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Ground state of uniformly frustrated Josephson-junction arrays at irrational frustration
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A conjectured outline of the structure of vortex lattices of uniformly frustrated Josephson-junction arrays at
irrational frustration is presented.@S0163-1829~99!07513-X#
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The structure of the energy landscape of uniformly fru
trated Josephson-junction arrays is not yet well understo
Such systems are usually studied when the frustration pa
eter which denotes the number of flux quanta of the exte
field through the unit cell of the array is rational;f 5p/q. It
is believed that, at least at some largeq values of f, the
system may exhibit glassylike behavior.1,2 Such rational
numbers are the best representatives of the system at irr
nal frustration.

Uniformly frustratedXY models, embodied in arrays o
Josephson junctions in constant perpendicular magnetic fi
are described in the Landau gauge by

H52JS^ i j & cos~u i2u j !2JS^ i j & cos~u i2u j22pm f!.
~1!

The first term of this Hamiltonian includes the energies
nearest-neighbor sites forming bonds that are directed a
the x axis of the square array. The second term is for bo
directed along they axis; m is an integer expressing thex
coordinate of these bonds in units of the lattice constant.
Josephson coupling constantJ sets the energy scale, and
taken to be positive. The Hamiltonian is invariant iff is
changed to2 f ~reversing the direction of magnetic field! or
if an integer is added tof ~adding and integral number of flu
quanta!.

For a rationalf, the structure of the ground state of th
above Hamiltonian forms a superlattice of vortices hav
~typically! a qxq unit cell. A clue to why this occurs is
suggested by Eq.~1!. At m equal to integer multiples ofq,
the frustrating phase 2pm f disappears, and the magnetic p
riod becomes commensurate with the period of the unde
ing lattice. From isotropy of the systemqxq periodicity fol-
lows. This is certainly not proof of the formation of the un
cell of the vortex lattice, indeed few exceptions exist,3 yet it
indicates how the periodicity of frustration is manifested
the superlattice of vortices.

Recently, it was shown that for a class of local minimu
states of Hamiltonian~1!, the two-dimensional problem o
finding the vortex structure, i.e., phases at sites such asa,b,
is reduced to a problem in one dimension.4 The idea amounts
to proving that the phase correlation between sitesa,b and
a11,b11, which produces the Halsey staircase state, ca
generalized to the case where suitable phase correlation
established between sitesa,b and a1n,b11. In this way
one can construct the two-dimensional lattice row by ro
each row having the same one-dimensional~1D! arrange-
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ment, only shifted byn plaquettes relative to the row below
@Figs. 1~a! and 1~c!#. It is shown that this results in the lattic
of vortices in a given row, to sit in the potential relief of th
row below, leading to a low-energy structure of the 2D arr
with a qxq unit cell. The outcome is a highly ordered set
phases; due to certain symmetries, the number of indep
dent phases isq/2 @(q21)/2 for q odd#.5

Whenf is irrational, one deals with vortex lattices incom
mensurate with the underlying lattice—no unit cell exists.
this case, the usual strategy for studying the spectrum of
~1!, and the corresponding vortex structures, is to make
of best rational approximants off. As our prime example, we
consider the case off 5t, the golden ratio.

As mentioned above, due to the symmetries of Eq.~1!,
f 5t5(A511)/2,f 5t21, andf 522t are equivalent. The
sequence,r i , of best rational approximants off 5t are then
effectively given by
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where FN denotes theNth Fibonacci number, withF555
and r 55 5

13 .
The study of the above sequence of rationals amount

approximating the incommensurate vortex lattice, with t
best~most! commensurate lattices of increasingly larger p
riods. One then hopes to gain insight into the structure of
vortex lattices atf 5t. Although the sequence of groun
state energies, thus found, approaches the ground state
ergy E(t) due to the continuity of the spectrum,6 it is not
possible to infer any property of the ultimately infinite vorte
lattice from the finite vortex lattices found at each ration
approximant. This is basically because of the perio
boundary conditions which stabilize a particular vortex stru

FIG. 1. Vortex lattices forf 5
3
8 . In ~a!, n54; the lattice is

effectively 832, but it is not stable: the vortices move to fill th
empty columns. The resulting lattice is depicted in~b!; it has an
energy per site of21.2764 J. In~c!, the Halsey staircase state
shown,n51, and the energy per site is21.28146 J.
9569 ©1999 The American Physical Society
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9570 PRB 59MOHAMMAD R. KOLAHCHI
ture at a particular member of the sequence, while for
other member, a totally different ground state lattice str
ture forms.

No doubt the structure of the infinite vortex lattice exis
is well defined, and in principle can be formulated. To th
end, one must observe a kind of continuity in the finite latt
structures, which result from the sequence of rationals. T
constitutes the main objective of the present article. In w
follows, we shall argue for a possible way of fulfilling th
requirement.

The one-dimensional problem of finding a generaliz
Halsey state is that of distributingf q vortices over q
plaquettes of a ladder of Josephson junctions in orde
minimize the interaction energy. Recalling the Coulomb g
version of theXY model, one is not surprised to find that th
exact solution by Hubbard and also by Pokrovsky and Uim
~HPU!, applies to the present case.7 Empirically, we have
verified that the arrangement of vortices along the ladd
which minimizes the energy, is given by

xi5@ i / f #, i 51, . . . ,p. ~3!

In Eq. ~3!, xi denotes the location of the plaquette occup
by a vortex; the square brackets indicate the integer p
This equation states that the unit cell of the structure iq
plaquettes long, and containsp vortices; it also observes th
symmetries of Hamiltonian~1!. Equation~3! is equivalent to
the HPU solution.8 For the arrangement of vortices atf
5t, this equation gives the celebrated one-dimensional q
siperiodic self-similar Fibonacci lattice~Fig. 2!.

In the language of our problem, the solution indicates t
the one-dimensional minimum energy structure is indep
dent of the shift parametern. Knowing the 1D vortex lattice,
the choices for possible values ofn are immediately deter
mined: one requires no nearest-neighbor vortices, once
2D lattice is developed. However, not all possiblen’s give
viable results@Fig. 1~b!#.

Using the methods previously described, we studied
generalized Halsey staircase local minima of the first f

FIG. 2. The spacing between successive vortices is in the
similar quasiperiodic order of the Fibonacci sequencef 5
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members of the sequence~2! aiming at finding the particular
shift parameter leading to the lowest-energy 2D vortex
tice. The results are summarized in Table I. Forq521, the
generator of the 2D vortex lattice is given in Fig. 2. For oth
entries except for those indicated by an asterisk, the gen
tor is similarly found. It is customary to indicate the order
the Fibonnaci lattice in terms of the spacing between
neighboring vortices, e.g.,LSLLSLSLfor q521, L de-
noting long ~two plaquette spacing! and S, short ~single
plaquette spacing!. The entries with asterisks do not obe
such order~and do not compose the lowest-energy state!.
For instance,n54, q521 is a LSLSLSLL state. At
present, it is not known why the 1D lattice for somen values
is not stable and converts to a different state when the
lattice is found. In addition to the generalized staircase sta
not obeying Eq.~3! ~and denoted by an asterisk in Table!,
there are nonstaircase states as well. These are easier t
derstand. Again consider Fig. 1~a!. Here, we havef 5 3

8 ,n
54. The lattice contains empty columns with no vortex re
dent; these may be called striped lattices. At high densitie
more uniform distribution of vortices exists giving lower e
ergy; neighboring vortices migrate to occupy the empty c
umns. The stable state found@Fig. 1~b!# is not a local mini-
mum characterized by a shift parameter. We have indica
such unstable striped states~or nearly striped, in the case o
f 5 21

55 , n517) with the letteru, in Table I. It should be
noted that the stable lattice resulting from such unstable
terns may actually turn out to be a low-energy state~though
none of those mentioned are!, but we shall argue below tha
such lattices need not concern us.

Then51 state is the ordinary Halsey staircase state an
seen to possess the lowest-energy configuration for e
member of the rational sequence off 5t studied. The entries
of Table I give five significant digits; at times the 2D lattic
had to be cooled to 0.00001 J/kB . We conjecture that this
result holds for all members of the sequence.

The importance of this result becomes apparent once
recall that the best rational approximants come from the c
tinued fraction expansion. The continued fraction expans
builds upon itself and the 1D vortex lattices inherit this pro
erty, i.e., they are assembled sequentially.9 It is also impor-
tant to note the implicit property of best rational approx

lf-
s
e

TABLE I. Energies for the sequence of best rational approximants off 5t as a function of possible value
of n. n51 gives the lowest energy. See text for the meanings ofu’s and asterisks. Blank entries could b
filled by symmetry arguments, for instance,n54,9,17,22 are all the same state whenf 5

5
13.

f 5
1
2

1
3

2
5

3
8

5
13

8
21

13
34

21
55

n51 2A2 24/3 21.2944 21.2814 21.2763 21.2744 21.2736 21.2734
4 u 21.2534 21.2690** 21.2608* 21.2647*
9 21.2737a 21.2539 1.2684
12 21.2637d 21.2717
17 u u
22 21.2674b

25 21.2580c

aThe lattice is 2137.
bThe lattice is 5535.
cThe lattice is 55311.
dThe lattice is 34317.
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mants, namely, the successiveq’s are such thattFN gets
closer and closer to an integer asN grows. This so-called
nesting property is summarized in Fig. 3, which depicts w
could be referred to as the Fibonacci state at theN58 stage.
The Fibonacci state is unique in that at each stage its g
erator is obtained from the assembly of generators of
previous stages, each repeated onlyonce. For instance,f
5 5

13 with LSLLS is obtained fromLSL which belongs to
f 5 2

5 , andLS which belongs tof 5 1
3 . This is the result of the

continued fraction expansion having only 1’s. Furthermo
the Fibonacci state has the property that the vortices ap
in diagonals that are spaced according to the quasiperi
ordering of the Fibonacci lattice. We believe that the
bonacci state is the ground state of the uniformly frustra
Josephson-junction array atf 5t.

Figure 3 shows the 55355 Fibonacci state. The vertica
lines atm50 andm555 show the unfrustrated bonds. Th
other vertical lines show the nearly unfrustrated bonds;
approximation becoming worse for the~vertical! boundaries
of smaller cells. The nesting property obtained is, of cour
gauge invariant, but manifest in the Landau gauge. Us
Fig. 2 we could expand the total energy of the lattice in ter
of the total energies of its constituents

E~r 8!5E~r 7!13E~r 6!

12@E~r 5!1E~r 4!1E~r 3!1E~r 2!1E~r 1!#,

~4!

which misses one vortex-residing plaquette. Using Halse
formula for the constituents, the energy per site of the
355 lattice obtained from Eq.~4! is 21.2756 J, and is to be
compared to the Halsey energy of the 55355 lattice, which
is 21.2734 J. The expansion overestimates the nesting
ness by treating the constituent cells as independent latt
giving a lower than actual energy. The energy of the
bonacci state is24 J/p, which is the infiniteq limit of Hal-
sey’s formula.

FIG. 3. The Fibonacci state at thef 5
21
55 stage; vortices occupy

diagonals that are spaced in the Fibonacci sequence. The
similar nesting cells are shown by nearly unfrustrated vert
boundaries. The figure shows the claimed structure for the gro
state whenf is the golden ratio.
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Next considerf 5A2. The sequence is now12,
2
5,

5
12,

12
29,

29
70, . . . . Thepossible values ofn for the first five members of
the sequence mentioned are in the set~1,6,11,18,23,30!. The
study of 29

70 is cumbersome, but from our studies we place
lower bound energy of21.26 J per site, forn.1. For such
values ofn, the best energy found was that off 5 12

29 , n
511, with 21.257 J. Again, then51 state with an energy
per site of21.2733 J, provides the lowest-energy state. F
ure 4 shows the outcome; here, the continued fraction has
property thatqN1252qN111qN , in contrast with Fig. 2,
where we haveqN125qN111qN .

The implicit requirement in the evolution of the states,
the sequence of rationals approaches the irrational limit,
the continuity that we mentioned in the beginning, is that
structure of the lattices obtained be essentially the same.
n51 this condition is naturally satisfied, as seen in Figs
and 2. However, if the structure is not shared by the lowe
energy members of the sequence, the scheme fails—a di
ent type of nesting should be found, and the simple shift m
states will not do. This becomes more clear in the study
f 5A3.

The sequence forf 5A3, is 1
3,

1
4,

3
11,

4
15,

11
41, . . . . The

continued fraction now has a mixed nature, that off 5t and
that of f 5A2. The study of the first four members indicat
that n52 gives the lowest energy. The lattice structur
however, vary. In Fig. 5, we show then52 state for11

41 , with
an energy per site of21.3410 J. The cells having correct4

15

and 3
11 structures are marked by I and II, respectively. T

differences between them can be traced back to the diffe
structure of1

3 and 1
4, especially, sincef 5 1

4 has a 438 unit
cell.10 As seen, the component cells cannot be fitted as w
as the other two cases studied. The important point is tha
structure of the lowestq members of the sequence plays t
determining role.

Transcendental numbers do not have periodic contin
fractions, yet the sequential property holds. Forf 5p, the

lf-
l
d

FIG. 4. The structure of the ground state forf 5A2 is claimed to
be a Halsey state. Here, we see the structure for one of its rati
approximants,29

70, n51. The spacing between vortex diagonals a
nesting are governed by the continued fraction ofA2. The structure
in the infiniteq limit is degenerate with the Fibonacci state.
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9572 PRB 59MOHAMMAD R. KOLAHCHI
sequence starts with17, has ground state energy21.5166 J,
and is obtained withn52 or equivalentlyn53. The se-
quence grows rapidly inq and becomes difficult to study
15
106,

16
113,

4703
33215, . . . . Thecase of f 5e is similar to that of f

5A3, having the sequence13,
1
4,

2
7,

9
32, . . . .

In summary, we have argued that to obtain the struct
of an infinitely large array of Josephson junctions at an ir
tional value of the frustration parameter, a particular limiti
form of successively larger arrays needs to be conside
This is in accord with the uniform continuity of the spe

FIG. 5. Then52 vortex lattice forf 5
11
41 in the best approxi-

mant sequence ofA3. The nesting is not complete. The correct4
15

and 3
11 structures are indicated by I and II, respectively.
n

re
-

d.

trum, and it further demands a continuity of the ‘‘eigenfun
tions.’’ An immediate possibility is suggested by studyin
the generalized Halsey staircase states of varying lengthn as
a way of generating this particular limiting form. Withou
such a procedure, the low-lying-energy lattices found at e
member of the sequence, should be considered as artifac
the boundary conditions. In general, the basic o
dimensional lattice may very well be a kind of backbone
the 2D lattices, where different permutations of vortex sp
ings could be used to build up the 2D lattice. For the p
ticular case of the limiting form discussed, the structu
have a nesting property and hierarchical nature, resting u
the structure of the lowq members of the sequence.

The study of the spectrum at irrationalf sheds light on the
differentiability properties ofE( f ). Due to the uniform con-
tinuity of the spectrum, the incommensurate vortex lattic
cannot all be of the same ground state energy, i.e., a mea
of commensuration remains even at the infiniteq limit. How-
ever, uniform continuity does not necessitate smoothnes
any point of the domain. Finally, we note that for superco
ducting wire grids, the equivalent of what we have nam
the Fibonacci state has been reported to be the gro
state.11
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