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Gradient expansion for the free energy of a clean superconductor

Šimon Kos and Michael Stone*
Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801

~Received 30 September 1998!

We describe a method for obtaining the gradient expansion for the free energy of a clean BCS supercon-
ductor. We present explicit results up to fourth order in the gradients of the order parameter.
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I. INTRODUCTION

The Landau-Ginzburg equations1 encapsulate much of th
physics of conventional superconductors. They were or
nally proposed on phenomenological grounds, but after
advent of the BCS theory Gor’kov2 provided a formal deri-
vation of the Landau-Ginzburg free energy, valid in the
cinity of Tc . Gor’kov’s derivation was soon extended to
wider range of temperature by Werthamer,3 and then to
higher order in the gradients of the order parameter
Tewordt4 and Eilenberger.5

In the approach originally due to Gor’kov and then fo
lowed by Eilenberger, Werthamer, Tewordt, and others,
free energy is calculated by relating its variation to the di
onal element of the Green function introduced by Gor’ko6

These authors calculated the full Green’s function in
Born series, and set its arguments equal at the end. Then
made an ansatz for the free energy in the same approx
tion by considering all possible terms that may enter w
undetermined coefficients. Upon the variation of the ans
and comparison with the variation of the free energy, th
obtained the coefficients. This is very laborious, and mo
over nonsystematic.

Since the superconducing gap is much smaller than
Fermi energy, it is usually safe to linearize the single-parti
energy of the normal metal in the vicinity of the Fermi su
face. Once this approximation is made, the full Gor’k
Green functions reduce to sums of Green functions, or re
vents, of one-dimensional differential operators.7 In the years
since the publication of the work described above, a gr
deal has been learned about the properties of such resol
at points where the arguments coincide. When the Gr
function concerned is that of a Schro¨dinger operator, the di-
agonal element of the resolvent satisfies an equation dis
ered by Gelfand and Dikii.8 This allows a fast and efficien
evaluation of the diagonal element as an asymptotic exp
sion in powers of the potential and its derivatives. The ter
in this expansion turn out to be the infinite sequence of c
served Hamiltonian densities for the Korteweg-de Vr
~KdV! hierarchy of integrable partial differential equations9

For our superconductivity problem, the one-dimensio
Schrödinger operator is replaced by a first-order matrix d
ferential operator of the form studied by Andreev.10 It is
identical to a one-dimensional Dirac operator with a chi
mass term. Once again the diagonal element of the resol
~or a simple modification of this! satisfies an equation whic
quickly and efficiently generates a series expansion in
PRB 590163-1829/99/59~14!/9545~13!/$15.00
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coefficients of the equation and their derivatives. The ter
of this series give the Hamiltonian densities for the family
integrable equations known as the Ablowitz-Kaup-Newe
Segur ~AKNS! hierarchy,11 whose simplest member i
equivalent to the nonlinear Schro¨dinger equation.12 Perhaps
surprisingly, this generating equation has also been explo
in the superconductivity literature. It is nothing other th
the Eilenberger equation13 which plays a central role in the
quasiclassical theory.14

In a previous paper15 we used both the Gelfand-Diki
equation and the Eilenberger equation to generate the g
ent expansion for the free energy as far as the eighth orde
the gradients of the gap function. Unfortunately these res
are expressed in terms of gradients of the magnitude of
gap function and gradients of its phase separately. This le
to very long expressions which are of limited utility. W
were, however, able to expand the much more compact
pressions appearing in the classic paper by Tewordt4 into our
form and compare them. We found that our results diffe
from those of Tewordt at the fourth order — the highe
order he had computed. While we had confidence in our o
results~we had derived them from two completely differe
methods, usingMATHEMATICA to automate the labor!, we
were not able to isolate the source of the discrepancy.

In this paper we report another method for deriving t
gradient expansion. This method is not quite as efficien
generating the series as that in Ref. 15, but has the advan
that the resulting expressions are very compact. We eval
all terms up to fourth order in the gradients, and expand th
out so as to express our results in the form used by Tewo4

We are thus able identify what appears to be a typograph
error in his paper. While the correct fourth-order free ene
is the principal result of the present paper, we believe that
methods we use are interesting in their own right, and w
have application whenever one requires corrections to
leading orders of the quasiclassical method.

In Sec. II we briefly review how the calculation of the fre
energy of a three dimensional superconductor is reduce
computing determinants of one-dimensional differential o
erators. In Sec. III three we show how the Eilenberger eq
tion arises as a property of the resolvent of such differen
operators. In Sec. IV we use the Eilenberger function to
rive a useful identity linking the dressing function for th
Andreev Hamiltonian to the determinant we wish to co
pute. In Sec. V we show how this useful identity is related
the ‘‘shooting method’’ for computing determinants. The
in Sec. VI, we use our identity to compute the gradient e
9545 ©1999 The American Physical Society
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9546 PRB 59ŠIMON KOS AND MICHAEL STONE
pansion. Finally in Sec. VII we compare our results w
those of Ref. 4.

II. FROM THREE DIMENSIONS TO ONE

In this section we will review standard material so as
establish our notation. Following Gor’kov6 we treat the nor-
mal metal as a free, highly degenerate, electron gas and
superconductivity as arising from the BCS mod
potential—an instantaneous short-range attraction betw
pairs of electrons whose energy is within a narrow shell
width vDebye about the Fermi surface. We also ignore pa
magnetic effects. The partition function of such an elect
gas may be written as a Berezin path integral

Z5Tr ~e2bH!5E d@c#d@c†#

3exp2E
0

b

d3xdtH (
a51

2

ca
† S ]t2

1

2m
¹22m Dca

2Vc1
†c2

†c2c1J . ~2.1!

The indicesa51,2 refer to the two components↑,↓, of spin.
The Grassmann-valued Fermi fieldsc, c†, are to be taken
antiperiodic undert→t1b.

A positive value forV corresponds to an attractive inte
action between the particles. Given an attractive interact
and a low enough temperature, the system should be uns
with respect to the onset of superconductivity. To detect
instability we introduce the ancillary complex scalar fieldD
which will become the superconducting gap function. W
use it to decouple the interaction by writing

Z5E d@c#d@c†#d@D#d@D* #exp2E
0

b

d3xdt

3H (
a51

2

ca
† S ]t2

1

2m
¹22m Dca2D* c2c1

2Dc1
†c2

†1
1

V
uDu2J . ~2.2!

The equation of motion forD shows us thatD[Vc2c1 .
Taking note of the anticommutativity of the Grassma

fields, the quadratic form in the exponent can be arrange
a matrix

~c1
† ,c2!S ]t1S 2

1

2m
¹22m D D

D* ]t2S 2
1

2m
¹22m D D

3S c1

c2
†D . ~2.3!

We may now integrate out the fermions, obtaining the fu
tional determinant of the Bogoluibov-de Gennes~BdG! op-
erator
he
l
en
f
-
n

n,
ble
is

as

-

B5S ]t1S 2
1

2m
¹22m D D

D* ]t2S 2
1

2m
¹22m D D .

~2.4!

The BdG operator acts on two-component Nambu spin
obeyingc(x,t1b)52c(x,t).

Provided we can ignore quantum and thermal fluctuati
of the gap functionD(x)5uDueiu, we can perform the inte-
gral overD by simply replacing it by its saddle-point value
In this way the Euclidean time effective action for a BC
superconductor is given as

G~D!52 ln DetB1E d3xdt
1

V
uDu2. ~2.5!

In this work we will be concerned with the situation whe
the gap functionD is time-independent. In this case the fun
tional G reduces tobF(D) whereF is the free energy.

It is not possible to evaluateG exactly for an arbitrary gap
function, but whenD is much smaller thanEF and varies
slowly on the scale of the Fermi wavelength, then only m
menta near the Fermi surface are important. In this case
reasonable to replace the single-particle energies of the
mal metal by the linearized form

e~k!5vF~ uku2kF!, ~2.6!

and to approximatek2duku by kF
2duku. Having done this, then

with no further approximation, we may then use the resu
from Ref. 7 to write

G~D!522pvFN~0!E dVn

4p
d2x'ln Det@]t2 ivFs3~n•¹!

1uDus1e2 is3u#. ~2.7!

What is happening in Eq.~2.7! requires some explanation
First N(0) is the density of states at the Fermi surface

N~0!5
mkF

2p2 , ~2.8!

the symboln denotes a unit vector andvF5kF /m is the
Fermi velocity. Having chosen a pointk5nkF on the Fermi
surface, we decompose the coordinate vectorx into a part
parallel ton and a part perpendicular

x5xin1x' . ~2.9!

Then, for fixedx' , we compute ln Det (]t1H) whereH is
the one-dimensional Andreev Hamiltonian10

H52 is3vF~n•¹!1uDus1e2 is3u

5F2 ivF~n•¹! D

D* 1 ivF~n•¹!
G . ~2.10!

This Dirac-like operator appears as an approximation to
full Hamiltonian when we restrict our attention to Namb
spinors of the formx(x)expikFn•x, wherex(x) is slowly
varying. Here the spinorx and the gap functionD are to be
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regarded as functions ofxi . Notice that the derivativen•¹
coincides with ]xi

. Having evaluated ln Det (]t1H), we
then integrate the result over the family of parallel lines p
rametrized byx' . Finally the*(dVn/4p) performs an aver-
age over the directionsn.

If we are given an expression for ln Det (]t1H) in the
form

ln Det~]t1H!5E
2`

`

F~xi ,x'!dxidt, ~2.11!

then the integrations overxi and x' combine to give an
integral over every point in three-dimensional space. To
lustrate this, consider a time-independentD at zero tempera-
ture. To second order accuracy in the gradient expansion
part of the free energy coming from gradients of the phas
the order parameter is16

E vF

8p
@~n•¹!u#2dxidt. ~2.12!

Using

E dVn

4p
ninj5

1

3
d i j , ~2.13!

and remembering thatkf5mvF , the effective action be-
comes

G~D!5
kf

3

3p2E 1

8m
~¹u!2d3xdt. ~2.14!

This is not unreasonable. Recognizing that

kf
3

3p2 5rs , ~2.15!

is the number density of the electrons, and that the super
velocity is

vs5
1

2m
¹u, ~2.16!

we can rewrite Eq.~2.14! as

G~D!5E 1

2
rsmvs

2d3xdt . ~2.17!

Since everything is time independent thet integral is trivial,
and fromG(D)5bF(D) we have

F~D!5E 1

2
rsmvs

2d3x. ~2.18!

Thus this part of the free energy coincides with the kine
energy of the superflow.

III. THE RESOLVENT EQUATION

WhenH is time independent we have

ln Det~]t1H!5 (
n52`

`

ln Det~ ivn1H!, ~3.1!
-

l-

he
of

id

c

where vn52p(n1 1
2 )/b, the fermionic Matsubara fre

quences, are the eigenvalues of]t . Our task therefore is to
obtain the the Fredholm determinant Det (H2E) involving
the Andreev Hamiltonian operator

H52 is3]x1uDus1e2 is3u, ~3.2!

and whereE is a general complex number.~We have set
vF51.) Such determinants are usually evaluated by use
the variational formula

d ln Det~H2E!5Tr $~H2E!21d~H2E!%, ~3.3!

where (H2E)21 denotes the Green function, or resolven

Gab~x,y,E!5^a,xu~H2E!21ub,y&. ~3.4!

The Green function can be regarded as an infin
dimensional matrix in the variablesx, y, and as a 232 ma-
trix in the Nambu spinor space on which thes i matrices act.
The notation TrA includes an integration over thex,y labels
as well as a conventional trace~to be denoted by tr ) over the
spinor indices.

ProvidedE is not an eigenvalue ofH, the Green function
exists and obeys

~2 is3]x1uDus1e2 is3u2E!agGgb~x,y,E!5d~x2y!dab .

~3.5!

If ca
L andca

R are solutions to the equation

~2 is3]x1uDus1e2 is3u2E!c50, ~3.6!

satisfying suitable boundary conditions to the left and rig
respectively, then

Gab~x,y,E!5
i

W
ca

R~x!cb8
L

~y!~s1!b8b for x.y

5
i

W
ca

L~x!cb8
R

~y!~s1!b8b for y.x.

~3.7!

Here

W5W~cL,cR!52 i ~cL!Ts2cR5c1
Rc2

L2c2
Rc1

L .
~3.8!

The expressionW(cL,cR) is independent ofx for any
cL, cR that are both solutions of (H2E)c50. W plays a
role analogous to that of the Wronskian in the theory
scalar linear differential equations. In particularW vanishes
identically if and only ifcL andcR are linearly dependent
Such linear dependence signals thatE is an eigenvalue.

When making the variationd(H2E) in Eq. ~3.3! we will
only consider changes inE and D, so we will require
G(x,y,E) only at the pointsx5y. Now strictly speaking,
G(x,x;E) is not well defined, since the jump condition im
plied by Eq.~3.5! is

G~x,x1e!2G~x,x2e!5 is3 .

Fortunately this ambiguity does not affectd ln Det (H2E).
This is because



io

n

n

o

o

ii
-
ca

o

r

t

v
lf-
d

-

-

it
r-

to
on

ted
s.
-
-

ery
de-

sect-

e

st-
ve
i-
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tr Fs3dS 2E D

D* 2ED G5tr dS 2E D

2D* ED 50.

We may therefore safely define the symbolG(x,x,E) to
mean the average of its two limits17,18

G~x,x!5
def

lim
e→01

1

2
@G~x1e,x!1G~x,x1e!#. ~3.9!

With this understanding consider the matrix-valued funct
g(x)52iG(x,x,E)s3 . In components this is

g~x!ab5
1

W
~ca

Rcb8
L

1ca
Lcb8

R
!~ is2!b8b . ~3.10!

From the equations obeyed bycR and cL we immediately
see thatg obeys the equation

]xg5@M ,g#, ~3.11!

where

M52 is3~ uDus1e2 is3u2E!. ~3.12!

The reason for the appearance ofs3 in the definition ofg is
that s3 appears in the coefficient of]x in the Andreev op-
erator ~3.2!. If we premultiply the Andreev operator by
2 is3 , it becomes2]x1M , where the coefficient of]x is
now proportional to the identity matrix. The Green functio
for this modified operator isG(x,y,E)s3 , andg(x) is, up to
the factor of 2i , the diagonal element of this Green functio
in x space~it is still a matrix in Nambu spinor space!. Equa-
tion ~3.11! can also be written as a commutator

@2]x1M ,g#50, ~3.13!

where we regardg(x) as an operator acting on the space
vector valued functions by pointwise multiplication.

In the superconductivity literature Eq.~3.11! is usually
called the Eilenberger equation andg the Eilenberger
function.13 It lies at the heart of the quasiclassical theory
superconductors.14 Equation ~3.11! is also the analog, for
matrix first-order differential operators, of the Gelfand-Dik
equation.8,15 Similar to the Gelfand-Dikii equation, it has ex
tensive applications in the theory of integrable dynami
systems.12 Because we wish to stress that Eq.~3.11! is an
exact property of the diagonal element of the resolvent
any first-order matrix differential operator of the form2]x
1M ~rather than anapproximateproperty of the partially
integrated Gor’kov Green function! we will often refer to it
as the resolvent equation.

Using the definition ofW, it is clear that the particula
solution of the resolvent equation given by Eq.~3.10! satis-
fies the condition trg50. Similar algebra shows that

g2cL5cL, g2cR5cR. ~3.14!

Since the two solutions are linearly independent and span
space of Nambu spinors at eachx, this impliesg251. This
condition is sufficient to determine the solution.~The nor-
malizationg251 is specific to the resolvent of the Andree
operator on an infinite line, or on a finite interval with se
adjoint boundary conditions at each end. When perio
boundary conditions are imposed on an interval of lengthL,
n

f

f

l

f

he

ic

the normalization becomesg2521cot2 kL/2, wherek is the
Bloch momentum corresponding toE in the periodically ex-
tended problem.!

Given g as a function ofE, it is possible to recover
ln Det (H2E). We simply observe that

]

]E
ln Det~H2E!52E dx

1

2i
tr ~gs3!, ~3.15!

and integrate with respect toE.
To obtain a gradient expansion ofg we introduce a pa-

rameterz ~which will ultimately be set equal to 1) and re
write Eq. ~3.11! as

]xg5@zM,g#. ~3.16!

If we seek solutions in the form

g5 (
n50

`

gnz2n, ~3.17!

we obtain the deceptively simple recurrence equation

]xgn215@M ,gn#. ~3.18!

At first sight this determinesgn in terms of a derivative of
gn21 , so thenth term containsn gradients of the gap param
eter.

Unfortunately Eq.~3.18! is not quite as innocent as
looks. Thenth recurrence relation only immediately dete
minesgn up to the addition of terms that commute withM.
All is not lost, however. BecauseM is a traceless 232 ma-
trix, the only undetermined term is in fact proportional
M—and it is possible to find this term from the next equati
in the series

]xgn5@M ,gn11#. ~3.19!

Taking a trace shows that trM]xgn50, and this contains the
information we need. Using this method we have evalua
the gradient expansion up to eighth order in the gradient15

Because extracting the term}M requires an explicit param
eterization of the space of 232 matrices, the final expres
sions are given in terms of gradients ofuDu and ¹u sepa-
rately. It is not at all obvious how to assemble these v
lengthy expressions into more compact polynomials in
rivatives of D itself. In the following sections we will
descibe an alternative approach that does not require dis
ing g into parts parallel and perpendicular toM, and indeed
does not require us to findg directly at all.

IV. A USEFUL IDENTITY

In what follows we will concentrate on evaluating th
determinant in the case whereH is defined on the infinite
real line R. For convenience we will assume that allx de-
pendence of the gap functionD(x) takes place in a finite
regionV0 , and that to the left and right ofV0 lie regionsVL
andVR , respectively, in whichD takes constant valuesDL
andDR .

What we do next is motivated by the discussion of fir
order matrix differential operators in Ref. 12. We obser
that becauseg is a 232 traceless matrix, it has distinct e
genvalues and is therefore diagonalizable. Becauseg also
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obeys the equationg251, we see that these eigenvalues a
61. There therefore exists a 232 matrix f(x) such that
g(x) can be writteng(x)5f(x)s3f21(x).

As mentioned earlier the resolvent equation can be wri

@2]x1M ,g#50 ~4.1!

~we hope that it will be clear from the context when a sy
bol such as]xg refers to the derivativeg8, and when]xg is
an operator acting on functions according to (]xg)w5g8w
1gw8). Substitutingg5fs3f21 into ~4.1! gives

f@f21~2]x1M !f,s3#f2150, ~4.2!

and this implies that

@f21~2]x1M !f,s3#50. ~4.3!

Consequently, if we define a matrixL by

f21~2]x1M !f52]x1L, ~4.4!

thenL[f21Mf2f21]xf commutes withs3 and so must
bediagonal. The matrixf(x) is sometimes called a dressin
function.

We now derive a useful identity that connectsL with the
determinant we are wish to compute. We claim that

tr ~gdM !5d tr ~Ls3!2
1

2
]x tr ~fs3df212dfs3f21!

[dL1]xa. ~4.5!

@Here and elsewheredf21 denotes d(f21) and not
(df)21.#

We call the two quantitiesL anda because of the analog
with classical mechanics. In mechanics we have

(
i

S 2miq̈i2
]V

]qi
D dqi

5d(
i

S 1

2
miq̇i

22VD1] tS 2(
i

mi q̇idqi D .

~4.6!

Here the first term on the right-hand side is the variation
the Lagrangian, while the term in the total derivative gen
ates the symplectic form which determines the Hamilton
structure. The left-hand side contains the functional deri
tive of the action, and gives the equations of motion
D’Alembert’s principle. Dikii9 exploits this analogy when
discussing the stationary equations of the integrable hie
chies.

Notice that the second term on the right-hand side of
~4.5! can equally well be written as2]x tr @fs3d(f21)# or
as ]x tr @fs3d(f21)#. This is easily seen by usingff21

51.
To establish Eq.~4.5! we rewrite Eq.~4.4! as

2]xf1Mf5fL, ~4.7!

]xf
211f21M5Lf21. ~4.8!

From these we have
e

n

-

f
-
n
-

r-

.

A 5
def

2]xdf1dMf1Mdf2dfL2fdL50, ~4.9!

B 5
def

]xdf211f21dM1df21M2Ldf212dLf2150.
~4.10!

Thus

05tr ~As3f211fs3B!. ~4.11!

Expanding this out, using the cyclicity of the trace, the eq
tionsf21M5Lf212]xf

21 andMf5fL1]xf, together
with g5fs3f21, we find Eq.~4.5!.

To see the utility of Eq.~4.5! observe that fromg
52iGs3 anddM52 is3d(H2E) we have

Tr ~gdM !5E
2`

`

dx tr @g~x!dM ~x!#52 Tr ~GdH!

52d ln Det~H2E!. ~4.12!

Thus, if it is legitimate to ignore the boundary terms comi
from the total derivative, we have

ln Det~H2E!5E
2`

` 1

2
tr ~Ls3!dx1const. ~4.13!

Here the ‘‘constant’’ is a quantity unaffected by loc
changes inD(x). It will, however, depend on the asymptot
gap functionsDL,R .

In general the boundary terms cannot be ignored, but
possible tochoosef so that they are zero. We have th
freedom because requiring thatg(x)5f(x)s3f21(x) does
not uniquely determinef. Indeed the replacementf→fx
with x(x) any invertable diagonal matrix leavesg(x) un-
changed. Such a ‘‘gauge transformation’’ does, however,
ter L. Under the above substitution we have

L→L2x21]xx. ~4.14!

By making such a gauge transformation we can transfer
of the contributions to tr (gdM ) from L to the total deriva-
tive term, or vice versa. Two extreme choices come imm
diately to mind.

~1! Selectf so thatL[0. In this case all the contribu
tions to the determinant come from the boundary term.

~2! Selectf so that the boundary terms constribute no
ing to the determinant.

The latter choice is possible because the Green func
G(x,y,E) is insensitive to the values ofD at large distance
from x and y. We have assumed that there are asympto
regionsVL,R whereD(x) becomes independent ofx. Oncex
is well inside either of these regions theng(x) will settle
down to a constant value depending only on the asympt
valuesDL,R . We can therefore select af depending only on
DL,R to diagonalize this constant matrix. Once we have do
this thenf(6`) will be unaltered by variations ofD(x)
taking place inV0 . The determinant is then obtained entire
from L. This is the route we will take to compute the gr
dient expansion.
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V. CONNECTION WITH ‘‘SHOOTING METHOD’’

Before we derive the gradient expansion, we should po
out that our first choice off, the one leading toL50, is
equivalent to the so-called ‘‘shooting method’’ for evalua
ing the determinant.19 This asserts that, in a suitably inte
preted sense, the determinant is proportional to the invers
the transmission coefficient for scattering off the spatia
varying D(x). To see this, observe that if we setL50, so
that

f21~2]x1M !f52]x10, ~5.1!

then we are requiring the columns off to be solutions of

~2]x1M !c50. ~5.2!

Equivalently

~2 is3]x1uDus1e2 is3u2E!c50. ~5.3!

A candidate forf is therefore

f5Fc1
R c1

L

c2
R c2

LG , ~5.4!

where the colums are composed of thecL andcR solutions
used in constructing the Green function. The inverse is

f215
1

WF c2
L 2c1

L

2c2
R c1

R G , ~5.5!

where, as before,W5W(cL,cR)5c1
Rc2

L2c2
Rc1

L . A short
computation shows thatfs3f215g(x), so we have
guessed correctly.

Now we write downcL andcR in the asymptotic regions
which is the only place where we will need them. Let
assume thatE is real and thatE2.uDLu2, uDRu2, so we have
scattering solutions.

WhenD5uDueiu is constant, a plane-wave solution to

~2 is3]x1uDus1e2 is3u!c5Ec ~5.6!

is given by

c5u~k,E,D!eikx5FE1k

D
Geikx. ~5.7!

HereE25k21uDu2.
We now introduce transmission and reflection coe

cients,tR,L and r R,L and define

cR~x!5u~k,E,DL!eikx1r Lu~2k,E,DL!e2 ikx xPVL

5tLu~k,E,DR!eik8x xPVR ~5.8!

cL~x!5u~2k,E,DR!e2 ik8x1r Ru~2k8,E,DL!eik8x

xPVR

5tRu~k,E,DL!e2 ikx xPVL . ~5.9!

The apparently perverse appearance of the subscriptL on the
reflection and transmission coeficients incR ~and mutatis
mutandisin cL) is supposed to indictate that the incomin
t

of

-

wave was incident from the left~right!. The wave numbersk
andk8 are not necessarily equal since we do not assume
uDLu5uDRu.

Substituting these expressions intoW(cL,cR) we find
that

W@cL~x!,cR~x!#52 i ~cL!Ts2cR522kDLtR

xPVL

522k8DRtL xPVR .
~5.10!

SinceW is x independent, we must have

kDLtR5k8DRtL . ~5.11!

This reduces totL5tR in the particular case thatDL5DR .
In order to usecR and cL in the Green function we re

quire thatk, k8, have a positive imaginary part so thatcR
tends to zero asx→1`, and similarlycL tends to zero as
x→2`. If we assume that both the real part ofE and the
real part ofk are positive~so thatcR andcL correspond to a
real scattering process, andG to outgoing waves! then this
requires the addition of positive imaginary part toE. If we
wish to evaluateG, and from this Det (H2E), for E below
the positive real axis then we must replacek by 2k in the
above wave functions, so that the resulting negative ima
nary part ofk still leads to convergence. As expected, th
means that bothG and Det (H2E) have a branch cut dis
continuity across the realE axis whenever asymptotic plane
wave solutions are possible.

Now we use these functions to evaluate tr (dfs3f21).
Near x52` we havecR→u(k,E,DL)eikx which is large,
while cL5tRu(k,E,DL)e2 ikx is small. The only expression
occurring in tr (dfs3f21) involve their product which is
finite. Varying D in V0 changes tR , while leaving
u(k,E,DL), etc., unaltered. We find that

tr ~dfs3f21!ux52`5
dtR

tR
. ~5.12!

Similarly

tr ~dfs3f21!ux51`52
dtL

tL
. ~5.13!

Inserting these results into Eq.~4.5! leads to

ln Det~H2E!52 ln t1const. ~5.14!

It does not matter whether we usetL or tR in this formula
because the logarithms differ by terms involvingE and
DR,L , and these can be included in the constant. The c
stants cancel when we consider ratios of determinants of
erators with the same asymptoticD ’s. In other words, ifH
andH (0) are two Hamiltonians with the same asympto
behavior, then

Det~H2E!

Det~H ~0!2E!
5

tL
~0!~E!

tL~E!
5

tR
~0!~E!

tR~E!
. ~5.15!

Notice that the~analytic continuation of! t and r become
infinite as E approaches the energy of a bound state. T
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wave functionscR and cL become proportional to one an
other, and decay exponentially asuxu→`. The resultant van-
ishing of the determinant is consistent with the interpretat
of the ratio of the Fredholm determinants as a regulari
version of

)
n

~En2E!

~En
~0!2E!

, ~5.16!

where theEn are the eigenvalues ofH, and theEn
(0) the

eigenvalues ofH (0). For E in the continuous spectrum th
zeros and poles coming from the eigenvalues ofH andH (0)

merge to form the branch cut noted above.

VI. THE GRADIENT EXPANSION

To find the recurrence relation forf we multiply the ma-
trix M by z as before. At the end of the calculation, we m
setz51. Thus again we are looking for a solution of

@2]1zM,g#50 ~6.1!

as a power series in 1/z. To find the free energy expansio
we do not needg itself but onlyf andL that satisfy

zMf5f81fzL, ~6.2!

and are given as power series in 1/z.
For the homogeneous superconductor, only the zeroth

der term inL will be nonzero. We find it from the zeroth
order expression forg. Sinceg is traceless, squares to th
identity, and commutes withM, we must have

g05
1

z
M , ~6.3!

wherez is defined byM25z21. Since

M5S vm 2 iD

iD* 2vm
D ~6.4!

~we have now replaced2E by the Matsubara frequencies!
we have

z5Avm
2 1uD~x!u2. ~6.5!

From Eqs.~4.5! and ~6.3! we find

d tr ~s3L0!5tr ~g0dM !52dz, ~6.6!

so

tr ~L0s3!52z, ~6.7!

and

L05s3z. ~6.8!

Hence, we look forL in the form

L5zs31
L1

z
1

L2

z2 1•••. ~6.9!

Comparing coefficients ofz1 in Eq. ~6.2!, we obtain the
equation for the 0th order inf:

Mf05f0zs3 . ~6.10!
n
d

r-

To obtain a recurrence relation for higher-order terms inf,
it turns out thatf0 has to be factored out from the expansio
i.e., we look forf in the form

f5f0S 11
f1

z
1

f2

z2 1••• D . ~6.11!

Now we can go on to calculate the first-order terms in E
~6.9! and ~6.11! by comparing the coefficients in Eq.~6.2!:

Mf0f15f081f0L11f0f1zs3 . ~6.12!

Multiplying by f0
21 on the left and using Eq.~6.10!, we

obtain

z@s3 ,f1#2L15f0
21f08 . ~6.13!

In general, comparing the coefficients ofz2n in Eq. ~6.2!, we
get thenth order relation

z@s3 ,fn11#2Ln115fn81f0
21f08fn1fnL11fn21L2

1•••1f1Ln . ~6.14!

The (n11)th terms in the expansions off andL are thus
given by all the previous terms. Moreover the first term
the left-hand side of Eq.~6.14! is perpendicular tos3 ,
whereasL contains a multiple ofs3 and a multiple of1,
since it commutes withs3 . In other words, the first term on
the left-hand side containss1 and s2 , whereas the secon
one containss3 and1. Hence, we obtain the (n11)th terms
in the expansion off and L by calculating the right-hand
side of Eq.~6.14! ~in which everything is known from the
preceding steps in the recursion!, and splitting it up into the
transverse and longitudinal parts relative tos3 .

There is a minor hitch: Eq.~6.14! does not determine the
part offn11 that commutes withs3 . Adding a term tofn11
that commutes withs3 doeschange the right-hand side of a
subsequent recurrence relations. Such a term may, howe
always by removed by changing our choice of thef that
diagonalisesg. This will change the free energy density by
total derivative of terms local in the gap. It will not affect th
total free energy.

We may therefore proceed to findf andL. Unfortunately
this will lead to the same lengthy expressions we found
Ref. 15 by evaluating the recurrence relation forg. The prob-
lem is that there is no simple way to write the matr
f0

21f08 in terms of M itself. We will therefore have to
choose an explicit basis for the matrices and work with co
ponents.

After a lot of thought we realized that is far more conv
nient to replace the arbitrarily chosen matrixs3 in the de-
compositiong5fs3f21 by the local matrixM. To do this
we transform
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f→F[ff0
21511

f0f1f0
21

z
1

f0f2f0
21

z2
1•••[11

F1

z

1
F2

z2 1•••L→L̄[f0Lf0
215M1

f0L1f0
21

z

1
f0L2f0

21

z2
1•••[M1

L̄1

z
1

L̄2

z2
1•••. ~6.15!

ThenL[tr (Ls3)5tr (L̄M /z). By using

f0fn8f0
215Fn82f08f0

21Fn1Fnf08f0
21 ,

we can rewrite Eq.~6.14! as

@M ,Fn11#2L̄n115Fn81Fnf08f0
211FnL̄11•••1FnL̄1 .

~6.16!

The advantage of this expression is that the two factor
Fn in the second and third terms on the right-hand side
both on the left. This enables us to get rid of the awkwa
expressionf08f0

21 by factoring outFn and using the recur
rence relation forn50

@M ,F1#2L̄15f08f0
21 .

We obtain

@M ,Fn11#2L̄n115Fn81Fn@M ,F1#

1Fn21L̄21•••1FnL̄1 .

~6.17!

We need, however, to start the recurrence by obtainingF1 in
some way. For this we can use the Eilenberger equa
~6.1!. From Eqs.~6.3! and~6.10!, we get the expansion ofg
in 1/z

g5fs3f215F
M

z
F215

M

z
1

1

zFF1 ,
M

z G1•••

[g01
g1

z
1•••

The coefficient ofz0 in Eq. ~6.1! gives

g085@M ,g1#,

that is,

S M

z D 8
5FM ,FF1 ,

M

z G G .
The double commutator of matricesA,B,C can be written as

†A,@B,C#‡5ˆ$A,B%,C‰2ˆB,$A,C%‰. ~6.18!

Here the braces denote ananticommutator. For three trace-
less 232 matrices this reduces to a form of the vector trip
product identity

†A,@B,C#‡52tr ~AB!C22tr ~AC!B.
of
re
d

n

-

We now chooseF1 with no longitudinal components, i.e
tr F15tr (F1M )50. Using trM252z2, we get

F152
1

4

1

z S M

z D 8
. ~6.19!

We see the natural appearance ofM /z as well as of the
derivative multiplied by 1/z. Hence, it is natural to divide
Eq. ~6.17! by z, and to define

N[
M

z
,

L̄[
L̄

z
5N1

1

z

L̄1

z
1

1

z2

L̄2

z
1•••

[N1
L̄1

z
1

L̄2

z2
1•••,

and

D[
1

z
]. ~6.20!

The symbolD still behaves as a derivative in the sense tha
is linear, and obeys the Leibnitz rule

D~AB!5~DA!B1ADB.

In terms of these new variables, we can rewrite Eq.~6.17! as

@N,Fn11#2L̄n115DFn1Fn@N,F1#1Fn21L̄21•••

1F1L̄n , ~6.21!

and

L5z tr ~L̄N!.

The formula~6.21! leaves undetermined the part ofFn11
that commutes withN @just as~6.14! did not determine the
part offn11 that commuted withs3#. Again it is convenient
to choose theF ’s purely transverse, i.e.,

tr Fk5tr ~FkN!50, for all k>1.

With this choice we get a recurrence relation for theF ’s
only, and a very simple expression ofL in terms of theF ’s.

To see how this comes about, let us think ofN as being
s3 ~this can always be achieved at a given point by a glo
rotation which does not changeL), then theF ’s contains1

and s2 , whereas theL̄ ’s contain1 and s3 . Hence, among
the terms in Eq.~6.21!, L̄n11 andFn@N,F1# contain1 and
s3 only, @N,Fn11# and all the products of the typeF jL̄k
contains1 ands2 only. FinallyDFn potentially contains all
four matrices. We can separate the transverse and the lo
tudinal part by taking the commutator and anticommutator
N with both sides of Eq.~6.21!. From the commutator we ge

†N,@N,Fn11#‡5@N,DFn#1@N,Fn21L̄21•••1F1L̄n#.

~6.22!
Using the double commutator formula~6.18! and its special
case for traceless matrices, this leads to



d
o

f

es
f

of

ded

r

alu-

rix

PRB 59 9553GRADIENT EXPANSION FOR THE FREE ENERGY OF A . . .
@N,@N,Fn11##52tr ~N2!Fn1122tr ~NFn11!N54Fn11 ,

~6.23!
where the second term in the middle expression is zero
to transversality. For the last term on the right-hand side
Eq. ~6.22! we use the formula

@A,BC#5$A,B%C2B$A,C%

to get

@N,FkL̄ j #5$N,Fk%L̄ j2Fk$N,L̄ j%. ~6.24!

Since$s3 ,s1,2%50, the first term on the right-hand side o
Eq. ~6.24! is zero. So we can rewrite Eq.~6.22! as

4Fn115@N,DFn#2Fn21$N,L̄2%2•••2F1$N,L̄n%.

~6.25!

We see again the usefulness of introducingN, L̄, andD.
Notice the appearance of the anticommutators$N,L̄ j% on

the right-hand side of Eq.~6.25!. Due to transversality of the
F ’s, the L̄ ’s themselves are eliminated. We can relate th
anticommutators to theF ’s by taking the anticommutator o
N with both sides of Eq.~6.21!:

2$N,L̄n11%5$N,DFn%1$N,Fn@N,F1#%5D~$N,Fn%!

2$DN,Fn%2
1

4
$N,Fn@N,DN#%. ~6.26!

The first term on the right-hand side of Eq.~6.26! is zero just
as in Eq.~6.24!. In the last term, we use

05D15D~N2!5NDN1~DN!N

to see that

@N,DN#52NDN.

Then we use the formula

$A,BC%5$A,B%C2B@A,C#

to get

2
1

4
$N,Fn2NDN%52

1

2
$N,Fn%NDN1

1

2
Fn@N,NDN#.

~6.27!

The first term on the right-hand side of Eq.~6.27! is again
zero; for the second one, we need to evaluate

@N,NDN#5N2DN2N~DN!N5DN1NNDN52DN,

where we used again the anticommutation ofN andDN. So
we can rewrite Eq.~6.26! as

2$N,L̄n11%52$DN,Fn%1FnDN52~DN!Fn .
~6.28!

We introduce the symbol

Lk[$N,L̄k%, ~6.29!

and substitute from Eq.~6.28! to Eq. ~6.25! to get a recur-
rence relation for theF ’s only:
ue
f

e

4Fn115@N,DFn#2Fn21~DN!F12•••2F1~DN!Fn1
.

~6.30!

We can then simply calculate the terms in the expansion
L[$N,L̄% as

Ln5~DN!Fn21 . ~6.31!

This gives us the desired Lagrangian as

L5
z

2
trL. ~6.32!

The last three equations provide all the machinary nee
to compute the first few terms in the expansion ofL. We start
with

F152
1

4
DN

from Eq. ~6.19!. Then

4F25@N,DF1#52
1

4
@N,D2N#,

so

F252
1

16
@N,D2N#.

In the third order, we have

4F35@N,DF2#2F1~DN!F152
1

16
@N,D@N,D2N##

2
1

16
~DN!352

1

16
$N,@DN,D2N#%

2
1

16
@N,@N,D3N##2

1

16
~DN!3.

We now use the formula~6.18! for the double commutato
and get

F352
1

64
ˆ$N,DN%,D2N‰1

1

64
ˆDN,$N,D2N%‰

2
1

64
ˆ$N,N%,D3N‰1

1

64
ˆN,$N,D3N%‰2

1

64
~DN!3.

These expressions can be simplified. We begin by ev
ating the anticommutators

$N,N%52N2521,

$N,DN%50,

$N,D2N%5D~$N,DN%!2$DN,DN%522~DN!2,

$N,D3N%5D~$N,D2N%!2$DN,D2N%522D@~DN!2#

2D@~DN!2#523D@~DN!2#.

All the anticommutators are proportional to the unit mat
~they are squares of traceless 232 matrices!, so
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F352
1

32
$DN,~DN!2%2

1

32
$1,D3N%2

3

64
$N,D@~DN!2#%

2
1

64
~DN!352

5

64
~DN!32

1

16
D3N

2
3

64
ND@~DN!2#.

To obtain the gradient expansion of the free energy up
the fourth order, we need to calculateL2 andL4 from Eq.
~6.31!:

L25~DN!F152
1

4
~DN!2,

L45~DN!F352
5

64
~DN!42

1

16
~DN!~D3N!

2
3

64
~DN!ND@~DN!2#,

so

L252
z

8
tr @~DN!2#,

L452
5

128
z tr @~DN!4#2

1

32
z tr @~DN!~D3N!#

2
3

64
z tr $~DN!ND@~DN!2#%.

We can rewriteL4 in a more symmetric way by writing

z tr @~DN!~D3N!#5zD$tr @~DN!~D2N!#%2z tr @~D2N!2#.

The first term is a total derivative@zD5] by definition
~6.20!# and is, therefore, thrown out. The last term inL4 is
equal to zero too, since

tr @~DN!N#5
1

2
tr ~$DN,N%!50,

andD@(DN)2# is proportional to the unity matrix. Thus, u
to the fourth order in derivatives, including even-order ter
only,

L[L01L21L45z tr H 12
1

8
~DN!22

5

128
~DN!4

1
1

32
~D2N!2J . ~6.33!

VII. THE FREE ENERGY

Equation~6.33! at the end of the previous section is th
principal result of this paper. It contains, in an extreme
compact form, all the information needed to obtain the f
energy. Using the results of Sec. II this may be written
to

s

e

F5E d3x
uH2Hau2

8p
1E d3x

uDu2

V

12pN0E dVn

4p E d2x'F ~1d!d, ~7.1!

whereF (1d)d is given in terms ofL as

F ~1d!d52
T

2(vm

E dxiL. ~7.2!

Sinced2x'dxi5d3x, we can write

F5E d3r H uH2Hau2

8p
1

uDu2

V
2pTN0(

vm

E dVn

4p
LJ .

~7.3!

Notice that terms with an odd number of derivatives, a
hence an odd number of vectorsn, drop out when we aver-
age over them. This explains why we calculated only ev
terms in the expansion ofL.

We have included a magnetic field in Eq.~7.1!. In our
earlier calculations, we did not mention the coupling of t
electrons to the magnetic potentialA. However, the compo-
nent Ai can always be gauged away along the linex'

5const by absorbing it intou. There is therefore no loss o
generality in our formulas. To insertA we merely replace
our derivative of the complex order parameter by a covari
derivative, and our derivative of the~real! magnitude of the
order parameter by a plain gradient.

We would like to compare our calculation with that o
Ref. 4 as this seems to be the only place where the fou
order terms have been written down explicitly. The expr
sion given for the free energy in Ref. 4 is, in the notation
that paper,

F5
? E d3r S uH2Hau2

8p
1N0b22H b2w1

1

2
~vFb!2

3FguOxu21
1

6
g8~¹uxu2!2G1

1

12
~vFb!4Fg8uO2xu2

1g9S 1

2
uOxu42uOxu2~¹2uxu2!1

1

10
~¹2uxu2!2D

1g-S 1

4
~¹2uxu2!~¹uxu2!22

1

2
uOxu2~¹uxu2!2D G J D .

~7.4!

Here x5bD is the dimensionless order parameter, a
O5¹22ieA is the covariant derivative. The homogeneo
part of the free energy comes fromw(uxu), while g is a
function of uxu2 that we will identify later (g is not to be
confused with the Eilenberger function!. The primes ong
denote the derivative with respect touxu2, i.e.,

g8[
dg

duxu2 .

The directional averaging*(dVn/4p) is not stated explicitly
in this formula, but is to be understood. In other words t
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product of two expresionsAB whereA, B are either of the
two vector operatorsO or ¹ is defined as

AB5
1

3
d i j AiBj , ~7.5!

and the product of four factors as

ABCD5
1

15
~d i j dkl1d ikd l j 1d i l d jk!AiBjCkDl . ~7.6!

We have inserted a question mark over the equals sign in
~7.4!, because we believe that there is an error in the fou
order terms.

We will now expand our expression so as to write it
Tewordt’s form. During the calculation, we will keep th
primes as derivatives, and only at the end we will repla
them by the covariant derivatives or gradients according
the rule

x8→Ox,

~ uxu2!8→¹uxu2. ~7.7!

Note that the prime over the order parameter meansd/dx,
whereas the prime overg meansd/duxu2.

We introduce the dimensionless quantities

M[bM5S ~2m11!p 2 ix

ix* 2~2m11!p
D ~7.8!

and

j[bz5A~2m11!2p21uxu2, ~7.9!

so

N5
M
j

. ~7.10!

Since Tewordt writes out the Fermi velocityvF explicitly ~in
our calculation, we setvF51), the dimensionless derivativ
D equals

D5
vF

z
]5

vFb

j
]. ~7.11!

From Eq.~7.3!, the second-order term inF is

F25
pTN0

8 E d3r(
vm

z tr ~DN!2

5N0b22
1

2
~vFb!2E d3r(

vm

p

4
j

1

~vFb!2tr ~DN!2,

~7.12!

where we pulled out the prefactors that appear in
Tewordt formula. Using Eqs.~7.10! and ~7.11!, we get

1

vFb
DN5

1

j SMj D 8
5
M8

j2
2
Mj8

j3
.

q.
-

e
o

e

To obtain the result in Tewordt’s format, we need to tra
the derivatives ofj for the derivatives ofuxu2. From Eq.
~7.9!, we see that

j85
~ uxu2!8

2j
, ~7.13!

so

1

vFb
DN5

M
j2

2
M~ uxu2!8

2j4
. ~7.14!

Hence,

1

~vFb!2 ~DN!25
M82

j4
2$M,M8%

~ uxu2!8

2j6
1
M 2~ uxu2!82

4j8
.

From Eq.~7.8! we see

M 25j21, ~7.15!

$M,M8%5~M!285~ uxu2!81, ~7.16!

M825x8x* 81, ~7.17!

so

1

~vFb!2 ~DN!25S x8x* 8

j4
2

~ uxu2!82

4j6 D 1. ~7.18!

We now use Eq.~7.7! to replace the derivatives, and obta

F25N0b22
1

2
~vFb!2E d3r(

vm

p

2 S uOxu2

j3
2

~¹uxu2!2

4j5 D .

~7.19!
Comparing the first term to Eq.~7.4!, we see immediately

g5
p

2(
vm

1

j3 . ~7.20!

We will also need higher derivatives ofg with respect to
uxu2. Using Eq.~7.9!, we get

g852
3

4
p(

vm

1

j5 ,

g95
15

8
p(

vm

1

j7 ,

g-52
105

16
p(

vm

1

j9 . ~7.21!

Hence,

F25N0b22
1

2
~vFb!2E d3r S guOxu21

g8

6
~¹uxu2!2D

~7.22!

in agreement with Eq.~7.4!.
The fourth-order term is equal to



or-
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F452pTN0E d3r(
vm

z tr S 2
5

128
~DN!41

1

32
~D2N!2D

5N0b22
~vFb!4

12 E d3r(
vm

jp

~vFb!4

3tr S 15

32
~DN!42

3

8
~D2N!2D . ~7.23!

We can calculate the first term immediately from Eq.~7.18!

1

~vFb!4 ~DN!45S ~x8x* 8!2

j8
2

x8x* 8~ uxu2!82

2j10
1

~ uxu2!84

16j12 D 1.

~7.24!
To evaluate the second term in Eq.~7.23!, we need to go
back to Eq.~7.14!:

1

~vFb!4 D2N5
1

j SM8

j2
2
M~ uxu2!8

2j4 D 8
5
M9

j3

2
3

2

M8~ uxu2!8

j5
1MS ~ uxu2!

82

j7
2

~ uxu2!9

2j5
D

@we used again Eq.~7.13! to obtain the second line#, so

1

~vFb!4 ~D2N!25
M 92

j6
1

9

4

M 82~ uxu2!82

j10
1M2

3S ~ uxu2!82

j7
2

~ uxu2!9

2j5 D 2

2
3

2
$M9,M8%

~ uxu2!8

j8
2

3

2
$M8,M%

3~ uxu2!8S ~ uxu2!82

j12
2

~ uxu2!9

2j10 D
1$M9,M%S ~ uxu2!82

j10
2

~ uxu2!9

2j8 D .

From Eqs.~7.8!, ~7.15!–~7.17!, we see that

M 925x9x* 91,

$M9,M8%5~M 82!81,

$M9,M%5$M8,M%822M 825@~ uxu2!922x8x* 8#1,

so

1

~vFb!4 ~D2N!25S x9x* 9

j6
1

1

4

x8x* 8~ uxu2!82

j10
2

1

2

~ uxu2!84

j12

2
~ uxu2!9

4j8
2

3

2
x8x* 8

~ uxu2!8

j8

1
3

4

~ uxu2!82~ uxu2!9

j10
1

x8x* 8~ uxu2!9

j8 D .
Putting the two terms together gives

F45N0b22
~vFb!4

12 E d3r(
vm

pS 15

16

x8x* 82

j7

2
21

32

x8x* 8~ uxu2!82

j9
1

111

162

~ uxu2!84

j11

3

4

x9x* 9

j5

1
3

16

~ uxu2!92

j7
1

9

8
~x8x* 8!8

~ uxu2!8

j7

2
9

16

~ uxu2!82~ uxu2!9

j9
2

3

4

x8x* 8~ uxu2!9

j7 D .

The two underlined terms do not appear in Tewordt’s f
mula, so we need to integrate them by parts~again neglecting
the boundary terms!:

111

162

~ uxu2!84

j11
5

111

1638
~ uxu2!83

1

j10

~ uxu2!8

2j

52
1

9

111

1638
~ uxu2!83S 1

j9D 8

52
1

3

37

1638S ~ uxu2!83
1

j9D 8

1
37

1638

~ uxu2!82~ uxu2!9

j9

and

9

8
~x8x* 8!8

~ uxu2!8

j7
5

9

8S x8x* 8
~ uxu2!8

j7 D 8
2

9

8
x8x* 8

~ uxu2!9

j7

1
63

16

x8x* 8~ uxu2!82

j9
.

Therefore,

F45N0b22
~vFb!4

12 E d3r(
vm

pS 15

16

x8x* 82

j7

1
105

32

x8x* 8~ uxu2!82

j9
2

3

4

x9x* 9

j5
1

3

16

~ uxu2!92

j7

2
35

1638

~ uxu2!82~ uxu2!9

j9
2

15

8

x8x* 8~ uxu2!9

j7 D .

Using Eq. ~7.21! and introducing the covariant derivative
and gradients, we finally get
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F45N0b22
~vFb!4

12 E d3r S g8uO2xu21g9F1

2
uOxu4

2uOxu2~¹2uxu2!1
1

10
~¹2uxu2!2G

1g-F2
1

2
uOxu2~¹uxu2!21

1

24
~¹2uxu2!~¹uxu2!2G D .

~7.25!

We see that our formula agrees with Tewordt’s result exc
for the prefactor in the last term~1/24 instead of 1/4!. This is
presumably a typographical error. We believe our resul
correct, because we had previously obtained it by two ot
methods.

VIII. DISCUSSION

While principal result of the paper is the fourth-order te
in the free energy, as expressed in Eqs.~6.33! and~7.25!, the
methods used to obtain this term are of interest in their o
i

pt

is
er

n

right. The useful identity linking the dressing functionf
with the determinant is one that we have not seen before,
the purely algebraic~requiring no integration! generation of
the terms is conceptually simpler than other methods of
taining such series such as those we used in Ref. 15
particular the present algorithm produces very compact
pressions, and is applicable to the computation of dete
nants of any 232 first-order matrix operator.
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