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We study the spin-1/2 Heisenberg chain with alternating nearest neighbor interalgtf@rss) andJ (1
— 6) and a uniform second neighbor interactidy+y(1— 8) by series expansions around the limit of decou-
pled dimers §=1). By extrapolating ta5=0 and tuningy, we study the critical point separating the power-
law and spontaneously dimerized phases of the spin-1/2 antiferromagnet. We then focus on the disorder line
y=0.5, 0< §<1, where the ground states are known exactly. We calculate the triplet excitation spectrum, their
spectral weights, and wave vector dependent static susceptibility along this line. It is well known that as
—0, the spin gap is still nonzero but the triplets are replaced by spinons as the elementary excitations. We
study this dynamical transition by analyzing the series for the spectral weight and the static susceptibility. In
particular, we show that the spectral weight for the triplets vanishes and the static spin susceptibility changes
from a simple pole at imaginary wave vectors to a branch cut at the trangi#0h63-18209)00615-3

I. INTRODUCTION result has been confirmed in previous numerical stufies.
Here, we present results from series analysis, which lend
The study of quantum-disordered ground states of low{further support to it.
dimensional spin systems, with an absence of long-range The primary focus of this paper is on the excitation spec-
magnetic order and a gap to spin excitations, has attractaga along a special line in the parameter space, where the
considerable interest recentlyA question of fundamental ground state is known exactly. Along this lines@J,/J;
importance in the field is the nature of elementary excitations-1 — s< 1, this model has a unique ground state consisting

in these phases. These spin excitations could be related {g singlet pairs between spins & andsS,,, .5 Having the
simple spin flips, in which case they should carry spin-1, Ofgjynie ground states with no quantum fluctuations allows us

they could represent free spin-1/2 excitations in an otherwisrg0 focus on the elementary excitations of the system. In the
spinless background. The existence of such spin-1/2 excitad—iSCOnnecteol dimer limitJ,=J,(1— 8)/2=0, the elemen
=J; =0, -

fhognzbgnsgﬂréosr:iso}%@?htéaitt“ii,eimsgﬁfn:et?32@?&05&?&2' tary excitations are localized triplets, where one of the spin
numerical schemés that can look for such spin-1/2 excitaE_)air (321 15i+1) 1S excited to a triplet. These triplet excita-

tions. The purpose of this paper is to test such a series e>}|_ons develop a dispersion f(ﬁ% L P“t remain well defi-ned
pansion based method on a one-dimensional model, whe ar all 6>0. At 6=0, the Hamiltonian has full translgtlonal
the existence of such excitations is well known, and to study@Ymmetry, and from the well known results of Majumdar
the properties of the transition. and GhosH,this symmetry is spontaneously broken, leading
The J;-J,- 8 spin-1/2 chain is given by the Hamiltonian t0 two degenerate ground states. One of these two ground
states is the same as the ground statesfe0. In this case,
the elementary excitations are spinons or domain walls with
_ i spin 1/2, which interpolate between the two ground states.
H_lei: [1+(=1)'5]S: S22 Z SS+2- (D This result was established through the variational calcula-
tions of Shastry and Sutherlahdnd has since been con-
firmed by many authorS.
This model has been a subject of many theoretical stddfes. A popular way to study the spinon to triplet transition
In particular, for6=0, it is well known that the model un- occurring at smalls is through the binding of spinon pairs
dergoes a phase transition from a critical phase at smatlue to the confining linear potentiti Here we will consider
J,/1J, to a spontaneously dimerized phase at lalgél; . the opposite point of view and study the breakup of the trip-
The critical value of],/J; has been accurately computed to lets into spinon pairs ag goes to zero. Thus, this method
be (3,/J,).=0.24117 It is also well known that for the near- allows one to look for spinon excitations, in models where
est neighbor spin-1/2 chain, the presence of marginal operdheir existence is not yet established, starting from a limit
tors leads to logarithmic corrections to various correlationwhere only triplet excitations exist. Recently such a search
functions® It has been argued that these marginal operatorfor spinons was carried out in the bilayer triangular-lattice
are absent at the transition to the dimerized phasd in this  Heisenberg model, where they were not found to be
case the logarithmic corrections should also go away. Thipresent?
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Here we calculate the dispersion for the triplet excitationsand the spectral weight. Due to some special symmetries of
their spectral weights, and the wave vector dependent statibe model along the disorder line, a graph withdimers
susceptibility by series expansions around the disconnectezbntributes first in order 2{—1). Thus only eight graphs
dimer limit. The series analysis clearly confirms thaté&s are needed to carry out the expansions complete to arder
—0, the spectral weights for the triplets vanigxcept very and only 12 graphs to carry them out to ord&r. For this
near the dispersion maximumlat /2, where in the spinon model, the dispersion is symmetric around 7/2, whereas
picture triplet bound states are known to exifurthermore, the spectral weight aj,W(q), is related to that atr—q by
for 6+ 0, the static susceptibility has a simple pole at imagi-the relation
nary wave vectors, reflecting the quasiparticle nature of the
triplet excitations. Ass— 0, this turns into a branch cut re- W(g)[1—-cog7m—q)]=W(m—q)(1—cosq). (6)

flecting the absence of triplet quasiparticles. This study is known that atj= /2 the triplet dispersion and its spec-

shows that the series expansion method is well suited 9l weight do not change witk®. In the perturbation expan-

studying this transition. Since this method can easily be apgjo, this result is reflected in the fact that the expansion

p“edb'” h|gr(1jer-d|mensr:onal sysr:em_s, |t/g|ves us hope thﬁt ILoefficients after the zeroth order vanish. This serves as a
can be use "to search for such spin-1/2 excitations in thosgyher check on the calculations. The expansion coefficients
cases as well. are available on request.

Il. SERIES CALCULATIONS lll. THE LOG CORRECTIONS IN THE POWER-LAW

To construct a series expansion around the limit of dis- CORRELATED PHASE

connected dimers in powers of For the case of <y., the asymptotic behavior for ground

1-68 state energyE,, the energy gapm\, and antiferromagnetic
=TT susceptibilityy as 5—0 (A—1) are known to b&
/3
one can rewrite the Hamiltonian in E(L) in the following _ _ &
form: Eo(9)~Eo(9=0)= [In 6/ 80
HI(1+8)J;=Hg+\V, 2 523
A(S)* 5——=—=5,
where the unperturbed Hamiltonity, and the perturbation 2 |In &/ &|
V are
x(8)= 8 2RI 81 8,|°, 7
Ho= E S-Sty (3)  with a=1 andb=1/28 c has not been computed previously,
|

as far as we are aware. Here, the logarithmic corrections are
due to the marginal operators present in the model. It has
V=E SZifl'SZi_}'yE S-S, (4) been argued that these marginal operators are absent at the
i i transitiony=y, to the dimerized phase and we expect to
have pure power-law asymptotic behavior there.
To study their behavior, the series were analyzed using
_ _ the standard log Padeapproximants. These approximants
y=J3,/(1-6)J;. (5) . . o i
completely miss possible logarithmic corrections and thus
The expansions are developed for fixed valuesyoffhe can only lead to “effective” power-law exponents. The es-
expansion methods for the wave vector dependentimates for the critical points and exponents from the
susceptibility*>* the triplet dispersion? and the spectral [n/m]D log Padeapproximants to the series for energy gap
weight'® are discussed in the literature. We will concentrateand antiferromagnetic susceptibility are given in Table I.
on the expansions for the following three different values ofFrom this table, we see that the critical point lies \at
y: (1) y=0, that is, without the second neighbor interac-=1.00(1) as expected. The “effective” critical exponents
tion; (2) y=y.=(J,/3;).=0.2411, that is, the system is at based on unbiased estimaft&B) and estimates with critical
the critical point between gapped and gapless phases wheoint biased ah.=1 (B) are given in Table Il. We can see
A=1; and(3) y=0.5, that is, the expansion is along the that for the case of=y., the exponents agree with=y
disorder line where the ground states are known exactly. =2/3 very well. This provides support to the argument that
For the cases of=0 and 0.2411, the series have beenlogarithmic corrections are absent here. fer0, the “ef-
computed to ordeh?® for the ground state enerdy,, to  fective” critical exponents for botih and y are quite differ-
order\ '3 for antiferromagnetic susceptibility, and to order ent from 2/3. As argued by Affleck and Bonrérthe loga-
AL for the triplet dispersion. There are only 12 graphs thatithmic corrections lead to “effective” exponents which
contribute to the ground state energy and dispersion, and Mary slowly with the size of the system, or the length of the
graphs that contribute to the antiferromagnetic susceptibilityseries. The estimated exponent values are in between the true
This considerably extends previous series expansions for thislues and the effective exponents for size 20 calculated by
model”:18 them. One could also attempt to directly study the logarith-
For the case of=0.5, the series are carried out to order mic singularity by multiplying the series by an appropriate
\23 for the dispersion and to ordar’ for the susceptibility —power of|log &/&| before carrying out th® log Padeanaly-

y is related taJ, by the relation
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TABLE I. [n/m] D log Padeapproximants to the series for energy ghjand antiferromagnetic susceptibiligy An asterisk denotes a
defective approximant.

[(n—=2)/n] [(n—1)/n] [n/n] [(n+1)/n] [(n+2)/n]
n pole (residue pole (residue pole (residue pole (residue pole (residug
x fory=0
n=2 0.9759—-0.749 1.1109(-0.218)" 1.0143-0.869 0.995@—-0.77)
n=3 0.9912-0.786 1.0079-0.836 1.0045-0.822 1.0033-0.816 1.003@—-0.8149
n=4 1.0051-0.825 1.0029-0.8149 1.0029-0.813 1.0040(-0.818) 0.9973(-0.725)"
n=>5 1.0029-0.813 1.0029(- 0.814)" 0.9905(-0.532) 1.0021-0.8080 1.0012—-0.798
n=6 0.9982(-0.746)" 1.0012—-0.798 1.001G—0.797
A fory=0
n=2 1.10880.970 0.82160.322 0.83740.348 1.09861.243
n=3 0.95310.62) 0.99060.71) 1.01580.793 0.99820.7249 1.00220.742
n=4 1.0495%0.986 1.00470.75) 1.00160.738 1.00180.740 0.9896(0.501)
n=5 1.00210.74) 1.00180.739 1.00170.739
x for y=0.2411
n=3 0.9931-0.653 1.007-0.712 1.0002—-0.676 1.0006—-0.678 1.0005-0.677
n=4 1.0004—0.677 1.0005-0.677) 1.0005-0.677 1.0008(-0.678) 1.0002—-0.6749
n=5 1.0008—-0.680 1.0008—-0.677 1.0002—-0.674 1.0001—-0.673 1.0001—-0.673
n==6 1.000%—-0.677) 1.0001—-0.673 1.0001—-0.673
A for y=0.2411
n=2 1.65813.412 1.42332.03) 0.61210.043 0.75760.143
n=3 1.05880.737 0.7751(0.190) 1.10391.02) 0.99230.620 1.00110.653
n=4 0.95620.53)) 1.00820.680 1.00020.649 0.99600.632 0.99450.626
n=>5 1.00170.656 1.0512(0.670) 0.9944(0.626)

sis. However, such an analysis will depend on the choice ofariational calculation of Shastry and Sutherldnds re-
Jo. Such an analysis, varying, will not be attempted here. marked earlier, afj= /2 the triplet state remains unchanged
We note simply that choosing,=1 moves the effective as a function ofé.
exponents too far in the opposite direction. The spectral weight of the triplets undergoes dramatic
changes as the dynamical phase transition is approathed.
Over substantial portions of the Brillouin zone, the spectral
weight vanishes ag—0. A simple D log Padeanalysis of
the spectral weight series gives a vanishing spectral weight at
. _ . _ ) _ \ slightly less than unityé slightly larger than zeng with an
_ In this section, we begin by calculating the triplet disper- g, yonent which varies with the estimated critical point. It is
sion as a function ob. The dispersion relations are shown gigsicyit to determine this exponent accurately in an unbiased
for a number ofé values in Fig. 1. As one approachés nanner. Since it is believed that the spectral weights vanish
=0, the gap in the spectrum stays robust: it approaches gs 512 e adopt the following series extrapolation scheme:
constant with correction proportional to t1\)?%% so in o5 given wave vector, we generate the series far the
series extrapolation we transform the series to a new Variab@pectral weight divided by (2\)Y3. For a range of wave
vectors the Padapproximant for the resulting series con-
N =1—(1-\)2B (8  verges very well. For wave vectors closert(®, the resulting
series diverges as— 1. This shows that for thesg values
to remove the singularity at=1. For 6=0, the spectrum the spectral weight remains finite and is thus analyzed by a
compares well with the lowest lying triplet states in thedirect analysis of the spectral weight serfesthout the di-

IV. DISPERSION AND SPECTRAL WEIGHT ALONG
THE DISORDER LINE

TABLE Il. Estimates of “effective” critical exponents obtained lylog Padeapproximants to the series
for susceptibilityy, the energy gap, and the difference of the ground state endegyA) — Eq(A=1). Both
unbiased estimatg§)B) and estimates biased critical poing=1(B) are listed.

Series y=0 y=0.2411
UuB B uB B
A v=0.74(3) »=0.72(3) »=0.65(3) »=0.65(2)
x  y=0.80(3) y=0.78(2) y=0.675(10) y=0.675(8)

Eo(8) —Eo(8=0)  @=0.95(4) a=0.97(2)
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FIG. 1. The excitation spectrue(q)/(1+ 6)J; for the J;-J,-6
spin-1/2 chain along the disorder line f6=0, 0.01, 0.1, 0.2. FIG. 3. The correlation lengtl§ and the critical exponent,
representing the singularity in the static susceptibility at imaginary
wave vectordEg. (10)] as a function ofs. Note thata=1 repre-
sents a simple pole and implies that the elementary excitations are
triplets, whereas a smaller represents a branch cut, and implies
that the triplets have become composite objects.

vision by (1—\)Y3]. The resulting spectral weights at a few
values of§ are shown in Fig. 2.

The susceptibility remains finite a8—0. Rather than
look for a weak singularity in the susceptibility as-0, we
analyze the singular structure of the susceptibility at imagi
nary wave vectors. We expect that f6+# 0, the susceptibil-
ity for small k= 7—q should have the form

‘consists of a two-spinon continuum, and the static suscepti-
bility should now have a branch cut of the fotm

X(K)=~ T (10

A
x(k)~ 1T k2& ) _ _ _ _
with an exponentz<<1. Since the correlation length varies
smoothly as a function of, this implies that if we consider
so that at imaginary wave vect@r=i/¢, the susceptibility the series for the susceptibility at a fixed imaginary wave
has a simple pole. However, as—0, the spectrum now vector, it should have a singularity at thevalue where the
correlation length becomeésk. This singularity should be a

05 T T T T T simple pole (exponent unity which should reduce to a
[ 6=0.8." ] branch cut(exponent less than unjtasA —1 (6—0). We
.~". et calculated the series for the susceptibility at a number of
s b ’,x",/' 6=0.4] imaginary wave vectorg, which were then analyzed Hy
: a? 1 log Padeapproximants. The location of the singularity tells
B e T us thed value at which the correlation lengthequalsi/ «.
S n 6=0.2 - . S :
y | Thus this analysis gives both the correlation length e}nd the
A - exponenta as a function of our parametét The resulting

exponents and correlation length are plotted as a function of
6 in Fig. 3. The change in the nature of the singularity is
clearly evident from the plot.

V. CONCLUSIONS

In this paper we have used series expansion methods to
study the spin-1/2 Heisenberg chain with bond alternation
and nearest and second neighbor interactions. Our results are
, — S S L consistent with previous ones which show that “effective”

0 n/2 = exponents are modified due to logarithmic corrections in the
power-law correlated phase of this model, but these modifi-
cations go away when the system is tuned to the critical point

FIG. 2. The spectral weightv(q) for the J;-J,-8 spin-1/2  separating the power-law and spontaneously dimerized
chain along the disorder line fat=0.001, 0.01, 0.1, 0.2, 0.4, 0.8. phases. We have also studied in detail the triplet spectra
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along the disorder line, where the ground states are knowthe real axigat \~1.07) which could lead to spurious effects
exactly. Our results provide clear evidence for a dynamicaln our estimates. Fo6>0.1, the numerical data remains in-
transition from triplet elementary excitations to spinons. Thedistinguishable from those presented in Fig. 2. The value of
vanishing of the spectral weight and the change in the sinthis critical exponent, which characterizes the vanishing of
gularity structure of the wave vector dependent static suscephe triplet spectral weight as the spinons unbind, deserves
tibility exhibit such a transition, while the ground staend  fyrther attention.

hence all equal-time correlation functionemains free of

singularities. This method should prove useful in looking for

spin-1/2 excitations in spin systems for-1. ACKNOWLEDGMENTS
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