PHYSICAL REVIEW B VOLUME 59, NUMBER 2 1 JANUARY 1999-11

Multiple-scattering x-ray-absorption fine-structure Debye-Waller factor calculations
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An efficient local equation-of-motion method is introduced for calculations of the mean-square half-path-
length fluctuationszrj2 in multiple-scattering x-ray-absorption fine-structure Debye-Waller factors in aperiodic
systems. Given a few local force constants, the method yiefdssia projected densities of modes or via the
displacement-displacement correlation function in real time, over a few vibration cycles. The calculation scales
linearly with the system size and does not rely on any symmetry considerations. Sample applications are
presented for crystalline Cu and Ge, and zinc tetraimidaz6/@163-1829)12601-9

I. INTRODUCTION We find that O'J-Z depends primarily on the vibrational
structure in the local environment around a scattering path.
o The locality of 0'j2 allows us to address the problem of its

In the recent years x-ray-absorption fine-struct®FS)  cajcylation in terms of small clusters of atoms, without the
analysis has become an important and widely used techniqyg;e of periodic boundary conditions or any symmetry con-
for determining the local microscopic structure of complexgigerations. Thus our approach can be applied to general ma-
and disordered materials. The structural information it proerig|s, including amorphous and irregular lattices, as in bio-
vides includes average near-neighbor distanBestheir  |ggical complexes. This also means that for complicated
mean-square fluctuationss, and coordination numbeMs.  polyatomic structures, one needs an accurate model of inter-
The quantitiesr% which appear in the XAFS Debye-Waller atomic interactions only in the immediate vicinity of a scat-
(DW) factor are crucial to the success of the modern theoryering center and an effectiveor averagg force field for
of XAFS. The DW factor accounts for thermal and structuralinteractions between further atoms. As will be shown for the
disorder and generally governs the “melting” of the XAFS case of molecular zinc tetraimidazole, this prescription sig-
oscillations with respect to increasing temperature and theifificantly reduces the number of force constants needed in
decay with respect to increasing photoelectron energy. Ifhe calculations. We will also show that it is possible to
practice, the DW factors of the many multiple-scatteringachieve a much better agreement with experiment using just
(MS) terms in the XAFS signal can significantly complicate a few more parameters than in conventional isotropic models
the analysis™ To overcome this difficulty we present here a such as the correlated Einstein and Debye approximations.
general equation-of-motioiEM) method for calculating The sensitivity ofo? to displacement-displacement correla-
these DW factors in terms of a few local force constants injgns suggests that XAFS can be of significant value in test-
arbitrary aperiodic systems. This method is a significant iming the validity of a given lattice dynamical model. This also
provement over conventional isotropic models such as thegjses the possibility of solving the “inverse problem,” that
correlated Einstein and Debye models, and offers a numbgg of deducing microscopic force constants directly from ex-
of advantages over full lattice dynamical calculations forperimentaj XAFS spectra. Since the numerical imp]ementa_
aperiodic systems. Although there is no advantage for periton of the EM method is compatible witterF (Ref. 2 and
odic systems, the method is fast and is shown to give coMitting codes such aserriT;31%the unknown force constants
parable results for XAFS DW factors. and, hence, local vibrational densities of stafd¢®OS) can

The purpose of this paper is to discuss the theory ane fitted to experiment. We plan to address this further in
calculation of thermal XAFS DW factors, with emphasis on ¢,re work. For the present paper, however, we will simply
their physical interpretation in terms of the local dynamical3s5me that a VEF model is knowrpriori. To illustrate the
vibrational structure. Structural disorder can be included bynethogd, sample applications will be presented for molecular
an additional multiplicative DW factor, independent of zinc tetraimidazole, as well as for crystalline Cu and Ge
temperaturé, for example, using the cumulant expansidh. \hich were used for testing purposes. '
In particular, we develop here a mej[hod to calculate the |, this work the DW factor exp-W(K)] for a given scat-
mean-square half-path-length fluctuatiefi(T) from ther-  tering path of total length 2 is defined by the thermal and

mal motion for a general scattering pathin the harmonic  configurational average of the oscillatory part of the XAFS
approximation, given a few local parameters in a valencgjgnal;

force field (VFF) model. Many other studies of XAFS DW

factors have been conducted previo(sfyand attempts have (€12Kj) = g 2kRj g~ Wj(k) (1
been made to obtain effectivel using experimental vibra-

tional spectrd, but they are usually limited to the single- where the indexj corresponds to théth scattering path.
scattering S case. Our treatment differs from the approachCurved-wave effects on the DW factors are usually negli-
of Benfattoet al? in that no explicit matrix inversion is re- gible and will be ignored her€.We also neglect anharmonic
quired. corrections. In the weak-disorder linfiir harmonic approxi-

A. Background
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mation, this DW factor is a GaussiarW,-(k)szza-z, ) L . 22
where of=((r;—R;)?) is the mean-square variation in the ex 'ZKZ (Gi—Giy)-Ri])=e I @)
effective or half-path lengtlR;=(r;) appearing in the stan-
dard XAFS equation where 0']-2 denotes the mean-square fluctuation in the effec-
tive path lengthR;:
N;S5
x(K=2 = (kR 1] Rk
b of=7 (|2 @G Riv| ). ®

XS 2kR; + ¢ (k) Je 2RiMe 27K (2)

. . o For example, in the SS case of two atoms at sites0R,
Here the sum runs over all unique scattering pgthse.,

ff ; R e A
both _SS and MS pathof degenergcy\lj ,ff (_k’Rj) is the o2 =([(Ug—Uo)- R]?)

effective curved-wave backscattering amphtuc%, is a A R . A
many-body amplitude reduction factog;(k) is the net =((0g-R)?)+{(ly-R)%)—2((lr-R)(ly-R)). (9)

phase shiftk=[2(E— Eg)]"?is the wave number measured
from thresholdEg, and \ is the photoelectron mean free
path.

Thus, if one neglects the variation of all terms but the rapidly
varying oscillatory function in Eq(3) and assumes small
harmonic displacements;; /R;<1, Eq.(2) is recovered.
Equation(8) shows thatfj2 is not merely a sum of mean-
square displacemeniai?) at scattering sites but also in-
To better understand the nature of MS DW factors it iscludes the displacement-displacement correlation terms
useful to examine their origin. The XAFS spectrynis de- (U;,Uyxg), Wherea and B denote Cartesian indices y, and
fined as the normalized, oscillatory part of the x-ray-z. These correlations decay algebraically with distance and
absorption coefficieng, i.e., x=(u— o)/ o, Whereuo is  are such that only modes contributing to motion along a
the smooth atomic-background absorption. According tthond path are important. Therefore, in contrast to the mean-
XAFS theoryy can be expressed as a thermal average square displacemen([uiza> which appears in the x-ray-
legfeﬁ(k r) d!ffraction DW factor, 01-2 dgpends on fluctuations in pair
X(k)=|m<2 ;2’_‘ei<2kr,-+25c>—2r,-/x , (3 distances and thus provides a direct measure of the
j krj displacement-displacement correlation function. As will be

B. XAFS Debye-Waller factors

shown be|0W0'j2 is also related to a certain projected local

where & is central atom phase shift amg is a dynamical d therefore is d ined by the local vibrational
variable equal to the instantaneous effective length of asca}s!t[r)u(ztsu raen therefore Is determined Dy the local vibrationa

tering path j. Assuming small disorder and neglecting L . . . .
We will discuss our results in comparison with two iso-

rved-wave eff from the eff ) ;
gl;( (E(;r-/i)eaned i(y‘:tzswe %avet @ dependence offj7, tropic models commonly used for calculations of the XAFS
P 1 i DW factors, namely, the correlated Deb{@D) and corre-

legf_eff(k R) lated EinsteifCE) models® Such an isotropic approach may
x(k)=1Im 2 170 2 1 qi26:— 2R />\<ei2krj>, (4) not be able to provide an adequate description of vibrational
i kR properties for heterogeneous structures and, hence, can lead

to poor agreement with experimental data. Therefore, it is
important to have a more general microscopic approach to
Tr e AHgi2kr the DW factor calculations which could be effectively ap-
T Tre AR (5)  plied to SS as well as MS terms.

where the thermal average is given by
<ei2krj>=

HereH is the lattice Hamiltonian ang=1/kgT. Now let (; Il. EQUATION-OF-MOTION METHOD
be the displacement from equilibrium of the ion at siteso
that neglecting terms of orde:iz, the effective path length
for a scattering patfy with n; scattering legs is The approach used in the present study is a finite tempera-
ture EM method introduced by Rehr and Alemd Beeman
19 . and Albert® for calculation of the total vibrational density of
rj=Rj+ > 21 (U= Uj+) - Rjj+ (6) states and related quantities. This technique builds in Bose-
Einstein statistics and allows one to calculate XA«FﬁT)
Here i+=i+1,i=n;+1 corresponds to sitei=1,R; eijther in real time or in the frequency domain. The EM
=(1/2)Z;R; + is, as before, the effective equilibrium path method has a number of advantages. For example, it is very
length, R;; ;. is the equilibrium interatomic distance between efficient for large systems since diagonalization of huge ma-
atomsi andi+, andR;; . is the corresponding directing unit trices is not required and the calculation time scales linearly
vector. From the Born-Oppenheimer approximation, the iorwith the size of a cluster.
motion can be regarded as stationary during a transition. The EM method is based on solvingN3coupled New-
Hence, the thermal averages are to be carried out in th®n’s equations of motion with initial conditions depending
ground stateprior to x-ray absorption, rather than in relaxed uniquely on a given scattering path, whedes the number
final states. Now, for any harmonic Hamiltonian or Gaussiarof atoms in the cluster. Regarding the total potential energy
disorder one has the exact restilt ® of the crystal lattice as a function of the atomic displace-

A. Formalism
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mentsu; from their equilibrium positions, and making use of ficiency in the calculation, and focus on the local environ-

a harmonic approximation, one obtains the equations ofment by cutting off long-distance behavior.

motiont2 By substituting Eq.(15) for p;(w) into Eq. (14) and
evaluating the Fourier transform, one obtains an equivalent

d’Qiu(t) real time expression far?(T):
—dltz =—§,ﬁ Dia,kgQugs - (10 P (M)
ﬁ tmax
HereQ,=U;\M,, M; is the mass of the atom at site and (1) e fo dyQ;(1|Q;(0))
Diaxs=Piaks/ VMM is the dynamical matrix of order 1
3NX3N where®;, ,; are the second derivatives of the po- <Inll 2 sinhlt e*““z (16)
tential energy with respect to the atomic displacemenjs Bh '

andu,, taken at the equilibrium configuration. Upon substi-

tuting the canonical displacement vectc@ expanded in
normal coordinates, ,

Therefore, in principle, it is not necessary to determine

pj(w) as an intermediate step, amﬁ(T) can be explicitly

calculated from the corresponding displacement-

displacement autocorrelation function. Note that in the time

Q=2 &(\)ay, (11) domain the Bose-Einstein weight factor is equal to
A —In[2 sinh@t/B#)] and reduces for long timeto — =t/ B%

into the definition of the mean-square fluctuation in the ef-2t high temperatures and jgf{/2mt) at low. The time inte-

fective path lengtiR;, these equations of motion lead to a gration Iimittmax_is usua}lly of the ord(_er of a few vibrational
standard eigenvalue problem for the normal modes: cyclt_as and requires t_yp|caIIy 25_.35 time steps per cycle. Al
the integrals in our implementation of the EM method are

evaluated using the trapezoidal rule, which is appropriate for

wifia(h)ZKEB Dia,kpeks(N)- (12)  highly oscillatory integrands.
Then evaluating the thermal average using Bose-Einstein sta- B. Multiple scattering o7

tistics, Let us now apply the EM method to calculation@f for

a general MS path. The sum of terms in E§) can be

0?(q,)2= < N(w,)+ %> ﬁw}\:% coth ﬁa;‘B, (13)  regrouped in the following way:
- - - 2
one obtains a frequency domain formula fffr 2 & o [Ri-tRi
| ={[Za50)) w
O'J-Z(T): Zi w"‘”d_w pj(w)coth'BhTw. (14)  Adopting a vector expansion of the displacements from Eq.
i Jo w (11), and evaluating the average using Bose-Einstein statis-

Here u; is an effective reduced mass for scattering path tics [Eq. (13)], one can rewrite Eq17) as

that ensures normalized initial condition8=1/kgT, wnax 4 1 Bhiw,
=7k /w1 is maximum frequency of the lattice motianijs ajzzr — coth 5
the coordination numberk; is the central first-neighbor RN
force constantu, is reduced mass of the scattering center o (R +R; 2
and its first neighbor, and XD | /M_' “TH) a | . (18)
i i
pj(w)EE |<)\|Qj(0))|25A(w—w)\) The term in' square brackets corrgsponds to the weight
N [{\|Q;(0))|? in Eq. (15) and can be interpreted as the nor-

ot malized probability that the initial displacement state,
== J max{QJ—(t)|Qj(0))c05wte*8‘2dt (15  i.e., theN-dimensional vector with only; nonzero compo-
™ Jo nents |Q;(0))=[; /My(Ryp -+ Ry 2)/2,... iy IMi(Ry -
is the projected VDOS contributing i} . In the time inte-  +R;;)/2,...,0 (i=1,...1;), is in vibrational mode|\)
grations=3/tﬁ1ax andty .= \/El(wmaXA) are cutoff param- =|€;(\),...,én(N)). Here uj is defined so that

eters that fix the net spectral resolution widsh(typically ~ (Q;(0)|Q;(0))=1, which forces the projected VDOg(w)
5% of the bandwidth 8, is a narrow &like function of  to be unit normalized:

width A, and (Q;(1)[Q;(0))=={1 Qin()Qi(0) is the n, ~ A2
displacement-displacement autocorrelation function. The dis- izz i (Rii—+Rii+ (19)
placement state vectdQ;(t)) is determined by integrating ui =1 M 2

the equations of motiol0) numerically using a two-step . . -
difference equation approximation with initial velocities set Fpr Iexample, n_the Sp‘?c'a' ca?e of S5 the EM_'n't'aI
to zero and initial displacemen|t@l-(0)>. The specific form disp acemept stateA s defined  as|Qr(0))=

of the initial displacements depends on the scattering path, as V&r/MoR, Vur/MgR,0,..), where  pp=(1Mg
defined below. The cutoff parameters are introduced for ef-+ 1/M) " is the reduced mass for the ,®) bond pair.
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In order to simplify Eq(18) one can define a normalized,
local VDOS pj(w) as in Eq.(15), which leads to the fre-
guency domain formula for M%jz in Eq. (14). The VDOS ] e
spectrump;(w) can be interpreted as the “sound” of the
lattice plucked along the displacement vectors given by the
initial conditions. o0

nw)

0.06 |-

C. Force field models

0.04 |-

The EM formalism presented above gives a relation be-
tween XAFS DW factors and the local microscopic environ- ooz
ment around the scattering center. In order to apply the 0
method, knowledge of the local force field model describing
effective interatomic interactions or dynamical matbxis
required. Clearly, the choice of the model depends on the FIG. 1. Projected VDO$Rr(w) for the first shell of Cu calcu-
type of the interatomic bonds. For practical considerationgated using the EM method witN =459 andk; =27.9 N/m(solid
the model should be kept as simple as possible: i.e., thée), in comparison with CD(long dashed lineand CE (short
number of its independent parameters should be small y&tashed lingmodels.
sufficient to avoid unphysical zero-frequency modes and to
have an accuracy to within a few percent. approximation for DW factor Eq(l) is not precisely valid,

One commonly used model is the VFF mddeihich ~ and the general cumulant expansidinas to be considered
expresses energy changes in terms of changes in “interndistead.

o
Sk

50 60

coordinates” such as bond lengthis;; = (U; — U;) - ﬁij , bond
angless6; , etc. The potential energy of the lattice defor- D. Correlated Debye and Einstein models
mation in this case can be written as a quadratic form In this subsection we will briefly review the standard CD
1 1 and CE models often adopted for approximating XAFS DW
b= Ki(Sr )2+ = KiK(80: )24+ . (20 factors and which are used for comparison with EM method
2 2 K i) 2 2k k) 20 in Sec. lll. The CD model is essentially a spherical approxi-

mation to«ré in terms of the eigenmodé¢Eq. (20)] and leads

ij s _ i iNh LN
Herek; is a bond-stretching force constant for nearest ne|ght0 a projected VDOS for an atomic bond, & of the forr?

borsi andj, kigjk is a bond-bending force constant corre-

sponding to an angular rigidity for the angig, , and the 32 sinwR/C)
remaining terms are due to contributions from noncentral prlw)=—5|1—- ——— (22)
interactions proportional to products of changes in different Wp wR/c

internal coordinates, e.g.,8%;;)X(8r.), (rii) X (56;,), _ . .

etc. Because interatomic bonés are cjrucial f(ljr describing inHerewD_kBailﬁ is the Debye frequencyp, is the Debye
teractions in molecules and covalent crystals, the VFF moddfMPeraturec=wp /kp |szthe Dl(/egbye approximation for the

is particularly effective for such structures. An advantage o15pee.d of Soundi.‘D:(GW N/V)™ andN/V is th? atomic
the model is that the dependence of the deformation energg/:"ns'ty number in the crystal. The second term in the brack-

solely on deformations of the bonds makes it rotationally ST";CCOCUQS fogclorrela'uor)S atnd dtﬁpenqbs cf[.n bolnd Ien?th.
invariant. For some materiale.g., copper crystalonly a ith e | rgcf) N t_approx;magstﬂ:a V|ffrat|'ona .sp::‘.c ru:n
single near-neighbor force constant is needed to approxima Ith a singieo function centered at ine efiective vibrationa

most of the structure in vibrational spectra and to obtﬂﬁn requencywe(R;), which in general, depends on the path of

in good agreement with experiment. Sometimes it is more'mereSt:

convenient to introduce effective central interactions with . R))
further neighbors rather than using bond angles and/or cross pi(w)= (0= we(Ry)).

terms, altho_ugh such interactio_ns may not correspond %he Einstein frequencye(R;) for the XAFS DW factor for
real” chemical bonds. There exist a large number of Otherscattering pathj can be interpreted in terms of the local

prescriptions for treating lattice deformations. These includepotential enerayv i ; ;
5 TS . C o gy in the deformed lattice st4@(0)), i.e.,
the Borrt® and Keating® models which are used primarily wé(Rj)=<Qj(0)|D|Qj(O)>. In the SS case, for example,

for diamond-type crystals. In any case, the first near- . ; .
neighbor central force constants are usually the largest in th‘éJE(R) is related fo the local effective bond-stretching force

2 . . .
interaction picture. In the future, however, it would be desir-CONStaNkgr=urwg(R). This value ofwe(R) is equivalent
able to calculate these force constants by am initio  to the “natural” vibrational frequency of the bond (R)
method. togetherwith all attached neighboring bonds, but regarding

In the present paper we will not consider effects arisingdll other masses as fixé@:® Similarly, for a MS pathj the
from anharmonic corrections to the potential energy. In genpotential energy (1/&jo? of a stretched patly with path
eral, anharmonicity leads to interactions between the variouength fluctuation 2; is equal to that of a single-spring
modes, and gives a contribution m(ﬁ(T) that increases with model with reduced mass; [see Eq(19)] and spring con-
temperature. Further discussions on this topic can be founstantka,ujwﬁ(Rj). The CE model is particularly appropri-
elsewheré:’1° Due to anharmonic effects, the Gaussianate for materials wittp;(w) sharply peaked around a single

(22
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sions, and contains more than 60 distinct force constants, 40
of which correspond to internal vibrations of the imidazole
branches. As may be guessed from the geometry of the struc-
ture, these internal modes, as well as the “flapping” modes
of the branches, have little effect on the radial vibrations of
the Zn-N bonds that dominate%. Thus, by simplifying the
VFF of the imidazole units, the number of the parameters
used in the calculations can be significantly reduced without
causing large errors inf. Because torsional force constants
are two orders of magnitude smaller than the dominant
stretches, we neglected their effects in our simulations alto-
gether. Several other negligibly small force constants were
omitted as well. Our study consists of three steps in building
a model structure analogous to that of LPT. Starting with a
simple five-atom cluster, we then gradually add more de-
grees of freedom. At the first two steps, averages of the sev-
eral similar force constants were used rather than their
slightly different fitted values, which further reduced the
. . number of parameters. We refer the reader to the paper by

FIG. 2. Structure of the 37-atom zinc tetraimidazole macromol p ¢,y getailed definitions of the internal coordinatés.,
ecule based on the coordinates given by LREf. 16. bonds and anglés The numerical implementation of our

, method was successfully checked by comparing EM calcu-

frequency, but otherwise has most of the advantages andsions of frequency modes with those calculated analytically
disadvantages of the CD model. o by applying a group theoretic analysis to a tetraherg),

In general, depending on the form of the vibrational specingge| with three force constants: bond stretching, angle
tra, one or the other of these phenomenological models M&Yending, and bond coupling.
provide a better approximation, but neither is usually ad- (1) As a starting modelFig. 3(@)] we considered a five-

equate for heterogeneous systems. Plots of projected VDOZom cluster consisting of a zinc atom in the center sur-
pr(w) for the first shell of Cu calculated using our noniso-

tropic EM method k;=27.9 N/m), the CD ¢p=327 K)
and CE @g=hwg/kg=3/40p=245 K) models are pre-
sented in Fig. 1. The valué, =327 K was obtained from a
fit to experimental XAFS datgsee Sec. Il B.

rounded by four pseudoatondé with masses equal to the
mass of the imidazole ring68 u). The geometry of the clus-
ter was kept the same as in the Zpdoup of the original
structure. Only two force constants were used in the calcu-
lation: a bond stretchind, (degeneracy ¥and an angle
bendingd, (degeneracy 6(see Table). The first parameter
lll. APPLICATIONS was set equal to the average of the two Zn-N stretches in the
A DW factors for zinc tetraimidazole full VFF of LPT, and the If_;ltter to the average of the four

' N-Zn-N angle bendstaking into account degeneracy due to

The study of the vibrational and dynamical properties of
complex organic structures such as zinc tetraimidazole is a) b) 6,
complicated by a large number of degrees of freedom and a
corresponding number of force constants. Imidazole is a cru-
cial organic compound occurring in nucleic acid bases and
amino acids, e.g., is an important constituent of the amino
acid histidine. We chose zinc tetraimidazole since it was
studied in detail by Loeffen, Pettifer, and Tomkinddn
(LPT) and thus permits quantitative comparisons. This mac-
romolecule consists of four imidazole ring molecules
(N,C5H,) attached to a zinc atom, forming a slightly dis-
torted tetrahedral structuf€ig. 2). The entire cluster has,
point symmetry group with the zinc atom lying on a twofold
axis and includes 37 atoms. To obtain all the parameters
describing the force field of such complex materials is rarely
possible, and therefore it is crucial for XAFS analysis to
have a simplified prescription for calculating DW factors us-
ing a minimum set of parameters.

As a basis for the EM calculations we started with the full
harmonic force field deduced from inelastic neutron scatter-
ing of natural and deuterated zinc tetraimidazole
compounds? This force field is essentially a VFF with de-  FIG. 3. Reduced structural models used to approximate the VFF
formations described in terms of combinations of internalof zinc tetraimidazole with(@ two and (b) four effective force
coordinates such as bond stretches, angle bends, and tapnstants, as well ag) the 23-parameter VFF.
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TABLE I. Force constants used in our VFF models &frcal- M(N)+2M(H)=28.u and the other four &,) to
culation in zinc tetraimidazole. The first four parameters were use(é[M(c_'_ M (H)]=26. u. Four force constants were used in
in models 1 and 2 and the remainder in model 3. H¢@ndC are the calculation(see Table)t in addition to the two param-
pseudoatomssee text All angle bends are scaled by correspond- eters of model1) we considered a stretdky between the

ing near-neighbor distances. nitrogen and the€; nearest to it equal to the average of the

Symbol Description ValuéN/m) two NC stretche; and an anglle bendihg(the resglt of the _
combining two ring deformations and calculating coeffi-

Ko Zn—N stretch 110 cients at the corresponding angle bend terRor the short
6o N—zn—N bend 37 Zn-N bond the resulting5=2.43x 103 A2 at 20 K.
Ky N_C stretch 626 (3) Finally, we included all atoms of the imidazole units
o, &_N-Ebend 2590 except the hydr_ogenBsee Fig. &)] and used 23 distinct
(A Zn-N stretch 111 force constants in the VFF model: two Zn-N bond stretches
k?B) Zn-N strotch 108 ki andk{®, two Zn-N bond couplings and3, six skeletal
0 angle bend9,, , two out-of-plane angle bends of the imida-
@ Zn—-N/Zn-N 24 zole branchesp,; , five bond stretches inside the imidazole
B Zn-N/Zn-N 3.77 rings ky;, four imidazole bond couplings;, and two ring-
fo1 N~-Zn-N bend 46.1 deformation constants, and &g. The result for the weaker
602 N-Zn-N bend 26.1 (108 N/m Zn-N bond is 02(20 K)=2.64x10"3 A2, in
Oo3 N~-Zn—N bend 40.9 good agreement with the value obtained by LPT (2.62
004 N—-Zn-N bend 21.8 %1072 A?). For the strongef111 N/m bond the EM cal-
b1 imid out-of-plane bend 9.0 culation yielded 2.63 1073 A2, again in excellent agree-
b1 imid out-of-plane bend 7.3 ment with the values calculated by LPT (2:600 3 A?).
Kig N,—C; stretch 670 We also used these three models to calculgte20 K)
K1z Ny—Gs stretch 681 for four MS triangular paths of the type zZaN®—N®)
K1 C4=Gs stretch 561 —zn whereN® and N® are the nearest neighbors to the
Kia N3—C, stretch 500 scattering centefsee Table ). Note a significant effect of
kis N;=C, stretch 752

the NM-zn-N® bending force constants and geometry on
71 N1~Go/Ni—Cs 47.3 the 0']-2 values. The wider the angle, the greater the resistance
Y2 N;—Cs/C4=Cs 45.0 to its deformation, and hence thes¢'s are inversely pro-

L& C=4Cs/N3-Cy 25.4 portional tog;. The values ofai2 appear to be rather large
Ya N3=Cy/Ns=Cy 81.1 since there is no explicit N-N stretching involved.

01 Zn-N-Cbend 109 These result§Table 11l) show that, due to the local nature
012 Zn-N-Cbend 148 of ¢, it is possible to reduce dramatically the number of the
Ia ring deformation 260

parameters in the VFF even for very complex structures
&8 ring deformation 250 while still attaining a 5—10% accuracy in the final results for
a2 in comparison with both more precise theory and experi-
. " P mental data. This accuracy is satisfactory, since the error
the symmetry. The model yielded S$7=2.06< 10 A _bars for the force constants themselves are usually of the
at 20 K, about 18% below the value estimated from experixame order, e.g., about 15% for Zn-N bond-stretching con-
mental XAFS data, (250.2)x10 > A2 . stants in zinc tetraimidazole, and the accuracy of the EM
(2) In the second, slightly bigger calculation, we included yethod, as implemented in our code, is fixed to be about 5%.
the ZnN, group and eight pseudoatoms in place of the carbon  The vibrational spectrum of the zinc tetraimidazole mol-
atoms nearest to the nitrogefsee Fig. 8)]. Four of these  gcyle can be subdivided into high- and low-frequency re-

pseudoatoms @;) had masses equal to the sukh(C) gimes. The high-frequency regime>600 cm'l) corre-

TABLE II. Values of MS (TJ-Z at 20 K calculated for four central MS paths of the type
KD P K@
Zn—N® 5 N®@ — 7n in zinc tetraimidazole depending on the number of the force congtantsed in the
VFF model. Hergj is the MS path indexR; its effective length.; the scattering anglel®V-Zn-N® in
degreesk( the force constant for the bond 2%, and @ is the bending force constant for the correspond-
ing ¢; . All force constants are given in N/m.

of (1072 A?)
j R; (R) ® v=2 4 2 k® k@ 63
19 3.57 107 3.17 4.10 3.94 108 111 40.9
20 3.59 108 3.17 471 4.95 111 111 26.1
21 3.62 111 3.16 4.05 3.86 108 111 46.1

22 3.63 112 3.15 4.47 4.87 108 108 218
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FIG. 4. Low-frequency part of the first shell projected VDOS
pr(w) for the 23-parameter model of Zn tetraimidazohe=21).
The lines at 296, 277, 274, 228, 206, 205, 204, 184, and 174 cm
indicate low-frequency tetrahedral modes obtained by L(R&f.
16) for the entire 37-atom macromolecule.

sponds to the modes caused by internal motion of th%
regime

imidazole branches, while the low-frequency
(<500 cm') consists of skeletal vibrational modes
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TABLE IIl. Values of SSo? at 20 K for the weak Zn—N bond
in zinc tetraimidazole depending on the number of the force con-
stants(v) used in the VFF model. Hereu,,=100(0% — 05,00/ 05,1
and e=100(o3 — 07p7)/ 07pr With 05,,=(2.5+0.2)x 10" A2 and
0lpr=2.62x107% A2,

v o2 (102 A?) €expt (%) € (%)
2 2.06 18 21
4 2.43 3 7
23 2.64 6 1

B. DW factors for Cu

The first crystalline structure examined in our MS calcu-
lations was a 459-atom spherical cluster of a copper crystal
with fcc lattice symmetry. Although our method was de-
signed for general aperiodic systems, we chose fcc Cu since
it has often been used as a test case for DW and other XAFS
studies and accurate XAFS data are available. Following the
model of Rehr and Albef only a single central interaction
etween the first nearest neighbors with force conskant
=27.9 N/m was taken into account. Example results for the

Such aSirgt shell SS path and for the 111 triangular MS path versus

tetrahedral deformations, and in- and out-of-plane ”brationﬁemperature are shown in Fig. 5 in comparison with the CD
of the imidazole branches. These low-frequency modes yielg,qe| (6p=327 K) results calculated by theerF code, as

almost 70% of the calculatedf. The low-frequency part of well as with experimental dath?2and the CE model for the

the projected VDOS for the Zn-N bon(irst shel) is pre-

first shell (9= 245 K). Our results for S$3 are in excel-

sented in Fig. 4. The peaks lying in the range betweenent agreementwithin 0.3% for the first and second shells,

170 cm * and 300 cm? correspond to the tetrahedral modes,

and within 3% for the third shellwith those obtained by

whereas the lower part of the spectrum is due to the libraSevillanoet al? using full lattice dynamical calculations. Ex-
tions of the imidazole branches. Due to the small size of theellent agreement with experiment at lower temperatures is
system, the spectra are highly discrete. For such heterogelso reached. At higher temperatures, i.e., above 500 K, the
neous materials like zinc tetraimidazole, a single-parametegrror between our theory and experiment is likely due to

CD or CE model is not accurate.

anharmonic effects. The results forj2 indicate that at all
temperatures, the CD model is in good agreement with the
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FIG. 5. Mean-square amplitudezs12 for a 459-atom cluster of
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T(K)

Cu vs temperature as calculated from a single force coristant (

=27.9 N/m) model for the first she{fEM S and for the 111 triangular MS patkEM 111). The CD model (p =327 K) calculations for
the first shell(CD S and the 111 triangular MS pafl€D 111 and the CE model for the first shélCE SS are given for comparison.

Points represent experimental valuesodf(Refs. 21,22
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FIG. 6. (a) Projected VDO%;(w) for the first shell(solid) and for the 111 triangular MS patdashed lingfor Cu calculated via EM
method.(b) Total VDOS p(w) and projected VDO g(w) for the first shell and sixth shells of Cu calculated via EM method.

EM method for the first shell SS path: i.e., the 10% differ- This study shows that overall the CD model is a reason-
ence is within the error bars of the two methods. A largerably good approximation for Cu, which might be expected
difference(about 25% at high temperatujds observed for since the fcc structure is highly isotropic. This also can be
the 111 path. The discrepancies between the two models aseen from a comparison of the XAFS Fourier transform
smaller at low temperatures. Projected vibrational densitieg(R) with fits of theoreticalFeEFF calculations using DW

of statesp;(w) for the two paths are shown in Figied. Note  factors obtained via the CD model and the EM metleee
that the VDOS for the 111 triangular path has a sharpeFig. 7). Fits of theoreticaly(R) to experiment measured at
dominant peak at about 42 THz; i.e., the(w) is more 150 K were performed using a phase-corrected version of
monochromatic for this path. One can think of it as the fineFerFiT, i.e., with theoretical phase shifts taken framerFz
tone of a musical “triangle.” This feature also explains the As fitting parameters for the EM model we used a shift of
bigger error in the C»(T) for this path. Figure @) illus-  energy origin AE and a constant amplitude factcs,
trates the importance of correlations for nearest neighbors aghereas for the CD models we us&& and Debye tempera-
well as the decay of the correlation function with distance ture 6, and seIS(Z) equal to the value derived from the EM
Note that the projected VDOS for the sixth shell is veryfit (0.927. The data were fitted in the range between 1.7 and
similar to the total VDOS which indicates that contribution 5.2 A for the 16 most significant scattering paths which span
from the correlations is negligible for the further shells. the first four shells. The fitted value f@t, was 3279 K,
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FIG. 7. Magnitude of the phase corrected Fourier transform FIG. 9. XAFS MSo? for 147-atom cluster of Ge as calculated
Y(R)=FT[kx(k)] for Cu atT=150 K as extracted from experi- With EM and CD models aT =300 K vs MS path indexsee text
ment using the phase correctegFriT code (solid line), and fitted ~ Two experimental valuegRef. 21), corresponding to the first and
from theoretical results with DW factors calculated using @ing  second shell SS, are given for comparison.
dashed lingand single force constant ERhort dashed linemod-

els. shear, and the projected VDOS exhibits an unphysical zero-
frequency mode. The force field model used in our calcula-

within error bars of the valuép =315 K.** As Fig. 7 shows, tions included central interactions out to the third neighbors

both methods yield XAFS in excellent agreement with ex-(k,=120 N/m for the first neighbors, 4.0 N/m for the sec-

periment, though the EM method is noticeably better. ond, and—1.1 N/m for the third, and noncentral bond-
bending interactiorfé with k}°=0.0%, fit to the
C. DW factors for Ge experiment&® VDOS. The values for the central interaction

sforce constants were based on results of Goldanenat?®

atom spherical cluster of Ge of the diamond space group. 1A"d then adjusted by hand to fit the experimental spectrum
the application of the EM method to such loose, anisotropid&termined from neutron scatterifiyFigure 8 shows the
structures like Ge, a single-spring model is inadequate, and falculated total and projected VDOS for this model in com-
is necessary to include noncentral forces to account for bondR@rison with experimental total VDOS. The Mg at 300 K

bending interactions. Otherwise there is no resistance tgalculated by the EM method in comparison with results
obtained from CD moddldy =360 K (Ref. 23] and several

SS experimental valu&sare presented in Fig. 9 versus the
scattering path index listed in order of increasing path length
as generated byerFz For example, path number 1 corre-
sponds to first shell SS, 2 to second shell SS, 3 to 121 trian-
gular MS path, 4 to triangular 211 MS path, 5 to third shell
SS, 6 to double scattering from the first neighboré(
=4a§), etc. According to the EM calculations for the first
three paths, projected VDOS for paths 1 an¢s8&e Fig. 3

The second crystal considered in our study was a 14

x(R)

0 10 20 30 40 50 60 24
w(THz)
FIG. 10. Magnitude of the phase corrected Fourier transform
FIG. 8. VDOS for a 633-atom cluster of Ge as calculated viay(R)=FT[ky(k)] for Ge atT=300 K as extracted from experi-
EM method(a) for the first shell andb) for 121 triangular MS path. ment using the phase-correctegrriT code (solid line) and fitted
(c) Total experimental spectrum determined from neutron scatterinfrom theoretical results with DW factors calculated using @ihg
(Ref. 26 in comparison with theoretical total VDOZw). dashed lingand EM (short dashed linemodels.
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have sharper dominant optical peaks at about 50 TH=zshows that, in principle, it is not necessary to determine pro-
whereas the VDOS for path 2 has a more smeared out speected VDOS as an intermediate step which further simplifies
trum and, thus, is probably better approximated with CDthe numerical computation. We have not used this approach
model. This explains the smaller difference with the CDin the present work since it is valuable to see the VDOS as
model for path 2. The deficiency of the CD model for Ge iswell, and values OfO'jZ(T) for any temperaturel’ can be
illustrated by the poor fit of the theoreticg(R) to experi- calculated oncej(w) is obtained. In fact, in many cases
mental XAFS spectrésee Fig. 10 Using the same fitting analysis of vibrational spectra may provide additional infor-
parameters as in the case of Cu above, the 300 K data wergation for refining the dynamical model used in the EM
fitted in R space in the range between 2.0 and 5.2 A for themethod. Our study shows that isotropic models can be inac-
20 most significant scattering paths spanning the first fiveurate not only for such highly innomogeneous materials as
shells. The fitted value fof, was 375-16 K, which again  biological complexes but even for some loosely packed
is within error bars from the value 360 %. monoatomic crystals like Ge. Our results also illustrate the
importance of correlations in modeling vibrational properties
of materials. The correlations decay with distance, and indi-

cate howo? converges tazu?. One of the most important

The EM method presented in this paper provides an efﬁfeatures of the EM method is that given a local force field

cient and general approach for the calculation of MS XAFS_ 0 4o with a few parameters one can calculate XAFS DW

Debye—WaIIer factors in terms of local force constants. OuE‘jactors from first principles even when experimental data for
_results |IIu_strate a numb_e_r of aglvantages of the EM mgthowD or wg are not available or hard to extract, which is often
in comparison with traditional isotropic models, espemallythe case for biological complexes. Finally, it would be desir-
for hetgrogeneous materials which are those of greatest i'?a'ble to have a general prescription for bbtainhﬂg initio
terest in XAFS studies. Due to the local nature of the DWVFF model parameters in an efficient and reliable way, and
factors, the method can be successfully applied to small an\g,e are currently exploring this possibility.

irregular structures by focusing on the vicinity of the scatter-

ing atom. It requires no symmetry specification or boundary
conditions. Since no secular equations or matrix diagonaliza-
tions are involved and given the linear scaling of the numeri- We thank A. Ankudinov, T. Fujikawa, G. George, D.
cal procedure with system size, the method is efficient eveMaskel, M. Newville, P. Loeffen, B. Ravel, E. Stern, and N.
for clusters of more than several hundred atoms. In that casgan Hung for many helpful discussions. We thank especially
solving the “exact” eigenvalue problem is very time- P. Loeffen for providing the VFF parameters for zinc tet-
consuming, since it scales asNg’ for systems without raimidazole and M. Newville for providing the phase-
symmetry wheré is the number of atoms in the cluster. The correctedrerFIT code and experimental XAFS data. This
real time approach to calculations 01’]-2’3 using Eq.(16)  work was supported by Grant No. NIH RR 01209.
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