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Dynamical transition from triplets to spinon excitations: A series expansion study of
the J1-J2-d spin-1

2 chain
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We study the spin-1/2 Heisenberg chain with alternating nearest neighbor interactionsJ1(11d) andJ1(1
2d) and a uniform second neighbor interactionJ25y(12d) by series expansions around the limit of decou-
pled dimers (d51). By extrapolating tod50 and tuningy, we study the critical point separating the power-
law and spontaneously dimerized phases of the spin-1/2 antiferromagnet. We then focus on the disorder line
y50.5, 0<d<1, where the ground states are known exactly. We calculate the triplet excitation spectrum, their
spectral weights, and wave vector dependent static susceptibility along this line. It is well known that asd
→0, the spin gap is still nonzero but the triplets are replaced by spinons as the elementary excitations. We
study this dynamical transition by analyzing the series for the spectral weight and the static susceptibility. In
particular, we show that the spectral weight for the triplets vanishes and the static spin susceptibility changes
from a simple pole at imaginary wave vectors to a branch cut at the transition.@S0163-1829~99!00615-3#
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I. INTRODUCTION

The study of quantum-disordered ground states of lo
dimensional spin systems, with an absence of long-ra
magnetic order and a gap to spin excitations, has attra
considerable interest recently.1 A question of fundamenta
importance in the field is the nature of elementary excitati
in these phases. These spin excitations could be relate
simple spin flips, in which case they should carry spin-1,
they could represent free spin-1/2 excitations in an otherw
spinless background. The existence of such spin-1/2 ex
tions, or spinons, ind.1 lattice models remains an outstan
ing open question.2,3 Thus it is important to develop suitabl
numerical schemes that can look for such spin-1/2 exc
tions. The purpose of this paper is to test such a series
pansion based method on a one-dimensional model, w
the existence of such excitations is well known, and to stu
the properties of the transition.

The J1-J2-d spin-1/2 chain is given by the Hamiltonian

H5J1(
i

@11~21! id#Si•Si 111J2 (
i

SiSi 12 . ~1!

This model has been a subject of many theoretical studie4–6

In particular, ford50, it is well known that the model un
dergoes a phase transition from a critical phase at sm
J2 /J1 to a spontaneously dimerized phase at largeJ2 /J1 .
The critical value ofJ2 /J1 has been accurately computed
be (J2 /J1)c50.2411.7 It is also well known that for the near
est neighbor spin-1/2 chain, the presence of marginal op
tors leads to logarithmic corrections to various correlat
functions.8 It has been argued that these marginal opera
are absent at the transition to the dimerized phase9 and in this
case the logarithmic corrections should also go away. T
PRB 590163-1829/99/59~15!/9911~5!/$15.00
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result has been confirmed in previous numerical studie10

Here, we present results from series analysis, which l
further support to it.

The primary focus of this paper is on the excitation sp
tra along a special line in the parameter space, where
ground state is known exactly. Along this line, 0<2J2 /J1

512d,1, this model has a unique ground state consist
of singlet pairs between spins atS2i andS2i 11 .5 Having the
simple ground states with no quantum fluctuations allows
to focus on the elementary excitations of the system. In
disconnected dimer limit,J25J1(12d)/250, the elemen-
tary excitations are localized triplets, where one of the s
pair (S2i ,S2i 11) is excited to a triplet. These triplet excita
tions develop a dispersion fordÞ1, but remain well defined
for all d.0. At d50, the Hamiltonian has full translationa
symmetry, and from the well known results of Majumd
and Ghosh,4 this symmetry is spontaneously broken, leadi
to two degenerate ground states. One of these two gro
states is the same as the ground state ford.0. In this case,
the elementary excitations are spinons or domain walls w
spin 1/2, which interpolate between the two ground sta
This result was established through the variational calcu
tions of Shastry and Sutherland5 and has since been con
firmed by many authors.6

A popular way to study the spinon to triplet transitio
occurring at smalld is through the binding of spinon pair
due to the confining linear potential.11 Here we will consider
the opposite point of view and study the breakup of the tr
lets into spinon pairs asd goes to zero. Thus, this metho
allows one to look for spinon excitations, in models whe
their existence is not yet established, starting from a lim
where only triplet excitations exist. Recently such a sea
for spinons was carried out in the bilayer triangular-latti
Heisenberg model, where they were not found to
present.12
9911 ©1999 The American Physical Society
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Here we calculate the dispersion for the triplet excitatio
their spectral weights, and the wave vector dependent s
susceptibility by series expansions around the disconne
dimer limit. The series analysis clearly confirms that asd
→0, the spectral weights for the triplets vanish~except very
near the dispersion maximum atk5p/2, where in the spinon
picture triplet bound states are known to exist!. Furthermore,
for dÞ0, the static susceptibility has a simple pole at ima
nary wave vectors, reflecting the quasiparticle nature of
triplet excitations. Asd→0, this turns into a branch cut re
flecting the absence of triplet quasiparticles. This stu
shows that the series expansion method is well suited
studying this transition. Since this method can easily be
plied in higher-dimensional systems, it gives us hope tha
can be used to search for such spin-1/2 excitations in th
cases as well.

II. SERIES CALCULATIONS

To construct a series expansion around the limit of d
connected dimers in powers of

l5
12d

11d
,

one can rewrite the Hamiltonian in Eq.~1! in the following
form:

H/~11d!J15H01lV, ~2!

where the unperturbed HamiltonianH0 and the perturbation
V are

H05(
i

S2i•S2i 11 , ~3!

V5(
i

S2i 21•S2i1y(
i

Si•Si 12 . ~4!

y is related toJ2 by the relation

y5J2 /~12d!J1 . ~5!

The expansions are developed for fixed values ofy. The
expansion methods for the wave vector depend
susceptibility,13,14 the triplet dispersion,15 and the spectra
weight16 are discussed in the literature. We will concentra
on the expansions for the following three different values
y: ~1! y50, that is, without the second neighbor intera
tion; ~2! y5yc[(J2 /J1)c50.2411, that is, the system is a
the critical point between gapped and gapless phases w
l51; and ~3! y50.5, that is, the expansion is along th
disorder line where the ground states are known exactly

For the cases ofy50 and 0.2411, the series have be
computed to orderl23 for the ground state energyE0 , to
orderl13 for antiferromagnetic susceptibilityx, and to order
l11 for the triplet dispersion. There are only 12 graphs t
contribute to the ground state energy and dispersion, an
graphs that contribute to the antiferromagnetic susceptibi
This considerably extends previous series expansions for
mode.17,18

For the case ofy50.5, the series are carried out to ord
l23 for the dispersion and to orderl17 for the susceptibility
,
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and the spectral weight. Due to some special symmetrie
the model along the disorder line, a graph withn dimers
contributes first in order 2(n21). Thus only eight graphs
are needed to carry out the expansions complete to ordel17

and only 12 graphs to carry them out to orderl23. For this
model, the dispersion is symmetric aroundq5p/2, whereas
the spectral weight atq,W(q), is related to that atp2q by
the relation

W~q!@12cos~p2q!#5W~p2q!~12cosq!. ~6!

It is known that atq5p/2 the triplet dispersion and its spec
tral weight do not change withl6. In the perturbation expan
sion this result is reflected in the fact that the expans
coefficients after the zeroth order vanish. This serves a
further check on the calculations. The expansion coefficie
are available on request.

III. THE LOG CORRECTIONS IN THE POWER-LAW
CORRELATED PHASE

For the case ofy,yc , the asymptotic behavior for groun
state energyE0 , the energy gapD, and antiferromagnetic
susceptibilityx asd→0 (l→1) are known to be8

E0~d!2E0~d50!}
d4/3

u ln d/d0ua
,

D~d!}
d2/3

u ln d/d0ub ,

x~d!}d22/3u ln d/d0uc, ~7!

with a51 andb51/2.8 c has not been computed previousl
as far as we are aware. Here, the logarithmic corrections
due to the marginal operators present in the model. It
been argued that these marginal operators are absent a
transition y5yc to the dimerized phase and we expect
have pure power-law asymptotic behavior there.

To study their behavior, the series were analyzed us
the standardD log Pade´ approximants. These approximan
completely miss possible logarithmic corrections and th
can only lead to ‘‘effective’’ power-law exponents. The e
timates for the critical points and exponents from t
@n/m#D log Pade´ approximants to the series for energy g
and antiferromagnetic susceptibility are given in Table
From this table, we see that the critical point lies atlc
51.00(1) as expected. The ‘‘effective’’ critical exponen
based on unbiased estimates~UB! and estimates with critica
point biased atlc51 ~B! are given in Table II. We can se
that for the case ofy5yc , the exponents agree withn5g
52/3 very well. This provides support to the argument th
logarithmic corrections are absent here. Fory50, the ‘‘ef-
fective’’ critical exponents for bothD andx are quite differ-
ent from 2/3. As argued by Affleck and Bonner,19 the loga-
rithmic corrections lead to ‘‘effective’’ exponents whic
vary slowly with the size of the system, or the length of t
series. The estimated exponent values are in between the
values and the effective exponents for size 20 calculated
them. One could also attempt to directly study the logari
mic singularity by multiplying the series by an appropria
power ofu logd/d0u before carrying out theD log Pade´ analy-
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TABLE I. @n/m# D log Pade´ approximants to the series for energy gapD and antiferromagnetic susceptibilityx. An asterisk denotes a
defective approximant.

n
@(n22)/n#

pole ~residue!
@(n21)/n#

pole ~residue!
@n/n#

pole ~residue!
@(n11)/n#

pole ~residue!
@(n12)/n#

pole ~residue!

x for y50
n52 0.9759~20.749! 1.1109(20.218)* 1.0143~20.864! 0.9950~20.771!

n53 0.9912~20.786! 1.0079~20.836! 1.0045~20.822! 1.0033~20.816! 1.0030~20.814!
n54 1.0051~20.825! 1.0029~20.814! 1.0029~20.813! 1.0040(20.818)* 0.9973(20.725)*
n55 1.0029~20.813! 1.0029(20.814)* 0.9905(20.532)* 1.0021~20.808!0 1.0012~20.798!
n56 0.9982(20.746)* 1.0012~20.798! 1.0010~20.797!

D for y50
n52 1.1088~0.970! 0.8216~0.322! 0.8374~0.348! 1.0986~1.243!
n53 0.9531~0.621! 0.9906~0.711! 1.0158~0.793! 0.9982~0.724! 1.0022~0.742!
n54 1.0495~0.986! 1.0047~0.751! 1.0016~0.738! 1.0018~0.740! 0.9896(0.501)*
n55 1.0021~0.741! 1.0018~0.739! 1.0017~0.739!

x for y50.2411
n53 0.9931~20.653! 1.0075~20.712! 1.0002~20.676! 1.0006~20.678! 1.0005~20.677!
n54 1.0004~20.677! 1.0005~20.677! 1.0005~20.677! 1.0008(20.678)* 1.0002~20.674!
n55 1.0008~20.680! 1.0005~20.677! 1.0002~20.674! 1.0001~20.673! 1.0001~20.673!
n56 1.0005~20.677! 1.0001~20.673! 1.0001~20.673!

D for y50.2411
n52 1.6581~3.412! 1.4233~2.031! 0.6121~0.043! 0.7576~0.143!
n53 1.0588~0.737! 0.7751(0.190)* 1.1039~1.021! 0.9923~0.620! 1.0011~0.653!
n54 0.9562~0.531! 1.0082~0.680! 1.0002~0.649! 0.9960~0.632! 0.9945~0.626!
n55 1.0017~0.656! 1.0512(0.670)* 0.9944(0.626)*
.
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sis. However, such an analysis will depend on the choice
d0 . Such an analysis, varyingd0 , will not be attempted here
We note simply that choosingd051 moves the effective
exponents too far in the opposite direction.

IV. DISPERSION AND SPECTRAL WEIGHT ALONG
THE DISORDER LINE

In this section, we begin by calculating the triplet dispe
sion as a function ofd. The dispersion relations are show
for a number ofd values in Fig. 1. As one approachesd
50, the gap in the spectrum stays robust: it approache
constant with correction proportional to (12l)2/3,20 so in
series extrapolation we transform the series to a new vari

l8512~12l!2/3, ~8!

to remove the singularity atl51. For d50, the spectrum
compares well with the lowest lying triplet states in t
of

-

a

le

variational calculation of Shastry and Sutherland.5 As re-
marked earlier, atq5p/2 the triplet state remains unchange
as a function ofd.

The spectral weight of the triplets undergoes drama
changes as the dynamical phase transition is approach20

Over substantial portions of the Brillouin zone, the spect
weight vanishes asd→0. A simple D log Pade´ analysis of
the spectral weight series gives a vanishing spectral weigh
l slightly less than unity~d slightly larger than zero!, with an
exponent which varies with the estimated critical point. It
difficult to determine this exponent accurately in an unbias
manner. Since it is believed that the spectral weights van
as d1/3 we adopt the following series extrapolation schem
For a given wave vector, we generate the series inl for the
spectral weight divided by (12l)1/3. For a range of wave
vectors the Pade´ approximant for the resulting series co
verges very well. For wave vectors close top/2, the resulting
series diverges asl→1. This shows that for theseq values
the spectral weight remains finite and is thus analyzed b
direct analysis of the spectral weight series@without the di-
s
TABLE II. Estimates of ‘‘effective’’ critical exponents obtained byD log Pade´ approximants to the serie
for susceptibilityx, the energy gapD, and the difference of the ground state energyE0(l)2E0(l51). Both
unbiased estimates~UB! and estimates biased critical pointlc51(B) are listed.

Series y50 y50.2411

UB B UB B

D n50.74(3) n50.72(3) n50.65(3) n50.65(2)
x g50.80(3) g50.78(2) g50.675(10) g50.675(8)

E0(d)2E0(d50) a50.95(4) a50.97(2)
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vision by (12l)1/3]. The resulting spectral weights at a fe
values ofd are shown in Fig. 2.

The susceptibility remains finite asd→0. Rather than
look for a weak singularity in the susceptibility asd→0, we
analyze the singular structure of the susceptibility at ima
nary wave vectors. We expect that fordÞ0, the susceptibil-
ity for small k5p2q should have the form

x~k!'
A

11k2j2 , ~9!

so that at imaginary wave vectork5 i /j, the susceptibility
has a simple pole. However, asd→0, the spectrum now

FIG. 1. The excitation spectrume(q)/(11d)J1 for theJ1-J2-d
spin-1/2 chain along the disorder line ford50, 0.01, 0.1, 0.2.

FIG. 2. The spectral weightW(q) for the J1-J2-d spin-1/2
chain along the disorder line ford50.001, 0.01, 0.1, 0.2, 0.4, 0.8
i-consists of a two-spinon continuum, and the static susce
bility should now have a branch cut of the form3

x~k!'
A

~11k2j2!a , ~10!

with an exponenta,1. Since the correlation length varie
smoothly as a function ofl, this implies that if we consider
the series for the susceptibility at a fixed imaginary wa
vectork, it should have a singularity at thel value where the
correlation length becomesi /k. This singularity should be a
simple pole ~exponent unity! which should reduce to a
branch cut~exponent less than unity! asl→1 (d→0). We
calculated the series for the susceptibility at a number
imaginary wave vectorsk, which were then analyzed byD
log Pade´ approximants. The location of the singularity tel
us thed value at which the correlation lengthj equalsi /k.
Thus this analysis gives both the correlation length and
exponenta as a function of our parameterd. The resulting
exponents and correlation length are plotted as a functio
d in Fig. 3. The change in the nature of the singularity
clearly evident from the plot.

V. CONCLUSIONS

In this paper we have used series expansion method
study the spin-1/2 Heisenberg chain with bond alternat
and nearest and second neighbor interactions. Our result
consistent with previous ones which show that ‘‘effective
exponents are modified due to logarithmic corrections in
power-law correlated phase of this model, but these mod
cations go away when the system is tuned to the critical p
separating the power-law and spontaneously dimeri
phases. We have also studied in detail the triplet spe

FIG. 3. The correlation lengthj and the critical exponenta,
representing the singularity in the static susceptibility at imagin
wave vectors@Eq. ~10!# as a function ofd. Note thata51 repre-
sents a simple pole and implies that the elementary excitations
triplets, whereas a smallera represents a branch cut, and implie
that the triplets have become composite objects.
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along the disorder line, where the ground states are kn
exactly. Our results provide clear evidence for a dynam
transition from triplet elementary excitations to spinons. T
vanishing of the spectral weight and the change in the
gularity structure of the wave vector dependent static sus
tibility exhibit such a transition, while the ground state~and
hence all equal-time correlation functions! remains free of
singularities. This method should prove useful in looking
spin-1/2 excitations in spin systems ford.1.

Note added in proof: We have recently succeeded in e
tending the spectral weight series to orderl25. The analysis
of this series still consistently leads tolc,1. However, with
the longer series, if we now carry out a biased analysis
the critical exponent, with the critical point set to unity, w
find exponent estimates consistent with 2/3 rather than
1/3 value used in the text. We should point out that t
biased analysis also produces a second nearby singulari
. B
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n
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p-

r
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e
s
on

the real axis~at l'1.07! which could lead to spurious effect
in our estimates. Ford .0.1, the numerical data remains in
distinguishable from those presented in Fig. 2. The value
this critical exponent, which characterizes the vanishing
the triplet spectral weight as the spinons unbind, deser
further attention.
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