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Multiple-scattering x-ray-absorption fine-structure Debye-Waller factor calculations

A. V. Poiarkova and J. J. Rehr
Department of Physics, University of Washington, Seattle, Washington 98195-1560

~Received 4 May 1998!

An efficient local equation-of-motion method is introduced for calculations of the mean-square half-path-
length fluctuationss j

2 in multiple-scattering x-ray-absorption fine-structure Debye-Waller factors in aperiodic
systems. Given a few local force constants, the method yieldss j

2 via projected densities of modes or via the
displacement-displacement correlation function in real time, over a few vibration cycles. The calculation scales
linearly with the system size and does not rely on any symmetry considerations. Sample applications are
presented for crystalline Cu and Ge, and zinc tetraimidazole.@S0163-1829~99!12601-8#
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I. INTRODUCTION

A. Background

In the recent years x-ray-absorption fine-structure~XAFS!
analysis has become an important and widely used techn
for determining the local microscopic structure of compl
and disordered materials. The structural information it p
vides includes average near-neighbor distancesR, their
mean-square fluctuationssR

2 , and coordination numbersNR .
The quantitiessR

2 which appear in the XAFS Debye-Walle
~DW! factor are crucial to the success of the modern the
of XAFS. The DW factor accounts for thermal and structu
disorder and generally governs the ‘‘melting’’ of the XAF
oscillations with respect to increasing temperature and t
decay with respect to increasing photoelectron energy
practice, the DW factors of the many multiple-scatteri
~MS! terms in the XAFS signal can significantly complica
the analysis.1–3 To overcome this difficulty we present here
general equation-of-motion~EM! method for calculating
these DW factors in terms of a few local force constants
arbitrary aperiodic systems. This method is a significant
provement over conventional isotropic models such as
correlated Einstein and Debye models, and offers a num
of advantages over full lattice dynamical calculations
aperiodic systems. Although there is no advantage for p
odic systems, the method is fast and is shown to give c
parable results for XAFS DW factors.

The purpose of this paper is to discuss the theory
calculation of thermal XAFS DW factors, with emphasis
their physical interpretation in terms of the local dynamic
vibrational structure. Structural disorder can be included
an additional multiplicative DW factor, independent
temperature,4 for example, using the cumulant expansion3,4

In particular, we develop here a method to calculate
mean-square half-path-length fluctuations j

2(T) from ther-
mal motion for a general scattering pathj in the harmonic
approximation, given a few local parameters in a valen
force field ~VFF! model. Many other studies of XAFS DW
factors have been conducted previously4–7 and attempts have
been made to obtain effectivesR

2 using experimental vibra
tional spectra,8 but they are usually limited to the single
scattering~SS! case. Our treatment differs from the approa
of Benfattoet al.9 in that no explicit matrix inversion is re
quired.
PRB 590163-1829/99/59~2!/948~10!/$15.00
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We find that s j
2 depends primarily on the vibrationa

structure in the local environment around a scattering p
The locality of s j

2 allows us to address the problem of i
calculation in terms of small clusters of atoms, without t
use of periodic boundary conditions or any symmetry co
siderations. Thus our approach can be applied to general
terials, including amorphous and irregular lattices, as in b
logical complexes. This also means that for complica
polyatomic structures, one needs an accurate model of in
atomic interactions only in the immediate vicinity of a sca
tering center and an effective~or average! force field for
interactions between further atoms. As will be shown for t
case of molecular zinc tetraimidazole, this prescription s
nificantly reduces the number of force constants neede
the calculations. We will also show that it is possible
achieve a much better agreement with experiment using
a few more parameters than in conventional isotropic mod
such as the correlated Einstein and Debye approximati
The sensitivity ofs j

2 to displacement-displacement correl
tions suggests that XAFS can be of significant value in te
ing the validity of a given lattice dynamical model. This als
raises the possibility of solving the ‘‘inverse problem,’’ th
is, of deducing microscopic force constants directly from e
perimental XAFS spectra. Since the numerical implemen
tion of the EM method is compatible withFEFF ~Ref. 2! and
fitting codes such asFEFFIT,3,10 the unknown force constant
and, hence, local vibrational densities of states~VDOS! can
be fitted to experiment. We plan to address this further
future work. For the present paper, however, we will simp
assume that a VFF model is knowna priori. To illustrate the
method, sample applications will be presented for molecu
zinc tetraimidazole, as well as for crystalline Cu and G
which were used for testing purposes.

In this work the DW factor exp@2Wj(k)# for a given scat-
tering path of total length 2r j is defined by the thermal an
configurational average of the oscillatory part of the XAF
signal:

^ei2kr j&5ei2kRje2Wj ~k!, ~1!

where the indexj corresponds to thej th scattering path.
Curved-wave effects on the DW factors are usually ne
gible and will be ignored here.11 We also neglect anharmoni
corrections. In the weak-disorder limit~or harmonic approxi-
948 ©1999 The American Physical Society
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PRB 59 949MULTIPLE-SCATTERING X-RAY-ABSORPTION FINE- . . .
mation!, this DW factor is a Gaussian,Wj (k)52k2s j
2 ,

wheres j
25^(r j2Rj )

2& is the mean-square variation in th
effective or half-path lengthRj5^r j& appearing in the stan
dard XAFS equation

x~k!5(
j

NjS0
2

kRj
2 u f j

eff~k,Rj !u

3sin@2kRj1f j~k!#e22Rj /le22s j
2k2

. ~2!

Here the sum runs over all unique scattering pathsj ~i.e.,
both SS and MS paths! of degeneracyNj , f j

eff(k,Rj) is the
effective curved-wave backscattering amplitude,S0

2 is a
many-body amplitude reduction factor,f j (k) is the net
phase shift,k5@2(E2EF)#1/2 is the wave number measure
from thresholdEF , and l is the photoelectron mean fre
path.

B. XAFS Debye-Waller factors

To better understand the nature of MS DW factors it
useful to examine their origin. The XAFS spectrumx is de-
fined as the normalized, oscillatory part of the x-ra
absorption coefficientm, i.e., x5(m2m0)/m0 , wherem0 is
the smooth atomic-background absorption. According
XAFS theoryx can be expressed as a thermal average1

x~k!5ImK (
j

NjS0
2f j

eff~k,r j !

kr j
2 ei ~2kr j 12dc!22r j /lL , ~3!

wheredc is central atom phase shift andr j is a dynamical
variable equal to the instantaneous effective length of a s
tering path j . Assuming small disorder and neglectin
curved-wave effects from ther j dependence off j

eff ,
exp(22r j /l), and 1/r j

2 we have

x~k!5Im (
j

NjS0
2f j

eff~k,Rj !

kRj
2 ei2dc22Rj /l^ei2kr j&, ~4!

where the thermal average is given by

^ei2kr j&5
Tr e2bHei2kr j

Tr e2bH . ~5!

HereH is the lattice Hamiltonian andb51/kBT. Now let uW i
be the displacement from equilibrium of the ion at sitei , so
that neglecting terms of orderui

2 , the effective path length
for a scattering pathj with nj scattering legs is

r j.Rj1
1

2 (
i 51

nj

~uW i2uW i 1!•R̂ii 1 . ~6!

Here i 1[ i 11, i 5nj11 corresponds to sitei 51, Rj
[(1/2)( iRii 1 is, as before, the effective equilibrium pa
length,Rii 1 is the equilibrium interatomic distance betwe
atomsi andi 1, andR̂ii 1 is the corresponding directing un
vector. From the Born-Oppenheimer approximation, the
motion can be regarded as stationary during a transit
Hence, the thermal averages are to be carried out in
ground stateprior to x-ray absorption, rather than in relaxe
final states. Now, for any harmonic Hamiltonian or Gauss
disorder one has the exact result12
-

o

t-

n
n.
he

n

K expS i2k(
i

~uW i2uW i 1!•R̂ii 1D L 5e22k2s j
2
, ~7!

wheres j
2 denotes the mean-square fluctuation in the eff

tive path lengthRj :

s j
25

1

4 K F(
i 51

nj

~uW i2uW i 1!•R̂ii 1G2L . ~8!

For example, in the SS case of two atoms at sites 0W andRW ,

sR
25^@~uW R2uW 0!•R̂#2&

5^~uW R•R̂!2&1^~uW 0•R̂!2&22^~uW R•R̂!~uW 0•R̂!&. ~9!

Thus, if one neglects the variation of all terms but the rapi
varying oscillatory function in Eq.~3! and assumes sma
harmonic displacements,s j /Rj!1, Eq. ~2! is recovered.

Equation~8! shows thats j
2 is not merely a sum of mean

square displacementŝui
2& at scattering sites but also in

cludes the displacement-displacement correlation te
^uiaukb&, wherea andb denote Cartesian indicesx, y, and
z. These correlations decay algebraically with distance
are such that only modes contributing to motion along
bond path are important. Therefore, in contrast to the me
square displacement̂uia

2 & which appears in the x-ray
diffraction DW factor, s j

2 depends on fluctuations in pa
distances and thus provides a direct measure of
displacement-displacement correlation function. As will
shown belows j

2 is also related to a certain projected loc
VDOS and therefore is determined by the local vibration
structure.

We will discuss our results in comparison with two is
tropic models commonly used for calculations of the XAF
DW factors, namely, the correlated Debye~CD! and corre-
lated Einstein~CE! models.5 Such an isotropic approach ma
not be able to provide an adequate description of vibratio
properties for heterogeneous structures and, hence, can
to poor agreement with experimental data. Therefore, i
important to have a more general microscopic approach
the DW factor calculations which could be effectively a
plied to SS as well as MS terms.

II. EQUATION-OF-MOTION METHOD

A. Formalism

The approach used in the present study is a finite temp
ture EM method introduced by Rehr and Alben6 and Beeman
and Alben13 for calculation of the total vibrational density o
states and related quantities. This technique builds in Bo
Einstein statistics and allows one to calculate XAFSs j

2(T)
either in real time or in the frequency domain. The E
method has a number of advantages. For example, it is
efficient for large systems since diagonalization of huge m
trices is not required and the calculation time scales linea
with the size of a cluster.

The EM method is based on solving 3N coupled New-
ton’s equations of motion with initial conditions dependin
uniquely on a given scattering path, whereN is the number
of atoms in the cluster. Regarding the total potential ene
F of the crystal lattice as a function of the atomic displac
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950 PRB 59A. V. POIARKOVA AND J. J. REHR
mentsuW i from their equilibrium positions, and making use
a harmonic approximation, one obtains the equations
motion12

d2Qia~ t !

dt2
52(

kb
Dia,kbQkb . ~10!

HereQW i5uW iAMi , Mi is the mass of the atom at sitei , and
Dia,kb5F ia,kb /AMiMk is the dynamical matrix of orde
3N33N whereF ia,kb are the second derivatives of the p
tential energy with respect to the atomic displacementsuia
andukb taken at the equilibrium configuration. Upon subs
tuting the canonical displacement vectorsQW i expanded in
normal coordinatesql ,

QW i5(
l

eW i~l!ql , ~11!

into the definition of the mean-square fluctuation in the
fective path lengthRj , these equations of motion lead to
standard eigenvalue problem for the normal modes:

vl
2e ia~l!5(

kb
Dia,kbekb~l!. ~12!

Then evaluating the thermal average using Bose-Einstein
tistics,

v2^ql&25 K n~vl!1
1

2L \vl5
\vl

2
coth

\vlb

2
, ~13!

one obtains a frequency domain formula fors j
2 :

s j
2~T!5

\

2m j
E

0

vmax dv

v
r j~v!coth

b\v

2
. ~14!

Here m j is an effective reduced mass for scattering patj
that ensures normalized initial conditions,b51/kBT, vmax

*zAk1 /m1 is maximum frequency of the lattice motion,z is
the coordination number,k1 is the central first-neighbo
force constant,m1 is reduced mass of the scattering cen
and its first neighbor, and

r j~v![(
l

u^luQj~0!&u2dD~v2vl!

5
2

p E
0

tmax

^Qj~ t !uQj~0!&cosvte2«t2dt ~15!

is the projected VDOS contributing tos j
2 . In the time inte-

gration«53/tmax
2 and tmax5A6/(vmaxD) are cutoff param-

eters that fix the net spectral resolution widthD ~typically
5% of the bandwidth!, dD is a narrowd-like function of
width D, and ^Qj (t)uQj (0)&5( i ,a

nj Qia(t)Qia(0) is the
displacement-displacement autocorrelation function. The
placement state vectoruQj (t)& is determined by integrating
the equations of motion~10! numerically using a two-step
difference equation approximation with initial velocities s
to zero and initial displacementsuQj (0)&. The specific form
of the initial displacements depends on the scattering path
defined below. The cutoff parameters are introduced for
of

-

ta-

r

s-

t

as
f-

ficiency in the calculation, and focus on the local enviro
ment by cutting off long-distance behavior.

By substituting Eq.~15! for r j (v) into Eq. ~14! and
evaluating the Fourier transform, one obtains an equiva
real time expression fors j

2(T):

s j
2~T!5

\

m jp
E

0

tmax
dt^Qj~ t !uQj~0!&

3 lnF S 2 sinh
pt

b\ D 21Ge2«t2. ~16!

Therefore, in principle, it is not necessary to determ
r j (v) as an intermediate step, ands j

2(T) can be explicitly
calculated from the corresponding displaceme
displacement autocorrelation function. Note that in the ti
domain the Bose-Einstein weight factor is equal
2 ln@2 sinh(pt/b\)# and reduces for long timet to 2pt/b\
at high temperatures and ln(b\/2pt) at low. The time inte-
gration limit tmax is usually of the order of a few vibrationa
cycles and requires typically 25–35 time steps per cycle.
the integrals in our implementation of the EM method a
evaluated using the trapezoidal rule, which is appropriate
highly oscillatory integrands.

B. Multiple scattering s j
2

Let us now apply the EM method to calculation ofs j
2 for

a general MS path. The sum of terms in Eq.~8! can be
regrouped in the following way:

s j
25K F(

i 51

nj

uW i•S R̂ii 21R̂ii 1

2
D G2L . ~17!

Adopting a vector expansion of the displacements from
~11!, and evaluating the average using Bose-Einstein sta
tics @Eq. ~13!#, one can rewrite Eq.~17! as

s j
25

\

2m j
(
l

1

vl
coth

b\vl

2

3(
i

FAm j

M i
S R̂ii 21R̂ii 1

2
D •eW i~l!G2

. ~18!

The term in square brackets corresponds to the we
u^luQj (0)&u2 in Eq. ~15! and can be interpreted as the no
malized probability that the initial displacement sta
i.e., theN-dimensional vector with onlynj nonzero compo-
nents uQj (0)&[uAm j /M1(R̂1,nj 2

1R̂1,2)/2,...,Am j /Mi(R̂ii 2

1R̂ii 1)/2,...,0& ( i 51,...,nj ), is in vibrational modeul&
5ueW1(l),...,eWN(l)&. Here m j is defined so that
^Qj (0)uQj (0)&51, which forces the projected VDOSr j (v)
to be unit normalized:

1

m j
[(

i 51

nj 1

Mi
S R̂ii 21R̂ii 1

2
D 2

. ~19!

For example, in the special case of SS the EM init
displacement state is defined as uQR(0)&[u
2AmR /M0R̂,AmR /MRR̂,0,...&, where mR5(1/MR

11/M0)21 is the reduced mass for the (0W ,RW ) bond pair.
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In order to simplify Eq.~18! one can define a normalized
local VDOS r j (v) as in Eq.~15!, which leads to the fre-
quency domain formula for MSs j

2 in Eq. ~14!. The VDOS
spectrumr j (v) can be interpreted as the ‘‘sound’’ of th
lattice plucked along the displacement vectors given by
initial conditions.

C. Force field models

The EM formalism presented above gives a relation
tween XAFS DW factors and the local microscopic enviro
ment around the scattering center. In order to apply
method, knowledge of the local force field model describ
effective interatomic interactions or dynamical matrixD is
required. Clearly, the choice of the model depends on
type of the interatomic bonds. For practical consideratio
the model should be kept as simple as possible: i.e.,
number of its independent parameters should be small
sufficient to avoid unphysical zero-frequency modes and
have an accuracy to within a few percent.

One commonly used model is the VFF model14 which
expresses energy changes in terms of changes in ‘‘inte
coordinates’’ such as bond lengthsdr i j 5(uW i2uW j )•R̂i j , bond
anglesdu i jk , etc. The potential energy of the lattice defo
mation in this case can be written as a quadratic form

F5
1

2 ( kr
i j ~dr i j !

21
1

2 ( ku
i jk~du i jk !21¯ . ~20!

Herekr
i j is a bond-stretching force constant for nearest nei

bors i and j , ku
i jk is a bond-bending force constant corr

sponding to an angular rigidity for the angleu i jk , and the
remaining terms are due to contributions from noncen
interactions proportional to products of changes in differ
internal coordinates, e.g., (dr i j )3(dr jk), (dr i j )3(du i j l ),
etc. Because interatomic bonds are crucial for describing
teractions in molecules and covalent crystals, the VFF mo
is particularly effective for such structures. An advantage
the model is that the dependence of the deformation en
solely on deformations of the bonds makes it rotationa
invariant. For some materials~e.g., copper crystal! only a
single near-neighbor force constant is needed to approxim
most of the structure in vibrational spectra and to obtains j

2

in good agreement with experiment. Sometimes it is m
convenient to introduce effective central interactions w
further neighbors rather than using bond angles and/or c
terms, although such interactions may not correspond
‘‘real’’ chemical bonds. There exist a large number of oth
prescriptions for treating lattice deformations. These inclu
the Born15 and Keating16 models which are used primaril
for diamond-type crystals. In any case, the first ne
neighbor central force constants are usually the largest in
interaction picture. In the future, however, it would be des
able to calculate these force constants by anab initio
method.

In the present paper we will not consider effects aris
from anharmonic corrections to the potential energy. In g
eral, anharmonicity leads to interactions between the var
modes, and gives a contribution tos j

2(T) that increases with
temperature. Further discussions on this topic can be fo
elsewhere.4,17–19 Due to anharmonic effects, the Gaussi
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approximation for DW factor Eq.~1! is not precisely valid,
and the general cumulant expansion3,4 has to be considered
instead.

D. Correlated Debye and Einstein models

In this subsection we will briefly review the standard C
and CE models often adopted for approximating XAFS D
factors and which are used for comparison with EM meth
in Sec. III. The CD model is essentially a spherical appro
mation tosR

2 in terms of the eigenmodes@Eq. ~20!# and leads

to a projected VDOS for an atomic bond (0W ,RW ) of the form5

rR~v!5
3v2

wD
3 F12

sin~vR/c!

vR/c G . ~21!

HerevD5kBuD /\ is the Debye frequency,uD is the Debye
temperature,c5vD /kD is the Debye approximation for th
speed of sound,kD5(6p2N/V)1/3, and N/V is the atomic
density number in the crystal. The second term in the bra
ets accounts for correlations and depends on bond lengt

The CE model approximates the vibrational spectr
with a singled function centered at the effective vibration
frequencyvE(Rj ), which in general, depends on the path
interest:

r j~v!5d„v2vE~Rj !…. ~22!

The Einstein frequencyvE(Rj ) for the XAFS DW factor for
scattering pathj can be interpreted in terms of the loc
potential energy in the deformed lattice stateuQj (0)&, i.e.,
vE

2(Rj )5^Qj (0)uDuQj (0)&. In the SS case, for example
vE(R) is related to the local effective bond-stretching for
constantkR5mRvE

2(R). This value ofvE(R) is equivalent

to the ‘‘natural’’ vibrational frequency of the bond (0W ,RW )
togetherwith all attached neighboring bonds, but regardi
all other masses as fixed.17,18 Similarly, for a MS pathj the
potential energy (1/2)kjs j

2 of a stretched pathj with path
length fluctuation 2s j is equal to that of a single-sprin
model with reduced massm j @see Eq.~19!# and spring con-
stantkj[m jvE

2(Rj ). The CE model is particularly appropri
ate for materials withr j (v) sharply peaked around a sing

FIG. 1. Projected VDOSrR(v) for the first shell of Cu calcu-
lated using the EM method withN5459 andk1527.9 N/m~solid
line!, in comparison with CD~long dashed line! and CE ~short
dashed line! models.
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952 PRB 59A. V. POIARKOVA AND J. J. REHR
frequency, but otherwise has most of the advantages
disadvantages of the CD model.

In general, depending on the form of the vibrational sp
tra, one or the other of these phenomenological models
provide a better approximation, but neither is usually a
equate for heterogeneous systems. Plots of projected VD
rR(v) for the first shell of Cu calculated using our nonis
tropic EM method (k1527.9 N/m), the CD (uD5327 K)
and CE (uE[\vE /kB.3/4uD.245 K) models are pre
sented in Fig. 1. The valueuD5327 K was obtained from a
fit to experimental XAFS data~see Sec. III B!.

III. APPLICATIONS

A. DW factors for zinc tetraimidazole

The study of the vibrational and dynamical properties
complex organic structures such as zinc tetraimidazole
complicated by a large number of degrees of freedom an
corresponding number of force constants. Imidazole is a
cial organic compound occurring in nucleic acid bases
amino acids, e.g., is an important constituent of the am
acid histidine. We chose zinc tetraimidazole since it w
studied in detail by Loeffen, Pettifer, and Tomkinson20

~LPT! and thus permits quantitative comparisons. This m
romolecule consists of four imidazole ring molecul
(N2C3H4) attached to a zinc atom, forming a slightly di
torted tetrahedral structure~Fig. 2!. The entire cluster hasC2
point symmetry group with the zinc atom lying on a twofo
axis and includes 37 atoms. To obtain all the parame
describing the force field of such complex materials is rar
possible, and therefore it is crucial for XAFS analysis
have a simplified prescription for calculating DW factors u
ing a minimum set of parameters.

As a basis for the EM calculations we started with the f
harmonic force field deduced from inelastic neutron scat
ing of natural and deuterated zinc tetraimidazo
compounds.20 This force field is essentially a VFF with de
formations described in terms of combinations of inter
coordinates such as bond stretches, angle bends, and

FIG. 2. Structure of the 37-atom zinc tetraimidazole macrom
ecule based on the coordinates given by LPT~Ref. 16!.
nd
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f
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sions, and contains more than 60 distinct force constants
of which correspond to internal vibrations of the imidazo
branches. As may be guessed from the geometry of the s
ture, these internal modes, as well as the ‘‘flapping’’ mod
of the branches, have little effect on the radial vibrations
the Zn-N bonds that dominates1

2. Thus, by simplifying the
VFF of the imidazole units, the number of the paramet
used in the calculations can be significantly reduced with
causing large errors ins1

2. Because torsional force constan
are two orders of magnitude smaller than the domin
stretches, we neglected their effects in our simulations a
gether. Several other negligibly small force constants w
omitted as well. Our study consists of three steps in build
a model structure analogous to that of LPT. Starting with
simple five-atom cluster, we then gradually add more
grees of freedom. At the first two steps, averages of the s
eral similar force constants were used rather than th
slightly different fitted values, which further reduced th
number of parameters. We refer the reader to the pape
LPT for detailed definitions of the internal coordinates~i.e.,
bonds and angles!. The numerical implementation of ou
method was successfully checked by comparing EM ca
lations of frequency modes with those calculated analytica
by applying a group theoretic analysis to a tetrahedralXY4
model with three force constants: bond stretching, an
bending, and bond coupling.

~1! As a starting model@Fig. 3~a!# we considered a five-
atom cluster consisting of a zinc atom in the center s
rounded by four pseudoatomsÑ with masses equal to th
mass of the imidazole ring~68 u!. The geometry of the clus
ter was kept the same as in the ZnN4 group of the original
structure. Only two force constants were used in the ca
lation: a bond stretchingk0 ~degeneracy 4! and an angle
bendingu0 ~degeneracy 6! ~see Table I!. The first parameter
was set equal to the average of the two Zn-N stretches in
full VFF of LPT, and the latter to the average of the fo
N-Zn-N angle bends~taking into account degeneracy due

l-

FIG. 3. Reduced structural models used to approximate the V
of zinc tetraimidazole with~a! two and ~b! four effective force
constants, as well as~c! the 23-parameter VFF.
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the symmetry!. The model yielded SSs1
252.0631023 Å 2

at 20 K, about 18% below the value estimated from exp
mental XAFS data, (2.560.2)31023 Å 2.

~2! In the second, slightly bigger calculation, we includ
the ZnN4 group and eight pseudoatoms in place of the car
atoms nearest to the nitrogens@see Fig. 3~b!#. Four of these
pseudoatoms (C̃1) had masses equal to the sumM (C)

TABLE I. Force constants used in our VFF models fors j
2 cal-

culation in zinc tetraimidazole. The first four parameters were u

in models 1 and 2 and the remainder in model 3. HereÑ andC̃ are
pseudoatoms~see text!. All angle bends are scaled by correspon
ing near-neighbor distances.

Symbol Description Value~N/m!

k0 Zn–Ñ stretch 110

u0 Ñ–Zn–Ñ bend 37

k1 N–C̃ stretch 626

u1 C̃–N–C̃ bend 2590

k0
(A) Zn–N stretch 111

k0
(B) Zn–N stretch 108
a Zn–N/Zn–N 27.4
b Zn–N/Zn–N 3.77

u01 N–Zn–N bend 46.1
u02 N–Zn–N bend 26.1
u03 N–Zn–N bend 40.9
u04 N–Zn–N bend 21.8
f11 imid out-of-plane bend 9.0
f12 imid out-of-plane bend 7.3
k11 N1–C2 stretch 670
k12 N1–C5 stretch 681
k13 C45C5 stretch 561
k14 N3–C4 stretch 500
k15 N35C2 stretch 752
g1 N1–C2 /N1–C5 47.3
g2 N1–C5 /C45C5 45.0
g3 C54C5 /N3–C4 25.4
g4 N3–C4 /N35C2 81.1
u11 Zn–N–Cbend 10.9
u12 Zn–N–Cbend 14.8
zA ring deformation 260
jB ring deformation 250
i-

n

1M (N)12M ~H!.28. u and the other four (C̃2) to
2@M (C1M (H)#.26. u. Four force constants were used
the calculation~see Table I!: in addition to the two param-
eters of model~1! we considered a stretchk1 between the
nitrogen and theC̃i nearest to it equal to the average of t
two N-C stretches and an angle bendingu1 ~the result of the
combining two ring deformations and calculating coef
cients at the corresponding angle bend term!. For the short
Zn-N bond the resultings1

252.4331023 Å 2 at 20 K.
~3! Finally, we included all atoms of the imidazole uni

except the hydrogens@see Fig. 3~c!# and used 23 distinc
force constants in the VFF model: two Zn-N bond stretch
k0

(A) andk0
(B) , two Zn-N bond couplingsa andb, six skeletal

angle bendsu0i , two out-of-plane angle bends of the imida
zole branchesf1i , five bond stretches inside the imidazo
rings k1i , four imidazole bond couplingsg i , and two ring-
deformation constantszA andjB . The result for the weake
~108 N/m! Zn-N bond is s1

2(20 K)52.6431023 Å 2, in
good agreement with the value obtained by LPT (2.
31023 Å 2). For the stronger~111 N/m! bond the EM cal-
culation yielded 2.6331023 Å 2, again in excellent agree
ment with the values calculated by LPT (2.6031023 Å 2).

We also used these three models to calculates j
2(20 K)

for four MS triangular paths of the type Zn→N(1)→N(2)

→Zn whereN(1) and N(2) are the nearest neighbors to th
scattering center~see Table II!. Note a significant effect of
the N(1)-Zn-N(2) bending force constants and geometry
thes j

2 values. The wider the angle, the greater the resista
to its deformation, and hence theses j

2’s are inversely pro-
portional tow j . The values ofs j

2 appear to be rather larg
since there is no explicit N-N stretching involved.

These results~Table III! show that, due to the local natur
of s2, it is possible to reduce dramatically the number of t
parameters in the VFF even for very complex structu
while still attaining a 5–10% accuracy in the final results f
s2 in comparison with both more precise theory and expe
mental data. This accuracy is satisfactory, since the e
bars for the force constants themselves are usually of
same order, e.g., about 15% for Zn-N bond-stretching c
stants in zinc tetraimidazole, and the accuracy of the E
method, as implemented in our code, is fixed to be about

The vibrational spectrum of the zinc tetraimidazole m
ecule can be subdivided into high- and low-frequency
gimes. The high-frequency regime (.500 cm21) corre-

d

e

d-
TABLE II. Values of MS s j
2 at 20 K calculated for four central MS paths of the typ

Zn→
k(1)

N(1)→
u

N(2)→
k(2)

Zn in zinc tetraimidazole depending on the number of the force constants~n! used in the
VFF model. Herej is the MS path index,Rj its effective length,w j the scattering angleN(1)-Zn-N(2) in
degrees,k( i ) the force constant for the bond Zn-N( i ), andu is the bending force constant for the correspon
ing w j . All force constants are given in N/m.

s j
2 (1023 Å 2)

j Rj ~Å! w j n52 4 2 k(1) k(2) u 3

19 3.57 107 3.17 4.10 3.94 108 111 40.9
20 3.59 108 3.17 4.71 4.95 111 111 26.1
21 3.62 111 3.16 4.05 3.86 108 111 46.1
22 3.63 112 3.15 4.47 4.87 108 108 21.8
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sponds to the modes caused by internal motion of
imidazole branches, while the low-frequency regim
(,500 cm21) consists of skeletal vibrational modes such
tetrahedral deformations, and in- and out-of-plane libratio
of the imidazole branches. These low-frequency modes y
almost 70% of the calculateds1

2. The low-frequency part of
the projected VDOS for the Zn-N bond~first shell! is pre-
sented in Fig. 4. The peaks lying in the range betwe
170 cm21 and 300 cm21 correspond to the tetrahedral mode
whereas the lower part of the spectrum is due to the lib
tions of the imidazole branches. Due to the small size of
system, the spectra are highly discrete. For such heter
neous materials like zinc tetraimidazole, a single-param
CD or CE model is not accurate.

FIG. 4. Low-frequency part of the first shell projected VDO
rR(v) for the 23-parameter model of Zn tetraimidazole (N521).
The lines at 296, 277, 274, 228, 206, 205, 204, 184, and 174 c21

indicate low-frequency tetrahedral modes obtained by LPT~Ref.
16! for the entire 37-atom macromolecule.
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B. DW factors for Cu

The first crystalline structure examined in our MS calc
lations was a 459-atom spherical cluster of a copper cry
with fcc lattice symmetry. Although our method was d
signed for general aperiodic systems, we chose fcc Cu s
it has often been used as a test case for DW and other X
studies and accurate XAFS data are available. Following
model of Rehr and Alben,6 only a single central interaction
between the first nearest neighbors with force constank1
527.9 N/m was taken into account. Example results for
first shell SS path and for the 111 triangular MS path ver
temperature are shown in Fig. 5 in comparison with the C
model (uD5327 K) results calculated by theFEFF code, as
well as with experimental data21,22 and the CE model for the
first shell (uE5245 K). Our results for SSsR

2 are in excel-
lent agreement~within 0.3% for the first and second shell
and within 3% for the third shell! with those obtained by
Sevillanoet al.5 using full lattice dynamical calculations. Ex
cellent agreement with experiment at lower temperature
also reached. At higher temperatures, i.e., above 500 K,
error between our theory and experiment is likely due
anharmonic effects. The results fors j

2 indicate that at all
temperatures, the CD model is in good agreement with

TABLE III. Values of SSs1
2 at 20 K for the weak Zn–N bond

in zinc tetraimidazole depending on the number of the force c
stants~n! used in the VFF model. Hereeexpt5100(s1

22sexpt
2 )/sexpt

2

ande5100(s1
22sLPT

2 )/sLPT
2 with sexpt

2 5(2.560.2)31023 Å 2 and

sLPT
2 52.6231023 Å 2.

n s1
2 (1023 Å 2) eexpt ~%! e ~%!

2 2.06 18 21
4 2.43 3 7

23 2.64 6 1
nt (

.

FIG. 5. Mean-square amplitudess j
2 for a 459-atom cluster of Cu vs temperature as calculated from a single force constak1

527.9 N/m) model for the first shell~EM SS! and for the 111 triangular MS path~EM 111!. The CD model (uD5327 K) calculations for
the first shell~CD SS! and the 111 triangular MS path~CD 111! and the CE model for the first shell~CE SS! are given for comparison
Points represent experimental values ofs2 ~Refs. 21,22!.
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FIG. 6. ~a! Projected VDOSr j (v) for the first shell~solid! and for the 111 triangular MS path~dashed line! for Cu calculated via EM
method.~b! Total VDOSr~v! and projected VDOSrR(v) for the first shell and sixth shells of Cu calculated via EM method.
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EM method for the first shell SS path: i.e., the 10% diffe
ence is within the error bars of the two methods. A larg
difference~about 25% at high temperatures! is observed for
the 111 path. The discrepancies between the two models
smaller at low temperatures. Projected vibrational densi
of statesr j (v) for the two paths are shown in Fig. 6~a!. Note
that the VDOS for the 111 triangular path has a shar
dominant peak at about 42 THz; i.e., ther j (v) is more
monochromatic for this path. One can think of it as the fi
tone of a musical ‘‘triangle.’’ This feature also explains th
bigger error in the CDs j

2(T) for this path. Figure 6~b! illus-
trates the importance of correlations for nearest neighbor
well as the decay of the correlation function with distan
Note that the projected VDOS for the sixth shell is ve
similar to the total VDOS which indicates that contributio
from the correlations is negligible for the further shells.
-
r

re
s

r

e

as
.

This study shows that overall the CD model is a reas
ably good approximation for Cu, which might be expect
since the fcc structure is highly isotropic. This also can
seen from a comparison of the XAFS Fourier transfo
x̃(R) with fits of theoreticalFEFF calculations using DW
factors obtained via the CD model and the EM method~see
Fig. 7!. Fits of theoreticalx̃(R) to experiment measured a
150 K were performed using a phase-corrected version
FEFFIT, i.e., with theoretical phase shifts taken fromFEFF7.
As fitting parameters for the EM model we used a shift
energy origin DE and a constant amplitude factorS0

2,
whereas for the CD models we usedDE and Debye tempera
ture uD , and setS0

2 equal to the value derived from the EM
fit ~0.927!. The data were fitted in the range between 1.7 a
5.2 Å for the 16 most significant scattering paths which sp
the first four shells. The fitted value foruD was 32769 K,
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956 PRB 59A. V. POIARKOVA AND J. J. REHR
within error bars of the valueuD5315 K.23 As Fig. 7 shows,
both methods yield XAFS in excellent agreement with e
periment, though the EM method is noticeably better.

C. DW factors for Ge

The second crystal considered in our study was a 1
atom spherical cluster of Ge of the diamond space group
the application of the EM method to such loose, anisotro
structures like Ge, a single-spring model is inadequate, an
is necessary to include noncentral forces to account for bo
bending interactions. Otherwise there is no resistance

FIG. 8. VDOS for a 633-atom cluster of Ge as calculated
EM method~a! for the first shell and~b! for 121 triangular MS path.
~c! Total experimental spectrum determined from neutron scatte
~Ref. 26! in comparison with theoretical total VDOSr~v!.

FIG. 7. Magnitude of the phase corrected Fourier transfo
x̃(R)5FT@kx(k)# for Cu at T5150 K as extracted from experi
ment using the phase correctedFEFFIT code~solid line!, and fitted
from theoretical results with DW factors calculated using CD~long
dashed line! and single force constant EM~short dashed line! mod-
els.
-

7-
In
ic
it

d-
to

shear, and the projected VDOS exhibits an unphysical ze
frequency mode. The force field model used in our calcu
tions included central interactions out to the third neighb
~k15120 N/m for the first neighbors, 4.0 N/m for the se
ond, and21.1 N/m for the third!, and noncentral bond
bending interactions24 with k1

nc50.04k1 fit to the
experimental25 VDOS. The values for the central interactio
force constants were based on results of Goldammeret al.26

and then adjusted by hand to fit the experimental spect
determined from neutron scattering.25 Figure 8 shows the
calculated total and projected VDOS for this model in co
parison with experimental total VDOS. The MSs j

2 at 300 K
calculated by the EM method in comparison with resu
obtained from CD model@uD5360 K ~Ref. 23!# and several
SS experimental values22 are presented in Fig. 9 versus th
scattering path index listed in order of increasing path len
as generated byFEFF7. For example, path number 1 corre
sponds to first shell SS, 2 to second shell SS, 3 to 121 tr
gular MS path, 4 to triangular 211 MS path, 5 to third sh
SS, 6 to double scattering from the first neighbor (s6

2

54s1
2), etc. According to the EM calculations for the fir

three paths, projected VDOS for paths 1 and 3~see Fig. 8!

g

FIG. 9. XAFS MSs2 for 147-atom cluster of Ge as calculate
with EM and CD models atT5300 K vs MS path index~see text!.
Two experimental values~Ref. 21!, corresponding to the first and
second shell SS, are given for comparison.

FIG. 10. Magnitude of the phase corrected Fourier transfo
x̃(R)5FT@kx(k)# for Ge atT5300 K as extracted from experi
ment using the phase-correctedFEFFIT code ~solid line! and fitted
from theoretical results with DW factors calculated using CD~long
dashed line! and EM ~short dashed line! models.
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have sharper dominant optical peaks at about 50 T
whereas the VDOS for path 2 has a more smeared out s
trum and, thus, is probably better approximated with C
model. This explains the smaller difference with the C
model for path 2. The deficiency of the CD model for Ge
illustrated by the poor fit of the theoreticalx(R) to experi-
mental XAFS spectra~see Fig. 10!. Using the same fitting
parameters as in the case of Cu above, the 300 K data
fitted in R space in the range between 2.0 and 5.2 Å for
20 most significant scattering paths spanning the first
shells. The fitted value foruD was 375616 K, which again
is within error bars from the value 360 K.23

IV. CONCLUSIONS

The EM method presented in this paper provides an e
cient and general approach for the calculation of MS XA
Debye-Waller factors in terms of local force constants. O
results illustrate a number of advantages of the EM met
in comparison with traditional isotropic models, especia
for heterogeneous materials which are those of greates
terest in XAFS studies. Due to the local nature of the D
factors, the method can be successfully applied to small
irregular structures by focusing on the vicinity of the scatt
ing atom. It requires no symmetry specification or bound
conditions. Since no secular equations or matrix diagonal
tions are involved and given the linear scaling of the num
cal procedure with system size, the method is efficient e
for clusters of more than several hundred atoms. In that c
solving the ‘‘exact’’ eigenvalue problem is very time
consuming, since it scales as (3N)3 for systems without
symmetry whereN is the number of atoms in the cluster. Th
real time approach to calculations ofs j

2’s using Eq. ~16!
h-
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shows that, in principle, it is not necessary to determine p
jected VDOS as an intermediate step which further simplifi
the numerical computation. We have not used this appro
in the present work since it is valuable to see the VDOS
well, and values ofs j

2(T) for any temperatureT can be
calculated oncer j (v) is obtained. In fact, in many case
analysis of vibrational spectra may provide additional info
mation for refining the dynamical model used in the E
method. Our study shows that isotropic models can be in
curate not only for such highly inhomogeneous materials
biological complexes but even for some loosely pack
monoatomic crystals like Ge. Our results also illustrate
importance of correlations in modeling vibrational propert
of materials. The correlations decay with distance, and in
cate hows j

2 converges to(uj
2 . One of the most importan

features of the EM method is that given a local force fie
model with a few parameters one can calculate XAFS D
factors from first principles even when experimental data
vD or vE are not available or hard to extract, which is ofte
the case for biological complexes. Finally, it would be des
able to have a general prescription for obtainingab initio
VFF model parameters in an efficient and reliable way, a
we are currently exploring this possibility.
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