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Josephson current in a finite-size junction interrupting a superconducting ring
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We study the behavior of the Josephson curtgrftowing in a finite-size Josephson junction in a super-
conducting ring in the presence of an externally applied magneticHieteking into account the effect of the
shielding currents. The set of self-consistent equations for the system can be solved explidijlynfohe
small self-inductance coefficient limit for not negligible effective junction areas. It is found that the resulting
I; versusH curve presents a Fraunhofer-like prefactor modulating a periodic quasisinusoidal odd function.
[S0163-182609)10413-2

I. INTRODUCTION magnetic fieldd as shown in Fig. ®. The vector potential

. . - . Ain the superconducting ring satisfies the Bohm-Aharonov
Superconducting rings containing small Josephson junc-

. ; . - Jelation.z The flux ® linked to the closed circular pat@
tions are well-known systems: Their electrodynamics an

thermodynamics have been extensively studied in the CsUC, shown in Fig. 1a) may be expressed as follows:

past'~® Indeed, a broad scientific interest lies beneath the . R R

macroscopic quantum coherence phenomena, which are b= é A-dlzf A-dl+f A-dl, 1)
present in these systems because of the validity of the Bohm- c Cs C

Aharonov relatiof for the superconducting state. As a result,WhereCS is the portion ofC inside the superconducting ring

a large variety of applications has been realized due to t:}%nd C; is that inside the Josephson junction. If we choose a

interplay bet'wefn guantum mechqnlcs and plassm ath well inside the superconducting ring in such a way that
electrodynamic$:* Moreover, after the discovery of highs

superconductivity, circuital models containing small Jo-
sephson junctiongJJ’s (Refs. 6—10 have been used in
simulating the magnetic response of superconducting cu-
prates possessing a marked granular strucfufen dealing

with these systems, when one faces the question “How does
the local magnetic fieldh affect the value of the Josephson
currentl; which may flow into the junction?,” one often
refers to the well-known Fraunhofer-like pattern valid for a
small junction in the presence of a bias currégt This
pattern is derived for an isolated junction, and its validity is
not a priori evident in the context of Josephson junction
networks or, in the simplest case, of a JJ in a superconduct-
ing ring.

Therefore, in the present work we shall examine in detail
the current distribution in a superconducting ring interrupted
by a JJ in order to derive a set of self-consistent equations,
which shall allow us to study the magnetic-field dependence
of I ; in the general case of a JJ of finite size. In Sec. Il we
shall analyze the field and current distributions in the system
and in Sec. lll we shall give an analytic expression for the
Josephson currenyg as a function of the external magnetic
field for small effective inductances of the ring. Conclusions
are drawn in the final section.

==

Il. FIELD AND CURRENT DISTRIBUTIONS ) _ S
FIG. 1. () Schematic representation of the current distribution

Let us consider a single rectangular Josephson junction aii the superconducting ring interrupted by a finite-size Josephson
length L in a superconducting ring of inner and outer radii junction. (b) Detailed representation of the current distribution in
Ri, and Ry, respectively, in the presence of an externalthe vicinity of the Josephson junction ().
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the superconducting current densltyis null, we can write 19U = 3P\ w, )
the well-known fluxoid quantization condition: _ .
. 14M =3I\ w, 8
P, PHe=2mn, 2 whereJ©" andJ{™ are the average shielding current den-
. . sities in the regions for whicR,,,— A<r<R,, andR,,<r
wheren is an integer and <R;,+\, respectively, andav is the ring thickness.
5 o In the vicinity of the JJ, on the other hand, we can write
v 2> -
=0(P,)—6(P ——f A-dl 3 = N
¢ ( 2) ( 1 CDO Py ( ) ‘]S: iJS(y)y (9)

with P, and P, being the extrema of the pafd; as in Fig. By charge conservation we have
1(a) and # the superconducting phase. Notice, however, that

the flux® can be written as a function of the varialylésee Is(y+dy)=ls(y)=Js(y)w dy, (10
Fig. 1(b)] as follows: so that
CI):(DJ(y)+(I)in1 (4) 1 dls d\]s
. . ) . WW==L v Moy (11
where®;, is the flux linked to the circular pat@;, of radius w ay y

equal toR;, and @, is the flux through the ares,=d(L/2 Having schematized the current distribution in the system

—y), where d=2\+t, \ being the London penetration through Eqgs(7)—(11), we can state that the field inside the

depth of the superconducting ring. : N T ;
The flux ®;, depends on the particular magnetic state re_Josephsqn junction is given by superimpos{egthe exter-

alized and, therefore, on the magnetic history of the systenf@ fieldH; (b) the field generated by the current denslty
Indeed, the superconducting ring may trap magnetic flux irPrésent on both sides of the 9) the field generated by the

reversibly for high enough values of the Josephson couplingurrent density, flowing through the JJ.
energy EJ:|JOCD0/27T, I.JO being the maximum Josephson The flux CDJ can thus be written as follows:
current of the JJ, and of some effective inductance coefficient

Less- Only in the very simple case of reversible behavior and Dy=Pyt Oy + P, (12
of extremely small junctions can we set where the subscript refers to the three cases listed above. The
fluxes®,, ®,, andd, on their turn, may be expressed as
O=Pj,=Pg= uoHSpy, ©) follows:
whereS,,=mR2,, o that the Josephson current in the JJ is 24 L2
modulated by the field value according to the following: ‘I’g(Y):Mof dxf he(x,y")dy’, (13)
—t/2—\ y
3= —150 sin(ﬁq;@() _ (6) Where§=a,b,c and where théi,(x,y)’s are the correspond-
% ing field distributions in the JJ. By the assumptions set forth

However, in this simplest case one negldtighe flux®; in Appendix A, the three fluxes can be written as

(ii) the shielding currentsS™ and 1§, which circulate as ®,(y) = pod(L/I2—y)H, (14)

shown in Fig. 1b); (iii) the self-fields generated by all cur-

rents in the system. Lo
Even though these results are valid in the extremely small Dpy)=— - In

junction limit and in the limit of negligible shielding current

effects, a more general approach is required when these con- L/2 y'

ditions are not met. —WJ dY'j JJ(f)dfy (15
Therefore, when the size of the junction interrupting the y “L2

superconducting ring is not negligible with respectRg;, and

the flux & ; should also be taken into account. In order to

consider all contributions tab;, let us sketch the current Lz oy

distribution in its surroundings as in Fig(td. We notice that (I)c(y):,uO(Z)\th)L dy J:LIZJJ@)O'&- (16)

a superconducting shielding current densigflows in such

a way to giveB=0 in the region well inside the ring for By summing up all contributions, the fluk; can be fi-

which Rj,+A<r<R,,—\, wherer is the radial distance nally written as follows:

from the center. The current densily is taken to be con-

fined in the complement, with respect to the ring, of the @ (y)= (L/2—y)

above region. Notice also that a portionXf flows through

the junction, giving rise to the superconducting Josephson L2 y/

current density ;= J;(y)X. As a consequence, one can iden- + Ko f dy’j Jy(6)dé.

tify, away from the junction and on the opposite sides of the y Lz

ring, two values of the shielding currehf, namely a7

1+ 2t
by

1 QU(L/2—y)

|(0U0
S

Mo 2t
——Inl1+—
moHd - In(l N

1+ 2 4
by

w
—In
o
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I1l. MAGNETIC STATES AND JOSEPHSON CURRENT where
As stated above, the gauge-invariant superconducting “o 2t\ (Sour—Sin)
phase differencep may be expressed in terms of the flux t+2N+ Zln 1+ ~T
o =7o,;,+ P, by the fluxoid quantization relatiofEq. (2)]. | = out (26)
The flux ®;, depends on the particular metastable state in 14 Mol nl 1+ g)
which the system is in, while an expression of the fibx 2L oyt A

has been given in Eq17). By the first Josephson equation : . .
and by the fluxoid quantization condition, the superconduct—Equat'on(zA') can now be written as follows:

ing current densityl; can be written as follows: P*
®,(y)=——[L2~y] (27)
J Jyosi (ZWCI) ) (18) ;
=—JjoSin| =— .
oY) %0 Dy ) and the Josephson current can be found by a straightforward

The total current flowing into the junction is thus integration to be

*

1 (w2 (27 sin TP}

l;=—1g T sin ad) dy|, (19 d, | (27 T

—L2 0 l;=—lg——5—sin — &+ — &7 |. (28

. L . md] @, @,

wherel y=J;0wL, J;0 being the critical current density value

of the Josephson junction.
The problem has now been completely stated and may bBy now introducing the normalized quantities

solved if the system’s magnetic metastable state is known.

We shall therefore assume that an approximate descriptionof . |, N @3 MoH Sout Lout o
the magnetic state of the system can be given by the follow- 'J:E’ V5 230' W ex= o, 0~ D,
ing set of equations, derived in detail in Appendix B: (29)
|dM = U0, (200  and by recalling Eqs20)—(23), Eq. (28) can be rewritten as
follows:
* J— —
I(Sout):(DJ IU“OH(SOUI Sin) (21) - Sln(ﬂqu) . -
2L out ’ iy=— ——5—sin27V o, — 7V} +27Boi;). (30)
]
Din= poHSourt Loud 5= @7 (22 Equation(30) is the general equation for the magnetic-field
. . dependence df, in a finite-size JJ interrupting a supercon-
O* =i+ Py, (23)  ducting ring. The solution to E¢(30) could be found nu-

where S,=7R2, ®*=d(-L/2), ®*=d,(—L/2), and merically by Newton’s method. In the small ring inductance
Loy is the self-inductance coefficient associated to a path olfm'ti €., .for very smallg, values, we can write the solu.tlon
radiusRy,;. exphc@ly in terms of the externally applled'fluti(ex. In this
Therefore, the problem can be solved under the assumﬁ-ase’. indeed, the system behaves rever.5|bly and the follow-
tions made. However, we see that an explicit analytic solu"d Single-valued functiom, can be found:
tion to the problem, even though it has been stated in its sin27¥ [1—1/(2M) ]}
simplest form, is not attainable. We must thus resort to more j ;= — f(W,) = ,
restrictions in order to obtain a qualitative answer to the 1+27Bof (Ve)cod2mVe[1-1(2M)]}
guestion we originally put forth: *“How does the externally (32)
applied magnetic flux through the junctidn} influence the
value of the Josephson curren®?” Let us notice that the
double integral term in Eq17) is a bounded quantity, since sin(7W o, /M)
it depends on the sine of the total fldx given by Eq.(18). f(We) = AT I
Thus, for increasing values #f, the first term grows linearly ex
while the second addendum does not. We therefore restrieind M =S,,,/IL. Notice that for extremely small junctions
ourselves to those magnetic states where the second addeig¥ ) =1 and the expression
dum can be neglected, i.e., to high enough values of the
applied field, and write the flusb; as follows: o SiN(2mWey) 33
N T T 2B, cod 27V Ly (33
(L/2=y). (24 reduces to Eq(6) when we let8y,—0.
An iy versusW¥,, graph for negligible values oB, is
It is now easy to verify that, by means of E420)—(24), @3 shown in Figs. 2a) and Zb). These results are clearly dif-
can be expressed in terms ldfby the following elementary ferent from those obtained in the case of a single current
relation: biased small junction. Indeed, in the case of a superconduct-
. ing ring, we have an odd symmetry of the superconducting
@7 = poHIL, (25) current with respect to the applied field, in contrast with the

where

(32

Dy(y)= |(sou0

Mo 2t
—In[1+—
uoHd - In(l N
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flux @y, let us assume that the effect due to the current
densityJg could be schematized through two thin wires, car-
rying a currentl g(y)=Jg(y)Wh\ placed at a distanca/2
from the two barrier interfaces. In order to avoid diver-
gences, we restrict the integral in EG.3) to the x interval
[—t/2t/2]. In this way, we can write

. Is 1 1 A
oY) == o Tt 1 T Tt Z

2 X) T_X)

—t/2<x<t/2, (A1)
so that
1 T

----- M-3 o 2t\ (L2 ) )

0.5 %(y)——;ln 1+y fy Is(y")dy'. (A2)

By Eg. (11) we now have

y
ls(y) =18 —w f

Jy(8)dé. (A3)
L2

Furthermore, by Josephson equations we may write

Jy(y)=Js0sine(y). (A4)

Notice also that the superconducting phase differencie-
pends on the fluxb through the fluxoid quantization condi-
tion. We can now make use of the expression ©fn Eq.
(A3) to rewrite Eq.(A2) as follows:

(b)

FIG. 2. Josephson curreintvs normalized applied flux , for
Bo=0.001 and(a) M=1.5 (dashed ling M=2.0 (full line); (b)
M = 3.0 (dashed ling M =5.0 (full line).

2t
1+ — || 199 (L/2—y)

even symmetry present in the usual Fraunhofer-like pattern. Dy(y)=— @In
T A

Furthermore, the analytic dependence of therersusWV,
curves contains only a prefactor which is similar to that seen L2 )
in a current biased junction, while an additional term modu- _WJ dy’ jy JJ(S)dg}_ (A5)
lates the value of the Josephson current in the loop. y —L/2

Let us now evaluated(y). By Maxwell equations, taking
h.=h¢(y)z, we have

We have studied the magnetic-field dependence of the
Josephson currehy flowing in a finite-size Josephson junc- ho(y) = fy J5(y"dy'. (AB)
tion interrupting a superconducting ring. The analysis has ¢ 2
been carried out by schematically considering shielding cur- . . .
rent effects. It is found that, if the Josephson junction effecBY sgbsututln_g the above expression feyinto Eq.(13), we
tive area is not negligible with respect to the geometrical are§a" finally write
enclosed by the ring, the; versusH dependence acquires L2 ,
new structures when compared to the corresponding depen- (I)C(y)=,u0(2)\+t)f dy’fy Jy(&dE (A7)
dence of an infinitely small junction. It is also noted that this y —Li2
system is intrinsically different from a current biased Joseph-
son junction, even though, in the case of small ring induc- APPENDIX B
tances, a Fraunhofer-like prefactor is seen to modulate a pe-

riodic quasisinusoidal odd function of the external magnetic !N order to derive the magnetic state of a superconducting
field. ring, let us take this system as electromagnetically equivalent

to two concentric superconducting loops. By neglecting the
ACKNOWLEDGMENTS superconducting current;, the fluxes linked to the two
loops can be written as follows:
We thank Professor S. Pace for many helpful discussions ,
and comments. D* =L oy §* = MIEY + toHS(ouy (B1)

IV. CONCLUSIONS

APPENDIX A Dip=—Linl 8" = MI+ 11oHS(in) , (B2)

We derive here the expressions fbf, and @, given in  where the quantities, L, are the self-inductance coeffi-
Sec. II. In order to obtain rather immediate results for thecients relative to the inner and outer loop, respectively, and
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M is the mutual inductance between the two loops, and ® = poH Seir+ Legl — kDY, (B7)
where theSs are the areas enclosed by the two current paths.
The flux®* is related to the total flux through the junction O* =P+ DY, (B8)
@3 as follows:
where
O* =Dy, + DY (B3)
. . . . . (Lin+M)Sout+(Lout_M)Sin
while the current ; flowing through the junction is given by Seft= oot L (B9)
|4V = Q0. (B4 and
We can express the quantitids,, ®*, 18V, and 1" in (Lt M)
terms of®} , 1;, andH as follows: K= (B10)
out n
I(m)_q’f = poH (Sour=Sin) = (M +Lowl (B5) In the case of almost identical loops, we can set
s = Lourt L ’
e Lin=Lou=Ler; M=Lin—Ser=Sou; «=1, (BL1)
10 =1g"+1;, (B6)  so that Eqs(B5)—(B8) can be written as in Eq$20)—(23).
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