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Explosive nucleation of superconductivity in a magnetic field
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Relaxation dynamics of a normal spot in a magnetic field below the critical temperature is considered. Three
different regimes of superconducting nucleation leading to the Abrikosov vortex state are predicted analytically
and observed numerically. In particular, a split of supervortex, regular growth of the Abrikosov lattice, and
explosive creation of vortex-antivortex liquid are possible scena&%163-18209)07213-9

I. INTRODUCTION variety of metastable intermediate states is expected. In par-
ticular, n-quanta supervortices and vortex-antivortex mix-
Since the discovery of high-temperature superconiures are two principle possibilities.
ductivity,! there has been a growing interest in the magnetic In the present paper we investigate the problem of super-
properties of type-1l superconductdralthough the thermo- ~ conducting relaxation and vortex formation in normal spots
dynamics of this state is now well investigated' there S““Of different SiZeS in magnetiC f|e|d We pl’ediCt the eXiStence
remain many unsolved problems concerning its dynamics. 19f three different regimes of superconducting nucleation: ex-
particular, nucleation of the Superconducting phase in th@losive creation of both vortices and antivortices with con-
presence of an external magnetic field is of great interest dugerving total topological charge, regular growth of the Abri-
to a variety of possible scenarids kosov lattice, and symmetrical splitting of the supervortex
It is well known from the celebrated paper of Abrikogov iNto single vortices.
that in type-Il superconductors such a nucleation results in
the rise of a mixed state which is characterized by the pres- IIl. BASIC EQUATIONS
ence of vortices forming a periodical lattice. Each vortex . . .
possesses a topological chamge =1 defined by the Zn (TDV\é;eL) S;[aatat;lggz i;htietfl(r)r:?ét_jlezpendent Ginzburg-Landau
change of phasg of the superconducting order parameter q
=|ylexplx) around the vortex core. The sign of integer /gy e
numbern distinguishes between vortex and antivortex. 7(? + 2i %,u’\lf) =—
When the normal-to-superconducting phase transition line
Hq,(T) is crossed slowly comparatively to superconducting 2e 2
nucleation timer, , the order parameter grows in the form of + m( iAV+ ?A’)
an Abrikosov lattice from the very beginning. Such a situa-
tion is generic for experiments where a superconductor is (1)
cooled slowly in the external magnetic field.
Recently, significant interest has been shown in the situ- VXVXA
ations where superconductivity is restored in the strongly
overcooled normal regions appearing, for example, as a re-
sult of a short laser pulse applied to the superconductor with 1 9A’ ,
magnetic flux inside. Then after the laser radiation is off, a T oot VM €
strongly overcooled normal spot exists, provided heat has
left this spot for a sufficiently short time,<7,.° ieh 2¢? )
Another scenario leading to similar overcooled normal Js= — S (WIVW =WV - [W[TAT, (4)
spots takes place when topologically multicharged normal
spots enter a superconductor from its edge after a sudden V.A'=0. (5)
increase of the external magnetic fi&ftiEvery such normal
spot possesses a topological chargessigned by trapped Here A’ andu’ are the vector and scalar potential, respec-
magnetic flux and it is conserved throughout the whole fulively; a andb are Ginzburg-Landau coefficients; and J
ture evolution. are the electric field and supercurrent, respectivelig the
Although the final thermodynamical state in all theserandom force due to white thermal noisejs normal con-
cases will be some kind of Abrikosov vortex structure, aductivity; andy is the phenomenological constant.

a+b|¥|?

W4T(r,t),

47
= T(O‘E"FJS), 2
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These equations should be accompanied by the boundagpntaining the integer number of flux quaba= n®, devel-
conditions which have a well-known form, corresponding toops in two very different ways, depending on the initial size

the superconductor-insulator contact:

v=0.

n

) 2e
—iAV——A'
c

(6)

of this spot and the topological charge

IIl. LINEAR STABILITY ANALYSIS

In order to understand superconducting nucleation in the

Assuming local charge neutralifjneaning that the Debye magnetic field we begin by studying the stability of time-

screening length is smaller than the penetration dethe

independent solutions of Ginzburg-Landau equations. In par-

can eliminate the scalar potential from the TDGL equationsficular we dwell on such situations as the-quanta
while keeping the relatiof5),'® by the gauge transformation supervorteX* and the overcooled normal statg=£0) in the

of the potentials

h 90

fic
AHA—%VB, m—u +EE (7)

accompanied by the shift of the order-parameter phase
VW exp—if) (8)
and setting news' =0.

cylinder of radiusR surrounded by the superconductor.

We shall treat both these cases in cylindrical geometry
when the supervortex is placed at the origin. For a strongly
type-Il superconductor £>1) magnetic fieldH is effec-
tively homogeneous over the region of the order-parameter
variation:

A=(A A,

,A,)=(0;Hr/2;0). (16)

It is convenient to define the dimensionless variables as In this case the order parametgmay be represented in

follows:
r=r'/§, t:t,/TGL,’TGLE47T(T§2/CZ, (9)
A=A"/(V26H;y), H=H'/(V2H ), ¢=W/yy,
- b
=T\ — 10
BE (10

wherekg is the Boltzman constant] is the dimensionless
magnetic field, and

% @,
- . wo=+[allb, Hg=—2—. (11

Here ¢ is the coherence lengtld,is the penetration depth

of the magnetic fieldH,, is the thermodynamic critical
magnetic field, andb is the flux quantum.

Thus, we can rewrite the TDGL equations in a dimension-

the form:

Y=[F(r)+n(r.e,t) Jexping), 17

where F(r) is a time-independent cylindrically symmetric
profile of the order parameter. Its azimuthal phase depen-
dence of expf) reflects the fact that the flux quanta of
the magnetic field are trapped in the normal regigfr;, ¢,t)
is the perturbation. The specific shapd¢f) is different for
the above-mentioned cases.

Substituting Eq(17) into Eq.(12) we immediately obtain

an &y 1adn 1 d*°np 2indy an
=t et 55t ——iH——
at  ar ror r<de r< do e
H2r2 n2
T IHnH- — ——2F2|n—F2p* +&
r

(18

less form: Introducing the real and imaginary parts of the perturbation
o n=a+ib, we get the set of two real equations:
T —=y—[yl?y—(iV+A?ZY+f(r), (12
at d -3 5 2n\ o ~
I'—a=[L°-3F%r)Jat+|H——|—Db+¢& , (19
oA [ 1 ot [ (] r?)de &, (19
— == VXVXA— S (y* V=gV y*) = — |[4f?A,
ot 2k K
(13 J T0_ 2 an\ o
FEbZ[L —F4(r)]b— H——2 (9—a+§i, (20)
r<)de
V-A=0. (14
Here k=46/¢ is the Ginzburg-Landau parameted, where the operator
— 2 2 it
=yc*/(4moé |a|), and the boundary condition for the order R 19 1R H22 2
parameter Is = —+-—+—-—+1+nH- —— —.
_ a2 roar  r?ge? r2
(IV+A),4=0. (15 (21)
For the magnetic f|eI<B_=V><A we require that the tangen- Expandinga andb in Fourier series:
tial component be continuous.
This set of equations describes a variety of phenomena c o
depending on initial conditions. In particular, relaxation of a= 2+ C.. cosmo-+ D sinm 29
the normal spot surrounded by a bulk superconductor and 2 mE=1( m e Hm ®): 22
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Py < and denotingp=I"A we obtain
b=—+ > (Pncosme+Q,sinme), (23)
2 &= . 2n
and substituting into Eq$19), (20) we get the following set [Lmn=3FA(r)]Cm+| H- r_z) MQn=ACp,

of equations for Fourier amplitudes:

2n
H-— r—z) MCy,=AQn, (3D

d —~ d o~ —~
I' = Co= LnCo—3F2(r)Co; I' = Po= LmPo—F2(r)Pg [Ln=FA()1Qm+
(24

and - ) 2n
[Lyn—3F4(r)]Dy— H—r—2 MP,=\D,,
Jd

o~ 2n
r EC“": LCm—3F2(r)Cpt

H-— —2) MQn., (25
r

— 2n
[Lm—Fz(r)]Pm—<H——z)mDm=)\Pm. (32
d —~ 2n r
F—Dm=LmDm—3F2(r)Dm—(H— —Z)mpm, (26)
g r We have to find the eigenvalugs} of this problem. All
the eigenvalues are real because the system is Hermitian. In
d — 2n : -~ . !
I —P,=L.P.—F2(r)P,— ( H——|mD,, (27 the framework of the linear stability analysis we are looking
ot r for the parameter values when the greatest eigenvalue
crosses zera ,,,=0. Then it is exactly the point when the
2n solution F(r)exp(ine) loses its azimuthal stability. The fol-
H-"72 mCn, (28)  |owing quantities play roles of parameters for our analysis:
unperturbed profilé&(r), homogeneous magnetic-field mag-
where nitude H, topological chargen. This approach also deter-
mines the numbem of most unstable harmonics.

The eigenfunctions of this probleitior all m#0) must
vanish atr=0 and decay exponentially in the surrounding
bulk superconductor whem—c. We have solved this eigen-
Looking for the solution in the form value problem numerically by discretizing our coordinate

space and, therefore, transforming the ordinary differential

d —~
r Esz LmQm— Fz(r)Qm+

__ # 19 (mP+n? H*?
L=—+————-— 4+ nH+1. (29
™ a2 v oor r2 4 @

Cr(r.t) Cm(r) equation problem to an algebraic one.
Dm(rit) | _[ Dm(r) expAL (30 The specific character of instability depends essentially on
Pm(r,t) Pm(r) PAL, unperturbed profilé&(r). In particular for supervortices with
Qm(r,t) Qm(r) n=1,2,3,4 we used2(r)=F2(r) in the form®
|
, , 0.34+ 0.07%?2
Fi(r)=r (33

14+0.47%+0.0%*’

0.02344+ 50532

Fa(r)=r* , 34
21 1+ 25253%2+20212.028*+5053° 349

0.000 685 608 38 r2

F2(r)=r® , 35
a0 1+2233.62+122.5%%+8.999 314 38°%+r8 (39

0.000011 072 650 76r?
1+31735°+17232.2%+192.85%+15.999 988 927 34 + 10

Fa(r)=r® (36)

In the case of an extended normal area surrounded by wahereR is the radius of the normal domain.
superconductor, the exact shapeFdf) becomes unimpor- Obviously the instability is suppressed by the magnetic
tant and it can be well approximated by a step function:  field. Calculating\ ;4 for different magnetic-field valuesl

and harmonicsn, we are looking for the onset of instability
0 for r=R, Nmad{H,m)=0.

2 —
F(r)= 1 for r>R, (37 This dependence for supervortex with=4 is presented
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400 450 500 550 600 :;(1) 700 750 800 850 900
FIG. 1. Rate growth ,,, of azimuthal instability for supervor- FIG. 3. Rate growth ,,5,(m) in the large normal spdof radius
tex with the topological charge=4 as a function of the harmonics R=40) for different magnitudes of magnetic field{l) H
numberm for different magnitudes of magnetic fiel@l) H/H, =0.87H., (n=700); (2) H=Hgser=He (N=800); (3) H
=0.95; (2) H/H;,=0.99; (3) H/H;,=1.05. =1.06H., (n=850). Wide band of harmonics becomes unstable

simultaneously.

in Fig. 1. The only unstable harmonic here mas n corre-
sponding to supervortex splitting intosingle quantum vor-  tremely wide, manifesting the creation of an Abrikosov vor-
tices on the later nonlinear stages of evolution. This instabiltex liquid. The critical magnetic field of the instability onset
ity arises for sufficiently weak magnetic fieltH<H, Honset@pproaches ., .
~0.H,, whereH,, is the magnetic field of the instability When the magnetic field is beloW,, the rate growth
onset forn charged supervortex. The dependence of rate\,,,>0 for a wide band of harmonics and this state is
growth \ ., (m) for the supervortex charge=1,2,3,4 and sufficiently unstable.
the correspondingl,, is shown in Fig. 2. As was expected, a  In the opposite case of smaller sizes of normal domain the
single quantum vortex is absolutely stable. rate growth curve sharperifig. 4) approaching that found

The picture looks very different for the instability onset in for supervortices, and onset field,,.; decreases to about
the large normal domain. In this case the wide spectrum oH.,,. Such crossover behavior for different spot sizes is
azimuthal harmonics becomes unstable simultaned&ly  shown in Fig. 5. Thus, two different types of instability may
3). (We assumed for simplicity the following relation be- arise for large and small normal spoR%£R).
tween the field magnitude, the number of flux quanta in the In accordance with this linear stability analysis the super-
normal spot, and its radiustR?H=n®,). In the limit of an  vortex with n>1 is unstable. However, this instability oc-
infinitely large normal region this spectrum becomes ex-curs at magnetic fieltH ~H.,, which is sufficiently higher

05

<
n=1.
i i i i n= =S, \=4
1 15 2 25 3 :ﬁ 4 45 5 55 6 m 150
FIG. 2. Rate growth\,{m) for the supervortex charge FIG. 4. Rate growth\ ,o,{m) in the normal spot of radiuR
=2,3,4 for onset magnetic fieldd,:H,/H.,=0.62; H3/H, =15 for different magnitudes of magnetic field) H=0.71H,,

=0.93;H,/H,=0.99. Forn=1 there is no instability\ (M) is (n=80); (2) H=Hgnse=0.99H., (n=112); (3) H=1.24H,
plotted forH=0.] (n=140).
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FIG. 5. The instability onset magnetic field,,c; versus the

. FIG. 6. Magnetic-field magnitudel and order-parameter abso-
normal spot radiuR.

lute valuel|y] profiles att=5 for n=4, k=10, =1, and thermal

) . noise|f|<0.001, for initially small normal spofradiusR=2).

than the field in the supervortex centdr,~2H.,, where

Hey is the lower critical magnetic field. In the large normal e 760, Two different boundary conditions for the order

domain the instability develops just below the upper C”ticalparameter were imposed—that given by E&5) and the
field H.,. For smaller radius the instability arises at |°Wersimp|ified condition

magnetic field tending ted ~H,,, for sizes of supervortex
order.
=0.

boundary

Y
(A(t))boundary: (A(O))boundaryr (ﬂ_n) (43

IV. EXACT NONLINEAR DYNAMICS

It is clear that these two types of linear instability must The dynamics far from the boundaries was found to be inde-
result in the formation of very different patterns on nonlinearpendent of the type of boundary conditions.
stages of evolution. In order to study nonlinear dynamics in In our computations with the latter boundary conditions
full detail the TDGL equation$12)—(14) have been solved We have used the simple “alternating-direction” implicit
numerically. This dynamics depends on initial conditionsscheme of forward and backward sweeps on a discretized
which in our case were chosen in the form: rectangular gridcf. Ref. 17. The parameters in the calcula-
tions described below were set as follows= 1, »(r,t) was

x(r,t=0)=ne, (38  uniformly distributed in the segmerjty|<0.001 random
function.
0; r<R-1 For the boundary conditiorf15) the link variable ap-
|p(r,t=0)|=4 (r+1-R); R—-1<r<R, (390 proach has been applied. This computational technique is
1; r>R presented in the Appendix.
The results of numerical simulation are presented in Figs.
A={A A} A(rt=0)=0, (40 6-11. In fact, two distinct scenarios of evolution take place.
In particular, when the initial magnetic field excedds,, a
A,(rt=0)= (Ho/2)r; r<R, normal spot grows at the beginning and magnetic field inside
LA —Hox(Kq(r/x)IKo(R/k))+nlr; >R, decreasefFig. 6). When the magnetic field levels with,,
(41) a superconducting phase arises in the spot. Later, in magnetic
where field close toH,, azimuthal instability appears, splitting the
multiquantum state into single vorticéBig. 7).
(N/R)Ko(R/ k) In the opposite case when the initial magnetic field is
Ho= (42)  much weaker thahi,, the normal spot shrinks rapidl§ig.

«K1(RI%) +(RI2)Ko(RIK)

HereK, andK, are the modified Bessel functions.
Thus, initially, we have a normal spof =0) of radius
R with n quanta of magnetic field trapped insid@®,

8) and simultaneously superconductivity appears all over the
normal spot. This superconducting phase cannot grow uni-
formly because of the magnetic field suppressing order pa-
rameter in some points with topological charge Generi-

=2k in dimensionless unils The phase of the order pa- cally, the number of such zeros of the order parameter equals
rametery increases linearly to provide the total topological the total topological charge. However, due to a spatial de-
chargen. The magnetic field is uniform across the spot andgeneracy of the order parameter many more zeroes are

decays outsidé®

created—separated roughly By The conservation of the

We solved these equations in the square domain (25fbpological charge requires that part of these zeroes are
X 250). The magnetic field at the sample edges is assumed tharged negatively and P;=n. In evolution this process
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FIG. 7. Split of four-quanta supervortex shown in Fig. 6 into

. . FIG. 9. Onset of explosive vortex-antivortex nucleation inside
single vortices foit=420.

the normal spot shown in Fig. 8 far=15.

looks like a topological explosiofFig. 9. In further dynam-
ics, in spite of massive annihilation of adjacent zeroes o
opposite sign, the remaining zeros will grow into Abrikosov
vortices and antivortices forming a metastable phdsg.
10). Eventually onlyn vortices will survive(Fig. 11).

{eachesH <2 from above, the order parameter grows leaving a
egular lattice of zeros. Subsequently, this state develops to a
usual Abrikosov vortex lattice with a separatierf between
vortex coreqFig. 12.

The most intriguing behavior appears when magnetic field
in the spot is relatively weakH<<H_,) in the initial state.
V. CONCLUSION This state is strongly unstableate growth\ ,,(H,m)>0]
&rom the very beginning. Superconductivity arises creating

One can conclude that depending on the initial overcoole ain a set of the order-parameter zeros separated by the
normal state there exist three different regimes of nucleatioftJ 1erp 0S Sep y
distance~¢. However, in a weak magnetic field the density

leading to setting up the Abrikosov vortex state in a samplebf these zeros exceeds considerably the mean number of flux
Namely, if an initially strong magnetic fieldH>H,.,) is y

confined in a small normal spot of SiB=¢, the order pa- guanta per unit area, which means that this set contains not

rameter evolves towards the supervortex profile splitting intoOnly vortices but also antivortices. Most of the vortex-

single vortices(Fig. 7). This process is similar to a well- antivortex pairs an_n|h|late rapldly_. Neverthe_less some anti-
; o7 : vortices may survive, resulting in long-living metastable
known supervortex decay in the liquid helidm.

In an initially large normal domainR> ¢) there are two vortex-antivortex liquid(Fig. 13)'. o
. ; NS . . Let us discuss the characteristic time scales of overcooled
possible scenarios. When magnetic field in the region

spot evolution. Immediately after heat relaxatiaes 7,

t=40

\ﬂ{\\\ii\{{);;\)é\\b:l\;;‘w
| ;

|
\*“m‘f\‘fﬁ"\“n‘}ﬁ'ﬂq}.;,

1 ‘\\\

IM“
.
8

FIG. 8. Magnetic-field magnitudel and order-parameter abso- FIG. 10. Metastable vortex-antivortex mixture consisting of six
lute value|{ profiles att=10 forn=4, k=10,T'=1, and thermal  vortices and two antivortices as a further stage of evolution shown
noise|f|<0.001, for large initial normal spotR=55). in Figs. 8, 9 fort=40.
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1 =430 t=100

y
y -20 X

FIG. 13. Magnetic-field magnitudd and order-parameter abso-
FIG. 11. Final stage of evolutiofsee Figs. 8—10for t=430. lute value| profiles for the metastable vortex-antivortex state at
t=100 forn=3, k=10,I'=5.79, and thermal noigé| <0.1. Initial
normal spot was of radiuB=55.

~75.~10"12s, the strongly nonequilibrium overcooled nor-
mal spot starts to relax. At the first stage<(10rg ) only
spot walls motion takes place. At the next stagengl6<t
=<50rg) explosive nucleation across the spot begins, result-
ing in the vortex-antivortex mixture. This metastable state
may survive for a long time, up to several hundreg ,
relaxing eventually to the thermodynamical Abrikosov
mixed state. However, pinning centers trapping the vortices
in the long-living vortex-antivortex mixture phase may pre-
vent their annihilation, freezing such a state for an infinitely
long period of time.
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. o o o ° S o o C APPENDIX
o o e © o o © d In our calculations with the boundary conditi¢h5) we
| S o o o | exploit the so-called “link variable” methdd'®® for the
>0 5 4 o SN & discretization of the TDGL equatior§2)—(14).
o © o © The square spatial domajxe[—L;L]}X{ye[—L;L]}
-top @0 e ©° o ] is discretized as followsa(=L/N):
o Q © < o o o
o0} o o o © o o o xk=ka, yj=ja; k,j=—N,—N+1,...N. (Al
© o < o Then the order parameter is defined on this grig;
30k, - — O . : (T =T (Xy,Yi).
-30 -20 -10 0 10 20 30 kYj
X We define the components of the vector potential on the

“links” connecting two adjacent points of the grid:
FIG. 12. Abrikosov mixed-state creation in the spot with large ) )
magnetic flux. Magnetic-field magnituditand order-parameter ab- Ai’JEAX(Xk-i- al2y;); A‘;'JEAy(xk yjtal2). (A2)
solute valug|yf contour plots at= 155 with k=10, ['=1. Initial
normal spot of radiuR=55 contained magnetic flux 3ag. Next we define the link variabldd andV as follows:
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U j=exp—iaAll);  Vyj=exp(—iaAll). (A3)
Finally, in these new variables, our equations become
alpk'j 1 * * 2
P ?[lﬂkﬂ,juk,ﬁ - 1jUk- 1+ i Vioi T Y- 1Viej— 1~ 481 i — [l “ (A4)
fork,j=—N+1,—N+2,... N-1,
aUk’j I * 1 * * * *
e Uiji — ?lm[lﬂk,jlﬂku,juk,j]_ ?[Uk,jvkﬂ,j ki+1VkjYkiVisj-1Ykj-1Vkj-1— 111, (A5)
fork=—N,—N+1,... N=1,j=—N+1—-N+2,... N-1,
(9ka]' I * 1 * * * *
p =Vi,j _P|m[¢/fk,jl/fk,j+1vk,j]_?[Vk,jUk,j+1Vk+1,jUk,ij,jUk—l,j+1Vk—1,jUk—1,j_1] : (A6)
|
for1 j=—N,—N+1,...N=-1, k=—N+1-N+2,... N VN’J.:(1_i;;12|3ext)u>,§|_”UN_”+1VN_Lj
_The boundary conditiond5) and (V X A) poundary= Bext in for j=—N,—N+1,... N—1, (A12)
this representation read
Yonj=U_nj¥-n+1j for j=—N,—N+1,... N, Uy -n=(1-18%Bex) Vs 1, nVi,-NUk -No1
(A7)
. for k= —N,—N+1,... N—1, (A13)
l//N,j:UKl*l,jlr/IN*l,j for J:_N,_N+1,...,N,
(A8) Uin=(1+ia’Bea Vits 1n-1Vion-1Ukn-1
N=Vi - _ for k=—N,—N+1,... N,
PN Vie-ndi-n for k=—N,—N+1,... N—1. (A14)
(A9)
Un=VEn_1tn—1 for k=—N,—N+1,... N, This set of equations has been solved numerically on a
' ' ' (A10)  Cray J932 supercomputer with the time steip=0.001. For
the order parameter equatidA4) the simple “alternating-
V—N,j:(l""iazBext)UtN,j+1U7N,jV7N+1j! direction” implicit scheme of forward and backward sweeps
has been used. For EgRA5), (A6) we have applied the
for j=—N,—N+1,... N—1, All Crank-Nicolson approactsee, for example, Ref. 20
J

* Author to whom correspondence should be addressed.
1J. G. Bednorz and K. A. Mier, Z. Phys. B64, 189 (1986.

0L, Kramer and R. J. Watts-Tobin, Phys. Rev. Letd, 1041
(1978.

2Y. Yeshurun, A. P. Malozemoff, and A. Shaulov, Rev. Mod. 11R_ J. Watts-Tobin, Y. Kiaenbinl, and L. Kramer, J. Low Temp.

Phys.68, 911(1996.

3P. Leiderer, J. Boneberg, P. Bir/. Bujok, and S. Herminghaus,
Phys. Rev. Lett.71, 2646 (1993; V. Bujok, P. Brl, J.
Boneberg,
63, 412(1993.

4R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev® 6916
(199).

SR. Kato, Y. Enomoto, and S. Maekawa, Phys. Rewv B 8016
(1993; R. Kato, Y. Enomoto, and S. Maekawa, Physic2Z7,
387 (1994).

F. Liu, M. Mondello, and N. Goldenfeld, Phys. Rev. Lef6,
3071(199).

"A. A. Abrikosov, Zh. Eksp. Teor. Fiz32, 1442 (1957 [Sov.
Phys. JETP, 1174(1957)].

Phys.42, 459(1981).
12| p. Gorkov and G. M. Eliashberg, Zh. Eksp. Teor. F&6,
1297(1969 [Sov. Phys. JETR9, 698 (1969].

S. Herminghaus, and P. Leiderer, Appl. Phys. I‘emSN. R. Werthamer, inSuperconductivityedited by R. D. Parks

(Marcel Dekker, New York, 1969

14D. Saint-James, G. Sarma, and E. J. Thorigpe-Il Supercon-
ductivity (Pergamon, New York, 1969.

15|, Aranson and V. Steinberg, Phys. Rev5B, 75 (1996.

18G. s. Mkrtchyan and V. V. Shmidt, Zh. Eksp. Teor. Féd, 367
(1971 [Sov. Phys. JETR4, 195(1972].

17s. E. Koonin and D. C. MeredithComputational Physics
(Addison-Wesley, Reading, MA, 1990

185 . Alder and T. Piran, Rev. Mod. Phys6, 1 (1984.

8|. B. Aranson, M. Gitterman, and B. Ya. Shapiro, Phys. Rev. B'°E. Coskun and M. K. Kwong, Nonlinearity0, 579 (1997).

51, 3092(1995.
9. Aranson, B. Ya. Shapiro, and V. Vinokur, Phys. Rev. L&8,
142 (1996.

20D, GreenspanDiscrete Numerical Methods in Physics and Engi-
neering(Academic, New York, 1974



