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Optical conductivity of the quasi-one-dimensional organic conductors:
The role of forward scattering by impurities
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We calculate the average conductivityw) of interacting electrons in one dimension in the presence of a
long-range random potentidorward scattering disorderTaking the curvature of the energy dispersion into
account, we show that weak disorder leads to a transport scattering rate that vanishésrasnall frequency
. This implies Imo(w)~D./» and Rer(w)~ D7 for o—0, whereD is the renormalized charge stiffness
and the timer is proportional to the strength of the impurity potential. These nontrivial effects due to forward
scattering disorder are lost within the usual bosonization approach, which relies on the linearization of the
energy dispersion. We discuss our result in the light of a recent experifS&i63-1829)02315-7

In a recent measurement of the frequency-dependent coleads to an anomalously small value otxr1/Moreover, the
ductivity o(w) of quasi-one-dimensional organic conductorsFermi surface of the organic conductors is nested, so that one
of the (TMTSF),X-series, Schwartzt al! found that for  should expect a scattering rate linearitf in disagreement

small frequencies the data could be fitted by with the experimental resuttin this paper we would like to
point out that there exists an alternatifand in our opinion
D, physically more plausibjeexplanation for the quadratic fre-
o(w)= 1) qguency dependence of the scattering rate and the finite effec-

[(w)—iom* (w)/m, ! TR ;
(@) (w)/mg tive mass renormalization in the organic conductors, namely

whereD. is the bare charge stiffness, and where the transforward scattering by impuritiesAs we shall show below,
port scattering ratd’(w) and the effective mass enhance- this interpretation of the data also leads to a natural explana-

mentm* (w)/m, are given by tion of the anomalously small value of d/seen in the
experiment:
Noaw? As discussed in Ref. 7, in the quasi-one-dimensional or-
FNw)=T¢t———, (2)  ganic conductors it is natural to expect that the disorder po-
1+ oo tential seen by the electrons on the chains is weak and slowly
varying along the chain. Such a potential can be modelled by
m* () 14 Ao 3) a Gaussian random potentibl(x) with zero average and
My,  1+a2w? long-range correlator
The quadratic frequency dependence in Ejsand (3) is U(X)U(X") = y,C(x—x"), (4)

characteristic of Fermi liquids in three dimensions. Expres-

sions of this type were used by Sulewskial? in their study ~ Where the overline denotes averaging over the disorder.
of the compound URt which is a three-dimensional Fermi Here, y, is a measure of the strength of the disorder, and
liquid with heavy mass. The experimentally obtainedC(x) is assumed to have a maximal rangehat is large
values® for a sample consisting of (TMTSEHPR, are compared with (Re) "1, whereke is the Fermi wave vector.
I'o/(27¢)=0.56 cm?, N\o=1, and 1/(2rca)=1 cm L. In other words, we assume th&t(x) is a finite positive
Schwartzet al® speculated that the physical origin of the constant for|x|<¢, and vanishes fox|>¢£. For conve-
quadratic frequency dependence of the second term in Edience we normaliz€(x) such that its Fourier transform

(2) is inelastic electron-electron scattering in a clean three-

d_ir_nensional Fermi liquid. The phy;ical picture is that at suf- E(q)= f” dxd9*C(x) (5)
ficiently low temperatures, there is a crossover from one- —w

dimensional behavior at higher energies to a regime ] . ]
characterized by three-dimensional phase coherence: this ig®dimensionless. The above propertiesGifx) imply that
consequence of the finite coupling between the cHals.  C(q) vanishes ifig|£&>1. The inverse o can be identified
perimental evidence for the existence of such a crossover iwith the maximal possible momentum transfer between two
the organic conductors has also been given by Meset®  electrons due to scattering by the impurity potential. The
via dc transport measurements. However, the authors of Refequirement 1< 2kr means that impurities do not give rise
1 emphasized that the interpretation of the frequency depere backward scattering, i.e., the random potential is domi-
dence in Egs(2) and (3) in terms of Fermi-liquid theory nated by the forward scattering. If this problem is treated by
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means of the usual bosonization approelith linearized II(qg,w) only for small momentajq|< ¢ 1<2kg. Observe
energy dispersiognone finds that forward scattering disorder that the leading effect of the nonlinearity in the energy dis-
does not affect the conductivity at &ff It is also possible to persion is already contained in the prefactandin Eq. (8);
confirm this result by directly expanding the average conducthus, we can calculatd (q,w) on the right-hand side of Eq.
tivity in powers of the impurity potentiaFor linearized en-  (8) for linearized energy dispersion. For simplicity we sub-
ergy dispersiorone easily verifies that all impurity correc- stitute forTI(q, ) the density-density correlation function of
tions cancel. This is a consequence of the closed-looghe Tomonaga-Luttinger modéiwith interaction parameters
theorem:>** which is well known in the context of the g,=g,=mveF,

Tomonaga-Luttinger modéf. The closed-loop theorem im-

plies that at long wave lengths all closed fermion loops with 2wq
more than two external legs vanish after symmetrizatfo. (q,0)=2, e ©
For this cancelation to take place, it is irrelevant whether the a

external legs represent the dynamic Coulomb interaction or

static impurity lines. However, the closed-loop theorem is 7 = lal we=0|dl (10)
only valid if the energy dispersioa(k) is linearized close to ¢ pJirE O TR
the Fermi pointst kg, which amounts to ignoring the qua- - ) L
dratic and higher terms in the expansion where vg=y1+Fuvg. Using Eq.(8) and assumingC(q)
=0(1—|q|€), we obtain after a simple calculation fpw|
2 ~
e(ikF+q)—e(ikF)=iqu+%+O(q3). (6) <ve/é
i IMM(w+i0")=aw?, (11)

Here vg is the Fermi velocity andn, is the band mass.

Clearly, in order to calculate the leading effect of forward ReM(w+i0")=bw[1+0(w?)], (12
scattering disorder on the conductivity it is insufficient to h

work with linearized energy dispersion, as it is done usuaIIyW ere
in the bosonization approach.

We now present a simple calculation of the effect of for- a= ]—0 (13)
ward scattering disorder on the conductivity of an interacting mn mbv;‘: J1+F'
electron gas in one dimension. We assume that the electron
gas is metallic and focus on energy scales smaller than pos- . 270 14
sible spin gaps, so that we can ignore backward and umklapp = = :
scattering. In principle, one could try to treat the nonlinear WznmbvgngJrF

terms in the energy dispersion within the framework ofngte thata andb both vanish for h,— 0, corresponding to
bosonization, as it was recently done in a different context ifpe jinearization of the energy dispersié). We conclude

Ref. 13. However, there is a much simpler and physicallyinat forward scattering disorder leads to a conductivity of the
more transparent solution to our problem. According toform given in Eq.(1), with

Gotze and Wifle,'* in the perturbative calculation of the
conductivity it is often useful to introduce the memory func- I'(w)=a0? (15
tion M (w) by setting

m* ()

@) Mo

In the absence of other scattering mechanisms this implies
and calculatingV (o) instead ofo(w) in powers of the im-  for the real and imaginary part of the conductivity at fre-
purity potential. In this way one implicitly takes into account quencies | <DelE,
vertex corrections to all orders in perturbation theory. To

iD, =1+b+0O(w?). (16)

U(w)=w+M(w) '

leading order in the strength of the impurity potential one D D7
finds in one dimensidf Reo(w)=R - =—= _  @an
aw’—i(l+b)w| 1+(wn)?
vo (= dg .~ I1(g,w+i0%)—1I(q,i0") _
M(@)= 2| 2-q%C(a) — , B,
) — 2T w+i0 Imo(w)=———, (18

where I1(q,) is the density-density correlation function where the renormalized charge stiffnd3s and the timer
andn is the density of the one-dimensional electron gas. Theyre given by

memory function approach has also been used by Giamarchi

to study the effect of umklapp scattering on the conductivity ~ D, a

of one-dimensional interacting fermiols. For the °“1+b’ 7 1+b 19
Tomonaga-Luttinger model with short-range disorder [B4). o o

has been evaluated by Luther and Pesthei.this case the Keeping in mind that for the derivation of Edd.7) and(18)
anomalous scaling ofI(g,») for momenta close to k- we have assumef|<uvg/¢, it is easy to see that in the
dominates the conductivity. In contrast, in our case we needegime where Eq$17) and(18) are valid the parametén| 7




PRB 59 OPTICAL CONDUCTIVITY OF THE QUASI-ONE.. .. 9963

is always smaller than unity. Hence, fas|<vg /& we may An inelasticsingle-particlescattering ratd; (w) = w” due
approximate Re-(w)~D.r and Imo(w)~D,/w. Note that to electron-electron interactions is one of the hallmarks of a

the imaginary part of the conductivity exhibits at small fre- three-dimensional Fermi liquid. However, the transport scat-

guencies the usual &/behavior of a clean systetbut with tering ratel’() in Eq. (19) is defined in terms of a two-

renormalized charge stiffnésswhereas the Drude peak particle Green’s function, and it is obviously not related to

7D 5(w) in the real part of the conductivity of the clean I'1(w) of a three-dimensional Fermi liquid. This shows that

system is completely destroyed by the disorder, and is rell 1S crucial to distinguish between transport and single-

laced b &+ In thi he eff e particle scattering rates in the interpretation of conductivity
placed by a_cons@a c7- 1N this rgspect.t €e ?Ct. Or 1o measurements of guasi-one-dimensional conductors. To un-
ward scattering disorder in one dlmen_5|on IS 5'”?""’“ to_ thederstand why the? behavior of the transport scattering rate
Eﬁ?Ct r?f weak tsﬁotrt-rangg_ dls:)rdEer mléh:ﬁe d]:fmetr_15|onsr(w) does not imply a similar behavior of the single-particle
ote, however, that according to E(3, € etfiective scattering ratel’;(w), one should keep in mind that the

"fe“m‘? 7 is proportional to the strengtiyo Of the |mpquty above mentioned cancelations between self-energy and ver-
potential. In contrast, for short-range impurity scattering ON&ex corrections, which are responsible for #é correction

_flnds W'th'.n the Born approximation that thm/ersellfet_lnje to the transport scattering rate, do not occur in the calculation
is proportional to the impurity strength. These nontrivial ef-

fects associated with long-range disorder in one dimensmn

ply related*® Although Egs.(15) and(16) look like conven-
tional Fermi liquid behavior, the single-particle Green’s
function of the system exhibits Luttinger liquid behavior. For

example, the single-particle density of states vanishes with a
,12

ductivity, even in the presence of long-range disoftfer.
Keeping in mind that Eq9.11) and (12) are the leading
terms for smallw, Egs.(15) and(16) are consistent with the
frequency-dependent part of the experimentally seen behaWonuniversaI ower lai?
ior given in Egs.(2) and(3).” The constant parf, of the b )

tteri © in Eq2 t be due t héshort So far we have assumed that the system is strictly one-
scattering rate in d .) must be due 1o some o @hort- dimensional. However, realistic experimental systems have a
range impurity scattering mechanism that we have not take

inite hoppingt, between the chains, so that it is important

Into .acc?#nt n 'ourﬂgalculattlc;n. A sC;m[Ifar as;u:nptmts iﬁn'to estimate the modification of the above result due to a finite
cerning the origin oll o MUst be made It one INterprets the 5o oft, . For simplicity, let us assume that the interchain

freq_uency depe_ndenc_e b{w) to k_)g due to ipelastic scatter- hoppingt,=t, in one direction transverse to the chaitise
ing in a three-dimensional Fermi liquidObviously we may y direction is much larger than in the other transverse direc-

identify Ao=b, and tion. To a first approximation we may then ignore the hop-
ping t, in the z direction. In view of the anisotropy of the
o7 interchain hopping in the organic conductdtshis approxi-
- 7F (200  mation is not unreasonable. The transport scattering rate due
& to forward scattering by impurities can then be estimated
from the two-dimensional analog of E(B),

Note thatw is independent of, andmy ; it depends only on

the renormalized Fermi velocity- and on the correlation = dq,d -
v M (@)= 2 J (ZX )qzyqic a)
—w (277

length ¢ of the impurities. Using the experimental value n,my
2mca=1 cm we obtain from Eq. (200 ¢

=7"2(ve/c) cm. Given a bare interchain hopping
~250 meV} areasonable estimate for the Fermi velocity is

ve~10" cm /s . Then we obtain for the impurity correlation

Iength71§~3>< 10° cm. This is certainly larger than \yheren, is the two-dimensional densityn, is the effective
(2ke) ", so that our interpretation of the low-frequency be-y .y ass in the direction, C(q) is the two-dimensional
havior of the conductivity datain terms of long-range dis- Fourier transform of the disorder correlator, addq,w) is

order is internally consistent. The large valueoexplains the two-dimensional density-density correlation function.

the anomalously small value of~* seen in the experi- ~
y P Keeping in mind that by assumptidd(q) is dominated by

ment! The impurity correlation lengtt§ should not be con- .
fused with the transport mean free path although in the Sma” wave vectors, we may use the_ random-phase approxi-
mation to calculate the density-density correlation function.

experiment both length scales have the same order of mag i . .

nitude. A rough estimate fdy, can be obtained from EgéL) For smallt, it can be showff thatT1(g, ) is _dommatt_ad by
and(2) by identifyingl,=vg/T'o. Using the measured value the pla?mon F;]OI%’-SO thﬂ(ﬁ,w) can be written as in Eq.
IFo~2mwcx0.56 cm!, we obtainl,~9x10°° cm. The (9). Defining the dimensioniess parameter
importance of long-range disorder in the organic conductors

has been pointed out by Gorkoalong time ago: because 9= M (22)
defects damage only a small fraction of the big planar mol- Er’

ecules, it is natural to expect that the imperfection potential

of the defects, as seen by the electrons on the conductinghereEg is the Fermi energy, the residue, and the plasmon
chains, is slowly varying along the chains. dispersion are for small given by

II(g,0+i0")—1I(q,i0")
w+i0”"

X

. (2
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21 22 constant’ in Eq. (2) is based on a plausible argument rather
VoUup\ Qe+ 6 ~ 0" ) . )
q=w1 C,,q:UF‘/qxij ¢’q2, (23)  than on a microscopic calculation. Such a calculation should
2J1+F y i ouriti
treat both forward and backward scattering by impurities and

take into account also the weak coupling between the chains.
In summary, we have shown that the frequency-dependent
part of the scattering rate seen in the low-frequency conduc-
tivity data’ of the quasi-one-dimensional organic conductors
(TMTSF),X can be explained by impurity scattering with
small momentum transfers. The data therefore do not neces-
o sarily imply that at small energy scales the organic conduc-
|w|2LEwl_ (24)  tors become conventional three-dimensional Fermi liquids.
& Note that the impurity scattering mechanism proposed here

For|w|<w, we find that Eqs(11) and(12) should be mul- leads f_or temperatu_re1§< Er to ate_mperqtgre—independent
tiplied by an extra factor of ordefw|/w, <1. Hence, the Scattering rate. This can be easily verified from E8),
finiteness of the interchain hopping induces a crossover iMvhich is also Va“q at f|n|t¢ temperatyres if we use the.f|n|t.e
the transport scattering rate due to forward scattering by dis€mperature density-density correlation function. Keeping in
order from aw? behavior at higher frequencies tda|® law mind that electron-electron or electron-phonon scattering in
at frequenciegw|<w, . Note, however, that the cross-over 9€neral lead to temperature-dependent scattering rates, it
frequencyw, is of order|t, |/(ke&), so that for larget and should pe possible to distinguish the impurity scattering
smallt, the regime where thieo|* behavior is visible is very Mechanism proposed here from other mechanisms by mea-
small and probably experimentally irrelevant. suring the temperature-dependence of the scattering¥ates.
Some cautionary remarks are in order: In this work welNote that in several experiments on organic conductor$ a
have assumed that the scattering due to the impurities i2€havior of the resistivity has been obser¢&dhis cannot
forward. It is clear, however, that in the organic conductors®® €XPlained by invoking forward scattering by impurities. If

also backward scattering by impurities is present, which, in 41€ duadratic frequency dependence of the scattering rate

purely one-dimensional system, should lead to localizationS€€N N the experimehis really due to impurities, then Eqs.

Because this implies a vanishing conductivity, at sufficiently(19: (16), and (20) provide a simple way to estimate the
small frequencies Re(w) should become smaller théh, impurity correlation lengthé from the low-frequency data

and eventually vanish. However, in the experimental systemfsOr the conductivity.

the finite interchain coupling might stabilize a metallic

phase. Moreover, from the above calculation it is clear that We would like to thank Ward Beyermann, Martin
the constant paif, of the scattering rate in Eq2) cannot be  Dressel, George Gner, and Kurt Scheshammer for com-
explained by invoking any kind of forward scattering disor- ments on the manuscript. P.K. acknowledges financial sup-
der. We are aware of the fact that our explanation of theport from the Heisenberg program of the DFG.

wherev, is the two-dimensional density of states. Assuming
for simplicity C(q)=0(1—|q/£)6(1-|q,|£), the low-
frequency behavior oM (w) is easily calculated. We find
that the strictly one-dimensional result fM(w) given in
Egs.(11) and(12) remains valid as long as
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