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First-principles calculation of the thermal properties of silver
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The thermal properties of silver are calculated within the quasiharmonic approximation, by using phonon
dispersions from density-functional perturbation theory, and the pseudopotential plane-wave method. The
resulting free energy provides predictions for the temperature dependence of various quantities such as the
equilibrium lattice parameter, the bulk modulus, and the heat capacity. Our results for the thermal properties
are in good agreement with available experimental data in a wide range of temperatures. As a by-product, we
calculate phonon frequency and Gru¨neisen parameter dispersion curves which are also in good agreement with
experiment.@S0163-1829~99!00702-X#
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I. INTRODUCTION

The study of the temperature dependence of the prope
of materials requires a proper account of nuclear motio
Within the framework of density-functional theory~DFT!,1 a
major breakthrough in this field has been opened by the
troduction of ab initio molecular dynamics by Car an
Parrinello.2 Far from the melting point, however, a mo
conventional~and yet largely unexplored in practice! ap-
proach based on lattice dynamics proves to be both m
accurate and computationally efficient. In theharmonic ap-
proximation, the crystal free energy is calculated by adding
static contribution—which is accessible to standard DF
calculations—to adynamicalcontribution which is approxi-
mated by the free energy of system of harmonic oscillat
corresponding to the crystal vibrational modes~phonons!.
The latter is nowadays conveniently calculated by us
density-functional perturbation theory~DFPT!.3,4 In the
quasiharmonicapproximation,5–7 some anharmonic effect
can be accounted for by allowing phonon frequencies to
pend on crystal volume. Among other advantages,
~quasi-! harmonic approximation allows an explicit accou
of quantum effects on nuclear motion, which can be imp
tant below the Debye temperature. Furthermore, analysi
the normal vibration modes and of their individual contrib
tion to the free energy can explicitly reveal the mechani
driving the thermal expansion, phase transitions, and
crystal stability. The main concern about the lattice dynam
method is the range of validity of the quasiharmonic appro
mation. Calculations based on various semi-empiri
models8–11 as well as on first-principles methods4,12–14dem-
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onstrate that the quasiharmonic approximation provide
reasonable description of the dynamic properties of m
bulk materials below the melting point. Very recently, firs
principles calculations on the thermal expansion of so
simples-p metals indicate that the treatment of anharmo
effects at the quasiharmonic level provides a remarka
good description of the structural and elastic properties
these materials up to their melting points.15

In this paper we apply the quasiharmonic approximat
to the study of the thermal properties of the 4d noble metal
Ag, such as thermal expansion, heat capacity, and temp
ture dependence of the bulk modulus. To this end, we fi
calculate the phonon dispersion curves as functions of
ume, by using DFPT.3 Our results demonstrate that all the
quantities can be accurately predicted from the pres
parameter-free method in a wide range of temperatures.

The paper is organized as follows. In Sec. II, we brie
outline our computational framework, as well as some d
nitions concerning the physical quantities we have inve
gated. The results of our calculations are then presented
discussed in Sec. III. Finally, in Sec. IV we give our concl
sions.

II. THEORY

A. Equation of state and thermal expansion

For a given temperature,T, and volume,V, the equilib-
rium state of an extended system such as a crystal is d
mined by the condition that the Helmholtz free energy,

F~V,T!5U2TS, ~2.1!
965 ©1999 The American Physical Society
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is at a minimum with respect to variations of all possib
internal degrees of freedom, such as, e.g., atomic arrang
ments and electronic states. HereU andS indicate the inter-
nal energy and entropy, respectively. Theequation of stateof
the system is obtained from Eq.~2.1! by equating the pres
sure to minus the volume derivative of the free energy:

p52S ]F

]VD
T

. ~2.2!

In the quasiharmonic approximation,F is given by

F~V,T!5E~V!1Fvib~v,T!

[E~V!1kBT(
q

(
j

lnH 2 sinhS \v j~q!

2kBT D J ,

~2.3!

whereE is the static contribution to the internal energy—
which is easily accessible to standard DFT calculations,Fvib
represents the vibrational contribution to the free energy,
v j (q) is the frequency of thej th phonon mode at wave
vectorq in the Brillouin zone~BZ!. Anharmonicity is explic-
itly, though approximately, accounted for by allowingE(V)
to deviate from a quadratic behavior and by letting the p
non frequencies depend on volume. Since the temperat
considered here are well below the electronic energy sc
the contribution of the electronic excitations to the therm
expansion is negligible and is not included in the pres
work. Theequation of state~2.3! can now be written in the
form

p~V,T!52
]E

]V
2

]Fvib

]V

52
]E

]V
1

1

V (
q

(
j

g j~q!E„v j~q!…, ~2.4!

whereg j (q) is the Grüneisen parameter corresponding to t
(q, j ) phonon mode, defined as

g j~q!52
]v j~q!

]V

V

v j~q!
, ~2.5!

and E„v j (q)… is the mean vibrational energy of the (q, j )
phonon given by

E„v j~q!…5\v j~q!F1

2
1

1

exp„\v j~q!/kBT…21G . ~2.6!

The thermal expansion is obtained directly from theequa-
tion of state~2.4! and the volume thermal expansion coef
cient is defined as

aV5
1

V S ]V

]TD
p

. ~2.7!

The temperature dependence of the bulk modulus is obta
from

B~T!5VS ]2F

]V2D
T

5V
]2E

]V2 1VS ]2Fvib~v,T!

]V2 D
T

. ~2.8!
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Due to anharmonicity, the heat capacity at constant p
sure,Cp , is different from the heat capacity at constant vo
ume,CV . The former, which is what experiments determi
directly, is proportional toT at high temperature, while the
latter goes to a constant which is given by the classical
uipartition law:CV'3NkB , whereN is the number of atoms
in the system. The relation betweenCp andCV is16

Cp2CV5aV
2~T!BVT, ~2.9!

andCV is given by

CV5kB(
q

(
j

S \v j~q!

2kBT D 2 1

sinh2
„\v j~q!/2kBT…

.

~2.10!

B. Computational details

The static total energy,E(V), and phonon frequencies
v j (q), are calculated by using DFT and DFPT respective
within the local density approximation.17 We use separable
norm-conserving pseudopotentials18,19 together with a plane-
wave basis set up to a kinetic-energy cutoff of 55 Ry. Su
over occupied electronic states are performed by
Gaussian-smearing special-point technique,20,21 using 60k
points in the irreducible wedge of BZ. Phonon frequenc
are calculated on a~444! regular mesh and Fourier

FIG. 1. Static total energy per atom as a function of latt
parametera.

FIG. 2. Calculated phonon dispersion curves at the lattice
rameter corresponding to static equilibrium. Experimental neutr
scattering data~Ref. 25! are denoted by circles.T andL represent
transverse modes and longitudinal modes, respectively.
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interpolated in-between. This Fourier interpolation amou
to including real-space interatomic force constants up to
fourth shell of neighbors.

III. RESULTS

Figure 1 shows the static total energy per atom,E(V), as
a function of the lattice constanta5(4V)1/3 ~Ag is a face-
centered cubic metal!. Our data are fitted to a Murnaghan
equation of state.22 The resulting lattice constant,a0
54.05 Å, bulk modulus,B51.28 Mbar, and pressure de
rivative of the bulk modulus,]B/]p55.66, agree well with
previous theoretical calculations.23 For comparison, the
room-temperature experimental data area054.08 Å ~Ref.
24! andB51.01 Mbar.16

According to Eq.~2.4!, in order to obtain the equation o
state one must first calculate the phonon band structure
function of volume. In Fig. 2 we display the phonon dispe
sion curves as calculated along several symmetry direct
at the minimum of the static energy. Experimental data
room temperature25 are reported for reference. The effect
temperature on the phonon dispersions will be discus
later in this paper. Figure 3 shows the calculated dispers
curves of the mode Gru¨neisen parameters of Ag, as defin

FIG. 4. Applied pressureP(V,T) for silver as a function of
lattice parametera ~hereV5a3/4) for different temperatures.

FIG. 3. Calculated dispersion curves of the mode Gru¨neisen
parameterg j (q) of silver along some symmetry lines in BZ corre
sponding to static equilibrium volumeV0 . T and L denotes the
transverse modes and longitudinal modes, respectively.
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by Eq. ~2.5!, along the same symmetry directions. The c
responding volume is obtained from the minimum of t
static energy in Fig. 1. The dispersions are discontinuou
the BZ center as a consequence of the anisotropy and p
ization dependence of the sound velocities. The Gru¨neisen
parameters of silver are positive throughout the BZ for
branches, thus implying that there is no anomalous nega
thermal expansion at low temperature, as in Si.26 The aver-
aged Gru¨neisen parameter of silver is 2.6, in agreement w
the low experiment value of 2.5.27 It is noted that Gru¨neisen
parameterg j (q) may deviate from the value obtained at th
static equilibrium volumeV0 as V changes@see Eq.~2.5! and
Ref. 7#. In the following calculations,g j (q) is evaluated as a
function of V.

With the static total energy and the Gru¨neisen parameter
in our hands, we can set up theequation of statevia Eq.
~2.4!. Figure 4 shows the pressurep(V,T) as a function of
the lattice parametera for several temperatures. It can b
seen that for a given pressure, the lattice constant incre
with the temperature. At room temperature and zero exte
pressure, the calculated lattice constant isa054.07 Å,
which is closer to the room temperature experimental va
of 4.08 Å ~Ref. 24! than the result of 4.05 Å derived from th
static total energy. As the temperature is increased, a cri
temperatureTm exists above whichp(V,T) no longer inter-
sects thep50 line and, within the quasiharmonic approx

FIG. 5. Temperature dependence of the linear thermal expan
for Ag. Solid curve is the calculated result and the circles repres
experimental data from Ref. 28.

FIG. 6. Solid lines: calculated phonon dispersion curves of
ver atT5293 K. Dashed lines: calculated phonon dispersions at
lattice parameter corresponding to static equilibrium. Experime
neutron-scattering data~Ref. 25! are denoted by circles.T and L
represent transverse modes and longitudinal modes, respective
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968 PRB 59XIE, DE GIRONCOLI, BARONI, AND SCHEFFLER
mation, the crystal becomes mechanically unstable due to
vanishing of the isothermal bulk modulus2V(]p/]V)T at
Tm. In silver this lattice instability occurs at 1370 K, not fa
from the experimental melting temperature~1234 K!.16

The thermal expansion can be derived directly from
equation of state. We have calculated the linear thermal e
pansion which is defined28 as

«5
Da0

a0
5

a0~T!2a0~T5293!

a0~T5293!
. ~3.1!

The results are shown in Fig. 5. The agreement between
theoretical and experimental results is very good. Althou
the calculated equilibrium lattice constant is slightly differe
from experimental measurement, the temperature de
dence of the relative volume changes are described a
rately by the present method. The good agreement betw
theory and experiment holds not only at low temperature,
also near the melting point.

Given the volume as a function of temperature, the te
perature dependence of phonon frequencies can be app
mately estimated through their volume dependence:@v(T)
2v(T5293)#/v(T5293)'3g«, whereg is the Grüneisen
parameter@Eq. ~2.5!# and « is the linear thermal expansio
@Eq. ~3.1!#. In the present case, given the fact that«(T50)
'2531023, and that Gru¨neisen parameters are typical
g'2 – 3, phonon frequencies at room temperature are lo
than theirT50 value by 3–5 %. Figure 6 shows the theor
ical phonon dispersions at room temperature~full lines! to-
gether with the dispersions, which are already shown in F
2 and calculated at the static equilibrium~dashed lines in Fig.
6!. The comparison with experimental data at room tempe
ture ~open circles!25 is clearly improved and now rather sa
isfactory.

Figure 7 shows the temperature dependence of the
modulus as calculated from Eq.~2.8!. B0 denotes the bulk
modulus obtained from the static total energy by neglect
the lattice vibrations. At room temperature, we obtain
bulk modulus B51.16 Mbar. Comparing this value wit
the result derived from static LDA calculations (B0

FIG. 7. Calculated temperature dependence of the ratio of b
modulusB(T) to B0 ~obtained from static total energy! for silver.
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51.28 Mbar), one sees that the agreement with the exp
mental result (B51.01 Mbar) ~Ref. 16! is significantly im-
proved.

The calculated heat capacityCp andCV are shown in Fig.
8. It can be seen that below the Debye temperature~uD
5225 K for silver27! the difference betweenCp and CV is
very small, while at high temperature, the heat capacity
constant volumeCV approaches to the classical valu
24.9 J mol21 K21, while the heat capacity at the consta
pressure increases monotonously with the temperature.
available experimental data29 for Cp are shown as circles
The agreement between theory and experiment is remark
in a wide range of temperatures also in this case.

IV. CONCLUSIONS

In the present paper, we have calculated the thermal p
erties of silver, such as thermal expansion coefficie
Grüneisen parameters, bulk modulus, and heat capacity,
ing the quasiharmonic approximation within densit
functional theory. The equilibrium lattice constant is o
tained from theequation of stateconstructed by the free
energy. The volume dependence of frequencies is calcul
from the density-functional perturbation theory. The o
tained results for the investigated thermodynamic quanti
are in good agreement with the available experiment m
surements. The calculation suggests that the anharm
properties of silver can be accurately calculated from t
first-principles approach in a wide range of temperature. T
application of the present method to the study of other pr
erties of materials such as high pressure effect, crystal
bility and phase transitions, is straightforward.
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