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The thermal resistivity of metals due to electron-electron scattering is calculated by using the static-
screening potential with the screening length determined by the compressibility which is derived from the
Monte-Carlo values for the correlation energy. The result is compared with other theories and experiment. It is
found that the resistivity depends quite sensitively on the screening length, with the theory based on the
approximate correlation energy differing significantly from the present result. Compared with other more
sophisticated theories, the present simple model is found to agree with experiment reasonably and competi-
tively well, and much better than the result with the Fermi-Thomas screened-Coulomb potential. The inclusion
of core polarization and band mass changes the thermal resistivity by up to 35% for sodium, potassium,
rubidium, and cesium and by an order of magnitude for lithium.@S0163-1829~99!01915-3#
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I. INTRODUCTION

Electron-electron correlations play an important role
the transport processes in metals.1 Experimentally, one mea
sures the transport coefficients and singles out the infor
tion about the electron-electron correlations among other
fects. As for thermal resistivity, for example, both th
electrons and phonons contribute as carriers of heat. T
heat transport may be impeded by electron-phonon, elect
impurity, and electron-electron scattering as well as phon
phonon scattering. In this case, one measures the temper
dependence of the thermal resistivity and extracts the co
bution from electron-electron scattering.2–7 Such an analysis
for different metals gives rise to valuable information abo
the interelectron potential, where many-body effects mod
the bare Coulomb interaction significantly. Theoretical
many schemes have been proposed to take into accoun
many-body effects in calculating the thermal resistivity.8–11

In the present paper we adopt the following model to stu
the effects of electron-electron scattering on the thermal
sistivity of metals. We use the screened Coulomb interac
with the effective potential composed of the bare Coulo
potential divided by the dielectric function, where we use
static long-wavelength limit of the dielectric function. The
the effective potential is characterized by the screen
PRB 590163-1829/99/59~15!/9687~4!/$15.00
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length, which is the only density-dependent parameter in
theory. It is sufficient to require that the static lon
wavelength limit of the dielectric function satisfy the com
pressibility sum rule12 in order to determine this screenin
length uniquely. The compressibility sum rule expresses
self-consistency condition that the static response of the
tem to the long-wavelength perturbation~the static long-
wavelength limit of the dielectric function! be equal to the
compressibility. Here, one may utilize the accurate dens
dependent ground-state energy obtained via the Monte C
method13,14 to calculate the compressibility via thermod
namic relations. The basic assumption in the present theo
ical scheme is that the screening of the bare electron-elec
interaction is appropriately described with the use of
static long-wavelength limit of the dielectric function. Th
advantage of the present one-parameter theory is its sim
ity. This is also a natural extension of the previous theor
with the screened Coulomb interaction, such as the Thom
Fermi, Bohm-Pines,15 and Hubbard16 approximations. The
construction of the effective potential to be consistent w
the compressibility sum rule has been carried out previou
by Kukkonen and Wilkins.9 However, accurate data as a
input for the compressibility were not available at that tim
only the ground-state energy, calculated by use of cer
approximations, was available. We shall see that the ther
9687 ©1999 The American Physical Society
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resistivity depends on the compressibility~through the
screening length! quite sensitively. Our model agrees reaso
ably well with experimental data for alkali metals. The i
clusion of core polarization and band mass changes the r
to some degree.

In Sec. II, we describe our model. In Sec. III, we prese
our results and compare them with the results of other th
ries and experiment.

II. THE MODEL

We assume the electron-electron interaction potentia
be of the screened-Coulomb form8

V~r !5e2~e2qsr /r !. ~1!

Here, e is the electronic charge. In order to determine t
screening wave numberqs , we regard Eq.~1! as a bare
Coulomb potential which is screened by a static dielec
function in Fourier space,

V~q!54pe2/e~q,0!q2 ~2!

with e(q,0)511qs
2/q2. We further assume that the stat

dielectric function is approximated by its long-waveleng
limit. Then, the screening wave numberqs may be uniquely
determined by the compressibility sum rule12

lim
q→0

e~q,0!511~qFT /q!2~k/k0!, ~3!

whereqFT5(6pne2/EF)1/2 is the Fermi-Thomas wave num
ber,n the electron number density, andEF the Fermi energy.
The ratiok/k0 is the compressibility normalized by its fre
Fermi gas value. The compressibility may be obtained fr
the density dependence of the ground-state energy thro
thermodynamic relations.

Kukkonen and Smith8 used a screened Coulomb potent
and calculated the scattering phase shifts numerically fl
50, 1, and 2 to obtain the scattering cross section. Then
used the exact solution of the Boltzmann equation17,18 to
derive the following interpolation formula for the therm
resistivity as a function of the dimensionless coupling co
stantr s and the screening wave number:

Wexact51.1031028~r s
5.04/A3.06!T cm K/W ~4!

with an estimated accuracy of 10% in the range 1.5,r s
,6. Here r s is defined by r s[r 0 /aB , where r 0
[(3/4pn)1/3 is the mean particle distance,aB[\2/me2 the
Bohr radius, withn the electron number density,m the bare
electron mass, ande the electronic charge. In addition,A
5qs /r s

1/2kF with kF the Fermi wave number. Since th
present model adopts the same screened Coulomb pote
we shall use Eq.~4! in estimating the thermal resistivity.

Kukkonen and Wilkins9 incorporated the compressibilit
sum rule into the interelectron potential in calculating t
thermal resistivity. They obtained the compressibility fro
the ground-state energy which is calculated within vario
approximate theories.16,19,20 Since thermal resistivity was
found to be very sensitive to the screening length,8,9 we in-
stead use the accurate Monte Carlo data13,14 for the ground-
state energy in calculating the compressibility and
screening wave number. This has been done in Ref. 21.
-

ult

t
o-

to

e

c

gh

l

ey

-

ial,

s

e
he

screening wave number may be expressed in terms of
spin-parallel and spin-antiparallel screening wave numb
~q↑↑ andq↑↓! ~Refs. 21 and 22! as

qs5qFT /$11~1/2!@~qFT /q↑↑!
21~qFT /q↑↓!

2#%1/2. ~5!

The simplest treatment of the lattice ions assumes that
electrons are immersed in a rigid, uniform, positive
charged background. Such a system may be characterize
a dimensionless coupling constantr s . In real solids, at leas
two effects modify the coupling constantr s . First, the core
electrons in the lattice ions form a polarizable medium. T
will change the bare chargee2 to the effective~or screened!
chargee2/eB , where eB is the dielectric constant of the
background ions. Second, due to the interactions between
electrons and lattice ions~i.e., electron-phonon interaction!
the electrons have an effective massmB rather than the bare
massm. Therefore, the electronic properties of real soli
can be described in terms of an idealized electron system
an inert positive charge background with the mass a
charge in the coupling constant replaced bymB ande2/eB so
as to give an effective dimensionless coupling constantr s*
[(mB /m)r s /eB .9,10

III. THE RESULTS AND DISCUSSION

The thermal resistivity calculated within the prese
model together with the results of other calculations and
experimental data are shown in Fig. 1. Note that the plo
our results in Fig. 1~the fifth solid line from the top at
cesium density! includes neither ionic polarizability nor ban
mass.

While the present model gives a thermal resistivity whi
is smaller than the experimental data for potassium,
bidium, and cesium, the agreement is satisfactory for cop
gold, and sodium. The Geldart-Taylor model9,19 agrees with
the experimental data for sodium and cesium, but give lar
values for other metals. Two other models treated by K
konen and Wilkins9—the interpolation and the Hubbar
approximation16—agree with the experimental data for s
dium, but give larger values for other metals.

The inclusion of the effects of ionic core polarizabilit
and band mass are found to modify the results to some
gree. Such effects are shown in Table I. For sodium, th
effects are small. For potassium, rubidium, and cesium, th
effects change the thermal resistivity by about 35% in eit
direction. For lithium, on the other hand, these effects
marked, increasing the thermal resistivity by an order
magnitude, a tendency very similar to what MacDonald a
Geldart10 found. Namely, the thermal resistivity of lithium
calculated within our scheme lies above those predicted
three other theories listed in Ref. 9.

The present model is a direct extension of the theory
Kukkonen and Smith,8 where the electron-electron intera
tion was characterized by a single parameter, the scree
length. The importance of satisfying the compressibility su
rule was stressed by Kukkonen and Wilkins.9 They started
with the relation between the electron-electron interact
and the proper vertex function. The latter is related to
ratio of the interacting and noninteracting proper polariz
tions in the long-wavelength limit, and this ratio was es
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FIG. 1. Thermal resistivity due to electron-electron scattering as a function of density. The open circles with error bars are expe
values obtained by Laubitz for copper, gold, and silver~Ref. 2!; by Cooket al. for sodium~Ref. 3!; and by Cook for rubidium~Ref. 4!,
potassium~Ref. 5!, and cesium~Ref. 6!. The connected dashed or solid lines show theoretical values. The use of the Bohm-Pines~Ref. 15!
and Thomas-Fermi screening lengths give the top and bottom dashed lines, respectively~Ref. 8!. These dashed lines take into account neith
the ionic polarizability~i.e., eB51! nor the band mass~i.e., mB/m51!. The solid lines are, from top to bottom at the cesium density,
results of the interpolation by Kukkonen and Wilkins~Ref. 9!, Hubbard approximation~Refs. 9 and 16!, the theories of Geldart-Taylor~Refs.
9 and 19!, and MacDonald-Geldart~Ref. 10!, and the present calculation, respectively. The top three solid lines~at cesium density! due to
Kukkonen and Wilkins~Ref. 9! include the ionic polarizability for Li, Na, K, Rb, and Cs, but do not include the band mass~i.e., mB/m
51!. The MacDonald-Geldart results~Ref. 10! include the ionic polarizability~i.e., eBÞ1!, the band mass~i.e., mB/mÞ1! as well as band
correction, and the deviation from Matthiessen’s rule. The calculated values at several metallic densities are connected by dash
lines in order to guide the eye only. Individual metals have different core polarizabilities, so that the density dependence of the res
not necessarily monotonic or smooth.
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mated by the use of the compressibility sum rule. They
tained the compressibility from the ground-state ene
which was calculated within various approxima
theories.16,19,20 In contrast, the present model incorporat
the compressibility sum rule through the use of the accu
Monte Carlo data for the ground-state energy.13,14

Let us compare the present calculation with the mo
based on ‘‘the interpolation formula’’@Eq. ~29! in Ref. 9# by
Kukkonen and Wilkins. By settingmB /m51 for cesium,
one obtains r s*→r s /eB54.46, which is close tor s /eB

54.43 in Ref. 9. At this density, one finds that their value
Wee/T, 2100 in units of 1026 cm/W, is much larger than
ours, 95.6.~See the last entry in Table I.! The difference
seems to reflect the sensitivity with which the thermal res
tivity depends on the screening length.

MacDonald and Geldart10 started with the transition prob
-
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abilities expressed in terms of the four-point scattering fu
tion. The latter may be expressed in terms of the Land
Fermi-liquid parameters in the forward scattering limit. T
Dy-Pethick approximation determines thef dependence of
the forward scattering function uniquely, wheref is the
angle between the relative momentum of the initial state
that of the final state.12 MacDonald and Geldart10 compared
their theory with that of Kukkonen and Wilkins.9 As noted
by MacDonald and Geldart,10 this was by no means straigh
forward.

Most recently, Lundmark11 used the Landau Fermi-liquid
theory to examine the static and dynamic versions of fi
theories~i.e., ten theories total! and calculatedWee/T for
sodium and potassium. Among them, it is found that
static versions of the four theories~Hedin’s GW approxima-
tion, RPA, SSTL, and Hubbard-corrected LDA! give values
e

TABLE I. The effects of ionic core polarization and band mass on the thermal resistivity. HereeB51

14pniad is the dielectric constant of the background ions, whereni andad are the number density and th
polarizability of ions, respectively. The values for the ionic polarizability and band massmB are taken from
Refs. 23 and 24, respectively, andr s* 5(mb/m)r s/eB. The quantitiesqs* ~given in atomic units withaB the
Bohr radius!, A* , andWexact* /T are obtained withr s replaced byr s* in Eqs.~4! and~5!, etc. The last entry is
for cesium withmB/m51.

r s ad eB mB/m r s* qs* A* Wexact* /T
(10224 cm3) (aB

21) (1026 cm/W!

Li 3.22 0.02807 1.01634 1.54 4.88 0.512 0.589 163.6
Na 3.96 0.1401 1.04478 1.04 3.94 0.600 0.620 47.7
K 4.87 0.8086 1.1349 1.08 4.63 0.534 0.599 119.9
Rb 5.18 1.345 1.18125 1.10 4.82 0.517 0.591 152.7
Cs 5.57 2.343 1.24948 1.30 5.80 0.562 0.562 449.5
Cs 5.57 2.343 1.24948 1.00 4.46 0.550 0.605 95.6
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in the range 65~SSTL! – 73 ~RPA! for sodium and 231
~Hedin! – 327 ~Hubbard! for potassium all in units of
1026 cm/W. Most of these theoretical values are within t
error bars of the experimental data for each of these
alkali metals as listed in Fig. 1. On the other hand, it is a
found that most of the dynamic versions of these theorie
well as the static version of the LDA overestimateWee/T for
potassium by a factor of 3~SSTL! – 110 ~LDA !.

In comparison with these more sophisticated theories,
present model, in spite of its simplicity as a one-parame
theory, agrees competitively well with experiment.

In summary, let us emphasize the following points.
~i! The present theory is based on a simple model. T

screening length is the only parameter in the theory.
~ii ! The dielectric function, from which the screenin

length is derived, satisfies the compressibility sum ruleex-
actly. The compressibility itself is determined from the de
sity dependence of the ground-state energy, which is ca
lated by the Monte Carlo method with high precision.

Let us finally remark on the following issues which ha
not been considered in the present paper.

~i! Effects of the wave-number dependence of the st
dielectric function: We have used the static dielectric fun
tion in the long-wavelength limit to derive the screeni
length. While this approximation simplifies the form of th
o
o
as

e
r

e

-
u-

ic
-

effective potential greatly, the effects of the contributio
from the finite wave-number region~finite momentum trans-
fers! should be examined.

~ii ! Dynamic effects: Similarly, the effects of the finit
frequency may be examined. This corresponds to a fi
energy transfer in scattering. Since two-particle scatter
occurs in a degenerate fermion system, the typical ene
transfer is of orderkBT due to the Pauli principle, whereT is
the temperature of the system. Therefore,\v;kBT!EF ,
whereEF is the Fermi energy. Thus, the static approximati
is justified.

~iii ! Other ‘‘solid state’’ effects: Finally our model doe
not include effects arising from the fact that ions are mob
rather than an idealized rigid, uniform, positively charg
background.
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