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First-principles calculation of the thermal properties of silver
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The thermal properties of silver are calculated within the quasiharmonic approximation, by using phonon
dispersions from density-functional perturbation theory, and the pseudopotential plane-wave method. The
resulting free energy provides predictions for the temperature dependence of various quantities such as the
equilibrium lattice parameter, the bulk modulus, and the heat capacity. Our results for the thermal properties
are in good agreement with available experimental data in a wide range of temperatures. As a by-product, we
calculate phonon frequency and @aisen parameter dispersion curves which are also in good agreement with
experiment[S0163-18209)00702-X]

[. INTRODUCTION onstrate that the quasiharmonic approximation provides a
reasonable description of the dynamic properties of many
The study of the temperature dependence of the propertidgulk materials below the melting point. Very recently, first-

of materials requires a proper account of nuclear motiongprinciples calculations on the thermal expansion of some

Within the framework of density-functional theofFT)ta  simples-p metals indicate that the treatment of anharmonic

major breakthrough in this field has been opened by the ineffects at the quasiharmonic level provides a remarkable

troduction of ab initio molecular dynamics by Car and 90od description of the structural and elastic properties of
Parrinello? Far from the melting point, however, a more these materials up to their melting poirts. - o

conventional(and yet largely unexplored in practicap- In this paper we apply the quasiharmonic approximation

proach based on lattice dynamics proves to be both morf® the study of the thermal properties of thé Aoble metal
accurate and computationally efficient. In tharmonic ap- AAd» Such as thermal expansion, heat capacity, and tempera-

proximation the crystal free energy is calculated by adding alureé dependence of the bulk modulus. To this end, we first
static contribution—which is accessible to standard DFT c@lculate the phonon dispersion curves as functions of vol-
calculations—to alynamicalcontribution which is approxi- UMe by using DFPT.0ur results demonstrate that all these
mated by the free energy of system of harmonic oscillatorguantities can be accurately predicted from the present
corresponding to the crystal vibrational modesonons. parameter-freg methoc_j in a wide range of temperature_s.

The latter is nowadays conveniently calculated by using 1N€ Paper is organized as follows. In Sec. II, we briefly
density-functional perturbation theoryDFPT).3'4 In the og_tlme our com.putatlonal framework, as well as some def!-
quasiharmonicapproximatior?~’ some anharmonic effects nitions concerning the physical quantities we have investi-
can be accounted for by allowing phonon frequencies to deggted. The' results of our calgulatlons are thgn presented and
pend on crystal volume. Among other advantages, théi_lscussed in Sec. lll. Finally, in Sec. IV we give our conclu-
(quasiy harmonic approximation allows an explicit account S1ONS-

of quantum effects on nuclear motion, which can be impor-

tant below the Debye temperature. Furthermore, analysis of Il. THEORY

the normal vibration modes and of their individual contribu-
tion to the free energy can explicitly reveal the mechanism
driving the thermal expansion, phase transitions, and the For a given temperaturd,, and volumeV, the equilib-
crystal stability. The main concern about the lattice dynamicgium state of an extended system such as a crystal is deter-
method is the range of validity of the quasiharmonic approxi-mined by the condition that the Helmholtz free energy,
mation. Calculations based on various semi-empirical

model§~!as well as on first-principles methdd$-1*dem- F(V,T)=U-TS, (2.

A. Equation of state and thermal expansion
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is at a minimum with respect to variations of all possible 500
internal degrees of freedgnsuch as, e.g., atomic arrange-
ments and electronic states. Héteand S indicate the inter- 400 |

nal energy and entropy, respectively. Téguation of statef
the system is obtained from E(R.1) by equating the pres-
sure to minus the volume derivative of the free energy: <

300

oF
.

p=- (2.2
100 |

In the quasiharmonic approximatioR,is given by

F(V,T)=E(V)+Fjp(w,T)

3.7 3.9 4.1 4.3 4.5

=E(V)+ kBTE 2 | |.( hwl(q)) ] , lattice parameter a (A)

2keT FIG. 1. Static total energy per atom as a function of lattice
(2.3 parametem.

where E is the static contribution to the internal energy—
which is easily accessible to standard DFT calculatiéfg,
represents the vibrational contribution to the free energy, an
w;(q) is the frequency of thgth phonon mode at wave
vectorq in the Brillouin zone(BZ). Anharmonicity is explic-
itly, though approximately, accounted for by allowiggV)

to deviate from a quadratic behavior and by letting the pho-
non frequencies depend on volume. Since the temperatur
considered here are well below the electronic energy scale,

the contribution of the electronic excitations to the thermal Cp—CV:a\Z,(T)BVT, (2.9
expansion is negligible and is not included in the present

work. Theequation of staté2.3) can now be written in the andC,, is given by

Due to anharmonicity, the heat capacity at constant pres-
aure ,Cp, is different from the heat capacity at constant vol-

me, CV The former, which is what experiments determine
dlrectly, is proportional tol' at high temperature, while the
latter goes to a constant which is given by the classical eg-
uipartition law:Cy~3Nkg, whereN is the number of atoms
ér%the system. The relation betwe&y andCy ist®

form
IE  IFp (ﬁw (@) ) 1
= Cy=k .
PV T)== -5~ v Ve BE E 2ksT | sintP(fiw;(q)/2kgT)
. (2.10

=—W+V > 2 Yi(DEwi(Q), (2.9

B. Computational details
wherey;(q) is the Gruneisen parameter corresponding to the

(q,j) phonon mode, defined as The static total energyE(V), and phonon frequencies,

w;(q), are calculated by using DFT and DFPT respectively,
dwi(q) V within the local density approximatiod.We use separable
vi(a=-—y TR (2.5  norm-conserving pseudopotenti&ls’ together with a plane-
i wave basis set up to a kinetic-energy cutoff of 55 Ry. Sums
and &(wj(q)) is the mean vibrational energy of the,{)  over occupied electronic states are performed by the
phonon given by Gaussian-smearing special-point techni¢fl@, using 60k
points in the irreducible wedge of BZ. Phonon frequencies

& _— ) 1 N 1 2.6 are calculated on a444) regular mesh and Fourier-
O N=h0) D) 5% o (ke —1) 2
6.0
The thermal expansion is obtained directly from dupia- 5.0 q /
tion of state(2.4) and the volume thermal expansion coeffi- ¥ w0 L/© ; )
cient is defined as ~ ° s
2 30
10V 220
a’V—v (ﬁ) . (Zn Iy 10
P
The temperature dependence of the bulk modulus is obtained 00 1 X W

from
FIG. 2. Calculated phonon dispersion curves at the lattice pa-

J%F J%E PFyip(@,T) rameter corresponding to static equilibrium. Experimental neutron-
B(T)=V(W) :VW V(T) . (2.8 scattering datdRef. 25 are denoted by circle§. andL represent
T T transverse modes and longitudinal modes, respectively.
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FIG. 3. Calculated dispersion curves of the mode r@isen
parametery;(q) of silver along some symmetry lines in BZ corre-
sponding to static equilibrium volum¥,. T and L denotes the
transverse modes and longitudinal modes, respectively.

interpolated in-between. This Fourier interpolation amount%

to including real-space interatomic force constants up to th
fourth shell of neighbors.

lll. RESULTS

Figure 1 shows the static total energy per at&ty), as
a function of the lattice constamt=(4V)° (Ag is a face-
centered cubic metalOur data are fitted to a Murnaghan’s
equation of staté? The resulting lattice constanta,
=4.05 A, bulk modulusB=1.28 Mbar, and pressure de-
rivative of the bulk modulus¢B/dp=5.66, agree well with
previous theoretical calculatiord. For comparison, the
room-temperature experimental data ag=4.08 A (Ref.
24) andB=1.01 Mbar®

According to Eq.(2.4), in order to obtain the equation of

state one must first calculate the phonon band structure as

function of volume. In Fig. 2 we display the phonon disper-
sion curves as calculated along several symmetry directio
at the minimum of the static energy. Experimental data a
room temperatur® are reported for reference. The effect of

temperature on the phonon dispersions will be discusse

later in this paper. Figure 3 shows the calculated dispersio
curves of the mode Gneisen parameters of Ag, as defined
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FIG. 5. Temperature dependence of the linear thermal expansion

for Ag. Solid curve is the calculated result and the circles represent
experimental data from Ref. 28.

Dy Eg. (2.5, along the same symmetry directions. The cor-
fesponding volume is obtained from the minimum of the
static energy in Fig. 1. The dispersions are discontinuous at
the BZ center as a consequence of the anisotropy and polar-
ization dependence of the sound velocities. ThénBisen
parameters of silver are positive throughout the BZ for all
branches, thus implying that there is no anomalous negative
thermal expansion at low temperature, as if°Sthe aver-
aged Grueisen parameter of silver is 2.6, in agreement with
the low experiment value of 2%.1t is noted that Groeisen
parametery;(q) may deviate from the value obtained at the
static equilibrium volumé/, as V changefsee Eq(2.5 and
Ref. 7]. In the following calculationsy;(q) is evaluated as a
function of V.

With the static total energy and the Geisen parameters
in our hands, we can set up tleguation of statevia Eq.
(?.4). Figure 4 shows the pressup¢V,T) as a function of
the lattice parametea for several temperatures. It can be
een that for a given pressure, the lattice constant increases
with the temperature. At room temperature and zero external
gressure, the calculated lattice constant aig=4.07 A,
\r/]vhich is closer to the room temperature experimental value
of 4.08 A (Ref. 24 than the result of 4.05 A derived from the
static total energy. As the temperature is increased, a critical
temperatureT ,, exists above whiclp(V,T) no longer inter-
sects thep=0 line and, within the quasiharmonic approxi-
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FIG. 6. Solid lines: calculated phonon dispersion curves of sil-

ver atT=293 K. Dashed lines: calculated phonon dispersions at the

lattice parameter corresponding to static equilibrium. Experimental

FIG. 4. Applied pressurd(V,T) for silver as a function of
lattice parametea (hereV=a®%4) for different temperatures.

neutron-scattering datdRef. 25 are denoted by circlesl and L
represent transverse modes and longitudinal modes, respectively.
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FIG. 7. Calculated temperature dependence of the ratio of bulk FIG. 8. Calculated temperature dependence of heat capacity of

modulusB(T) to B, (obtained from static total energfor silver. ~ Ag at constant pressureC() and at constant volumeC{,). The
experimental data foC, (Ref. 29 are denoted by circles.

mation, the crystal becomes mechanically unstable due to the . .
vanishing of the isothermal bulk modulusV(ap/aV); at ~ _+-28 Mbar), one sees that the agreement with the experi-
T,.. In silver this lattice instability occurs at 1370 K, not far mental result B=1.01 Mbar) (Ref. 18 is significantly im-
from the experimental melting temperatufe234 K).° proved. _ .

The thermal expansion can be derived directly from the 1 Ne calculated heat capacify, andCy are shown in Fig.
equation of stateWe have calculated the linear thermal ex- 8 It can be seen that below the Debye temperatike

pansion which is definé8as =225 K for silver’) the difference betweeg, and Cy is
very small, while at high temperature, the heat capacity at
Aag ag(T)—ag(T=293 constant volumeC,, approaches to the classical value
°T 2 | agT=293 (3.)  24.93mortK%, while the heat capacity at the constant

pressure increases monotonously with the temperature. The
The results are shown in Fig. 5. The agreement between thevailable experimental ddtafor C, are shown as circles.
theoretical and experimental results is very good. Althoughrhe agreement between theory and experiment is remarkable
the calculated equilibrium lattice constant is slightly differentin a wide range of temperatures also in this case.
from experimental measurement, the temperature depen-
dence of the relative volume changes are described accu- IV. CONCLUSIONS
rately by the present method. The good agreement between

theory and experiment holds not only at low temperature, but " the present paper, we have calculated the thermal prop-
also near the melting point. erties of silver, such as thermal expansion coefficient,

Given the volume as a function of temperature, the temS'tneisen parameters, bulk modulus, and heat capacity, us-
lg the quasiharmonic approximation within density-

perature dependence of phonon frequencies can be approi

mately estimated through their volume dependefiegT) fu_nctional theory. Th_e equilibrium lattice constant is ob-
— w(T=293)]/&(T=293)~3vs, wherey is the Gineisen tained from theequation of stateconstructed by the free

parametefEq. (2.5] and ¢ is the linear thermal expansion SN€rgy- The vo!ume de.pendence of frgquencies is calculated
[Eq. (3.1)]. In the present case, given the fact théT =0) frqm the densny—fun(_:tlonall perturbation theory_. The c.)t.)'
~—5x10°3, and that Graeisen parameters are typically talngd results for the |nve§tlgated the_rmodynamlp quantities
y~2-3, phonon frequencies at room temperature are lowed € N good agreement W'th the available experiment mea-
than theirT=0 value by 3-5 %. Figure 6 shows the theoret-SUrements. Th_e calculation suggests that the anharmo_nlc
ical phonon dispersions at room temperat(fél lines) to- ]E)roper_tle§ of silver can _be aqcurately calculated from this
gether with the dispersions, which are already shown in Fig.'rSt'.p”n.CIpIes approach in a wide range of temperature. The
2 and calculated at the static equilibrifdashed lines in Fig. appllcatlon of the present me'ghod to the study of other prop-
6). The comparison with experimental data at room temperag.rt.Ies of materials sup_h as h'gh pressure effect, crystal sta-
ture (open circle¥’® is clearly improved and now rather sat- llity and phase transitions, is straightforward.

isfactory.

Figure 7 shows the temperature dependence of the bulk
modulus as calculated from E@Q.8). B, denotes the bulk One of the author§].J.X) would like to acknowledge the
modulus obtained from the static total energy by neglectindinancial support from Alexander von Humboldt Foundation
the lattice vibrations. At room temperature, we obtain ain Germany. Two of u¢S.B. and S.dG.have done this work
bulk modulusB=1.16 Mbar. Comparing this value with in part within thelniziativa Trasversale Calcolo Parallelof
the result derived from static LDA calculationsB{ INFM.

ACKNOWLEDGMENTS




PRB 59

FIRST-PRINCIPLES CALCULATION OF THE THERMA . ..

969

*Present address: T-11, MS-B262, Theoretical Division, Los Ala-*P. Pavone, S. Baroni, and S. de Gironcoli, Phys. Re\67B

mos National Laboratory, Los Alamos, NM 87545. Electronic

address: xie@viking.lanl.gov

IFor a review of density functional theory, see, eXtheory of the
Inhomogeneous Electron Gaadited by S. Lundqvist and N. H.
March (Plenum, New York, 1978

2R. Car and M. Parrinello, Phys. Rev. LeB6, 2471(1985.

3S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. |58t.1861

(1987; P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni,

Phys. Rev. B43, 7231(199).

4A. Fleszar and X. Gonze, Phys. Rev. Lét, 2961(1990.

5R. E. Allen and F. W. de Wette, Phys. Rew79 873 (1969.

5A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatpva,
Theory of Lattice Dynamics in the Harmonic Approximation
2nd ed.(Academic, New York, 1971

"p. Brisch,Phonons: Theory and Experimenté3pringer-Verlag,
Berlin, Heidelberg, New York, 1982

8S. M. Foiles and J. B. Adams, Phys. Rev4B 5909(1989.

9J. D. Althoff, P. B. Allen, R. M. Wentzcovitch, and J. A. Mori-
arty, Phys. Rev. B8, 13253(1993.

10C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B

43, 5024(1991).

11G. D. Barrera, M. B. Taylor, N. L. Allan, T. H. K. Barron, L. N.
Kantorovich, and W. C. Mackrodt, J. Chem. Phy€7, 4337
(1997.

125 Biernacki and M. Scheffler, Phys. Rev. L&8 290(1989.

13p, pavone, K. Karch, O. S¢tipWw. Windl, D. Strauch, P. Gian-
nozzi, and S. Baroni, Phys. Rev.4B, 3156(1993; see also P.

10421(1998.

15A. A. Quong and A. Y. Liu, Phys. Rev. B6, 7767(1997.

16¢. Kittel, Introduction to Solid State Physidsth ed.(Wiley, New
York, 1986.

17D, M. Ceperley and B. J. Alder, Phys. Rev. Lett, 566 (1980
as parametrized by J. P. Perdew and A. Zunger, Phys. Rev. B
23, 5048(1981).

18, Kleinman and D. M. Bylander, Phys. Rev. Le#8, 1425
(1982.

19%. Gonze, R. Stampf, and M. Scheffler, Phys. Rev44 8503
(1995.

20M. Methfessel and A. T. Paxton, Phys. Rev. 40, 3616

989.

214, J. Monkhorst and J. D. Pack, Phys. RevlB 5188(1976.

22F_D. Murnaghan, Proc. Natl. Acad. Sci. US®, 244 (1944.

233, Narasimhan and M. Scheffler, Z. Phys. Chéhunich) 202,
253 (1997.

24p H. Dederichs, H. Schober, and D. J. SellmyerNumerical
Data and Functional Relationships in Science and Technglogy
edited by K.-H. Hellwege and J. L. Olsen, LandolifBstein,
New Series, Group lll, Vol. 13a, Pt. (Bpringer-Verlag, Berlin,
Heidelberg, New York, 1981

25W. Drexel, Z. Phys255, 281 (1972.

26H. Ibach, Phys. Status Soli8il, 625 (1969.

27K. A. Gschneider, Jr., irBolid State Physicedited by F. Seitz
and D. Turnball(Academic, New York, 1964 Vol. 16, p. 275.

28 American Institute of Physics Handbodd ed.(McGraw-Hill,
New York, 1972, pp. 4-130.

Pavone, SISSA Ph.D. thesis, Trieste, 1991, available on th&American Institute of Physics Handbodnd ed.(McGraw-Hill,

WWW at URL: http://www.sissa.it/cm/PHD.html

New York, 1963, pp. 4-49.



