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Density-matrix renormalization-group method for excited states
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The density-matrix renormalization-gro@®MRG) method can provide approximate ground-state wave
functions for many one-dimensional systems with a high degree of accuracy. Conventional DMRG techniques,
however, cannot be expected to give accurate excited-state information because the excited states of interest
are not explicitly included in the calculations. We discuss techniques for extending DMRG to accurately target
and investigate arbitrary excited states. As an example we apply the method to investigate the properties of
excitons within the extended Hubbard model. Our results show that excited-state calculations within the
standard DMRG procedure give results that are quantitatively incof®@163-18209)11715-6

I. INTRODUCTION states of the system block and the environment block, re-
spectively. The eigenstates pf . with the largest eigenval-
The density-matrix renormalization-group DMRG) ues then represent the most probable configurations of the
method, introduced by Whitehas proven to be extremely system block, given that the superblock is in the eigenstate
successful for calculating the ground-state properties of). In the conventional DMRG algorithi) is the ground-
model Hamiltonians for very large system sizes in onestate wave functiofisgs). When the eigenstates correspond-
dimensiont~® While conventional DMRG is designed purely ing to the smaller eigenvalues pf . are discarded, the trun-
to target the ground state of a given system at zero temperaated basis represents the dominant configurations for the
ture only, a number of extensions to the method have beeground stateof the superblock. For small system sizes, a
developed. For example, the “symmetrized DMRG” subset of these configurations will undoubtedly reasonably
method is a useful tool for probing the lowest-energy waverepresent excited states of the superblock. However, as the
functions in multiple symmetry subspac€$, while the system size is increased, the excited state information will
transfer-matrix DMRG methddhas been developed as a gradually be pruned away.
method for calculating thermodynamic properties such as
specific heat or magnetization of lattice systems. The use of
DMRG to probe higher energy excited states, however, is a
relatively recent developmehtWe point out here that be- In order to extract excited-state information from the
cause conventional DMRG only targets the ground-stat®MRG procedure, it is necessary to retain information about
wave function, serious errors in both the energies and wavthe relevant excited states of the superblock. As the ground
functions for excited states can result from a calculation irstate is the only state that can be identified by an eigenvalue
which the specific excited states are not targeted. alone, it is crucial to be able to identify the desired excited
We present here a simple procedure that can effectivelgtates by their eigenvectors.
target arbitrary excited states of model Hamiltonians within ~ As as example, we briefly introduce here the method we
the DMRG procedure. In Sec. Il we briefly discuss the gen-use in Sec. IV to study excitons within the extended Hubbard
eral DMRG method and point out why it is only suited for Hamiltonian. It has previously been shown in the “essential
ground-state calculations. We then introduce our method fostates” method of nonlinear optftthat it is possible to iden-

lll. EXCITED-STATE DMRG

extracting excited-state information in Sec. lll. In Sec. IV wetify the threshold of the electron-hole continuum though
discuss the application of our method to the identification ofthree successive applications of the dipole operator. We be-
excitons within the extended Hubbard model. gin by finding the ground stat@nd a number of even-parity
excited stateswith a standard Lajmos procedure. We then
Il. GROUND-STATE DMRG find an odd-parity vectoy,, by applying the dipole operator

to the ground state and normalizing the resulting vector. We

In the DMRG method,a system of a given size, referred yse ¥, as the initial Lanzos vector for a second Langs
to as a superblock, is divided into two pieces, the systenprocedure aimed at retrieving a number of odd-parity eigen-
block and the environment block. The reduced probabilitystates. The odd-parity eigenstate that has the largest dipole
density matrix for the system block is formed from an eigen-matrix element withyssis identified as the B, . The largest
state of the superblocky), dipole matrix element of theB,, with the even-parity eigen-
states from the initial Lajaos procedure identifies tmeA,,
wherem is a quantum number that depends on parameters
and system size. Similarly, the largest dipole matrix element
between then A, and the odd-parity eigenstates identifies the
where the superblock wave function has been written asB,, with n again a quantum number dependent on system
ly=Zij4;i)j), with |i) and |j) representing the basis size and parameters. TheA, andnB, have been identified
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as an even-parity exciton and the threshold of the conduction ' ' '
band, respectively, in exact calculations on small systeins, 97 Lt @
but their true long-chain nature is still unclear. i\ — 1B,
Information from the eigenstates identified above can be %ﬁ N\ T :']?g
included in the reduced probability density matrp;, a5t \\ N, ' i
through two methods. The first method assumes that the su- § U
perblock is simply a mixed state of the relevant wave func- § AN \\\
tions. We do not use this method in order to avoid possible & {7 - SN~ i
phase cancellations which may arise from the straight addi- S—=
tion of the wave functions. Rather, we add probability den- I T
sities by first forming a reduced probability density matrix 12 :
pii» for each of the above eigenstates, and then construct a 8§ 1216 20 24 28 32 36 40
final density matrix for the superblock from an equally Sym‘l“sm '
weighted linear combination of the individual matrices. ®)
27 1Y — 1B,
IV. SAMPLE APPLICATION 53 \ ‘\ - l:];&g
%) AN - -
We now demonstrate the importance of this simple pro- HE 22 \\ N, )
cedure in a calculation within the extended-Hubbard model, & NN
a qualitative model for conjugated polymers. The procedure £ N \~\\
for other model Hamiltonians is similar, with the major dif- & 17 \\\:~\_\_
ference being the choice of an appropriate operator which e i
picks out the eigenstates of interest. We write the Hamil-
tonian as 2577 16 20 24 28 3 36 40
System Size
H= —t% [1_(_1)|5](C;r<rci+llr+c;r+lacilf) FIG. 1. Excitation energies of theB],, mA;, andnB, for U

=3t, V=t, and 6=0.1 as a function of chain length with the re-
duced probability density matrix representitay all four states and
+§i: [Un;ng +=V(ni—=1)(ni1—1)], (2 (1) only the ground state.

wherec] creates an electron of spinon sitei, n;, is the the method outlined above faf=3t, V=t, and5=0.1, the

number of electrons of spia on sitei, andn;== ,n;,. The values typically used for polyacetylene. In comparison we

system is given a static dimerization through the bond alterShoW in Fig. 1b) the same plot with only the ground-state
nation paramete$ which modifies the nearest-neighbor elec- INnformation retained. In all calculations we keep 250 states
tron hopping termt. U and V describe the on-site and in the DMRG truncation procedure. While the curves are

nearest-neighbor electron-electron interactions, respectivelj€latively smooth in both caséthe minor variations in the
We consider the half-filled band only. curves can be improved by keeping more states in the trun-

We begin by comparing our results with a conventionalcation procedure and performing more iterations in the,kanc
DMRG calculation withU=3t, V=t, ands=0.1 in orderto  20S diagonalization the excitation energies are substantially
demonstrate the importance of targeting excited states. adlifferent in the long-chain limit. As expected, the energies of
ditionally, we will be making comparisons with conventional th€ 1A ground state and theBl, are reasonably correct
DMRG calculations performed by other grouiféwhile our ~ (Within =39%) in the conventional DMRG procedure. How-
results indicate that theBl, is an exciton for our parameters, €Ver, both thenA; andnB, states in Fig. ®) lie above the
previous work has found that this state is unbound. In Ref. 31Bu State in Fig. 1a). Further inaccuracies are seen in the
the authors find a negative gap between ti&, And the density-density correlation function at each stgte
calculated charge gap, and conclude that there are no exci- o
tons. We believe that the charge gap is only relevant in a f)=((i=1)(nij=1))s ()
guasiparticle formulation and does not represent the ener L ) .
of the continuum in a true many-body calculation. The aug—%r all sites In Figs. 2a) and 2b) we comparef{(i) [rela-
thors of Ref. 6 find the continuum via the essential state§Ve 0 f1, (i)] for the 1B,, mA;, andnB, for our method
method, and then examine the behavior of an approximatend conventional DMRG, respectively, for 36 sites. For the
“average particle-hole separation” as a function of systemhalf-filled band, this is equivalent to(8; ;n; |)s, which
size to conclude that theB], is unbound. While we believe tracks the location of double occupancies. Figu@ idi-
that this quantity is too approximate to be an accurateates that the double occupancies in tig favor the center
method of separating bound and unbound excitations, wef the chain, whereas the correlation functions of théy
feel that the major shortcoming of this work is from not andnB, are more spatially delocalized, with lower occupan-
targeting all relevant excited states. We now show the errorsies at the chain center. The correlation functions in Fig) 2
incurred by such a calculation. are very different from those in Fig(®. The similarities for

In Fig. 1(a) we plot the excitation energies of theB], the 1B, are not surprising, as theB], has the lowest eigen-
mA,, andnB,, (Ref. 10 as a function of system size using value in theB, subspace. However, the correlation functions
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FIG. 3. The correlation functiofi(i) for s = 1B, mA,, and
A / A nB, with U=3t, V=t, and 6=0.3. The correlation functions are
s A A nearly identical fors=0.5. Note that for larges, the % , (i) be-
< o0 - RPN 1 0 i i N(i o
~ / : / ‘\ comes closer t(leu(I). The inset show€_ (j); see text.
§ I/ A \,\ /,\l’ ' . .
i - Py \ character. On the other hand, the double occupancies in the
0.01 ¢ 7R / W\ 1 mA, andnB,, tend to be found more in the outer thirds of the
/,/ \ /\ *\ A A / N chain. This alone, however, does not indicate continuum
B \/ \ / WA l/ \\/ e character as the possibility exists that these eigenstates are
0-001 e o 1'3 7 ‘2'1 25 2'9 3 excitonic with the electron-hole pair residing in the outer

portions of the chain.
To resolve this issue, we turn to the centered correlation
function defined in Ref. 6,

=
5| s

i

FIG. 2. The correlation functiomg(i) fors = 1B, mA,, and
nB, with U=3t, V=t, and §=0.1 and the reduced probability
density matrix representinga) all four states andb) only the
ground state. The inset i@ showsCQ'(J'); see text.

N—j+1
2

i
s

cl(j)=>

, 4

N—j—1
2

of the mA, and nB,, while exhibiting some of the same where the averaging is performed to account for the differing
qualitative features, give grossly incorrect quantitative rebond lengths whe@>0. As in Ref. 6, we only consider odd
sults. In particular, thenAy in Fig. 2b) shows rapid oscil-  distance(i.e., negative contributions. AlthoughCY(j) only
lations near the chain center where Figa?2shows a uses two different values affor eachj (rather than averag-
smoothly varying function. ing over the entire chajpand cannot quantitatively represent
We now proceed to the demonstration of binding in thethe true correlation, it can still be used in a qualitative fash-
1B, through an analysis of both the energies and wave fundon to determine whether the electron and hole in a given
tions of the essential states found above. From this pointvave function are correlated over short or long distances. To
forward, we will only discuss the results of DMRG calcula- this end, we do not sum over different valueg pés in Ref.
tions in which all relevant excited states are targeted. 6, but rather pIoCE(j) as a function of j
From an energetic standpoint, we first note that in Fig. In the inset of Fig. 2a) we showcgﬁ(j) for the 1B,
1(a) there is an indication of a finite gap between ti®,1 mA,, andnB,. The plot ofcigu(j) indicates that the elec-

and thenB, in the long-chain limit. We have extrapolated trons and holes B, are strongly(weakly) correlated at short

]Egﬁne dnfr:giﬁigf t2e a?lfegtriglsitﬁ]t?sn‘”itghziﬁglmomﬁjtsd that(Iarge) distances. This again demonstrates the excitonic char-
gap wit' p 9 ' .In contrast,Cﬁng(j) andCy (j) show that

do not support exciton§.e., without intersite Coulomb in- acter of the B, o ]
teractions, the mA; and the two states to which it is most the strongest correlation in these states oceurs edo,
strongly dipole-coupled become degenerate as the chaffecisely the distance between the two peaksiii). We
length increases. The lack of such convergence in Kig. 1 thus conclude that these are continuum states. We believe
and in the extrapolated eigenvallieimdicates that the B, that Fig. Za) is thefirst realizationof the nature of the cor-

is an exciton. related conduction band.

We begin our examination of the wave functions by first ~With increasing bond alternation, the extended-Hubbard
returning to Fig. 2a). The correlation functions in Fig.(d) model can be used to describe different conjugated polymers.
clearly show that the B, and themA; andnB, belong to In Fig. 3 we showfl(i) for the essential states witb
different classes of wave functions; th@ lis spatially lo- =3t, V=t, and 6=0.3, parameters typically used for the
calized near the chain center, already indicating excitonigolysilanes. The shapes 6TBu(i) andfﬂBu(i) are virtually
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unchanged by the value &f being characterized by one and states of interest is included in the reduced probability den-
two peaks, respectively. The same one- and two-peak spectsity matrix. We have outlined a simple procedure for target-
are found forf‘fBu(i) andfﬂBu(i), respectively, withd=0.5,  ing arbitrary excited states provided they can be identified at
as well as in the more Strong|y correlated cast®ef5t and all System sizes. Our application to excitons within the ex-
V=2t (Ref. 11 (we note that for the latter parameters, bothtended Hubbard model demonstrates both the ease of the
Refs. 3 and 13 classify theB], as a bound stat®. On the = method as well as the potential for serious error when excited
other hand, as the dimerization increases, the shape étates are not properly targeted. We have demonstrated that
fom%(i) shifts from two peaks a$=0.1 to one peak ap  for U=3t, V=t with various values ofs, the 1B, is an

=0.3 and 0.5. The long-range correlation functions, showrfXciton, and themA; and nB, are continuum states. The

in the inset of Fig. 3, indicate that the assignments for thdnteresting question of the classification of thé, for stron-
essential states remain the same asder0.1, namely the ger Coulomb interactions and long-range interactions re-
1B, is an exciton, and thenA, and nB, are continuum mains. We note that, at least f6=0.3 and 0.5, the extended
states. Our results cannot give a definitive answer as tblubbard model does seem to support more than one exciton
which state, thenA, or thenB,, is the continuum threshold state. For both these parameter sets, we find a disBpct

in the long-chain limit. The classification of tmeA, as the  state below themA that is similar to the hydrogenic 2
continuum threshold by the authors of Ref. 6 is consistenstate. The correlation functioi(j) shows a three-peak
with Fig. 1(a), in which themAq is lower in energy than thel spectrum, which can be classified througbl(j) as
nB, . However, our extrapolations for large system sizes iny strongly bound electron-hole pair at the chain center coex-

dicate that the eigenvalues cross at very large system sizg§ing with a continuumlike pair in the outer areas of the
(~80 siteg,™ and thenB, becomes the continuum thresh- pain.

old, as it is traditionally definefiAs the accuracy of extrapo-
lated eigenvalues is always highly questionable, however, we
simply note that the indication that the energies of i,

and nB, at least converge in the long-chain limit further
reinforces their classification as continuum states.
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