM (v) instead ofs(v) in powers of the im-
purity potential. In this way one implicitly takes into accou
vertex corrections to all orders in perturbation theory.
leading order in the strength of the impurity potential o
finds in one dimension14

M ~v!5
g0

nmb
E

2`

` dq

2p
q2C̃~q!FP~q,v1 i01!2P~q,i01!

v1 i01 G ,

~8!

where P(q,v) is the density-density correlation functio
andn is the density of the one-dimensional electron gas. T
memory function approach has also been used by Giama
to study the effect of umklapp scattering on the conductiv
of one-dimensional interacting fermions.15 For the
Tomonaga-Luttinger model with short-range disorder Eq.~8!
has been evaluated by Luther and Peschel.16 In this case the
anomalous scaling ofP(q,v) for momenta close to 2kF
dominates the conductivity. In contrast, in our case we n
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P(q,v) only for small momenta,uqu&j21!2kF . Observe
that the leading effect of the nonlinearity in the energy d
persion is already contained in the prefactor 1/mb in Eq. ~8!;
thus, we can calculateP(q,v) on the right-hand side of Eq
~8! for linearized energy dispersion. For simplicity we su
stitute forP(q,v) the density-density correlation function o
the Tomonaga-Luttinger model12 with interaction parameters
g25g45pvFF,

P~q,v!5Zq

2vq

vq
22v2

, ~9!

Zq5
uqu

pA11F
, vq5 ṽFuqu, ~10!

where ṽF5A11FvF . Using Eq. ~8! and assumingC̃(q)
5Q(12uquj), we obtain after a simple calculation foruvu
! ṽF /j

Im M ~v1 i01!5av2, ~11!

ReM ~v1 i01!5bv@11O~v2!#, ~12!

where

a5
g0

pnmbṽF
4A11F

, ~13!

b5
2g0

p2nmbṽF
3jA11F

. ~14!

Note thata andb both vanish for 1/mb→0, corresponding to
the linearization of the energy dispersion~6!. We conclude
that forward scattering disorder leads to a conductivity of
form given in Eq.~1!, with

G~v!5av2, ~15!

m* ~v!

mb
511b1O~v2!. ~16!

In the absence of other scattering mechanisms this imp
for the real and imaginary part of the conductivity at fr
quenciesuvu! ṽF /j,

Res~v!5ReF Dc

av22 i ~11b!v
G5

D̃ct

11~vt!2
, ~17!

Im s~v!5
D̃c

v@11~vt!2#
, ~18!

where the renormalized charge stiffnessD̃c and the timet
are given by

D̃c5
Dc

11b
, t5

a

11b
. ~19!

Keeping in mind that for the derivation of Eqs.~17! and~18!

we have assumeduvu! ṽF /j, it is easy to see that in the
regime where Eqs.~17! and~18! are valid the parameteruvut
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is always smaller than unity. Hence, foruvu! ṽF /j we may
approximate Res(v)'D̃ct and Ims(v)'D̃c /v. Note that
the imaginary part of the conductivity exhibits at small fr
quencies the usual 1/v behavior of a clean system~but with
renormalized charge stiffness!, whereas the Drude pea
pDcd(v) in the real part of the conductivity of the clea
system is completely destroyed by the disorder, and is
placed by a constantD̃ct. In this respect the effect of for
ward scattering disorder in one dimension is similar to
effect of weak short-range disorder in three dimensio
Note, however, that according to Eqs.~13,19! the effective
lifetime t is proportional to the strengthg0 of the impurity
potential. In contrast, for short-range impurity scattering o
finds within the Born approximation that theinverselifetime
is proportional to the impurity strength. These nontrivial e
fects associated with long-range disorder in one dimens
are missed within the usual bosonization approach, wh
predicts a Drude peakpDcd(v) in the real part of the con
ductivity, even in the presence of long-range disorder.8,9

Keeping in mind that Eqs.~11! and ~12! are the leading
terms for smallv, Eqs.~15! and~16! are consistent with the
frequency-dependent part of the experimentally seen be
ior given in Eqs.~2! and ~3!.17 The constant partG0 of the
scattering rate in Eq.~2! must be due to some other~short-
range! impurity scattering mechanism that we have not tak
into account in our calculation. A similar assumption co
cerning the origin ofG0 must be made if one interprets th
frequency dependence ofG(v) to be due to inelastic scatte
ing in a three-dimensional Fermi liquid.1 Obviously we may
identify l05b, and

1

a
5

b

a
5

2ṽF

pj
. ~20!

Note thata is independent ofg0 andmb ; it depends only on
the renormalized Fermi velocityṽF and on the correlation
length j of the impurities. Using the experimental valu1

2pca51 cm we obtain from Eq. ~20! j

5p22( ṽF /c) cm. Given a bare interchain hoppingt i
'250 meV,1 a reasonable estimate for the Fermi velocity

ṽF'107 cm /s . Then we obtain for the impurity correlatio
length j'331025 cm. This is certainly larger than
(2kF)21, so that our interpretation of the low-frequency b
havior of the conductivity data1 in terms of long-range dis
order is internally consistent. The large value ofj explains
the anomalously small value ofa21 seen in the experi-
ment.1 The impurity correlation lengthj should not be con-
fused with the transport mean free pathl tr , although in the
experiment1 both length scales have the same order of m
nitude. A rough estimate forl tr can be obtained from Eqs.~1!

and~2! by identifying l tr5 ṽF /G0 . Using the measured valu
G0'2pc30.56 cm21, we obtain l tr'931025 cm. The
importance of long-range disorder in the organic conduc
has been pointed out by Gorkov7 along time ago: becaus
defects damage only a small fraction of the big planar m
ecules, it is natural to expect that the imperfection poten
of the defects, as seen by the electrons on the conduc
chains, is slowly varying along the chains.
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An inelasticsingle-particlescattering rateG1(v)}v2 due
to electron-electron interactions is one of the hallmarks o
three-dimensional Fermi liquid. However, the transport sc
tering rateG(v) in Eq. ~15! is defined in terms of a two-
particle Green’s function, and it is obviously not related
G1(v) of a three-dimensional Fermi liquid. This shows th
it is crucial to distinguish between transport and sing
particle scattering rates in the interpretation of conductiv
measurements of quasi-one-dimensional conductors. To
derstand why thev2 behavior of the transport scattering ra
G(v) does not imply a similar behavior of the single-partic
scattering rateG1(v), one should keep in mind that th
above mentioned cancelations between self-energy and
tex corrections, which are responsible for thev2 correction
to the transport scattering rate, do not occur in the calcula
of the single-particle Green’s function. In fact, for non-Fer
liquids in arbitrary dimensions there is no reason to exp
that the transport and single-particle scattering rates are
ply related.18 Although Eqs.~15! and~16! look like conven-
tional Fermi liquid behavior, the single-particle Green
function of the system exhibits Luttinger liquid behavior. F
example, the single-particle density of states vanishes wi
nonuniversal power law.10,12

So far we have assumed that the system is strictly o
dimensional. However, realistic experimental systems hav
finite hoppingt' between the chains, so that it is importa
to estimate the modification of the above result due to a fin
value oft' . For simplicity, let us assume that the intercha
hoppingty5t' in one direction transverse to the chains~the
y direction! is much larger than in the other transverse dire
tion. To a first approximation we may then ignore the ho
ping tz in the z direction. In view of the anisotropy of the
interchain hopping in the organic conductors,19 this approxi-
mation is not unreasonable. The transport scattering rate
to forward scattering by impurities can then be estima
from the two-dimensional analog of Eq.~8!,

M ~v!5
g0

n2mb
E

2`

` dqxdqy

~2p!2
qx

2C̃~q!

3FP~q,v1 i01!2P~q,i01!

v1 i01 G , ~21!

wheren2 is the two-dimensional density,mb is the effective
band mass in thex direction, C̃(q) is the two-dimensional
Fourier transform of the disorder correlator, andP(q,v) is
the two-dimensional density-density correlation functio
Keeping in mind that by assumptionC̃(q) is dominated by
small wave vectors, we may use the random-phase appr
mation to calculate the density-density correlation functio
For smallt' it can be shown20 thatP(q,v) is dominated by
the plasmon pole, so thatP(q,v) can be written as in Eq
~9!. Defining the dimensionless parameter

u5
ut'u
EF

, ~22!

whereEF is the Fermi energy, the residue, and the plasm
dispersion are for smallu given by20



ng

r
di

er

we
s
or
in
ion
tl

m
lic
ha

r-
th

er
uld
nd
ins.
ent
uc-
rs

h
ces-
uc-
ds.
ere
t

ite
in
in

s, it
ing

ea-
es.

If
rate
.
e

n

up-

9964 PRB 59PETER KOPIETZ AND GUILLERMO E. CASTILLA
Zq5
n2vFAqx

21u2qy
2

2A11F
, vq5 ṽFAqx

21u2qy
2, ~23!

wheren2 is the two-dimensional density of states. Assumi
for simplicity C̃(q)5Q(12uqxuj)Q(12uqyuj), the low-
frequency behavior ofM (v) is easily calculated. We find
that the strictly one-dimensional result forM (v) given in
Eqs.~11! and ~12! remains valid as long as

uvu*
ṽFu

j
[v'. ~24!

For uvu!v' we find that Eqs.~11! and~12! should be mul-
tiplied by an extra factor of orderuvu/v'!1. Hence, the
finiteness of the interchain hopping induces a crossove
the transport scattering rate due to forward scattering by
order from av2 behavior at higher frequencies to auvu3 law
at frequenciesuvu!v' . Note, however, that the cross-ov
frequencyv' is of orderut'u/(kFj), so that for largej and
small t' the regime where theuvu3 behavior is visible is very
small and probably experimentally irrelevant.

Some cautionary remarks are in order: In this work
have assumed that the scattering due to the impuritie
forward. It is clear, however, that in the organic conduct
also backward scattering by impurities is present, which,
purely one-dimensional system, should lead to localizat
Because this implies a vanishing conductivity, at sufficien
small frequencies Res(v) should become smaller thanD̃ct
and eventually vanish. However, in the experimental syste
the finite interchain coupling might stabilize a metal
phase. Moreover, from the above calculation it is clear t
the constant partG0 of the scattering rate in Eq.~2! cannot be
explained by invoking any kind of forward scattering diso
der. We are aware of the fact that our explanation of
ep
en
liz

op

d

ne
in
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s
a
.

y

s

t

e

constantG0 in Eq. ~2! is based on a plausible argument rath
than on a microscopic calculation. Such a calculation sho
treat both forward and backward scattering by impurities a
take into account also the weak coupling between the cha

In summary, we have shown that the frequency-depend
part of the scattering rate seen in the low-frequency cond
tivity data1 of the quasi-one-dimensional organic conducto
(TMTSF)2X can be explained by impurity scattering wit
small momentum transfers. The data therefore do not ne
sarily imply that at small energy scales the organic cond
tors become conventional three-dimensional Fermi liqui
Note that the impurity scattering mechanism proposed h
leads for temperaturesT!EF to a temperature-independen
scattering rate. This can be easily verified from Eq.~8!,
which is also valid at finite temperatures if we use the fin
temperature density-density correlation function. Keeping
mind that electron-electron or electron-phonon scattering
general lead to temperature-dependent scattering rate
should be possible to distinguish the impurity scatter
mechanism proposed here from other mechanisms by m
suring the temperature-dependence of the scattering rat21

Note that in several experiments on organic conductors aT2

behavior of the resistivity has been observed.22 This cannot
be explained by invoking forward scattering by impurities.
the quadratic frequency dependence of the scattering
seen in the experiment1 is really due to impurities, then Eqs
~15!, ~16!, and ~20! provide a simple way to estimate th
impurity correlation lengthj from the low-frequency data
for the conductivity.
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