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Ground state of uniformly frustrated Josephson-junction arrays at irrational frustration
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A conjectured outline of the structure of vortex lattices of uniformly frustrated Josephson-junction arrays at
irrational frustration is presentefl50163-18209)07513-X

The structure of the energy landscape of uniformly frus-ment, only shifted byn plaquettes relative to the row below
trated Josephson-junction arrays is not yet well understoodFigs. 1@ and Xc)]. It is shown that this results in the lattice
Such systems are usually studied when the frustration paranef vortices in a given row, to sit in the potential relief of the
eter which denotes the number of flux quanta of the externalow below, leading to a low-energy structure of the 2D array,
field through the unit cell of the array is rationdk=p/q. It  with agxq unit cell. The outcome is a highly ordered set of
is believed that, at least at some largevalues off, the  phases; due to certain symmetries, the number of indepen-
system may exhibit glassylike behavfor.Such rational dent phases ig/2 [(q—1)/2 for q odd].®
numbers are the best representatives of the system at irratio- Whenf is irrational, one deals with vortex lattices incom-
nal frustration. mensurate with the underlying lattice—no unit cell exists. In

Uniformly frustratedXY models, embodied in arrays of this case, the usual strategy for studying the spectrum of Eq.
Josephson junctions in constant perpendicular magnetic field]), and the corresponding vortex structures, is to make use

are described in the Landau gauge by of best rational approximants 6fAs our prime example, we
consider the case df= 7, the golden ratio.
H=—J3j, cog 6;— §;) — IS ;) cOg 6, — 6, — 2rm ). As mentioned above, due to the symmetries of &g,

(1) f=r=(J5+1)/2f=7-1, andf=2— 7 are equivalent. The
sequencer;;, of best rational approximants &f= = are then

The first term of this Hamiltonian includes the energies ofeffectively given by
nearest-neighbor sites forming bonds that are directed along
the x axis of the square array. The second term is for bonds 11235181 Fu
directed along the axis; mis an integer expressing the 51 R Er R aa'91 A  EE R (2
coordinate of these bonds in units of the lattice constant. The 2'3'5°8'1321°34'55 Frez
Josephson coupling constahsets the energy scale, and is where F, denotes theNth Fibonacci number, withFs=5

w
N
=

taken to be positive._The Ha_miltc_)nian is invari_an;fiﬁs andrg= 3.

changed to-f (reversing the direction of magnetic figldr The study of the above sequence of rationals amounts to
if an integer is added tb(adding and integral number of flux  5phroximating the incommensurate vortex lattice, with the

quanta. best(mos) commensurate lattices of increasingly larger pe-

For a rationalf, the structure of the ground state of the 1jo4s. One then hopes to gain insight into the structure of the
above Hamiltonian forms a superlattice of vortices having, g tex |attices atf = 7. Although the sequence of ground

(typically) a qxq unit cell. A clue to why this occurs is giate energies, thus found, approaches the ground state en-
suggested by Eq1). At m equal to integer multiples i, ¢y E(7) due to the continuity of the spectrufirit is not

the frustrating phases2mf disappears, and the magnetic pe- hn<siple to infer any property of the ultimately infinite vortex
riod becomes commensurate with the period of the underlyfaetice from the finite vortex lattices found at each rational
ing lattice. From isotropy of the systeqxq periodicity fol- 55 oximant. This is basically because of the periodic

lows. This is certainly not proof of the formation of the unit pondary conditions which stabilize a particular vortex struc-
cell of the vortex lattice, indeed few exceptions exXiget it

indicates how the periodicity of frustration is manifested in

the superlattice of vortices. EEONEC AEROEOEE REONDE
Recently, it was shown that for a class of local minimum T SOEROND T

states of Hamiltonian(1), the two-dimensional problem of S e L

finding the vortex structure, i.e., phases at sites such las EEDEDEED EDEEOEND EONEONED

is reduced to a problem in one dimensfbfihe idea amounts
to proving that the phase correlation between sitds and
a+ 1,b+. 1, which produces the Ha]sey staircase state, can be FiG. 1. Vortex lattices forf=2. In (a), n=4; the lattice is
generalized to the case where suitable phase correlations afectively 8<2, but it is not stable: the vortices move to fill the
established between sitesb anda+n,b+1. In this way  empty columns. The resulting lattice is depicted(y; it has an
one can construct the two-dimensional lattice row by row,energy per site of-1.2764 J. In(c), the Halsey staircase state is

each row having the same one-dimensioHD) arrange- shown,n=1, and the energy per site i51.28146 J.

(@ (b) ©
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(eI T M TTT T TsT [T T[T TTe] members of the sequen¢® aiming at finding the particular
shift parameter leading to the lowest-energy 2D vortex lat-
fice. The results are summarized in Table 1. Bor 21, the
generator of the 2D vortex lattice is given in Fig. 2. For other

ture at a particular member of the sequence, while for an€ntries except for those indicated by an asterisk, the genera-

other member, a totally different ground state lattice struc{Or iS Similarly found. Itis customary to indicate the order in
ture forms. the Fibonnaci lattice in terms of the spacing between the
No doubt the structure of the infinite vortex lattice exists, N€ighboring vortices, e.gL. SLLSLSLfor q=21, L de-
is well defined, and in principle can be formulated. To thisnoting long (two plaquette spacingand S short (single
end, one must observe a kind of continuity in the finite latticeplaquette spacing The entries with asterisks do not obey
structures, which result from the sequence of rationals. Thisuch order(and do not compose the lowest-energy spates
constitutes the main objective of the present article. In whaFor instance,n=4, q=21 is a LSLSLSLL state. At
follows, we shall argue for a possible way of fulfilling this present, it is not known why the 1D lattice for somgalues
requirement. is not stable and converts to a different state when the 2D
The one-dimensional problem of finding a generalizedattice is found. In addition to the generalized staircase states
Halsey state is that of distributindq vortices overq not obeying Eq(3) (and denoted by an asterisk in Tab)e |
plaquettes of a ladder of Josephson junctions in order t¢here are nonstaircase states as well. These are easier to un-
minimize the interaction energy. Recalling the Coulomb gagjerstand. Again consider Fig(a. Here, we havef=2,n
version of theX'Y model, one is not surprised to find that the — 4 The Jattice contains empty columns with no vortex resi-
exact solution by Hubbard and also by Pokrovsky and Uiminyent: these may be called striped lattices. At high densities, a

(HPU), applies to the present caS&mpirically, we have more uniform distribution of vortices exists giving lower en-

verified that the arrangement of vortices along the Iadderergy; neighboring vortices migrate to occupy the empty col-

which minimizes the energy, is given by umns. The stable state foufiflig. 1(b)] is not a local mini-

xi=[i/f], i=1,...p. @ mum characterized by a shift parameter. We have indicated
: ' ' ’ such unstable striped stat@s nearly striped, in the case of

In Eq. (3), x; denotes the location of the plaquette occupiedf=2, n=17) with the letteru, in Table I. It should be

by a vortex; the square brackets indicate the integer parhoted that the stable lattice resulting from such unstable pat-

This equation states that the unit cell of the structurg is terns may actually turn out to be a low-energy stabeugh

plaguettes long, and contaipsvortices; it also observes the none of those mentioned aydut we shall argue below that

symmetries of Hamiltoniafl). Equation(3) is equivalentto  such lattices need not concern us.

FIG. 2. The spacing between successive vortices is in the sel
similar quasiperiodic order of the Fibonacci sequeheef—l.

the HPU solutiorf For the arrangement of vortices &t Then=1 state is the ordinary Halsey staircase state and is
=7, this equation gives the celebrated one-dimensional quaseen to possess the lowest-energy configuration for each
siperiodic self-similar Fibonacci latticg-ig. 2). member of the rational sequencefef 7 studied. The entries

In the language of our problem, the solution indicates thabf Table | give five significant digits; at times the 2D lattice
the one-dimensional minimum energy structure is indepenhad to be cooled to 0.00001 kg/. We conjecture that this
dent of the shift parameter. Knowing the 1D vortex lattice, result holds for all members of the sequence.
the choices for possible values ofare immediately deter- The importance of this result becomes apparent once we
mined: one requires no nearest-neighbor vortices, once thecall that the best rational approximants come from the con-
2D lattice is developed. However, not all possibls give  tinued fraction expansion. The continued fraction expansion
viable resultdFig. 1(b)]. builds upon itself and the 1D vortex lattices inherit this prop-

Using the methods previously described, we studied therty, i.e., they are assembled sequentidlliyis also impor-
generalized Halsey staircase local minima of the first fewtant to note the implicit property of best rational approxi-

TABLE I. Energies for the sequence of best rational approximants-af as a function of possible values
of n. n=1 gives the lowest energy. See text for the meanings©and asterisks. Blank entries could be
filled by symmetry arguments, for instanaes4,9,17,22 are all the same state Wh‘eﬂ%.

_1 1 2 3 5 8 13 21
-2 3 5 8 13 21 34 55
n=1 —\2 —4/3 12944 12814 -12763 —1.2744 -1.2736 —1.2734
4 u —1.2534 —1.2690% —1.2608 —1.2647
9 —1.273F —1.2539 1.2684
12 -1.263F  —-1.2717
17 u u
22 -1.2674
25 —1.2586

&The lattice is 2K 7.
bThe lattice is 555.
“The lattice is 5% 11.
The lattice is 3% 17.
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FIG. 3. The Fibonacci state at ttie= & stage; vortices occupy %" o%® o%%e" o%" 2% % %% +%® ufa%" o%a® o%%s" a%e® 4%
diagonals that are spaced in the Fibonacci sequence. The self-
similar nesting cells are shown by nearly unfrustrated vertical FIG. 4. The structure of the ground state for \2 is claimed to
bfL:ndar:'e;'.TTﬁ flgulr(;a ShO\;\.’S the claimed structure for the grounge a Halsey state. Here, we see the structure for one of its rational
state whert s the golden ratio. approximants,i—g, n=1. The spacing between vortex diagonals and

nesting are governed by the continued fraction/2f The structure

mants, namely, the successiués are such thatFy gets  in the infiniteq limit is degenerate with the Fibonacci state.
closer and closer to an integer Bsgrows. This so-called

nesting property is summarized in Fig. 3, which depicts what Next considerf =2. The sequence is noy 2, =,
could be referred to as the Fibonacci state atNke8 stage. %, . . . . Thepossible values af for the first five members of
The Fibonacci state is unique in that at each stage its gerthe sequence mentioned are in the(4¢6,11,18,23,30 The
erator is obtained from the assembly of generators of twestudy of % is cumbersome, but from our studies we place a
previous stages, each repeated oafye For instance,f lower bound energy of-1.26 J per site, fon>1. For such
== with LSLLSis obtained fromLSL which belongs to values ofn, the best energy found was that bt 3%, n
f=2, andLS which belongs td = 3. This is the result of the =11, with —1.257 J. Again, thaen=1 state with an energy
continued fraction expansion having only 1's. Furthermoreper site of—1.2733 J, provides the lowest-energy state. Fig-
the Fibonacci state has the property that the vortices appeare 4 shows the outcome; here, the continued fraction has the
in diagonals that are spaced according to the quasiperiodigroperty thatqy.,=2qn+1+dn, in contrast with Fig. 2,
ordering of the Fibonacci lattice. We believe that the Fi-where we have)y, >=0qn.1+0N-
bonacci state is the ground state of the uniformly frustrated The implicit requirement in the evolution of the states, as
Josephson-junction array & 7. the sequence of rationals approaches the irrational limit, i.e.,
Figure 3 shows the 5855 Fibonacci state. The vertical the continuity that we mentioned in the beginning, is that the
lines atm=0 andm=55 show the unfrustrated bonds. The structure of the lattices obtained be essentially the same. For
other vertical lines show the nearly unfrustrated bonds; thea=1 this condition is naturally satisfied, as seen in Figs. 1
approximation becoming worse for tlieertical) boundaries and 2. However, if the structure is not shared by the lowest-
of smaller cells. The nesting property obtained is, of coursegnergy members of the sequence, the scheme fails—a differ-
gauge invariant, but manifest in the Landau gauge. Usingnt type of nesting should be found, and the simple shift map
Fig. 2 we could expand the total energy of the lattice in termsstates will not do. This becomes more clear in the study of

of the total energies of its constituents f=13.
The sequence fof=43, is %, % & & X .... The
E(rg)=E(r;)+3E(rg) continued fraction now has a mixed nature, thaf efr and

that of f = \2. The study of the first four members indicates

that n=2 gives the lowest energy. The lattice structures,
(4)  however, vary. In Fig. 5, we show time=2 state forzj, with

an energy per site 0of 1.3410 J. The cells having correft
which misses one vortex-residing plaquette. Using Halsey'sand < structures are marked by | and Il, respectively. The
formula for the constituents, the energy per site of the 54ifferences between them can be traced back to the differing
X 55 lattice obtained from Ed4) is —1.2756 J, and is to be structure of: and 3, especially, sincd =% has a 4«8 unit
compared to the Halsey energy of thexd lattice, which  cell.X° As seen, the component cells cannot be fitted as well
is —1.2734 J. The expansion overestimates the nesting fitas the other two cases studied. The important point is that the
ness by treating the constituent cells as independent latticestructure of the lowes§ members of the sequence plays the
giving a lower than actual energy. The energy of the Fi-determining role.
bonacci state is-4 Jhr, which is the infiniteq limit of Hal- Transcendental numbers do not have periodic continued
sey’s formula. fractions, yet the sequential property holds. Fer, the

+2[E(rs5)+E(rg) +E(r3) +E(ry) +E(rqy)],



9572 MOHAMMAD R.

o

FIG. 5. Then=2 vortex lattice forf =31 in the best approxi-
mant sequence of3. The nesting is not complete. The corrq“gt
and 3 structures are indicated by | and II, respectively.

sequence starts with has ground state energyl1.5166 J,
and is obtained withh=2 or equivalentlyn=3. The se-
guence grows rapidly imp and becomes difficult to study;
i 1%, s ... Thecase off =e is similar to that off

=3, having the sequencg i, 2, 5, . . . .
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trum, and it further demands a continuity of the “eigenfunc-
tions.” An immediate possibility is suggested by studying
the generalized Halsey staircase states of varying lemgth

a way of generating this particular limiting form. Without
such a procedure, the low-lying-energy lattices found at each
member of the sequence, should be considered as artifacts of
the boundary conditions. In general, the basic one-
dimensional lattice may very well be a kind of backbone for
the 2D lattices, where different permutations of vortex spac-
ings could be used to build up the 2D lattice. For the par-
ticular case of the limiting form discussed, the structures
have a nesting property and hierarchical nature, resting upon
the structure of the lovg members of the sequence.

The study of the spectrum at irratiorfadheds light on the
differentiability properties oE(f). Due to the uniform con-
tinuity of the spectrum, the incommensurate vortex lattices
cannot all be of the same ground state energy, i.e., a measure
of commensuration remains even at the infigjienit. How-
ever, uniform continuity does not necessitate smoothness at
any point of the domain. Finally, we note that for supercon-
ducting wire grids, the equivalent of what we have named
the Fibonacci state has been reported to be the ground
statel!

In summary, we have argued that to obtain the structuré
of an infinitely large array of Josephson junctions at an irra- | am grateful to Professor Joseph P. Straley for the critical

tional value of the frustration parameter, a particular limiting

reading of the manuscript and ideas for improving it. | thank

form of successively larger arrays needs to be consideredrofessor William Arveson and Dr. S. Varsaie for discus-

This is in accord with the uniform continuity of the spec-

sions on the Weierstrass function.
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