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Phase diagram of the weak-coupling two-dimensiondl-t’" Hubbard model at low
and intermediate electron density
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We study the stability of the ferromagnetic phase of thé weak-coupling Hubbard model at low and
intermediate electron density within tilematrix approximation. The superconducting instability of the para-
magnetic phase is discussed by a perturbative evaluation of the superconducting vertex.
[S0163-182699)11413-9

I. INTRODUCTION hand, recent studies of the’ Hubbard model have found a
finite window of densities around the Van Hove density
After the discovery of high-temperature superconductorswhere ferromagnetism is stabiliz&d Motivated by these re-
the interest in strongly correlated two-dimensiof2i) elec-  sults we have performed a detailed study of the stability of
tron systems has risen substantidllinitially, most studies the ferromagnetic phase at low and intermediate electron
concentrated on the simplest possible model compatible witlensity within TMA.
the quantum chemistry of the cuprates, namely, a Hubbard In Sec. Il we pursue an analogy to the physics of liquid
(or t-J) model on a square lattice with electrons hopping3He: in the paramagnetic phase of th¢ Hubbard model,
only between nearest-neighbor sites of the lattit®ecent  ferromagnetic fluctuations should increase when approaching
photoemission experimeritsndicate, however, that also the ferromagnetic phase, and this in turn should lead to su-
longer-range hoppings are not negligible. The simplesperconducting pairing in thp-wave channel. Thus Eq.(1)
model which produces a Fermi surface in qualitative agreemight be an ideal toy model for the study of triplet super-

ment with experiments is conductivity. As a first step in this direction, we determine
the symmetry of the leading superconducting instability
H=— Z CiT,(er,o‘H' Z CiT,aCj,a—’— UE NNy, throughout the paramagnetic part of the phase diagram. This
1

is done by a perturbative evaluation of the superconducting
(1)  vertex, following the pioneering work of Kohn and
t[.uttinger.g Recently, a similarly motivated study of the su-
perconducting phase diagram of thet’-J model has

electron-electron repulsion andl,j),((i,j)) are pairs of appeared® but our discussion is technically quite different.

nearest and next-nearest neighbors. The noninteracting Fermi,The superconducting phase diagram of the model(Bq.

line of the model Eq(1) resembles that observed experimen-mlght be rele\_/qnt also to the compoungRuG,, in which
tally in the cuprates fot’/t>0. superconductivity has been found near 1 K. In fac}RsIO,

The parameter region of E€L) relevant for the cuprates, is a quasi-2D compound isostructural to the high-temperature
namely electron density per lattice site 07p<1,0<R  Superconductor L&uO,. The fourd electrons per each
—2t'/t<1, and U/t~8, turned out to be difficult to Rl_J‘1+ ion fill three overlapping conduction bandsg (of
analyz€' In this paper, we address a less ambitious questiofx€d dx; and dy, charactex, and y (of dy, charac_ige)r.
What is the phase diagram of @) at low and intermediate >2RUO is believed to be @-wave superconductdt:** It
electron density at moderate coupling? In addition to beind!@S been argued that the sup_ercondusctmg coupling between
interesting in its own right, we believe that a solid under-t€ @3 bands and they band is weak? Moreover, recent

standing of the intermediate-density range might help attackNMR experiments indicate that also the magnetic coupling
ing the highT, problem from the overdoped side. between thel,, andd,, orbitals and thel,, orbitals is small

The outline of the paper is as follows. In Sec. I, we nd the spin susceptibility is more enhanced for?mm”d-l‘_l
elaborate on the recent observafidhat thet-t’ Hubbard 1herefore it is tempting to describe the superconductivity of
model Eq.(1) exhibits, forR~1, an itinerant ferromagnetic SrzRuO4. as being driven by t.he pairing instz_;lbility of the
phase at the Van Hove density. The latter is defined as th&2nd- Simple quantum chemistry considerations suggest that
density, for which the Fermi line of the noninteracting prob-the ¥ band is described by the model Hd).
lem crosses the saddle points of the bare electron spectrum

(i.i).o (i.i).o

wheret andt’ are the nearest-neighbor and next-neares
neighbor hopping amplitudes, respectively. is on-site

g = — 2t(cosk,+ cosk,) +4t’ cosk, cosk,, (2 Il. MAGNETIC PHASE DIAGRAM

which are at(s,0) and (0,m) for |R|<1. In Ref. 5, good We consider clusters witlfl=L XL sites and periodic
agreement was found between the predictions of théoundary conditions. Only those electron fillingé=N,
T-matrix approximation(TMA) and quantum Monte Carlo +N,, for which bothN, (where o=1,|) correspond to
simulations of clusters with up to 2616 sites. On the other closed energy shells are considered. For gidgrandN ,
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we calculate the ground-state energy from 0.75 |
u f.(f (k" L
E=> f (Keyt =2 1K) l(~ ) N L
ko Qk,k’ 1+Upr(k+k,’8k,T+£k/,l) 050 | g
3 L
wheref (k) is the distribution function for the noninteract-
ing systemg, ,=ex— K, i, IS the Fermi energy for elec- 025 - "
trons with sping, and 5
1o [1-f(pI1—f(~pt+a)] AN
Xpp(d, @)= 52 =~ = 009 40 0.45 0.50
p 8p'T+8,p+q'l_(x) th

is a particle-particle susceptibility. We calculate the ground- FIG. 1. Phase diagram &t=4t. Shaded area: region of stabil-
state energ¥ for all closed-shell partitions dfl and identify ity of the fully polarized statein TMA, L=32). Dashed line:

the paramagnetic state with the case when the minimul of o ngary of the region where the Nagaoka state is stable against the
is achieved for the minimal possib|&l; —N,|. The above gjngie spin flip state Eq(5).

method for determining the stability of the paramagnetic

state has been used long ago by Kanatiaihd we shall  etery. This wave function has been applied to the model Eq.
refer to it as TMA, although a more correct name would be(1) in Refs. 17 and 6. The shape of the fully polarized ferro-
low-density approximation.” In fact, the ground-state en- magnetic region determined from E¢p) is qualitatively

ergy in the full T-matrix approximation reads similar to the TMA prediction, with an important exception
U in the limit p—0: TMA predicts that in this limit, the para-
ETMA:E f_(k)e(k)— =(1—n) magnet is stable for aIR<1 at anyU, whereas it can _be
Ko 2 shown by the methods introduced in Ref. 6 that according to

Eq. (5), for all R;<R<1 there exists
+>, rd—wl 1+ Uxp) %+ (Ux,)? 4
= 0 27 n[( X1) (Ux2)<], (4) B 47(2—R)(1-R)
¢ (m—1)R—(7—2)

such that forU>U_, Nagaoka ferromagnetism extends
> f,(p)f (—p+a) down top=0. ForR<R.=(7—2)/(w—1), Nagaoka ferro-
5 ;p T+E—p+q o magnetism cannot be stabilized @t-0. Our TMA results
' ’ should be superior to those obtained from the variational
is a hole-hole susceptibility. Equatidd) has been used in ansatz Eq(5) in the limit p—0.
Ref. 5 and good agreement with quantum Monte Carlo simu- We have tested the effect of the finite size of the lattice
lations has been found there. We have checked 8. used in the calculation of the TMA phase diagram Fig. 1 on
against the numerical data in Ref. 5 and found, surprisinglythe location of the low-density phase boundary toft
that it works even better than E(f). Nevertheless, the dif-  =0.495, where the effect of finite is expected to be largest,
ference between the two calculations is less than 1%. This iue to the small size of the Fermi surface at low density.
because, in the |OW'denSity ||m|t, the contribution of virtual Lattices with up toL =200 have been studied. It was found
processes with excited pairs of holeghich are included in  that the critical density for ferromagnetism for=32 devi-
Eq. (4) but not in Eq_.(3)] is negligible. In what follows, we  ates less than 10% from the= 200 result.
shall therefore identify Eq3) with TMA. In Fig. 3 we present energy vs magnetization curves
The region of stability of the fully polarize@Nagaoka  E(m) for electron densities close to the paramagnet-

state against the paramagnetic state of te Hubbard  ferromagnet phase boundary. For clarity, the energy of the
model, determined numerically from E3) in the region

0<R<1 for U=4t andU=8t, is shown in Figs. 1 and 2, 1.0 —
respectively. It is seen that at finité, there is a finite win- A
dow of densities around the Van Hove density, where the
Nagaoka state is stable. The size of this window grows with
u.

Also shown in Figs. 1 and 2 is a comparison of our TMA

where x1+ix2= Xpp(di @) — X hn(d,i @) and

1
Xhh(qyw)_ 6

L | ) - e 05+
results to variational estimates of the region of stability of
the Nagaoka state against single spin flips. The simplest non-
trivial variational wave functiort®
|¢>:H (1_ﬂni,Tni,l)Clzo,ﬂN_l% 5 0_002

is chosen for that purpose, wiffN—1) being a Nagaoka
state withN—1 spin-up electrons and a variational param- FIG. 2. The same as in Fig. 1, but for=8t.
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FIG. 3. AE=E(m)—E(0) (per site, in units ot) vs magneti-
zation m=(N;—N,)/Q for t'/t=0.47 and U=4t in TMA,
L=100. The curves from top to bottom correspond to

N = 1402 1506. 1602. 1714. 1802. 1842. 1890. 1930. 2002 21Oé]aoka state. Dashed line: paramagnetic state. The inset shBws
2210 and,2402 ' ' ' ' ' ' ' ' = Enagaoka™ Eparamagne{PET Site, in units of) vs electron density for

the same parameters. The lattice sizeslarel00 (full line) and
L =32 (circles.

FIG. 5. Energy per site in units df vs electron densityp
=N/Q for t'/t=0.47 andU =4t in TMA, L=32. Full line: Na-

paramagnetic state(0) has been subtracted from the data. It

is seen from here that the origin of the ferromagnetic phase .
shown in Fig. 1 is not in a weak-coupling instability of the =p<0.197 and 0.524 p=0.584. In the inset, we show the

paramagnetic phase, but rather in a level crossing between ferenceAE between the energ|es_c_)f the paramagnet and
paramagnetic and a fully polarized state. of the Nagaoka state ys at low densities folL=32 andL

On the other hand, close to the Van Hove density buf_ 100- Note that the TMA calculation aE(p) is essen-

outside the region of stability of the Nagaoka state, we find'2!ly converged already dt=32. In fact, from theL =100
that partially polarized ferromagnetic states are stabilizegdata we find the low-density phase separation for 0<177

An example is presented in Fig. 4, where energy vs magnego.zoo, quite close to the estimate for thex®2 lattice.

tization E(m) (normalized to 0 form=0 as in Fig. 3 is . o . . .
shown for a system at the Van Hove density withit that the instability of the Nagaoka state against single spin

—0.44 andU=4t. This is an example of a weak-coupling flips implies a paramagnetic phase. On the other hand, Fig. 3

instability of the paramagnetic phase, which has been préUUStraLes that _neitlr_ler the a:)slsufmption that a Iﬁcally sta(;ole
dicted for the model Eq.1) at the Van Hove density in Ref. Nagaoka state implies a stable ferromagnetic phase needs to

5. Note that the agreement between the datd_fe8 and be {rue. These two findings mi.g_ht put some doupts on the

L =100 suggests that tHe=100 data is essentially already validity (.)T estimates of the stability Of. ferromag'netlsm from

in the thermodynamic limit. the ;tablllty of the Nagaoka_l state against spin flips. However,
For the first-order paramagnet-ferromagnet transition af'c find that these ano_malléand also phase_ separation be-

fixed R as a function ofp shown in Fig. 3, we expedin f[ween th,e paramagnetic and the fully polarized sjatesur

absence of long-range Coulomb interactiophase separa- in thet-t Hybbard model only close to t.he'phase boundary

tion into a paramagnetic and a fully polarized state with dif-and neglecu_ng them does not lead to significant changes of

ferent densities. In Fig. 5 we plot the TMA energy of the € Phase diagram.

paramagnet and of the Nagaoka statepvior L=32. By

Maxwell construction, we find phase separation for 0.174jj1, BCS INSTABILITY OF THE PARAMAGNETIC PHASE

Figure 4 shows that it is not tru@t least within TMA

Kohn and Luttinget argued that even a purely repulsive
degenerate Fermi system such as’ ldan be unstable to-
wards pairing. They evaluated the Cooper-channel vertex to
second order in the interaction and showed that, for a rota-
tionally invariant 3D system with a hard-core repulsion, the
system is unstable towards superconductivity with large odd
angular momenturhof the Cooper pairs. Later it was shown
that even al =1 pairing is favorable for this systetfi,in
agreement with th@-wave symmetry of the pairing state in
3He .8 The latter has also been interpreted as being due to an

, : exchange of magnetic fluctuations which play the role of
0 02 04 phonons in conventional superconductdrsis interesting to
note that the superconducting vertex in the Kohn-Luttinger

FIG. 4. AE=E(m)—E(0) (per site, in units ot) vs magneti- argument can be viewed as the lowest-order nontrivial term
zation m for t'/t=0.44 andU=4t in TMA. Solid line: L=100.  (in an expansion in powers &f) of a vertex arising from an
Diamonds: L=48. N=4956 (N=1140) corresponds to the Van exchange of magnons.

Hove density for. =100 (L =48). Superconducting instabilities of 3D lattice systems with
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spin or charge susceptibilities enhancedinite wave vec- — '
tors have been studied within a similar fluctuation-exchange 0.75
schemé?® After the discovery of superconductivity in the
cuprates, it was quickly established that for the relevant case
of a nearly half filled 2D electron band with repulsive
interactions:? the fluctuation-exchange scheme predicts 0.50
d-wave symmetry of their superconducting stt&Ve shall

see below that, as was the case fbte, the Kohn-Luttinger

effect predicts the same symmetry of the superconducting I
state as the fluctuation-exchange approximation. Remark- 0.5 . ‘ M
ably, there is substantial experimental evidence for the 0.00 0.25 0.50
d-wave symmetry of the pairing state in the cuprétes. th

The above examples indicate that the Kohn-Luttinger riG. 6. Superconducting phase diagram tibr-0. A small re-
methOd iS a reasonable tOOI for estimating the Symmetry Oéion Ofdxy_Wave(p_WaVe pairing close to thS/p (dxy/g) bound-
the leading superconducting instability. In this section weary is not displayed.
shall apply it to the superconducting phase diagram of the
model Eq.(1). Chubukov and L€ studied this problem in frpq—f
the limit of vanishing electron density. Here we extend Y(q)= 1k _ )
their discussion to finite. kK ex-ek+q

Let us analyze first the possible symmetries of the super- , 2 , )
conducting gap functior (k).2! There are five irreducible NeNV(K.K)=U+U%(k+k’) g”d the BCS coupling con-
representations of the point group of the square lattice. Th&!@Nt in the symmetry sectar is

four one-dimensional representations are even under inver-

9

sion and correspond to singlet superconducti¢itye shall fﬁ ﬂ( #; %V(k KA (KA (k')
denote thens,d,d,,, andg. Basis functions belonging t® vk J vy ' “ “
that are not constant are usually called extended the A=~ dk (8)
literature, but we shall not make this distinction hedds a (2m)? 3€ —A (k)2
shorthand notation fod,2_,2. The two-dimensional repre- Uk
senta;’;ié)rp is odd under inversion and corresponds to triplet| ot s restrict the sum in Ed6) to O<n<A. Then
states:
Let ¢ denote the angle between the vector connecting a NN
given point on the Fermi line with the center of the Fermi Vi mCnCm
line [which is (0,0) or (m,), depending orp] and thek, N = n=0 m=0 9
direction. Then in every symmetry sectora “« N ) '
(=s,d,dyy,9,p) we can expand the gap function in a series: HZO Cn
€)= 3 coun(¢), (6 Where
where we have chosen the following basis functigps;: Vﬁ'm=(277)’2 jg (dkl/vy) % (dk' /v )V(k,k")
gs,n(‘P):Nn((P)Coi‘]'n‘P]r Xga,n(k)ga,m(k,)
Jan(®)=N;(¢)cog (4n+2)¢], is a real symmetridVx A matrix. It follows from Eq.(9) that
the maximal superconducting coupling constant for a given
Jaxy,n(®) =Ni(@)sin (4n+2)¢], a is N,=max—\,;}, where \,; are the eigenvalues
_ =1,... Nof Vg .
9g.n(®) =Ni(¢)sin4ne], In Fig. 6 we show the superconducting phase diagram
i calculated numerically from Eq9). We have considered
(0)=Na(¢)X sif(2n+1)¢] N=15 harmonics in every symmetry secter All \ , were
9ol 1e cog(2n+1)¢]. attractive basically in the whole studied phase space. The

o susceptibility Eq.(7) was evaluated at a finite temperature
The normalization factorsl,(¢) = V(2— 6n,0/D(¢), where  1_0 003.24 This introduces only insignificant difference

D(¢)=(27/v)(dk/dg) is the angle-resolved density of \yith respect toT=0, except for the case gi—0. In that

states, are chosen so that limit, the electron spectrum becomes isotropig(q)
dk =m/27 for all g=<2kg at T=0, and the lowest-order Kohn-
fﬁ — ()G g m(K)= 84 5O m- Luttinger effect vanishes at=0.22 However, at a finite tem-
Uk perature,

The effective interaction in the Cooper chanigk, k") wg def(e—
is given, to second order id, by the diagranid) in Fig. 1 of x(q)= m ‘*M,
Ref. 9. Let us introduce the particle-hole susceptibility 4m)o Vog(wg—e)
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where wq=q2/8m. The Fermi energy.=k2/2m ands are  magnetism. However, our results indicate that these impli-
measured here from the bottom of the band. Feru, we  cations are broken only close to the paramagnet-ferromagnet
still have y(q)~m/2a, but for 2kg—T/vp<q<2kg,x(q)  Phase boundary. This indicates that the single spin flip crite-
~m/2m— Sy, Where Sy~ (m/2x) \/m Thus evaluating rion widely used in the study of the stability of metallic
¥(q) at T>0 leads to a nonzero Kohn-Luttinger effésee  ferromagnetisitf® provides reasonable estimates of the
Eq. (8)] even for an isotropic spectrum, with~m3U?T/p ~ Magnetic phase diagram. _
in all symmetry sectorfprovided$dkA (k) =0]. Our calcu- In one dimension, the model E¢l) has been studied by
lation is therefore valid only in the region of densities where,Many authors starting by Ref. 27, where it was shown that
at T=0, the modulationsy of x(q) for those values off  Nagaoka’s proof of ferromagnetism applies for one hole in
which span the Fermi linegi< 2k in the isotropic caseis the half filled system, it’/t>0. A detailed review of recent
larger than thermal effect$y/y> T/x. ForT=0.003 we  Work on the 1D model can be found in Ref. 28. The conclu-
restrict ourselves tp>0.25. sion is that also in one dimension there is a large region of
As a function ofp at fixedR andU, the maximal coupling ~ferromagnetism in the vs t'/t plane, if 0<p<1 andt'/t
constant may(\,) scales roughly with the density of states at = 0- On the other hand, ferromagnetism is stable within dy-
the Fermi energy. Figure 6 shows that close to half fillingna@mical mean-field theofy on both 3D andD === fcc lat-

(p=1), d-wave pairing is the largest one for alR<1. In tices in a wide range of fillings. Note that since there is a
the low-density region, we find dominad,-wave pairing close connection between the¢’ model and an fcc lattice, it

for R<0.2 andp-wave pairing forR>0.762 while at inter- ~ S€€MS to be well established now that ferromagnetism in the

mediateR, g-wave pairing dominates. This is consistent with {-t' Hubbard model is a robust phenomenon. It has been
Ref. 22. hypothesized that this is due to the asymmetric density of

The phase diagram is quite rich, since all allowed sym-States of téhl’% model Eq1) with a large peak close to the
metry sectors are realized in its various parts. Its perhap@@nd edge:”" Although our results are consistent with this
most unexpected features are the stability ofpiveave pair-  Nypothesis, further work is needed to confirm it.

ing at p~0.55 for all 0<R<1 and the small region of As regards thet-t" Hubbard model as a paradigm for
swave pairing aroung~0.7 andR~0.9. magnon inducegb-wave superconductivity, its main advan-

We emphasize that Fig. 6 is noffia=0 phase diagram. Its tage is that the ferromagnetic phase appears at moderate val-
actual meaning is the following: for each point in tRep ues ofU, where quantum Monte Carlo simulations could be

plane, we assume that a superconducting state develops §&sible. The obvious alternative of studying the:0 model
the temperature is lowered below soMgR,p). In Fig. 6, close to half _f||||ng, in the proximity _of Nagaoka ferromag-
we plot the symmetry of the superconducting state for eaclj€tiSm, is an inherently strong-coupling probléhhe latter
point (R,p) at a temperature infinitesimally beloW(R,p).  (OF U_’f) has been studied so far only by slave-boson
This symmetry is well defined away from the phase bound_methods?_ with the somewh.at. dlsappomtl_ng result that close
aries in Fig. 6. Exactly at the phase boundary, states of half filling, superconductivity appears in tiog, channel.
mixed symmetry may occif. If the temperature lowers fur- Let us close by discussing the relevance of our data to
ther belowT (R, p), states of mixed symmetry may develop SKLRUG,. The F,erml surface of the b22g4|s well Qescrlbed
in a subset of theR-p plane with nonzero measure. This PY EQ-(2) with t'/t~—0.3 andp~1.33""By particle-hole
question shall not be addressed in this paper. _symmetry, this is equwal_ent t_ﬁ/téo.B andp~0.67, which
Finally, let us note that the results shown in Fig. 6 arelS close to thep-wave region in Fig. 6. Therefore supercon-
valid only in the limitU— 0. Nevertheless, for finit) when ~ ductivity in SpRuQ, might be driven by thep-wave insta-
also magnetic phases are stabilizede Figs. 1 and)2we  Pility of the y band.
hypothesize a similar pattern of the leading pairing instabili-
ties of the paramagnetic phase. ACKNOWLEDGMENTS

| thank S. Sorella for stimulating discussions and D. F.
Agterberg and T. M. Rice for introducing me to the physics

Within TMA, we have found that thet’ Hubbard model of Sr,RuQ,. Part of this work was performed at the Institut
supports a wide region of ferromagnetism around the Varlr Theoretische Physik, Eidgessische Technische Hochs-
Hove density, whose size grows with increasidgin the chule Zuich. Support by Slovak Grant Agency Grant No.
same approximation we find that local instabiliitability) 1/4300/97 and Comenius University Grant No. UK/3927/98
of the Nagaoka state does not imply paramagneti@mo-  is acknowledged.

IV. CONCLUSIONS

1For a comprehensive description of the physics of the cuprates'C. Buhler and A. Moreo, cond-mat/9807084npublished] and

from this point of view, see P.W. Andersonhe Theory of Su- references therein.
perconductivity in the High-T Cuprates(Princeton University ~ °R. Hlubina, S. Sorella, and F. Guinea, Phys. Rev. 1%81.1343
Press, Princeton, NJ, 1997 (1997.

2F.C. Zhang and T.M. Rice, Phys. Rev.38, 3759(1988. 6T, Hanisch, G.S. Uhrig, and E. Mar-Hartmann, Phys. Rev. B

SFor a review, see M. Randeria and J.C. Campuzano, 56, 13960(1997.
cond-mat/9709107unpublishegl M. Fleck, A.M. Oles and L. Hedin, Phys. Rev. B6, 3159



PRB 59 PHASE DIAGRAM OF THE WEAK-COUPLING TWO- ... 9605

(1997. edited by D.M. GinsbergWorld Scientific, Singapore, 1996
8See, e.g., P.W. Andersoasic Notions of Condensed Matter 22A.V. Chubukov and J.P. Lu, Phys. Rev.48, 11 163(1992.
Physics(Addison-Wesley, Redwood City, 1984 ZWe do not consider odd-frequency pairing, where efeft) par-
®W. Kohn and J.M. Luttinger, Phys. Rev. Lett5, 524 (1965. ity implies triplet (singled pairing (Ref. 21).
igB-E-C- Koltenbah and R. Joynt, Rep. Prog. P§.23 (1997). 24At a givenT, the thermodynamic limit of E(7) is achieved only
T.M. Rice and M. Sigrist, J. Phys.: Condens. Mat#rL643 for a lattice sizeL>L.«T~ 2. In Fig. 6 we have usetl=600.
(1995. The phase diagram calculated fo= 400 is essentially identical.
2For a recent discussion of the pairing symmetry igR8IO,, see Thus we expect .~ 400.
D.F. Agterberg, Phys. Rev. Le®0, 5184 (1998. 25Estimates fop=0.25.
13p.F. Agterberg, T.M. Rice, and M. Sigrist, Phys. Rev. L&8,

%G, Kotliar, Phys. Rev. B37, 3664(1988.
27 :
D.C. Mattis and R.E. Pex; Phys. Rev. BLO, 1006(1974).
T Imai, A. W. Hunt, K. R. Thurber, and F. C. Chou, Phys. Rev. 285 paul a'nd RM Noacf’ Ph;'s Re\\/’fm 2635(1(9984)
15JL§;nilr;1§20g(ri99?heor Phy30, 275 (1963 M. Ulmke, Eur. Phys. J. B, 301(1998.
16 » F10g. 1heor. ' ’ %0p. vollhardt, N. Blimer, K. Held, M. Kollar, J. Schlipf, and M.
B.S. Shastry, H.R. Krishnamurthy, and P.W. Anderson, Phys. Ulmke. Z. Ph B103 283(1997
mke, Z. Phys. .

Rev. B41, 2375(1990. 31 _ ] _ o
7p_ pieri, S. Daul, D. Baeriswyl, M. Dzierzawa, and P. Fazekous, The Nagaoka state is unstable against single spin flip states for

3374(1997).

Phys. Rev. B54, 9250(1996. U/t<77.7; see P. Wurth, G.S. Uhrig, and E." Mu-Hartmann,
18\.Yu. Kagan and A.V. Chubukov, JETP Lei0, 517 (1989. » Ann. Phys.(Leipzig) 5, 148(1996.
19p.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Re\3438190 G. Kotliar and J. Liu, Phys. Rev. Letb1, 1784(1988.

(1986); 35, 6694(1987). 33A.P. Mackenzie, S. R. Julian, A. J. Diver, G. J. McMullan, M. P.
2For a review, see D.J. Scalapino, Phys. Reg0, 329 (1995. Ray, G. G. Lonzarich, Y. Maeno, S. Nishizaki, and T. Fujita,

2'For a review, see J. Annett, N. Goldenfeld, and A.J. Leggett, in Phys. Rev. Lett76, 3786(1996.
Physical Properties of High Temperature Superconductors V3*I.I1. Mazin and D.J. Singh, Phys. Rev. LeR9, 733 (1997.



