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Explosive nucleation of superconductivity in a magnetic field
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Relaxation dynamics of a normal spot in a magnetic field below the critical temperature is considered. Three
different regimes of superconducting nucleation leading to the Abrikosov vortex state are predicted analytically
and observed numerically. In particular, a split of supervortex, regular growth of the Abrikosov lattice, and
explosive creation of vortex-antivortex liquid are possible scenarios.@S0163-1829~99!07213-6#
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I. INTRODUCTION

Since the discovery of high-temperature superc
ductivity,1 there has been a growing interest in the magn
properties of type-II superconductors.2 Although the thermo-
dynamics of this state is now well investigated, there s
remain many unsolved problems concerning its dynamics
particular, nucleation of the superconducting phase in
presence of an external magnetic field is of great interest
to a variety of possible scenarios.3–6

It is well known from the celebrated paper of Abrikoso7

that in type-II superconductors such a nucleation result
the rise of a mixed state which is characterized by the p
ence of vortices forming a periodical lattice. Each vort
possesses a topological chargen561 defined by the 2pn
change of phasex of the superconducting order parame
c5ucuexp(ix) around the vortex core. The sign of integ
numbern distinguishes between vortex and antivortex.

When the normal-to-superconducting phase transition
Hc2(T) is crossed slowly comparatively to superconduct
nucleation timetA , the order parameter grows in the form
an Abrikosov lattice from the very beginning. Such a situ
tion is generic for experiments where a superconducto
cooled slowly in the external magnetic field.

Recently, significant interest has been shown in the s
ations where superconductivity is restored in the stron
overcooled normal regions appearing, for example, as a
sult of a short laser pulse applied to the superconductor w
magnetic flux inside. Then after the laser radiation is off
strongly overcooled normal spot exists, provided heat
left this spot for a sufficiently short timeth!tA.3

Another scenario leading to similar overcooled norm
spots takes place when topologically multicharged norm
spots enter a superconductor from its edge after a sud
increase of the external magnetic field.8,9 Every such normal
spot possesses a topological chargen assigned by trapped
magnetic flux and it is conserved throughout the whole
ture evolution.

Although the final thermodynamical state in all the
cases will be some kind of Abrikosov vortex structure,
PRB 590163-1829/99/59~14!/9514~8!/$15.00
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variety of metastable intermediate states is expected. In
ticular, n-quanta supervortices and vortex-antivortex m
tures are two principle possibilities.

In the present paper we investigate the problem of sup
conducting relaxation and vortex formation in normal sp
of different sizes in magnetic field. We predict the existen
of three different regimes of superconducting nucleation:
plosive creation of both vortices and antivortices with co
serving total topological charge, regular growth of the Ab
kosov lattice, and symmetrical splitting of the supervort
into single vortices.

II. BASIC EQUATIONS

We start with the time-dependent Ginzburg-Land
~TDGL! equations in the form10–12

gS ]C

]t8
12i

e

\
m8C D52Fa1buCu2

1
1

4m S i\¹1
2e

c
A8D 2GC1 f̃ ~r ,t !,

~1!

¹3¹3A85
4p

c
~sE1Js!, ~2!

E52
1

c

]A8

]t8
2¹m8, ~3!

Js52
ie\

2m
~C* ¹C2C¹C* !2

2e2

mc
uCu2A8, ~4!

¹•A850. ~5!

HereA8 andm8 are the vector and scalar potential, respe
tively; a and b are Ginzburg-Landau coefficients;E and Js

are the electric field and supercurrent, respectively,f̃ is the
random force due to white thermal noise,s is normal con-
ductivity; andg is the phenomenological constant.
9514 ©1999 The American Physical Society
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These equations should be accompanied by the boun
conditions which have a well-known form, corresponding
the superconductor-insulator contact:

S 2 i\¹2
2e

c
A8D

n

C50 . ~6!

Assuming local charge neutrality~meaning that the Debye
screening length is smaller than the penetration depth!, one
can eliminate the scalar potential from the TDGL equatio
while keeping the relation~5!,13 by the gauge transformatio
of the potentials

A8→A82
\c

2e
¹u; m8→m81

\

2e

]u

]t
~7!

accompanied by the shift of the order-parameter phase

C→C exp~2 iu! ~8!

and setting newm850.
It is convenient to define the dimensionless variables

follows:

r 5r 8/j, t5t8/tGL ,tGL[4psj2/c2, ~9!

A5A8/~&dHcm!, H5H8/~&Hcm!, c5C/c0 ,

f 5 f̃A b

uau3, ~10!

wherekB is the Boltzman constant,H is the dimensionless
magnetic field, and

j5
\

A4muau
, c05Auau/b, Hcm5

F0

A8pjd
. ~11!

Herej is the coherence length,d is the penetration depth
of the magnetic field,Hcm is the thermodynamic critica
magnetic field, andF0 is the flux quantum.

Thus, we can rewrite the TDGL equations in a dimensio
less form:

G
]c

]t
5c2ucu2c2~ i“1A!2c1 f ~r ,t !, ~12!

]A

]t
52“3“3A2

i

2k2 ~c*“c2c“c* !2
1

k2 ucu2A,

~13!

“•A50. ~14!

Here k[d/j is the Ginzburg-Landau parameter,G
5gc2/(4psj2uau), and the boundary condition for the ord
parameter is

~ i¹1A!nc50. ~15!

For the magnetic fieldB5¹3A we require that the tangen
tial component be continuous.

This set of equations describes a variety of phenom
depending on initial conditions. In particular, relaxation
the normal spot surrounded by a bulk superconductor
ry

,

s

-

a

d

containing the integer number of flux quantaF5nF0 devel-
ops in two very different ways, depending on the initial si
of this spot and the topological chargen.

III. LINEAR STABILITY ANALYSIS

In order to understand superconducting nucleation in
magnetic field we begin by studying the stability of tim
independent solutions of Ginzburg-Landau equations. In p
ticular we dwell on such situations as then-quanta
supervortex14 and the overcooled normal state (c[0) in the
cylinder of radiusR surrounded by the superconductor.

We shall treat both these cases in cylindrical geome
when the supervortex is placed at the origin. For a stron
type-II superconductor (k@1) magnetic fieldH is effec-
tively homogeneous over the region of the order-param
variation:

A[~Ar ,Aw ,Az!5~0;Hr /2;0!. ~16!

In this case the order parameterc may be represented in
the form:

c[@F~r !1h~r,w,t !#exp~ inw!, ~17!

where F(r ) is a time-independent cylindrically symmetr
profile of the order parameter. Its azimuthal phase dep
dence of exp(inw) reflects the fact that then flux quanta of
the magnetic field are trapped in the normal region;h(r ,w,t)
is the perturbation. The specific shape ofF(r ) is different for
the above-mentioned cases.

Substituting Eq.~17! into Eq.~12! we immediately obtain

G
]h

]t
5

]2h

]r 2 1
1

r

]h

]r
1

1

r 2

]2h

]w2 1
2in

r 2

]h

]w
2 iH

]h

]w

1F11nH2
H2r 2

4
2

n2

r 222F2Gh2F2h* 1 j̃.

~18!

Introducing the real and imaginary parts of the perturbat
h5a1 ib, we get the set of two real equations:

G
]

]t
a5@L 0̂23F2~r !#a1S H2

2n

r 2 D ]

]w
b1 j̃ r , ~19!

G
]

]t
b5@L 0̂2F2~r !#b2S H2

2n

r 2 D ]

]w
a1 j̃ i , ~20!

where the operator

L 0̂[
]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]w2 111nH2
H2r 2

4
2

n2

r 2 .

~21!

Expandinga andb in Fourier series:

a5
C0

2
1 (

m51

`

~Cm cosmw1Dm sinmw!, ~22!
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b5
P0

2
1 (

k51

`

~Pm cosmw1Qm sinmw!, ~23!

and substituting into Eqs.~19!, ~20! we get the following set
of equations for Fourier amplitudes:

G
]

]t
C05Lm̂C023F2~r !C0 ; G

]

]t
P05Lm̂P02F2~r !P0

~24!

and

G
]

]t
Cm5Lm̂Cm23F2~r !Cm1S H2

2n

r 2 DmQm , ~25!

G
]

]t
Dm5Lm̂Dm23F2~r !Dm2S H2

2n

r 2 DmPm , ~26!

G
]

]t
Pm5Lm̂Pm2F2~r !Pm2S H2

2n

r 2 DmDm , ~27!

G
]

]t
Qm5Lm̂Qm2F2~r !Qm1S H2

2n

r 2 DmCm , ~28!

where

Lm̂[
]2

]r 2 1
1

r

]

]r
2

~m21n2!

r 2 2
H2r 2

4
1nH11. ~29!

Looking for the solution in the form

S Cm~r ,t !
Dm~r ,t !
Pm~r ,t !
Qm~r ,t !

D 5S Cm~r !

Dm~r !

Pm~r !

Qm~r !

D expLt, ~30!
by
and denotingl[GL we obtain

@Lm̂23F2~r !#Cm1S H2
2n

r 2 DmQm5lCm ,

@Lm̂2F2~r !#Qm1S H2
2n

r 2 DmCm5lQm , ~31!

@Lm̂23F2~r !#Dm2S H2
2n

r 2 DmPm5lDm ,

@Lm̂2F2~r !#Pm2S H2
2n

r 2 DmDm5lPm . ~32!

We have to find the eigenvalues$l% of this problem. All
the eigenvalues are real because the system is Hermitia
the framework of the linear stability analysis we are looki
for the parameter values when the greatest eigenv
crosses zerolmax50. Then it is exactly the point when th
solutionF(r )exp(inw) loses its azimuthal stability. The fol
lowing quantities play roles of parameters for our analys
unperturbed profileF(r ), homogeneous magnetic-field ma
nitude H, topological chargen. This approach also deter
mines the numberm of most unstable harmonics.

The eigenfunctions of this problem~for all mÞ0! must
vanish atr 50 and decay exponentially in the surroundin
bulk superconductor whenr→`. We have solved this eigen
value problem numerically by discretizing our coordina
space and, therefore, transforming the ordinary differen
equation problem to an algebraic one.

The specific character of instability depends essentially
unperturbed profileF(r ). In particular for supervortices with
n51,2,3,4 we usedF2(r )[Fn

2(r ) in the form15
F1
2~r !5r 2

0.3410.07r 2

110.41r 210.07r 4 , ~33!

F2
2~r !5r 4

0.0234415053r 2

11252 537r 2120 212.023r 415053r 6 , ~34!

F3
2~r !5r 6

0.000 685 608 381r 2

112233.6r 21122.57r 418.999 314 39r 61r 8 , ~35!

F4
2~r !5r 8

0.000 011 072 650 761r 2

1131 735r 2117 232.2r 41192.85r 6115.999 988 927 34r 81r 10. ~36!
tic

y

In the case of an extended normal area surrounded
superconductor, the exact shape ofF(r ) becomes unimpor-
tant and it can be well approximated by a step function:14

F2~r !5 H0 for r<R,
1 for r .R, ~37!
awhereR is the radius of the normal domain.
Obviously the instability is suppressed by the magne

field. Calculatinglmax for different magnetic-field valuesH
and harmonicsm, we are looking for the onset of instabilit
lmax(H,m)50.

This dependence for supervortex withn54 is presented
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in Fig. 1. The only unstable harmonic here hasm5n corre-
sponding to supervortex splitting inton single quantum vor-
tices on the later nonlinear stages of evolution. This insta
ity arises for sufficiently weak magnetic fieldH,H4
'0.9Hcm, whereHn is the magnetic field of the instability
onset for n charged supervortex. The dependence of r
growth lmax(m) for the supervortex chargen51,2,3,4 and
the correspondingHn is shown in Fig. 2. As was expected,
single quantum vortex is absolutely stable.

The picture looks very different for the instability onset
the large normal domain. In this case the wide spectrum
azimuthal harmonics becomes unstable simultaneously~Fig.
3!. ~We assumed for simplicity the following relation be
tween the field magnitude, the number of flux quanta in
normal spot, and its radius:pR2H5nF0!. In the limit of an
infinitely large normal region this spectrum becomes

FIG. 1. Rate growthlmax of azimuthal instability for supervor-
tex with the topological chargen54 as a function of the harmonic
numberm for different magnitudes of magnetic field:~1! H/Hcm

50.95; ~2! H/Hcm50.99; ~3! H/Hcm51.05.

FIG. 2. Rate growthlmax(m) for the supervortex chargen
52,3,4 for onset magnetic fieldHn :H2 /Hcm50.62; H3 /Hcm

50.93; H4 /Hcm50.99. Forn51 there is no instability@lmax(m) is
plotted forH50.#
l-

te

of

e

-

tremely wide, manifesting the creation of an Abrikosov vo
tex liquid. The critical magnetic field of the instability ons
HonsetapproachesHc2 .

When the magnetic field is belowHc2 , the rate growth
lmax.0 for a wide band of harmonicsm and this state is
sufficiently unstable.

In the opposite case of smaller sizes of normal domain
rate growth curve sharpens~Fig. 4! approaching that found
for supervortices, and onset fieldHonset decreases to abou
Hcm. Such crossover behavior for different spot sizes
shown in Fig. 5. Thus, two different types of instability ma
arise for large and small normal spots (R"Rcr).

In accordance with this linear stability analysis the sup
vortex with n.1 is unstable. However, this instability oc
curs at magnetic fieldH;Hcm which is sufficiently higher

FIG. 3. Rate growthlmax(m) in the large normal spot~of radius
R540! for different magnitudes of magnetic field:~1! H
50.875Hc2 (n5700); ~2! H[Honset5Hc2 (n5800); ~3! H
51.063Hc2 (n5850). Wide band of harmonics becomes unsta
simultaneously.

FIG. 4. Rate growthlmax(m) in the normal spot of radiusR
515 for different magnitudes of magnetic field:~1! H50.711Hc2

(n580); ~2! H[Honset50.996Hc2 (n5112); ~3! H51.244Hc2

(n5140).
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than the field in the supervortex centerHp'2Hc1 , where
Hc1 is the lower critical magnetic field. In the large norm
domain the instability develops just below the upper criti
field Hc2 . For smaller radius the instability arises at low
magnetic field tending toH;Hcm for sizes of supervortex
order.

IV. EXACT NONLINEAR DYNAMICS

It is clear that these two types of linear instability mu
result in the formation of very different patterns on nonline
stages of evolution. In order to study nonlinear dynamics
full detail the TDGL equations~12!–~14! have been solved
numerically. This dynamics depends on initial conditio
which in our case were chosen in the form:

x~r ,t50!5nw, ~38!

uc~r ,t50!u5H 0; r ,R21
~r 112R!; R21,r ,R,
1; r .R

~39!

A5$Ar ;Aw%; Ar~r ,t50![0, ~40!

Aw~r ,t50!5 H ~H0/2!r ; r ,R,
2H0k~K1~r /k!/K0~R/k!!1n/r ; r .R,

~41!

where

H0[
~n/R!K0~R/k!

kK1~R/k!1~R/2!K0~R/k!
. ~42!

HereK0 andK1 are the modified Bessel functions.
Thus, initially, we have a normal spot (ucu50) of radius

R with n quanta of magnetic field trapped inside~F0
52pk in dimensionless units!. The phase of the order pa
rameterx increases linearly to provide the total topologic
chargen. The magnetic field is uniform across the spot a
decays outside.16

We solved these equations in the square domain (
3250). The magnetic field at the sample edges is assume

FIG. 5. The instability onset magnetic fieldHonset versus the
normal spot radiusR.
l

t
r
n

l
d

0
to

be zero. Two different boundary conditions for the ord
parameter were imposed—that given by Eq.~15! and the
simplified conditions:6

„A~ t !…boundary5„A~0!…boundary, S ]c

]n D
boundary

50. ~43!

The dynamics far from the boundaries was found to be in
pendent of the type of boundary conditions.

In our computations with the latter boundary conditio
we have used the simple ‘‘alternating-direction’’ implic
scheme of forward and backward sweeps on a discret
rectangular grid~cf. Ref. 17!. The parameters in the calcula
tions described below were set as follows:G51, h(r ,t) was
uniformly distributed in the segmentuhu<0.001 random
function.

For the boundary condition~15! the link variable ap-
proach has been applied. This computational techniqu
presented in the Appendix.

The results of numerical simulation are presented in F
6–11. In fact, two distinct scenarios of evolution take pla
In particular, when the initial magnetic field exceedsHc2 , a
normal spot grows at the beginning and magnetic field ins
decreases~Fig. 6!. When the magnetic field levels withHc2 ,
a superconducting phase arises in the spot. Later, in mag
field close toHcm azimuthal instability appears, splitting th
multiquantum state into single vortices~Fig. 7!.

In the opposite case when the initial magnetic field
much weaker thanHcm the normal spot shrinks rapidly~Fig.
8! and simultaneously superconductivity appears all over
normal spot. This superconducting phase cannot grow
formly because of the magnetic field suppressing order
rameter in some points with topological chargePi . Generi-
cally, the number of such zeros of the order parameter eq
the total topological chargen. However, due to a spatial de
generacy of the order parameter many more zeroes
created—separated roughly byj. The conservation of the
topological charge requires that part of these zeroes
charged negatively and(Pi5n. In evolution this process

FIG. 6. Magnetic-field magnitudeH and order-parameter abso
lute valueucu profiles att55 for n54, k510, G51, and thermal
noiseu f u,0.001, for initially small normal spot~radiusR52!.
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looks like a topological explosion~Fig. 9!. In further dynam-
ics, in spite of massive annihilation of adjacent zeroes
opposite sign, the remaining zeros will grow into Abrikos
vortices and antivortices forming a metastable phase~Fig.
10!. Eventually onlyn vortices will survive~Fig. 11!.

V. CONCLUSION

One can conclude that depending on the initial overcoo
normal state there exist three different regimes of nuclea
leading to setting up the Abrikosov vortex state in a samp
Namely, if an initially strong magnetic field (H.Hc2) is
confined in a small normal spot of sizeR>j, the order pa-
rameter evolves towards the supervortex profile splitting i
single vortices~Fig. 7!. This process is similar to a well
known supervortex decay in the liquid helium.15

In an initially large normal domain (R@j) there are two
possible scenarios. When magnetic field in the reg

FIG. 7. Split of four-quanta supervortex shown in Fig. 6 in
single vortices fort5420.

FIG. 8. Magnetic-field magnitudeH and order-parameter abso
lute valueucu profiles att510 for n54, k510, G51, and thermal
noiseu f u,0.001, for large initial normal spot (R555).
f

d
n
.

o

n

reachesHc2 from above, the order parameter grows leavin
regular lattice of zeros. Subsequently, this state develops
usual Abrikosov vortex lattice with a separation;j between
vortex cores~Fig. 12!.

The most intriguing behavior appears when magnetic fi
in the spot is relatively weak (H!Hc2) in the initial state.
This state is strongly unstable@rate growthlmax(H,m).0#
from the very beginning. Superconductivity arises creat
again a set of the order-parameter zeros separated by
distance;j. However, in a weak magnetic field the dens
of these zeros exceeds considerably the mean number of
quanta per unit area, which means that this set contains
only vortices but also antivortices. Most of the vorte
antivortex pairs annihilate rapidly. Nevertheless some a
vortices may survive, resulting in long-living metastab
vortex-antivortex liquid~Fig. 13!.

Let us discuss the characteristic time scales of overcoo
spot evolution. Immediately after heat relaxationt>th

FIG. 9. Onset of explosive vortex-antivortex nucleation insi
the normal spot shown in Fig. 8 fort515.

FIG. 10. Metastable vortex-antivortex mixture consisting of s
vortices and two antivortices as a further stage of evolution sho
in Figs. 8, 9 fort540.
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FIG. 11. Final stage of evolution~see Figs. 8–10! for t5430.

FIG. 12. Abrikosov mixed-state creation in the spot with lar
magnetic flux. Magnetic-field magnitudeH and order-parameter ab
solute valueucu contour plots att5155 with k510, G51. Initial
normal spot of radiusR555 contained magnetic flux 300F0 .
;tGL'10212s, the strongly nonequilibrium overcooled no
mal spot starts to relax. At the first stage (t<10tGL) only
spot walls motion takes place. At the next stage (10tGL<t
<50tGL) explosive nucleation across the spot begins, res
ing in the vortex-antivortex mixture. This metastable sta
may survive for a long time, up to several hundredtGL ,
relaxing eventually to the thermodynamical Abrikoso
mixed state. However, pinning centers trapping the vorti
in the long-living vortex-antivortex mixture phase may pr
vent their annihilation, freezing such a state for an infinite
long period of time.
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APPENDIX

In our calculations with the boundary condition~15! we
exploit the so-called ‘‘link variable’’ method18,19,5 for the
discretization of the TDGL equations~12!–~14!.

The square spatial domain$xP@2L;L#%3$yP@2L;L#%
is discretized as follows (a5L/N):

xk5ka, yj5 ja; k, j 52N,2N11, . . . ,N. ~A1!

Then the order parameter is defined on this grid:wk, j
[C(xk ,yj ).

We define the components of the vector potential on
‘‘links’’ connecting two adjacent points of the grid:

Ax
k, j[Ax~xk1a/2,yj !; Ay

k, j[Ay~xk ,yj1a/2!. ~A2!

Next we define the link variablesU andV as follows:

FIG. 13. Magnetic-field magnitudeH and order-parameter abso
lute valueucu profiles for the metastable vortex-antivortex state
t5100 forn53, k510,G55.79, and thermal noiseu f u,0.1. Initial
normal spot was of radiusR555.
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Uk, j[exp~2 iaAx
k, j !; Vk, j[exp~2 iaAy

k, j !. ~A3!

Finally, in these new variables, our equations become

G
]ck, j

]t
5

1

a2 @ck11,jUk, j1ck21,jUk21,j* 1ck, j 11Vk, j1ck, j 21Vk, j 21* 24ck, j #1ck, j2uck, j u2ck, j , ~A4!

for k, j 52N11,2N12, . . . ,N21,

]Uk, j

]t
5Uk, j H 2

i

k2 Im@ck, j* ck11,jUk, j #2
1

a2 @Uk, jVk11,jUk, j 11* Vk, j* Uk, jVk11,j 21* Uk, j 21* Vk, j 2121#J , ~A5!

for k52N,2N11, . . . ,N21, j 52N11,2N12, . . . ,N21,

]Vk, j

]t
5Vk, j H 2

i

k2 Im@ck, j* ck, j 11Vk, j #2
1

a2 @Vk, jUk, j 11Vk11,j* Uk, j* Vk, jUk21,j 11* Vk21,j* Uk21,j21#J , ~A6!
a

s

for j 52N,2N11, . . . ,N21, k52N11,2N12, . . . ,N
21.

The boundary conditions~15! and (“3A)boundary5Bext in
this representation read

c2N, j5U2N, jc2N11,j for j 52N,2N11, . . . ,N,
~A7!

cN, j5UN21,j* cN21,j for j 52N,2N11, . . . ,N,
~A8!

ck,2N5Vk,2Nck,2N11 for k52N,2N11, . . . ,N,
~A9!

ck,N5Vk,N21* ck,N21 for k52N,2N11, . . . ,N,
~A10!

V2N, j5~11 ia2Bext!U2N, j 11* U2N, jV2N11j,

for j 52N,2N11, . . . ,N21, ~A11!
VN, j5~12 ia2Bext!UN21,j* UN21,j 11VN21,j

for j 52N,2N11, . . . ,N21, ~A12!

Uk,2N5~12 ia2Bext!Vk11,2N* Vk,2NUk,2N11

for k52N,2N11, . . . ,N21, ~A13!

Uk,N5~11 ia2Bext!Vk11,N21* Vk,N21Uk,N21

for k52N,2N11, . . . ,N21. ~A14!

This set of equations has been solved numerically on
Cray J932 supercomputer with the time stepDt50.001. For
the order parameter equation~A4! the simple ‘‘alternating-
direction’’ implicit scheme of forward and backward sweep
has been used. For Eqs.~A5!, ~A6! we have applied the
Crank-Nicolson approach~see, for example, Ref. 20!.
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