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Density-matrix renormalization-group method for excited states

M. Chandross and J. C. Hicks
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~Received 21 October 1998!

The density-matrix renormalization-group~DMRG! method can provide approximate ground-state wave
functions for many one-dimensional systems with a high degree of accuracy. Conventional DMRG techniques,
however, cannot be expected to give accurate excited-state information because the excited states of interest
are not explicitly included in the calculations. We discuss techniques for extending DMRG to accurately target
and investigate arbitrary excited states. As an example we apply the method to investigate the properties of
excitons within the extended Hubbard model. Our results show that excited-state calculations within the
standard DMRG procedure give results that are quantitatively incorrect.@S0163-1829~99!11715-6#
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I. INTRODUCTION

The density-matrix renormalization-group~DMRG!
method, introduced by White,1 has proven to be extremel
successful for calculating the ground-state properties
model Hamiltonians for very large system sizes in o
dimension.1–6 While conventional DMRG is designed pure
to target the ground state of a given system at zero temp
ture only, a number of extensions to the method have b
developed. For example, the ‘‘symmetrized DMRG
method is a useful tool for probing the lowest-energy wa
functions in multiple symmetry subspaces,3–6 while the
transfer-matrix DMRG method7 has been developed as
method for calculating thermodynamic properties such
specific heat or magnetization of lattice systems. The us
DMRG to probe higher energy excited states, however,
relatively recent development.6 We point out here that be
cause conventional DMRG only targets the ground-s
wave function, serious errors in both the energies and w
functions for excited states can result from a calculation
which the specific excited states are not targeted.

We present here a simple procedure that can effectiv
target arbitrary excited states of model Hamiltonians wit
the DMRG procedure. In Sec. II we briefly discuss the g
eral DMRG method and point out why it is only suited f
ground-state calculations. We then introduce our method
extracting excited-state information in Sec. III. In Sec. IV w
discuss the application of our method to the identification
excitons within the extended Hubbard model.

II. GROUND-STATE DMRG

In the DMRG method,1 a system of a given size, referre
to as a superblock, is divided into two pieces, the sys
block and the environment block. The reduced probabi
density matrix for the system block is formed from an eige
state of the superblockuc&,

r i i 85(
j

c i j c i 8 j ~1!

where the superblock wave function has been written
uc&5( i j c i j u i &u j &, with u i & and u j & representing the basi
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states of the system block and the environment block,
spectively. The eigenstates ofr i i 8 with the largest eigenval-
ues then represent the most probable configurations of
system block, given that the superblock is in the eigens
uc&. In the conventional DMRG algorithmuc& is the ground-
state wave functionucGS&. When the eigenstates correspon
ing to the smaller eigenvalues ofr i i 8 are discarded, the trun
cated basis represents the dominant configurations for
ground stateof the superblock. For small system sizes,
subset of these configurations will undoubtedly reasona
represent excited states of the superblock. However, as
system size is increased, the excited state information
gradually be pruned away.

III. EXCITED-STATE DMRG

In order to extract excited-state information from th
DMRG procedure, it is necessary to retain information ab
the relevant excited states of the superblock. As the gro
state is the only state that can be identified by an eigenv
alone, it is crucial to be able to identify the desired excit
states by their eigenvectors.

As as example, we briefly introduce here the method
use in Sec. IV to study excitons within the extended Hubb
Hamiltonian. It has previously been shown in the ‘‘essen
states’’ method of nonlinear optics8 that it is possible to iden-
tify the threshold of the electron-hole continuum thou
three successive applications of the dipole operator. We
gin by finding the ground state~and a number of even-parit
excited states! with a standard Lanc¸zos procedure. We then
find an odd-parity vectorcm by applying the dipole operato
to the ground state and normalizing the resulting vector.
usecm as the initial Lanc¸zos vector for a second Lanc¸zos
procedure aimed at retrieving a number of odd-parity eig
states. The odd-parity eigenstate that has the largest di
matrix element withcGS is identified as the 1Bu . The largest
dipole matrix element of the 1Bu with the even-parity eigen-
states from the initial Lanc¸zos procedure identifies themAg ,
wherem is a quantum number that depends on parame
and system size. Similarly, the largest dipole matrix elem
between themAg and the odd-parity eigenstates identifies t
nBu , with n again a quantum number dependent on sys
size and parameters. ThemAg andnBu have been identified
9699
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as an even-parity exciton and the threshold of the conduc
band, respectively, in exact calculations on small system8,9

but their true long-chain nature is still unclear.
Information from the eigenstates identified above can

included in the reduced probability density matrixr i i 8
through two methods. The first method assumes that the
perblock is simply a mixed state of the relevant wave fu
tions. We do not use this method in order to avoid poss
phase cancellations which may arise from the straight a
tion of the wave functions. Rather, we add probability de
sities by first forming a reduced probability density mat
r i i 8 for each of the above eigenstates, and then constru
final density matrix for the superblock from an equa
weighted linear combination of the individual matrices.

IV. SAMPLE APPLICATION

We now demonstrate the importance of this simple p
cedure in a calculation within the extended-Hubbard mod
a qualitative model for conjugated polymers. The proced
for other model Hamiltonians is similar, with the major di
ference being the choice of an appropriate operator wh
picks out the eigenstates of interest. We write the Ham
tonian as

H52t(
is

@12~21! id#~cis
† ci 11s1ci 11s

† cis!

1(
i

@Uni↑ni↓1V~ni21!~ni 1121!#, ~2!

wherecis
† creates an electron of spins on sitei , nis is the

number of electrons of spins on sitei , andni5(snis . The
system is given a static dimerization through the bond al
nation parameterd which modifies the nearest-neighbor ele
tron hopping termt. U and V describe the on-site an
nearest-neighbor electron-electron interactions, respectiv
We consider the half-filled band only.

We begin by comparing our results with a convention
DMRG calculation withU53t, V5t, andd50.1 in order to
demonstrate the importance of targeting excited states.
ditionally, we will be making comparisons with convention
DMRG calculations performed by other groups.3,6 While our
results indicate that the 1Bu is an exciton for our parameters
previous work has found that this state is unbound. In Re
the authors find a negative gap between the 1Bu and the
calculated charge gap, and conclude that there are no e
tons. We believe that the charge gap is only relevant i
quasiparticle formulation and does not represent the en
of the continuum in a true many-body calculation. The a
thors of Ref. 6 find the continuum via the essential sta
method, and then examine the behavior of an approxim
‘‘average particle-hole separation’’ as a function of syst
size to conclude that the 1Bu is unbound. While we believe
that this quantity is too approximate to be an accur
method of separating bound and unbound excitations,
feel that the major shortcoming of this work is from n
targeting all relevant excited states. We now show the er
incurred by such a calculation.

In Fig. 1~a! we plot the excitation energies of the 1Bu ,
mAg , andnBu ~Ref. 10! as a function of system size usin
n
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the method outlined above forU53t, V5t, andd50.1, the
values typically used for polyacetylene. In comparison
show in Fig. 1~b! the same plot with only the ground-sta
information retained. In all calculations we keep 250 sta
in the DMRG truncation procedure. While the curves a
relatively smooth in both cases~the minor variations in the
curves can be improved by keeping more states in the t
cation procedure and performing more iterations in the La¸-
zos diagonalization!, the excitation energies are substantia
different in the long-chain limit. As expected, the energies
the 1Ag ground state and the 1Bu are reasonably correc
~within .3%) in the conventional DMRG procedure. How
ever, both themAg andnBu states in Fig. 1~b! lie above the
nBu state in Fig. 1~a!. Further inaccuracies are seen in t
density-density correlation function at each states,

f s
j ~ i !5^~ni21!~ni 1 j21!&s ~3!

for all sitesi . In Figs. 2~a! and 2~b! we comparef s
0( i ) @rela-

tive to f 1Ag

0 ( i )# for the 1Bu , mAg , andnBu for our method

and conventional DMRG, respectively, for 36 sites. For t
half-filled band, this is equivalent to 2^ni ,↑ni ,↓&s , which
tracks the location of double occupancies. Figure 2~a! indi-
cates that the double occupancies in the 1Bu favor the center
of the chain, whereas the correlation functions of themAg
andnBu are more spatially delocalized, with lower occupa
cies at the chain center. The correlation functions in Fig. 2~b!
are very different from those in Fig. 2~a!. The similarities for
the 1Bu are not surprising, as the 1Bu has the lowest eigen
value in theBu subspace. However, the correlation functio

FIG. 1. Excitation energies of the 1Bu , mAg , andnBu for U
53t, V5t, andd50.1 as a function of chain length with the re
duced probability density matrix representing~a! all four states and
~b! only the ground state.
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of the mAg and nBu , while exhibiting some of the sam
qualitative features, give grossly incorrect quantitative
sults. In particular, themAg in Fig. 2~b! shows rapid oscil-
lations near the chain center where Fig. 2~a! shows a
smoothly varying function.

We now proceed to the demonstration of binding in t
1Bu through an analysis of both the energies and wave fu
tions of the essential states found above. From this p
forward, we will only discuss the results of DMRG calcul
tions in which all relevant excited states are targeted.

From an energetic standpoint, we first note that in F
1~a! there is an indication of a finite gap between the 1Bu
and thenBu in the long-chain limit. We have extrapolate
the energies of the essential states with a polynomial fit11 and
found that the gap will persist in long chains. In models th
do not support excitons~i.e., without intersite Coulomb in-
teractions!, the mAg and the two states to which it is mo
strongly dipole-coupled become degenerate as the c
length increases. The lack of such convergence in Fig.~a!
and in the extrapolated eigenvalues11 indicates that the 1Bu
is an exciton.

We begin our examination of the wave functions by fi
returning to Fig. 2~a!. The correlation functions in Fig. 2~a!
clearly show that the 1Bu and themAg and nBu belong to
different classes of wave functions; the 1Bu is spatially lo-
calized near the chain center, already indicating excito

FIG. 2. The correlation functionf s
0( i ) for s 5 1Bu , mAg , and

nBu with U53t, V5t, and d50.1 and the reduced probabilit
density matrix representing~a! all four states and~b! only the
ground state. The inset in~a! showsCs

N( j ); see text.
-
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character. On the other hand, the double occupancies in
mAg andnBu tend to be found more in the outer thirds of th
chain. This alone, however, does not indicate continu
character as the possibility exists that these eigenstates
excitonic with the electron-hole pair residing in the out
portions of the chain.

To resolve this issue, we turn to the centered correlat
function defined in Ref. 6,

Cs
N~ j !5

1

2F f s
j S N2 j 11

2 D1 f s
j S N2 j 21

2 D G , ~4!

where the averaging is performed to account for the differ
bond lengths whend.0. As in Ref. 6, we only consider odd
distance~i.e., negative! contributions. AlthoughCs

N( j ) only
uses two different values ofi for eachj ~rather than averag
ing over the entire chain!, and cannot quantitatively represe
the true correlation, it can still be used in a qualitative fas
ion to determine whether the electron and hole in a giv
wave function are correlated over short or long distances.
this end, we do not sum over different values ofj , as in Ref.
6, but rather plotCs

N( j ) as a function of j.
In the inset of Fig. 2~a! we showCs

36( j ) for the 1Bu ,
mAg , andnBu . The plot ofC1Bu

36 ( j ) indicates that the elec

trons and holes 1Bu are strongly~weakly! correlated at short
~large! distances. This again demonstrates the excitonic c
acter of the 1Bu . In contrast,CmAg

36 ( j ) andCnBu

36 ( j ) show that

the strongest correlation in these states occurs nearj 519,
precisely the distance between the two peaks inf s

0( i ). We
thus conclude that these are continuum states. We bel
that Fig. 2~a! is thefirst realizationof the nature of the cor-
related conduction band.

With increasing bond alternation, the extended-Hubb
model can be used to describe different conjugated polym
In Fig. 3 we show f s

0( i ) for the essential states withU
53t, V5t, and d50.3, parameters typically used for th
polysilanes. The shapes off 1Bu

0 ( i ) and f nBu

0 ( i ) are virtually

FIG. 3. The correlation functionf s
0( i ) for s 5 1Bu , mAg , and

nBu with U53t, V5t, andd50.3. The correlation functions ar
nearly identical ford50.5. Note that for larged, the f mAg

0 ( i ) be-

comes closer tof 1Bu

0 ( i ). The inset showsCs
N( j ); see text.



d
ec

th

e

w
th

en

in
iz

h-
-
, w

er

at
t

en-
et-

at
x-
the

ited
that

e

re-
d
iton

t

ex-
he

C.
ed
AR
wl-

9702 PRB 59BRIEF REPORTS
unchanged by the value ofd, being characterized by one an
two peaks, respectively. The same one- and two-peak sp
are found forf 1Bu

0 ( i ) and f nBu

0 ( i ), respectively, withd50.5,

as well as in the more strongly correlated case ofU55t and
V52t ~Ref. 11! ~we note that for the latter parameters, bo
Refs. 3 and 13 classify the 1Bu as a bound state12!. On the
other hand, as the dimerization increases, the shap
f mAg

0 ( i ) shifts from two peaks atd50.1 to one peak atd

50.3 and 0.5. The long-range correlation functions, sho
in the inset of Fig. 3, indicate that the assignments for
essential states remain the same as ford50.1, namely the
1Bu is an exciton, and themAg and nBu are continuum
states. Our results cannot give a definitive answer as
which state, themAg or thenBu , is the continuum threshold
in the long-chain limit. The classification of themAg as the
continuum threshold by the authors of Ref. 6 is consist
with Fig. 1~a!, in which themAg is lower in energy than the
nBu . However, our extrapolations for large system sizes
dicate that the eigenvalues cross at very large system s
(;80 sites!,11 and thenBu becomes the continuum thres
old, as it is traditionally defined.8 As the accuracy of extrapo
lated eigenvalues is always highly questionable, however
simply note that the indication that the energies of themAg
and nBu at least converge in the long-chain limit furth
reinforces their classification as continuum states.

V. CONCLUSION

The DMRG method can be used effectively to investig
excited-state properties, as long as information regarding
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states of interest is included in the reduced probability d
sity matrix. We have outlined a simple procedure for targ
ing arbitrary excited states provided they can be identified
all system sizes. Our application to excitons within the e
tended Hubbard model demonstrates both the ease of
method as well as the potential for serious error when exc
states are not properly targeted. We have demonstrated
for U53t, V5t with various values ofd, the 1Bu is an
exciton, and themAg and nBu are continuum states. Th
interesting question of the classification of themAg for stron-
ger Coulomb interactions and long-range interactions
mains. We note that, at least ford50.3 and 0.5, the extende
Hubbard model does seem to support more than one exc
state. For both these parameter sets, we find a distincBu

state below themAg that is similar to the hydrogenic 2S
state. The correlation functionf s

0( j ) shows a three-peak
spectrum, which can be classified throughCs

N( j ) as
a strongly bound electron-hole pair at the chain center co
isting with a continuumlike pair in the outer areas of t
chain.
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