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Josephson current in a finite-size junction interrupting a superconducting ring
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We study the behavior of the Josephson currentI J flowing in a finite-size Josephson junction in a super-
conducting ring in the presence of an externally applied magnetic fieldH, taking into account the effect of the
shielding currents. The set of self-consistent equations for the system can be solved explicitly forI J in the
small self-inductance coefficient limit for not negligible effective junction areas. It is found that the resulting
I J versusH curve presents a Fraunhofer-like prefactor modulating a periodic quasisinusoidal odd function.
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I. INTRODUCTION

Superconducting rings containing small Josephson ju
tions are well-known systems: Their electrodynamics a
thermodynamics have been extensively studied in
past.1–3 Indeed, a broad scientific interest lies beneath
macroscopic quantum coherence phenomena, which
present in these systems because of the validity of the Bo
Aharonov relation2 for the superconducting state. As a resu
a large variety of applications has been realized due to
interplay between quantum mechanics and class
electrodynamics.1,4 Moreover, after the discovery of high-Tc
superconductivity,5 circuital models containing small Jo
sephson junctions~JJ’s! ~Refs. 6–10! have been used in
simulating the magnetic response of superconducting
prates possessing a marked granular structure.11,12 In dealing
with these systems, when one faces the question ‘‘How d
the local magnetic fieldh affect the value of the Josephso
current I J which may flow into the junction?,’’ one often
refers to the well-known Fraunhofer-like pattern valid for
small junction in the presence of a bias currentI B . This
pattern is derived for an isolated junction, and its validity
not a priori evident in the context of Josephson juncti
networks or, in the simplest case, of a JJ in a supercond
ing ring.

Therefore, in the present work we shall examine in de
the current distribution in a superconducting ring interrup
by a JJ in order to derive a set of self-consistent equatio
which shall allow us to study the magnetic-field depende
of I J in the general case of a JJ of finite size. In Sec. II
shall analyze the field and current distributions in the sys
and in Sec. III we shall give an analytic expression for t
Josephson currentI J as a function of the external magnet
field for small effective inductances of the ring. Conclusio
are drawn in the final section.

II. FIELD AND CURRENT DISTRIBUTIONS

Let us consider a single rectangular Josephson junctio
length L in a superconducting ring of inner and outer ra
Rin and Rout, respectively, in the presence of an extern
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magnetic fieldHW as shown in Fig. 1~a!. The vector potential
AW in the superconducting ring satisfies the Bohm-Aharon
relation.2 The flux F linked to the closed circular pathC
5CSøCJ shown in Fig. 1~a! may be expressed as follows

F5 R
C
AW •dlW5E

CS

AW •dlW1E
CJ

AW •dlW, ~1!

whereCS is the portion ofC inside the superconducting rin
andCJ is that inside the Josephson junction. If we choos
path well inside the superconducting ring in such a way t

FIG. 1. ~a! Schematic representation of the current distributi
in the superconducting ring interrupted by a finite-size Joseph
junction. ~b! Detailed representation of the current distribution
the vicinity of the Josephson junction in~a!.
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the superconducting current densityJWS is null, we can write
the well-known fluxoid quantization condition:

2p

F0
F1w52pn, ~2!

wheren is an integer and

w5u~P2!2u~P1!2
2p

F0
E

P1

P2
AW •dlW ~3!

with P1 andP2 being the extrema of the pathCJ as in Fig.
1~a! andu the superconducting phase. Notice, however, t
the fluxF can be written as a function of the variabley @see
Fig. 1~b!# as follows:

F5FJ~y!1F in , ~4!

whereF in is the flux linked to the circular pathCin of radius
equal toRin and FJ is the flux through the areaSJ5d(L/2
2y), where d52l1t, l being the London penetratio
depth of the superconducting ring.

The flux F in depends on the particular magnetic state
alized and, therefore, on the magnetic history of the syst
Indeed, the superconducting ring may trap magnetic flux
reversibly for high enough values of the Josephson coup
energyEJ5I J0F0/2p, I J0 being the maximum Josephso
current of the JJ, and of some effective inductance coeffic
Leff . Only in the very simple case of reversible behavior a
of extremely small junctions can we set

F.F in.Fex5m0HSout, ~5!

whereSout5pRout
2 , so that the Josephson current in the JJ

modulated by the field value according to the following:

I J52I J0 sinS 2p

F0
FexD . ~6!

However, in this simplest case one neglects~i! the flux FJ ;
~ii ! the shielding currentsI S

(in) and I S
(out) , which circulate as

shown in Fig. 1~b!; ~iii ! the self-fields generated by all cu
rents in the system.

Even though these results are valid in the extremely sm
junction limit and in the limit of negligible shielding curren
effects, a more general approach is required when these
ditions are not met.

Therefore, when the size of the junction interrupting t
superconducting ring is not negligible with respect toRout,
the flux FJ should also be taken into account. In order
consider all contributions toFJ , let us sketch the curren
distribution in its surroundings as in Fig. 1~b!. We notice that
a superconducting shielding current densityJWS flows in such
a way to giveBW 50 in the region well inside the ring fo
which Rin1l<r<Rout2l, where r is the radial distance
from the center. The current densityJWS is taken to be con-
fined in the complement, with respect to the ring, of t
above region. Notice also that a portion ofJWS flows through
the junction, giving rise to the superconducting Joseph
current densityJW J5JJ(y) x̂. As a consequence, one can ide
tify, away from the junction and on the opposite sides of
ring, two values of the shielding currentI S , namely
t
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I S
~out!5JS

~out!lw, ~7!

I S
~ in!5JS

~ in!lw, ~8!

whereJS
(out) andJS

(in) are the average shielding current de
sities in the regions for whichRout2l<r<Rout and Rin<r
<Rin1l, respectively, andw is the ring thickness.

In the vicinity of the JJ, on the other hand, we can wri

JWS56JS~y!ŷ. ~9!

By charge conservation we have

I S~y1dy!2I S~y!5JJ~y!w dy, ~10!

so that

JJ~y!52
1

w

dIS

dy
52l

dJS

dy
. ~11!

Having schematized the current distribution in the syst
through Eqs.~7!–~11!, we can state that the field inside th
Josephson junction is given by superimposing~a! the exter-
nal field HW ; ~b! the field generated by the current densityJWS
present on both sides of the JJ;~c! the field generated by the
current densityJW J flowing through the JJ.

The flux FJ can thus be written as follows:

FJ5Fa1Fb1Fc , ~12!

where the subscript refers to the three cases listed above
fluxesFa , Fb , andFc , on their turn, may be expressed
follows:

Fj~y!5m0E
2t/22l

t/21l

dxE
y

L/2

hj~x,y8!dy8, ~13!

wherej5a,b,c and where thehj(x,y)’s are the correspond
ing field distributions in the JJ. By the assumptions set fo
in Appendix A, the three fluxes can be written as

Fa~y!5m0d~L/22y!H, ~14!

Fb~y!52
m0

p
lnS 11

2t

l D F I S
~out!~L/22y!

2wE
y

L/2

dy8E
2L/2

y8
JJ~j!djG , ~15!

and

Fc~y!5m0~2l1t !E
y

L/2

dy8E
2L/2

y8
JJ~j!dj. ~16!

By summing up all contributions, the fluxFJ can be fi-
nally written as follows:

FJ~y!5Fm0Hd2
m0

p
lnS 11

2t

l D I S
~out!G~L/22y!

1m0Fw

p
lnS 11

2t

l D1dG E
y

L/2

dy8E
2L/2

y8
JJ~j!dj.

~17!
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III. MAGNETIC STATES AND JOSEPHSON CURRENT

As stated above, the gauge-invariant superconduc
phase differencew may be expressed in terms of the flu
F5F in1FJ by the fluxoid quantization relation@Eq. ~2!#.
The flux F in depends on the particular metastable state
which the system is in, while an expression of the fluxFJ
has been given in Eq.~17!. By the first Josephson equatio
and by the fluxoid quantization condition, the supercondu
ing current densityJJ can be written as follows:

JJ~y!52JJ0 sinS 2p

F0
F~y! D . ~18!

The total current flowing into the junction is thus

I J52I 0F 1

L E
2L/2

L/2

sinS 2p

F0
F DdyG , ~19!

whereI 05JJ0wL, JJ0 being the critical current density valu
of the Josephson junction.

The problem has now been completely stated and ma
solved if the system’s magnetic metastable state is kno
We shall therefore assume that an approximate descriptio
the magnetic state of the system can be given by the foll
ing set of equations, derived in detail in Appendix B:

I S
~ in!5I S

~out!2I J , ~20!

I S
~out!5

FJ* 2m0H~Sout2Sin!

2Lout
, ~21!

F in5m0HSout1LoutI J2FJ* , ~22!

F* 5F in1FJ* , ~23!

where Sin5pRin
2 , F* 5F(2L/2), FJ* 5FJ(2L/2), and

Lout is the self-inductance coefficient associated to a path
radiusRout.

Therefore, the problem can be solved under the assu
tions made. However, we see that an explicit analytic so
tion to the problem, even though it has been stated in
simplest form, is not attainable. We must thus resort to m
restrictions in order to obtain a qualitative answer to
question we originally put forth: ‘‘How does the external
applied magnetic flux through the junctionFJ* influence the
value of the Josephson currentI J?’’ Let us notice that the
double integral term in Eq.~17! is a bounded quantity, sinc
it depends on the sine of the total fluxF, given by Eq.~18!.
Thus, for increasing values ofH, the first term grows linearly
while the second addendum does not. We therefore res
ourselves to those magnetic states where the second ad
dum can be neglected, i.e., to high enough values of
applied field, and write the fluxFJ as follows:

FJ~y!5Fm0Hd2
m0

p
lnS 11

2t

l D I S
~out!G~L/22y!. ~24!

It is now easy to verify that, by means of Eqs.~20!–~24!, FJ*
can be expressed in terms ofH by the following elementary
relation:

FJ* 5m0HlL , ~25!
g
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l 5

t12l1
m0

2p
lnS 11

2t

l D ~Sout2Sin!

Lout

11
m0L

2pLout
lnS 11

2t

l D . ~26!

Equation~24! can now be written as follows:

FJ~y!5
FJ*

L
@L/22y# ~27!

and the Josephson current can be found by a straightforw
integration to be

I J52I 0

sinS pFJ*

F0
D

pFJ*

F0

sinS 2p

F0
F in1

p

F0
FJ* D . ~28!

By now introducing the normalized quantities

i J5
I J

I 0
, CJ* 5

FJ*

F0
, Cex5

m0HSout

F0
, b05

LoutI 0

F0
,

~29!

and by recalling Eqs.~20!–~23!, Eq. ~28! can be rewritten as
follows:

i J52
sin~pCJ* !

pCJ*
sin~2pCex2pCJ* 12pb0i J!. ~30!

Equation~30! is the general equation for the magnetic-fie
dependence ofI J in a finite-size JJ interrupting a superco
ducting ring. The solution to Eq.~30! could be found nu-
merically by Newton’s method. In the small ring inductan
limit, i.e., for very smallb0 values, we can write the solutio
explicitly in terms of the externally applied fluxCex. In this
case, indeed, the system behaves reversibly and the fol
ing single-valued functioni J can be found:

i J52 f ~Cex!
sin$2pCex@121/~2M !#%

112pb0f ~Cex!cos$2pCex@121/~2M !#%
,

~31!

where

f ~Cex!5
sin~pCex/M !

~pCex/M !
~32!

and M5Sout/ lL . Notice that for extremely small junction
f (Cex)51 and the expression

i J52
sin~2pCex!

112pb0 cos~2pCex!
~33!

reduces to Eq.~6! when we letb0→0.
An i J versusCex graph for negligible values ofb0 is

shown in Figs. 2~a! and 2~b!. These results are clearly dif
ferent from those obtained in the case of a single curr
biased small junction. Indeed, in the case of a supercond
ing ring, we have an odd symmetry of the superconduct
current with respect to the applied field, in contrast with t
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even symmetry present in the usual Fraunhofer-like patt
Furthermore, the analytic dependence of thei J versusCex
curves contains only a prefactor which is similar to that se
in a current biased junction, while an additional term mod
lates the value of the Josephson current in the loop.

IV. CONCLUSIONS

We have studied the magnetic-field dependence of
Josephson currentI J flowing in a finite-size Josephson junc
tion interrupting a superconducting ring. The analysis h
been carried out by schematically considering shielding c
rent effects. It is found that, if the Josephson junction eff
tive area is not negligible with respect to the geometrical a
enclosed by the ring, theI J versusH dependence acquire
new structures when compared to the corresponding de
dence of an infinitely small junction. It is also noted that th
system is intrinsically different from a current biased Jose
son junction, even though, in the case of small ring ind
tances, a Fraunhofer-like prefactor is seen to modulate a
riodic quasisinusoidal odd function of the external magne
field.
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APPENDIX A

We derive here the expressions forFb and Fc given in
Sec. II. In order to obtain rather immediate results for

FIG. 2. Josephson currenti J vs normalized applied fluxCex for
b050.001 and~a! M51.5 ~dashed line!, M52.0 ~full line!; ~b!
M53.0 ~dashed line!, M55.0 ~full line!.
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flux Fb , let us assume that the effect due to the curr
densityJWS could be schematized through two thin wires, ca
rying a currentI S(y)5JS(y)wl placed at a distancel/2
from the two barrier interfaces. In order to avoid dive
gences, we restrict the integral in Eq.~13! to the x interval
@2t/2,t/2#. In this way, we can write

hW b~x,y!52
I S

2p F 1

S l1t

2
1xD 1

1

S l1t

2
2xD G ẑ,

2t/2<x<t/2, ~A1!

so that

Fb~y!52
m0

p
lnS 11

2t

l D E
y

L/2

I S~y8!dy8. ~A2!

By Eq. ~11! we now have

I S~y!5I S
~out!2wE

2L/2

y

JJ~j!dj. ~A3!

Furthermore, by Josephson equations we may write

JJ~y!5JJ0 sinw~y!. ~A4!

Notice also that the superconducting phase differencew de-
pends on the fluxF through the fluxoid quantization cond
tion. We can now make use of the expression ofI S in Eq.
~A3! to rewrite Eq.~A2! as follows:

Fb~y!52
m0

p
lnS 11

2t

l D F I S
~out!~L/22y!

2wE
y

L/2

dy8E
2L/2

y8
JJ~j!djG . ~A5!

Let us now evaluateFc(y). By Maxwell equations, taking
hW c5hc(y) ẑ, we have

hc~y!5E
2L/2

y

JJ~y8!dy8. ~A6!

By substituting the above expression forhc into Eq.~13!, we
can finally write

Fc~y!5m0~2l1t !E
y

L/2

dy8E
2L/2

y8
JJ~j!dj. ~A7!

APPENDIX B

In order to derive the magnetic state of a superconduc
ring, let us take this system as electromagnetically equiva
to two concentric superconducting loops. By neglecting
superconducting currentI J , the fluxes linked to the two
loops can be written as follows:

F* 5LoutI S
~out!2MI S

~ in!1m0HS~out! , ~B1!

F in52L inI S
~ in!2MI S

~out!1m0HS~ in! , ~B2!

where the quantitiesL in ,Lout are the self-inductance coeffi
cients relative to the inner and outer loop, respectively, a
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M is the mutual inductance between the two loops, a
where theS’s are the areas enclosed by the two current pa
The flux F* is related to the total flux through the junctio
FJ* as follows:

F* 5F in1FJ* , ~B3!

while the currentI J flowing through the junction is given by

I S
~ in!5I S

~out!2I J . ~B4!

We can express the quantitiesF in , F* , I S
(in) , and I S

(out) in
terms ofFJ* , I J , andH as follows:

I S
~ in!5

FJ* 2m0H~Sout2Sin!2~M1Lout!I J

Lout1L in
, ~B5!

I S
~out!5I S

~ in!1I J , ~B6!
its

h-

r

d
s.

F in5m0HSeff1LeffI J2kFJ* , ~B7!

F* 5F in1FJ* , ~B8!

where

Seff5
~L in1M !Sout1~Lout2M !Sin

Lout1L in
~B9!

and

k5
~L in1M !

Lout1L in
. ~B10!

In the case of almost identical loops, we can set

L in.Lout5Leff ; M.L in→Seff.Sout; k.1, ~B11!

so that Eqs.~B5!–~B8! can be written as in Eqs.~20!–~23!.
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