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Gradient expansion for the free energy of a clean superconductor
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We describe a method for obtaining the gradient expansion for the free energy of a clean BCS supercon-
ductor. We present explicit results up to fourth order in the gradients of the order parameter.
[S0163-182699)03513-4

[. INTRODUCTION coefficients of the equation and their derivatives. The terms
of this series give the Hamiltonian densities for the family of
The Landau-Ginzburg equatidnsncapsulate much of the integrable equations known as the Ablowitz-Kaup-Newell-
physics of conventional superconductors. They were origiSegur (AKNS) hierarchy!! whose simplest member is
nally proposed on phenomenological grounds, but after thequivalent to the nonlinear Schiinger equatio? Perhaps
advent of the BCS theory Gor'kéyprovided a formal deri-  surprisingly, this generating equation has also been exploited
vation of the Landau-Ginzburg free energy, valid in the vi-in the superconductivity literature. It is nothing other than
cinity of T.. Gor'kov's derivation was soon extended to athe Eilenberger equatidhwhich plays a central role in the
wider range of temperature by Werthameand then to quasiclassical theory.
higher order in the gradients of the order parameter by In a previous papét we used both the Gelfand-Dikii
Tewordf and Eilenberget. equation and the Eilenberger equation to generate the gradi-
In the approach originally due to Gor’kov and then fol- ent expansion for the free energy as far as the eighth order in
lowed by Eilenberger, Werthamer, Tewordt, and others, thehe gradients of the gap function. Unfortunately these results
free energy is calculated by relating its variation to the diag-are expressed in terms of gradients of the magnitude of the
onal element of the Green function introduced by Gor'Rov. gap function and gradients of its phase separately. This leads
These authors calculated the full Green’s function in theto very long expressions which are of limited utility. We
Born series, and set its arguments equal at the end. Then thesere, however, able to expand the much more compact ex-
made an ansatz for the free energy in the same approximaressions appearing in the classic paper by Tewdmeh our
tion by considering all possible terms that may enter withform and compare them. We found that our results differed
undetermined coefficients. Upon the variation of the ansatfrom those of Tewordt at the fourth order — the highest
and comparison with the variation of the free energy, theyorder he had computed. While we had confidence in our own
obtained the coefficients. This is very laborious, and moreresults(we had derived them from two completely different
over nonsystematic. methods, UsinguATHEMATICA to automate the labprwe
Since the superconducing gap is much smaller than thevere not able to isolate the source of the discrepancy.
Fermi energy, it is usually safe to linearize the single-particle In this paper we report another method for deriving the
energy of the normal metal in the vicinity of the Fermi sur- gradient expansion. This method is not quite as efficient at
face. Once this approximation is made, the full Gor'’kov generating the series as that in Ref. 15, but has the advantage
Green functions reduce to sums of Green functions, or resothat the resulting expressions are very compact. We evaluate
vents, of one-dimensional differential operatbta.the years  all terms up to fourth order in the gradients, and expand them
since the publication of the work described above, a greadut so as to express our results in the form used by Tevordt.
deal has been learned about the properties of such resolve#e are thus able identify what appears to be a typographical
at points where the arguments coincide. When the Greearror in his paper. While the correct fourth-order free energy
function concerned is that of a Schinger operator, the di- is the principal result of the present paper, we believe that the
agonal element of the resolvent satisfies an equation discomethods we use are interesting in their own right, and will
ered by Gelfand and Dik. This allows a fast and efficient have application whenever one requires corrections to the
evaluation of the diagonal element as an asymptotic expareading orders of the quasiclassical method.
sion in powers of the potential and its derivatives. The terms In Sec. Il we briefly review how the calculation of the free
in this expansion turn out to be the infinite sequence of conenergy of a three dimensional superconductor is reduced to
served Hamiltonian densities for the Korteweg-de Vriescomputing determinants of one-dimensional differential op-
(KdV) hierarchy of integrable partial differential equatiohs. erators. In Sec. IIl three we show how the Eilenberger equa-
For our superconductivity problem, the one-dimensionation arises as a property of the resolvent of such differential
Schralinger operator is replaced by a first-order matrix dif- operators. In Sec. IV we use the Eilenberger function to de-
ferential operator of the form studied by Andrevit is  rive a useful identity linking the dressing function for the
identical to a one-dimensional Dirac operator with a chiralAndreev Hamiltonian to the determinant we wish to com-
mass term. Once again the diagonal element of the resolvepute. In Sec. V we show how this useful identity is related to
(or a simple modification of thjssatisfies an equation which the “shooting method” for computing determinants. Then,
quickly and efficiently generates a series expansion in thén Sec. VI, we use our identity to compute the gradient ex-
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pansion. Finally in Sec. VIl we compare our results with 1,
those of Ref. 4. .+ — mv - A
B:
Il. FROM THREE DIMENSIONS TO ONE A* ot
a, ZmV M

In this section we will review standard material so as to
establish our notation. Following Gor'kbwe treat the nor- (2.9

mal metal as a free, highly degenerate, electron gas and tbﬁ]e BdG operator acts on two-component Nambu spinors
superconductivity as arising from the BCS mOdelobeyingz//(x T+ B) = — (%, 7)

potential—an instantaneous short-range attraction between Provided we can ignore quantum and thermal fluctuations

pairs of electrons whose energy is within a narrow shell ofof the gap functionh (x)=|A|e'?, we can perform the inte-

width “Debye about the Ferr_n_| surface_. We also ignore para- ral overA by simply replacing it by its saddle-point value.
magnetic effects. The partition function of such an electro n this way the Euclidean time effective action for a BCS
gas may be written as a Berezin path integral superconductor is given as

= —pBHy — f 1
Z=Tr(e A1) f dl]d[¢'] T'(A)=-1In Det8+f d3xdtv|A|2. (2.5
2
B 1 ; ; ; St
Xexp—f d3xdr 2 lﬂl( 9.— —VZ—M) " In this work we vv_|II pe cpncerned with the_ situation where
0 a=1 2m the gap functiom is time-independent. In this case the func-

tional I' reduces tg8F(A) where F is the free energy.

It is not possible to evaluate exactly for an arbitrary gap
function, but whenA is much smaller tharfcg and varies
slowly on the scale of the Fermi wavelength, then only mo-
menta near the Fermi surface are important. In this case it is
reasonable to replace the single-particle energies of the nor-

—Vﬂ%wml 2.1)

The indicese=1,2 refer to the two components|, of spin.
The Grassmann-valued Fermi fields ", are to be taken

antiperiodic under— 7+ 8. o mal metal by the linearized form
A positive value forV corresponds to an attractive inter-
action between the particles. Given an attractive interaction, e(k)=ve(|k|—kg), (2.6

and a low enough temperature, the system should be unstable ) , )

with respect to the onset of superconductivity. To detect thi€nd t approximatke®d|k| by kéd|k|. Having done this, then
instability we introduce the ancillary complex scalar fisld ~ With no further approximation, we may then use the results
which will become the superconducting gap function. Wefrom Ref. 7 to write

use it to decouple the interaction by writing

)= —2m)FN(0)f %dleln Det[d,—ivgos(n-V)
B 4
z:f d]d[ 4"1d[ATd[A* Jexp— fo d3xdr

+|Aloe o3, (2.7
2 . . . . .
1 What is happening in Eq2.7) requires some explanation.
t 2
x[;l ‘/’a( 97~ %V _“) Ya= A" Yot First N(0) is the density of states at the Fermi surface
1 mke
Tt =5
— Ayt GlAP (2.2 N(0)= 5, 2.8
The equation of motion foA shows us that =V, . the symboln denotes a unit vector and-=Kkg/m is the

Taking note of the anticommutativity of the GrassmannFermi velocity. Having chosen a poikt=nk on the Fermi
fields, the quadratic form in the exponent can be arranged a¥/fface, we decompose the coordinate vegtonto a part

a matrix parallel ton and a part perpendicular
1 X=Xn+X, . (2.9
(9,+( - —VZ—M) A _ _
2m Then, for fixedx, , we compute In Detd,.+H) whereH is
(W1.1) 1 the one-dimensional Andreev Hamiltontdn
O I |
2m H=—iose(n-V)+|A|o,e 1930
—ivg(n-V) A
g = _ . (2.10
X\ vl 2.3 A +ivg(n-V)

This Dirac-like operator appears as an approximation to the
We may now integrate out the fermions, obtaining the func{ull Hamiltonian when we restrict our attention to Nambu
tional determinant of the Bogoluibov-de Genn@slG) op-  spinors of the formy(x)expiken-x, where x(x) is slowly
erator varying. Here the spinoy and the gap functiosA are to be
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regarded as functions of . Notice that the derivative-V ~ where w,=2m(n+3)/3, the fermionic Matsubara fre-
coincides withd, . Having evaluated InDe#(+7), we duences, are the eigenvaluesiof Our task therefore is to
then i I , : obtain the the Fredholm determinant D&t E) involving
en integrate the result over the family of parallel lines pa_the Andreev Hamiltonian operator
rametrized by, . Finally the [ (d(),/47) performs an aver- P
age over the directions.
If we are given an expression for In Déet.(+H) in the
form and whereE is a general complex numbefWe have set
ve=1.) Such determinants are usually evaluated by use of

In Det(9,+ H):j F(x) %, )dxdt, 2.1 the variational formula
SInDet(H—E)=Tr{(H—E) '8(H—-E)}, (3.3

H=—i0305+|A|ore7 1737, (3.2

then the integrations ovex; and x; combine to give an _
integral over every point in three-dimensional space. To il-where (—E)~* denotes the Green function, or resolvent,
lustrate this, consider a time-independdanat zero tempera- .

ture. To second order accuracy in the gradient expansion the Gup(X,y,E)=(aX|(H—E)"}B.y). (3.9
part of the free energy coming from gradients of the phase

O{'he Green function can be regarded as an infinite-
the order parameter’fs

dimensional matrix in the variables y, and as a X2 ma-
trix in the Nambu spinor space on which thg matrices act.

f v—F[(n-V)a]deHdt. (2.12  The notation TA includes an integration over they labels
8 as well as a conventional tra@® be denoted by tr) over the
Using spinor indices.
ProvidedE is not an eigenvalue df{, the Green function
dQ, 1 exists and obeys
Eninjzgéij, (213) .
(=030 +|A|o1e7'3—E) ., G 5(X,Y,E) = 8(X—Y) 8,p.
and remembering that;=mvg, the effective action be-
comes L R . ) 3.9
If ¢, and ¢, are solutions to the equation
Ko ‘
F(A):WJ am (V6)2dxdt (2.14 (—iogdy+|A|ore 93— E)y=0, (3.6
This is not unreasonable. Recognizing that satisfying suitable boundary conditions to the left and right,
respectively, then
k3
L=p (2.15 i )
—>=ps, )
L Gap(x.Y.E)= (g #aX) s (Y)(01)grp for x>y

is the number density of the electrons, and that the superfluid

L i
velocity is =V—v¢;(x)¢z,(y)(al)ﬁ,ﬁ for y>x.

1
V=5V, (2.1 (3.7

. Here
we can rewrite Eq(2.14) as

L W=W(gt, R = —i(y) ToyR= YRyl — YRl
I 243 (3.8
I'(A) fzpsmvsd xdt. (2.17)

_ S _ o The expressionW(y',4R) is independent ofx for any
Since everything is time independent thiategral is trivial, 4L 4R that are both solutions of{—E)#=0. W plays a

and fromI'(A)=BF(A) we have role analogous to that of the Wronskian in the theory of
scalar linear differential equations. In particulafvanishes
FA)= f Ep mo 2d3x. (2.1  identically if and only if Yt and yR are linearly dependent.
2 Ts Such linear dependence signals tkats an eigenvalue.

When making the variatioa(H— E) in Eq. (3.3 we will
only consider changes it and A, so we will require
G(x,y,E) only at the pointsx=y. Now strictly speaking,
G(x,X;E) is not well defined, since the jump condition im-
plied by Eq.(3.9 is

Thus this part of the free energy coincides with the kinetic
energy of the superflow.

lll. THE RESOLVENT EQUATION

WhenH is time independent we have )
G(X,xt€e)—G(X,x—€)=log3.
In Det(9,+H) = E In Det(i w,+ H), (3.1) Fo_rtu_nately this ambiguity does not affeétn Det (H—E).
n=—o This is because
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—-E A —-E A
0'36 A* —E =trd —A* E

We may therefore safely define the symhb®(x,x,E) to
mean the average of its two limits'®

tr =0.

def
G(x,x)= lim %[G(x+ €,X)+G(X,x+¢€)].

e—0"

(3.9

With this understanding consider the matrix-valued function

g(x)=2iG(x,X,E)a3. In components this is

1
O(X) s = (Vg + Vathp ) (i02) g, (310

From the equations obeyed Wy} and ¢ we immediately
see thag obeys the equation

9=[M,qg], (3.1

where

M=—ioz(|A|oe 73— E). (3.12

The reason for the appearanceogfin the definition ofg is
that o3 appears in the coefficient @ in the Andreev op-
erator (3.2). If we premultiply the Andreev operator by
—iog, it becomes—d,+M, where the coefficient od, is

now proportional to the identity matrix. The Green function

for this modified operator i&(x,y,E) o3, andg(x) is, up to

the factor of 2, the diagonal element of this Green function

in x space(it is still a matrix in Nambu spinor spageEqua-
tion (3.11) can also be written as a commutator

[—dxt+M,g]=0, (3.13

where we regar@(x) as an operator acting on the space of

vector valued functions by pointwise multiplication.
In the superconductivity literature E@3.11) is usually
called the Eilenberger equation amgl the Eilenberger

function®® It lies at the heart of the quasiclassical theory of
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the normalization becomag = — 1 cof kL/2, wherek is the
Bloch momentum corresponding Ebin the periodically ex-
tended problen).

Given g as a function ofE, it is possible to recover
In Det (H—E). We simply observe that

&I D E)= fd ! 3.1
SEN et(H—E)=— XEtr(gﬂ'g), 3.1

and integrate with respect &

To obtain a gradient expansion gfwe introduce a pa-
rameterz (which will ultimately be set equal to 1) and re-
write Eq.(3.11) as

9=[zM,g]. (3.1
If we seek solutions in the form
9=2 9.2 " (3.1

we obtain the deceptively simple recurrence equation

9x9n-1=[M,g,]. (3.18

At first sight this determineg,, in terms of a derivative of
On—1, SO thenth term contains gradients of the gap param-
eter.

Unfortunately Eq.(3.18 is not quite as innocent as it
looks. Thenth recurrence relation only immediately deter-
minesg, up to the addition of terms that commute with
All'is not lost, however. Becaudd is a traceless 2 ma-
trix, the only undetermined term is in fact proportional to
M—and it is possible to find this term from the next equation
in the series

3x9n=[M,0gns1]. (3.19

Taking a trace shows thatht d,g,=0, and this contains the
information we need. Using this method we have evaluated
the gradient expansion up to eighth order in the gradints.

superconductor¥’ Equation (3.11) is also the analog, for BeCfiuse extracting the termv requi_res an explicit param-
matrix first-order differential operators, of the Gelfand-Dikii €t€rization of the space of>22 matrices, the final expres-
equatiort'*® Similar to the Gelfand-Dikii equation, it has ex- SIONS are given in terms of gradients |df| and Vo sepa-
tensive applications in the theory of integrable dynamicalrateW- It is not at all obvious how to assemble these very

systems? Because we wish to stress that E§.11) is an

exactproperty of the diagonal element of the resolvent of

any first-order matrix differential operator of the formd,
+M (rather than arapproximateproperty of the partially
integrated Gor'’kov Green functiprwe will often refer to it
as the resolvent equation.

Using the definition ofW, it is clear that the particular

solution of the resolvent equation given by E§.10 satis-
fies the condition tg=0. Similar algebra shows that

?yt=yt,  gYR=yR (3.19

lengthy expressions into more compact polynomials in de-
rivatives of A itself. In the following sections we will
descibe an alternative approach that does not require dissect-
ing g into parts parallel and perpendicular My and indeed
does not require us to fing directly at all.

IV. A USEFUL IDENTITY

In what follows we will concentrate on evaluating the
determinant in the case whefté is defined on the infinite
real lineR. For convenience we will assume that altle-
pendence of the gap functioh(x) takes place in a finite

Since the two solutions are linearly independent and span thregion(),, and that to the left and right & lie regionsQ),

space of Nambu spinors at eaxhthis impliesg?=1. This
condition is sufficient to determine the solutiofThe nor-

malizationg®=1 is specific to the resolvent of the Andreev

and (g, respectively, in whichA takes constant values;
andAg.
What we do next is motivated by the discussion of first-

operator on an infinite line, or on a finite interval with self- order matrix differential operators in Ref. 12. We observe
adjoint boundary conditions at each end. When periodi¢hat becausg is a 2x2 traceless matrix, it has distinct ei-
boundary conditions are imposed on an interval of lerigth genvalues and is therefore diagonalizable. Becaysdso



PRB 59 GRADIENT EXPANSION FOR T

obeys the equatiog®=1, we see that these eigenvalues are

+1. There therefore exists ax2 matrix ¢(x) such that
g(x) can be writteng(x) = ¢(x) o3¢~ 1(X).

As mentioned earlier the resolvent equation can be written

[—dx+M,g]=0 4.0

(we hope that it will be clear from the context when a sym-
bol such asi,g refers to the derivativg’, and whend,g is

an operator acting on functions according d) ¢=9’ ¢
+g¢’'). Substitutingg= ¢o3¢ 1 into (4.1) gives

LdH(— ot M)b,05]1¢p~ =0, 4.2
and this implies that
[¢~(— ot M), a3]=0. 4.3
Consequently, if we define a matrix by
¢7l(_(3’x+M)¢= —dt A, (4.9

thenA=¢ Mop— ¢ 19,4 commutes withr; and so must
bediagonal The matrix¢(x) is sometimes called a dressing
function.

We now derive a useful identity that connedtswith the
determinant we are wish to compute. We claim that

1
tr(goM)=5tr(Aos)— Eaxtr(¢o35¢*1— Sposdp™ 1)

=5L+d,a. (4.5

[Here and elsewhereS¢~! denotes 8(¢~ 1) and not
(64) %1

We call the two quantitiek anda because of the analogy
with classical mechanics. In mechanics we have

. AYA
Ei: —miQi_a—qi)&%
1 .
:52 Emiqi_v +d; _Z m;q; 69 | -
(4.6)

Here the first term on the right-hand side is the variation o
the Lagrangian, while the term in the total derivative gener
ates the symplectic form which determines the Hamiltonia
structure. The left-hand side contains the functional deriva

tive of the action, and gives the equations of motion via

D’'Alembert’s principle. Diki® exploits this analogy when
discussing the stationary equations of the integrable hiera
chies.

Notice that the second term on the right-hand side of Eq
(4.5 can equally well be written as d, tr[ po38(¢1)] or
as dtr[ po3d(¢~1)]. This is easily seen by using¢ !
=1

To establish Eq(4.5 we rewrite Eq.(4.4) as

—dxp+Mo=PA,

ap 1+ IM=Ap L

(4.7

4.9

From these we have

n
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def
A= —3,8p+Mp+MSp—SpA— pSA=0, (4.9

def
B= 000 1+ 1oM+5p M—ASp 11— 6A ¢ 1=0.
(4.10

Thus

O:tr(A03¢7l+ ¢0'3B) (411)
Expanding this out, using the cyclicity of the trace, the equa-
tionsgp M=A¢ 1—a,¢ L andM ¢p= pA + d,¢, together
with g= ¢o3¢~ 1, we find Eq.(4.5).

To see the utility of Eq.(4.5 observe that fromg
=2iGoz andSM=—io38(H—E) we have

Tr(goM)= Jx dxtr[g(x)SM(x)]=2 Tr(G6H)

=25InDet(H—E). (4.12

Thus, if it is legitimate to ignore the boundary terms coming
from the total derivative, we have

» 1
InDet(H—E)zf Etr(Aog)dx+const. (4.13

Here the *“constant” is a quantity unaffected by local
changes i\ (x). It will, however, depend on the asymptotic
gap functionsA | 5.

In general the boundary terms cannot be ignored, but it is
possible tochoose¢ so that they are zero. We have this
freedom because requiring thg¢x) = ¢(x) o3¢~ 1(x) does
not uniquely determineb. Indeed the replacemeri— ¢y
with x(x) any invertable diagonal matrix leavegx) un-
changed. Such a “gauge transformation” does, however, al-
ter A. Under the above substitution we have

A—A—x"to.x. (4.19

By making such a gauge transformation we can transfer any

fof the contributions to trgéM) from A to the total deriva-

tive term, or vice versa. Two extreme choices come imme-

diately to mind.
~ (1) Select¢ so thatA=0. In this case all the contribu-
tions to the determinant come from the boundary term.

(2) Select¢ so that the boundary terms constribute noth-

jng to the determinant.

The latter choice is possible because the Green function
G(x,Y,E) is insensitive to the values & at large distance
from x andy. We have assumed that there are asymptotic
regions{) r whereA(x) becomes independent xf Oncex
is well inside either of these regions theiix) will settle
down to a constant value depending only on the asymptotic
valuesA| r. We can therefore selectg@depending only on
A| rto diagonalize this constant matrix. Once we have done
this then ¢(=0) will be unaltered by variations oA(x)
taking place in)y. The determinant is then obtained entirely
from A. This is the route we will take to compute the gra-
dient expansion.
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V. CONNECTION WITH “SHOOTING METHOD”

Before we derive the gradient expansion, we should poin

out that our first choice ot, the one leading to\=0, is

equivalent to the so-called “shooting method” for evaluat-
ing the determinant® This asserts that, in a suitably inter-
preted sense, the determinant is proportional to the inverse of
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wave was incident from the leftight). The wave numberk
ndk’ are not necessarily equal since we do not assume that
A|=]Agl.
Substituting these expressions inté( ¢, %) we find
that

WLYH(x), gR(0) 1= —i(¢) ToayR=—2kA tg

the transmission coefficient for scattering off the spatially

varying A(x). To see this, observe that if we s&t=0, so
that
¢ =+ M)p=—03,+0, (5.0

then we are requiring the columns ¢fto be solutions of

(—d+M)yp=0. (5.2
Equivalently
(—iogdy+|Aloe 73— E)y=0. (5.3
A candidate for¢ is therefore
R L
o= 2 ﬂ, (5.4
2 P2

where the colums are composed of e and 4R solutions
used in constructing the Green function. The inverse is

¢1_1{ Vs i
W —y3
where, as beforeW=W(y", yR) = yRus— ySyt. A short
computation shows thatpozp 1=g(x), so we have

guessed correctly.
Now we write downy and R in the asymptotic regions,

: (5.9

XEQL
=_2kIARt|_ XEQR.
(5.10
SinceW is x independent, we must have
kALtR:k’ARtL . (511)

This reduces td, =tg in the particular case that, = Ag.

In order to usey® and ¢" in the Green function we re-
quire thatk, k', have a positive imaginary part so thag
tends to zero ag— +, and similarly, tends to zero as
x— —o, If we assume that both the real part Bfand the
real part ofk are positive(so thatyR and ' correspond to a
real scattering process, a@lto outgoing wavesthen this
requires the addition of positive imaginary partEo If we
wish to evaluates, and from this Detf{—E), for E below
the positive real axis then we must repldcey —k in the
above wave functions, so that the resulting negative imagi-
nary part ofk still leads to convergence. As expected, this
means that botl&s and Det ({—E) have a branch cut dis-
continuity across the redl axis whenever asymptotic plane-
wave solutions are possible.

Now we use these functions to evaluate dpgzd 2).
Near x=—o we haveyR—u(k,E,A )e** which is large,
while ¢ =tgru(k,E,A )e ** is small. The only expressions

which is the only place where we will need them. Let usoccurring in tr §¢o3¢ 1) involve their product which is

assume thak is real and thaE?>|A |2, |Ag|?, so we have
scattering solutions.
WhenA=|A|e'? is constant, a plane-wave solution to

(—iogdxt+|Alore™73%) y=Ey (5.6
is given by
) E+k|
g=u(k,E,A)e"*= A elkx, (5.7)

HereE2=k2+|A|2.

We now introduce transmission and reflection coeffi-

cients,tg | andrg and define

JRX)=u(k,E,A ) e*+r u(—k,E,A e ™ xeQ,

=t u(k,E,Ap) ek xeQg (5.9

P X)=u(—k,E,Age K *+rgu(—k’,E,A )ek*
XEQR
=tgu(k,E,A )e K

XEQL. (59)

The apparently perverse appearance of the subdcoptthe
reflection and transmission coeficients §X (and mutatis

finite. Varying A in (, changestg,
u(k,E,A,), etc., unaltered. We find that

while leaving

4 OtR
tr(dposed )|x:—m=E- (5.12
Similarly
4 ot
tr(éposd )|x:+x:—r (5.13
Inserting these results into EGL.5) leads to
InDet(H—E)=—Int+const. (5.19

It does not matter whether we usg or tg in this formula
because the logarithms differ by terms involviky and
Agr_, and these can be included in the constant. The con-
stants cancel when we consider ratios of determinants of op-
erators with the same asymptotics. In other words, ifH

and H(® are two Hamiltonians with the same asymptotic
behavior, then

Det(H-E) _t%(E) t{(E)
Det(H©®—E) t(E) tr(E)"

Notice that the(analytic continuation 9ft and r become

(5.1

mutandisin ') is supposed to indictate that the incoming infinite as E approaches the energy of a bound state. The



PRB 59 GRADIENT EXPANSION FOR THE FREE ENERGY OF A ... 9551

wave functionsy® and - become proportional to one an- To obtain a recurrence relation for higher-order termsgjn
other, and decay exponentially pg— . The resultant van- it turns out thaip, has to be factored out from the expansion,
ishing of the determinant is consistent with the interpretatiori.e., we look for¢ in the form

of the ratio of the Fredholm determinants as a regularized

version of
(En_ E)
T Tem— 5.1
n (Ego)—E) (.16

where theE, are the eigenvalues df, and theE?) the
eigenvalues of{ (?). For E in the continuous spectrum the
zeros and poles coming from the eigenvaluegt{oind + (*)
merge to form the branch cut noted above.

VI. THE GRADIENT EXPANSION

To find the recurrence relation fe¥ we multiply the ma-

b1 b2
¢:¢0 1+7+?+”' .

(6.11

Now we can go on to calculate the first-order terms in Egs.
(6.9 and(6.11) by comparing the coefficients in E6.2):

M pod1= o+ doA1+ dod1l0s. (6.12

Multiplying by ¢51 on the left and using Eq6.10, we

trix M by z as before. At the end of the calculation, we may gptain

setz=1. Thus again we are looking for a solution of

(6.2

as a power series in4./To find the free energy expansion,
we do not need itself but only ¢ and A that satisfy

[-0+zM,g]=0

ZMo= '+ ¢pzA,

and are given as power series irz.1/

(6.2

{Log, 11— A= bg 5. (6.13

In general, comparing the coefficientsof" in Eq. (6.2), we
get thenth order relation

For the homogeneous superconductor, only the zeroth or- {og bnsr]—Ansy= ¢'+¢51¢6¢ + oAt by 1A,
’ n n n n n n—

der term inA will be nonzero. We find it from the zeroth
order expression fog. Sinceg is traceless, squares to the
identity, and commutes witM, we must have

1
90=ZM, (6.3
where( is defined byM?= 1. Since
oy —IA
M_(iA* —wm) (64

(we have now replaced E by the Matsubara frequencies
we have

{=Non+[AX)[% (6.5
From Egs.(4.5 and(6.3) we find
5tr(03A0):tr(905M):25§, (66)
S0
tl‘(A00'3)=2§, (67)
and
Ap=0a3l. (6.8
Hence, we look forA in the form
A=¢ +—l+&+~- (6.9
0'3 7 Zz . .

Comparing coefficients of! in Eq. (6.2, we obtain the
equation for the Oth order ig:

Moo= ¢olos. (6.10

Fot oA, (6.14)

The (n+1)th terms in the expansions @f and A are thus
given by all the previous terms. Moreover the first term on
the left-hand side of Eq(6.14 is perpendicular toos,
whereasA contains a multiple or3 and a multiple ofl,
since it commutes witlars. In other words, the first term on
the left-hand side contains; and o, whereas the second
one containgr; and1. Hence, we obtain then(+ 1)th terms
in the expansion ot) and A by calculating the right-hand
side of Eq.(6.14 (in which everything is known from the
preceding steps in the recursjpand splitting it up into the
transverse and longitudinal parts relativeots.

There is a minor hitch: Eq6.14 does not determine the
part of ¢, 1 that commutes witler;. Adding a term top,,, 1
that commutes witlr; doeschange the right-hand side of all
subsequent recurrence relations. Such a term may, however,
always by removed by changing our choice of thethat
diagonaliseg. This will change the free energy density by a
total derivative of terms local in the gap. It will not affect the
total free energy.

We may therefore proceed to finland A . Unfortunately
this will lead to the same lengthy expressions we found in
Ref. 15 by evaluating the recurrence relationdgomhe prob-
lem is that there is no simple way to write the matrix
¢51¢0’ in terms of M itself. We will therefore have to
choose an explicit basis for the matrices and work with com-
ponents.

After a lot of thought we realized that is far more conve-
nient to replace the arbitrarily chosen mattix in the de-
compositiong= ¢o3¢ 1 by the local matrixM. To do this
we transform
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-1 -1
P
¢—>CI>E¢¢>61=1+ ¢o¢;¢o +¢0¢22¢0 =14 —
z
d - Aido”
+Z—22+-~~A—>AE¢0A¢61: +w
Asdhy Ay A
R VIS S R T
22 z 2

ThenLEtr(Aa3)=tr(XM/§). By using
bobndo =Ph— oy ' Pnt Doyt
we can rewrite Eq(6.14) as

[M, @01 1]—Api =P+ P oo '+ AL+ - - +c1>(nK16)
6.1

The advantage of this expression is that the two factors oé]jl nd

both on the left. This enables us to get rid of the awkward

®,, in the second and third terms on the right-hand side ar

expressiortﬁ(’,qsgl by factoring outd, and using the recur-
rence relation fon=0

[M,®1]-A1= oo "
We obtain
[M, @1 1] Apy =P+ D [M, D]

+ @Ayt DA,
6.17)

We need, however, to start the recurrence by obtaidingn

some way. For this we can use the Eilenberger equation

(6.1). From Eqgs(6.3) and(6.10, we get the expansion af
in 1/z

pozp ! chcIrl M+1q> M +
= g = — = — — y o PR
g 3 7 ;"7 1 7
g1
Ego+ 74— [
The coefficient ofz® in Eq. (6.1) gives
90=[M,0.1],

that is,

%] [ |o ]

3 R e I

The double commutator of matricésB,C can be written as

[A[B,C]]={{A,B}.C}-{B.{A.C}}. (6.18

Here the braces denote anticommutator For three trace-
less 2x 2 matrices this reduces to a form of the vector triple-
product identity

[A,[B,C]]=2tr(AB)C—2tr (AC)B.
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We now choos&; with no longitudinal components, i.e.,
trd,=tr(®,M)=0. Using trM?=2{?, we get
==

el

We see the natural appearance Mf{ as well as of the
derivative multiplied by 14. Hence, it is natural to divide
Eq. (6.17 by ¢, and to define

~11/M

(6.19

1
= (6.20

The symboD still behaves as a derivative in the sense that it
is linear, and obeys the Leibnitz rule

D(AB)=(DA)B+ADB.

In terms of these new variables, we can rewrite @dql7) as
[N.@ns1]=Ap =D+ @[N,Py]+ Py At -

+®;A,, (6.2

and
L={tr(AN).

The formula(6.21) leaves undetermined the part®f,, ;
that commutes withN [just as(6.14) did not determine the
part of ¢,,, ; that commuted withr;]. Again it is convenient
to choose theb’s purely transverse, i.e.,

tr¢k=tr(¢kN)=O,

With this choice we get a recurrence relation for thés
only, and a very simple expression lofin terms of thed'’s.

To see how this comes about, let us thinkNofs being
o3 (this can always be achieved at a given point by a global
rotation which does not changdg, then thed’s containo
and o,, whereas the\’s containl and o3. Hence, among
the terms in Eq(6.21), A, and®,[N,d,] containl and
oz only, [N,®,, ] and all the products of the typ®;A
containg; ando, only. Finally D®, potentially contains all
four matrices. We can separate the transverse and the longi-
tudinal part by taking the commutator and anticommutator of
N with both sides of Eq(6.21). From the commutator we get

for all k=1.

[N,[N, @, 1 ]1=[N,D®J+[N, @, 1A+ - +P3A,].
(6.22

Using the double commutator formu(.18 and its special
case for traceless matrices, this leads to
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NN, @11 ]]=2tr (N @y = 2tr (NP ) )N=4Dy, 5,
(6.23
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4Pn.1=[N,DP;] =P, 1(DN)P;—--- —Dy(DN) Py, .
(6.30

where the second term in the middle expression is zero dug/e can then simply calculate the terms in the expansion of

to transversality. For the last term on the right-hand side o

Eq. (6.22 we use the formula
[A,BC]={A,B}C—B{A,C}
to get

[N, @A T={N,DJA - P INA L. (6.29

Since{o3,0; =0, the first term on the right-hand side of

Eq. (6.24) is zero. So we can rewrite E6.22 as

40, 1=[N.DD;] =Py g{N, Ao} = - =Dy {N,Ap}.
(6.29

We see again the usefulness of introduduth andD.
Notice the appearance of the anticommuta{d)tsE-} on

the right-hand side of Ed6.25. Due to transversality of the

d’s, thefs themselves are eliminated. We can relate these
anticommutators to thé’s by taking the anticommutator of

N with both sides of Eq(6.21):

—{N, Ay, 1} ={N,DD}+{N, & [N,®;]}=D({N,®,})

—{DN,(I)n}—%{N,Cbn[N,DN]}. (6.26

The first term on the right-hand side of E§.26) is zero just
as in Eq.(6.24). In the last term, we use

0=D1=D(N?=NDN+(DN)N
to see that
[N,DN]=2NDN.
Then we use the formula
{A,BC}={A,B}C—B[A,C]
to get

1 1 1
— 7N, ®2NDN}=— 5 {N,®}NDN+ 5 ®,[N,NDN].
(6.27)

The first term on the right-hand side of E@.27) is again
zero; for the second one, we need to evaluate

[N,NDN]=N2DN-N(DN)N=DN+NNDN=2DN,

where we used again the anticommutatiorNaindDN. So
we can rewrite Eq(6.26) as

~{N,Ap,1}=—{DN,®,}+>,DN=—~(DN)®,,.
o (6.28

We introduce the symbol
Li={N,A}, (6.29

and substitute from Eq6.28 to Eqg. (6.25 to get a recur-
rence relation for theb’s only:

fEE{N,Aj as
L,=(DN)®,_;. (6.32)
This gives us the desired Lagrangian as
{

The last three equations provide all the machinary needed
to compute the first few terms in the expansiorLof¥Ve start
with

from Eq.(6.19. Then

1
4®2:[N1Dq)l]: - Z[NrDZN]v

SO

1 2
®,=— 75[N.D?N].

In the third order, we have

4d5=[N,DD,]— D,(DN)d,=— %[N,D[N,DZN]]

—1DN3——1NDND2N
E( ) = E{ [DN, 1}

1 N,[N,D3N 1 DN)3

We now use the formul#6.18 for the double commutator
and get

. 1 P 1 2
3=~ 52{{N.DN},D?N}+ 2 {DN,{N,D?N}}

—i{{N N},D3N}+ i{N {N,D3N}}— i(DN)3
VA 64t U 64 '

These expressions can be simplified. We begin by evalu-
ating the anticommutators
{N,N}=2N?=21,
{N,DN}=0,
{N,D?N}=D({N,DN})—{DN,DN}=—2(DN)?,
{N,D3N}=D({N,D?N})—{DN,D?N}=—2D[(DN)?]
—D[(DN)*]=—3D[(DN)?].

All the anticommutators are proportional to the unit matrix
(they are squares of tracelesx 2 matrice$, so
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d,= 1DN DN)?2 11D3N 3ND DN)?2
3——3—2{ W )}—3—2{, }—a{,[( )°1}

5 1
— 3__ps3
64(DN) D°N

1 DN 3_
“eaPNT= 16

3 2
~ 52NDIDN)?].

To obtain the gradient expansion of the free energy up to

the fourth order, we need to calculafg and £, from Eq.

(6.3D):

1
£,=(DN)®;=~ 7(DN)?,

L4=(DN)®,= > DN)* ! DN)(D3N
+=(DN) 3——@( )—1—6( ) )
3 2
64(DN)ND[(DN) 1,

SO
{

L=~ gr[(DN)?],

Ly=— > =L tr[(DN)*]— = étr[(DN)(D3N)]
47128 32

3
—agtr{(DN)ND[(DN)Z]}.

We can rewritel , in a more symmetric way by writing
{tr[(DN)(D®N)]=¢D{tr[(DN)(D*N)]} — £ tr[(D*N)?].

The first term is a total derivative/D =4 by definition
(6.20] and is, therefore, thrown out. The last termLip is
equal to zero too, since

tr[(DN)N]z%tr({DN,N})zO,

andD[(DN)?] is proportional to the unity matrix. Thus, up
to the fourth order in derivatives, including even-order terms

only,

> —a(DN)*

1
= — __ 2_
L=Lo+Lo+L, §tr‘1 5(ON)*— 2

1
+ 3—2(D2N)2]. (6.33

VIl. THE FREE ENERGY
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[H—H,|? A2
= 3y & Syl
F Jd X oy +J d=x v
dQ
+2WNOJ 47T”f d?x, Fdq, (7.9
where F(19d is given in terms ol as
T
MWd=—22 | dxL. (7.2
Sinced?x, dx;=d3x, we can write
|H- Ha|2 A2
3
F= fd { o ~ TNOZ
(7.3

Notice that terms with an odd number of derivatives, and
hence an odd number of vectars drop out when we aver-
age over them. This explains why we calculated only even
terms in the expansion df.

We have included a magnetic field in E(..1). In our
earlier calculations, we did not mention the coupling of the
electrons to the magnetic potential However, the compo-
nent A; can always be gauged away along the lxge
=const by absorbing it int@. There is therefore no loss of
generality in our formulas. To inseA we merely replace
our derivative of the complex order parameter by a covariant
derivative, and our derivative of thigea) magnitude of the
order parameter by a plain gradient.

We would like to compare our calculation with that of
Ref. 4 as this seems to be the only place where the fourth-
order terms have been written down explicitly. The expres-
sion given for the free energy in Ref. 4 is, in the notation of
that paper,

F= Jd3(

1
x| 9lOxI*+ 59" (VIxI*)?

1
+N /3 ,82W+§(UF,3)2

g'|0%|?

1 4
+1—2(UF,3)

n

1 1
— 4 2 2 2 _ 2 2\2
5| OXI* = [OXI*(V2[xI%) + 75(V*IxI®) )

1
+g”’( VAxIA)(VIxI*)?- —|OX|2(V|X|2) )“)
(7.4

Here y=BA is the dimensionless order parameter, and
O=V-2ieA is the covariant derivative. The homogeneous
part of the free energy comes from(|y|), while g is a
function of |x|? that we will identify later ¢ is not to be
confused with the Eilenberger functipnThe primes ong
denote the derivative with respect|tg|?

y 1Ty

Equation(6.33 at the end of the previous section is the
principal result of this paper. It contains, in an extremely
compact form, all the information needed to obtain the freeThe directional averagin§(dQ),/4m) is not stated explicitly
energy. Using the results of Sec. Il this may be written in this formula, but is to be understood. In other words the
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product of two expresiondB whereA, B are either of the To obtain the result in Tewordt's format, we need to trade

two vector operator® or V is defined as the derivatives of¢ for the derivatives Oﬂ)(lz. From Eg.
(7.9, we see that

1
AB=§5iinBj, (75) ,:(|X|2)’ (7 13?
2¢& ’
and the product of four factors as
SO
1

veB &2 2&4

We have inserted a question mark over the equals sign in Eq.
(7.4), because we believe that there is an error in the fourthHence,
order terms.

We will now expand our expression so as to write it in 1 ) 2 (Ix1?)" M2(|[x|»)'?
Tewordt's form. During the calculation, we will keep the W(DN) 2?—{/\4,/\4'} +

6 8
primes as derivatives, and only at the end we will replace 2§ 4¢
them by the covariant derivatives or gradients according t¢rom Eq.(7.8) we see
the rule
M?=¢%1, (7.19
x'—Ox,
o ) {MM'}=(M)?'=(xI?)'1, (7.16
(XI5 = Vx|~ (7.7)
12__ 1k
Note that the prime over the order parameter mediuk, MPE=xXxT (7.17
whereas the prime over meansd/d|y|2. S0
We introduce the dimensionless quantities
1 1kl 2\12
_[emrnm —ix , W(DN)zz(X x__ q’j Z 1 (718
MEBM={ v _ominya) 7P ] ¢ ¢
q We now use Eq(7.7) to replace the derivatives, and obtain
an
1 w[|0x|>  (VIx»?
—gr= 22 2 _ —2= 2| 43 v _
§—IB§ \/(2m+1) a +|X| y (79) fz_NOﬂ 2(UF:8) fd erm 2( §3 4§5 '
S0 (7.19
M Comparing the first term to Ed7.4), we see immediately
N=—. (7.10
‘ ) Y (7.20
Since Tewordt writes out the Fermi velocity explicitly (in 9=2 i '
our calculation, we sair=1), the dimensionless derivative ) : o ,
D equals We will also need higher derivatives @f with respect to
|x|2. Using Eq.(7.9), we get
UF . UgP
D=—d=—239. (7.11 , 3 1
4 £ g=- Zﬂ'wEm F
From Eq.(7.3), the second-order term i is
15 1
#TN o'=gme g
Fo=—g Of d® >, {tr(DN)? 8 um €
. " . 10s 5 1 720
NeB 222 > Tt 2 S T '
NO,3 z(vFﬁ) Jd rgr:n 4§(UFB)2tr(DN) ’ m
(7.12 Hence,
where we pulled out the prefactors that appear in the _ ,2} ZJ' 3 2 9_' 22
Tewordt formula. Using Eqg7.10 and(7.11), we get F2=Nop "5 (wep)” | dr o Ox|*+ 6 (VIxI)
, , , (7.22
i = E( ﬂ) = ﬂ_ M¢ ) in agreement with Eq(7.4).
veB &\ ¢ &2 IS The fourth-order term is equal to
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Putting the two terms together gives
f4=—wTN0f d3r > gtr( 128(DN)4 2(D2N)2

4 P %12
(vpﬁ)f _ (UFﬁ)j 3 15)(
—NpB 2 F4=NoB d>r
R (vFB)“ * Y
X tr 15(DN)4_—(D2N) ) (723) 21X ,(|X|2),2+111(|X| ),4 3)(” *
32 32 & 162 £t 4 &5
We can calculate the first term immediately from Eg18 . ,
L3 o )
L onyie XX xx x> 16 g 8N ¢
(UFB)A 58 2510 16&12 2\12 2\n k! 2\n
(.24 9 (XX 3 x'x <|x|>)
. 5 Z .
To evaluate the second term in EJ.23, we need to go 16 ¢ 4 ¢
back to Eq.(7.14):
, -~ , The two underlined terms do not appear in Tewordt’'s for-
1 D2N=— M M(x*) M mula, so we need to integrate them by p#aiain neglecting
(veB)* APy ,g3 the boundary terms
’ 2\ 2
2 §5 §7 255 A7 | |2)73
160 gl 16><8 g 2¢
d in Eq7.13 to obtain th d li
[we used again Ed7.13 to obtain the second lidgso 1 111 ! |2),3<1),
"2 12/112y72 ) X 9
Joz= T 9 M (XD e 9 10%® ¢
(vFﬁ) f 4 510 1 37 (| |2)/3 1),
= X
’ 4 3 16><8
L[y
& 245 37 (X)X
16X 8 9
IXIZ)’ 3 ¢
- MM S )
and
N (I)(IZ)’2 (Ix»"
X([xI%) EERPye ,
g(X,X*,),(lez)’:g(X,X*,(lez)’) _gX, < X"
2\12 2\n 8 §7 8 57 8 §7
e g D7)
glO 258 ’ */ 2\12
L 83X X (X))
From Egs.(7.9), (7.15—(7.17), we see that 16 & '
M IIZZX//X* "1,
Therefore,
{MH'MI}:(MIZ)I:L
(M My={ M M} =2M "2=[(|x|?)"—2x"x*"]1, N ,(WeB)” F,B 3 15><’>(*’2
F4=NoB~ d°r
so 16 &
1 XHX*" 1XIX*’(|X|2)72 1(|X|2)r4 +£5X’X*’(|X|2)’2_§X”X*” i(|X|2)H2
4(D2N)2= 4+ - = 32 9 4 5 16 7
(vePB) &8 4 =) 2 g2 3 3 3
X" 3, (x> 35 (XD D" 15X % (XD
TTae 2K T - 16x8 & 8 & '

3 2\12 2\ ok 2\n
L3 MBS xx (D)
4 510 58

Using Eq.(7.21) and introducing the covariant derivatives
and gradients, we finally get
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(veB

- )4 ! n 1
Fa=Nop ZTJ d*r| g’'|O%x|*+g §|OX|4

1
~|OXI*(V2XI%) + 75(V2IxI*)?

right. The useful identity linking the dressing functiah
with the determinant is one that we have not seen before, and
the purely algebraiérequiring no integrationgeneration of
the terms is conceptually simpler than other methods of ob-
taining such series such as those we used in Ref. 15. In
particular the present algorithm produces very compact ex-

1 1 pressions, and is applicable to the computation of determi-
ml __ 2 N2, 2 2 2\2 ’
*9 2|OX| (VIxIH*+ 52V IXID(VIXI®) D nants of any X 2 first-order matrix operator.
(7.29
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