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Nuclear spin relaxation at ultralow temperatures
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Nuclear spin relaxation induced by hyperfine coupling is studied theoretically at positive and negative
submicrokelvin temperatures. By avoiding the assumption of the high-temperature limit, adopted in conven-
tional theories, we derive a formula in which the relaxation rate is expressed in terms of thermal averages of
nuclear spin energies. The exchange interaction induces an asymmetry in the energy spectrum, which leads to
relaxation rates that depend on whether the nuclear spin temperature is positive or negative. High-temperature
expansion methods and Monte Carlo simulations are applied to explain the anomalous results by Hakonen
et al. in rhodium qualitatively.@S0163-1829~99!12313-0#
e
cs
e
a

e
te
e

or
d
ar

th
ea

p
tic

th

an
n
o
em

t
a
t

n
ive
tw
f
i-

a
an

in

fine

he

te
den

n
and

he
is

se,
-

I. INTRODUCTION

The success in finding nuclear spin ordering in noble m
als has opened a new field in ultralow-temperature physi1

After the discovery of antiferromagnetic order in copper b
low 58 nK,2 silver was found to undergo phase transitions
560 pK to antiferromagnetic~AF! order and at21.9 nK to
ferromagnetic~F! order.3,4 In these experiments negativ
temperatures were produced by rapid inversion of the ex
nal field. AtT,0 the system is stabilized by maximizing th
free energy5 so that high-energy excitations become imp
tant, in contrast toT.0 where the equilibrium is establishe
by the free-energy minimum and low-energy excitations
important.

The experimental studies have been extended to
search for nuclear ordering in rhodium. Although the nucl
order has not been achieved in experiments down to 280
and up to2750 pK, it was found that the paramagne
susceptibility displays AF Curie-Weiss behavior atT.0 and
a crossover from F to AF tendency atT,0.6 Furthermore,
Hakonenet al. found that, at the extreme temperatures,
nuclear spin relaxation is about two times slower atT,0
than atT.0.7 When the temperature of spins decreases
becomes comparable with the internal field seen by the
clei, the assumption of high temperature adopted in the c
ventional theories cannot be applied anymore. At these t
peratures, a deviation from the Korringa law is expected
occur.8 However, as far as the relaxation with infinitesim
difference of temperatures between the nuclear spins and
conduction electrons is considered, as in the conventio
theories,9 one cannot make a distinction between posit
and negative temperatures. On the other hand, the
samples used in the experiments7 contained 6 and 14 ppm o
iron impurities. Although it is known that magnetic impur
ties increase the relaxation rate in metals,10,11 it seems not
very successful to pinpoint them as the origin of the anom
at T,0. Hence the anomaly has remained unexplained
motivates the present study.
PRB 590163-1829/99/59~14!/9462~5!/$15.00
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II. FORMULA FOR NUCLEAR-SPIN RELAXATION

We consider the rate of heat flow from nuclear spins~sys-
tem! to conduction electrons~reservoir! following Leggett
and Vuorio.12 We assume that the nuclear spin system is
internal thermal equilibrium at temperatureT, different from
the temperature of the reservoirTe . In the experiments,7

performed in magnetic fields less than 400mT, Te was
about 100mK, whereasT was on the order of61 nK. We
denote the inverse of temperature (1/kBT) as b and be for
the system and reservoir, respectively.

We assume that the heat flow is mediated by the hyper
coupling

H5A(
i

I i•si , ~1!

where I i and si are the nuclear spin operator and t
conduction-electron-spin operator at sitei. Leggett and
Vuorio12 wrote down an expression for the heat-flow ra
from the system to the reservoir on the basis of the gol
rule,

dQ

dt
5

2p

\
A2(

i
(

a5x,y,z
(
n,n8

(
m,m8

Pn
~n!Pm

~e!~En2En8!

3u^nuI Iaun8&u2u^musiaum8&u2d~En1Em2En82Em8!,

~2!

wheren andn8 refer to the states of the system,m andm8 to
the reservoir.Pn

(n) andPm
(e) denote the canonical distributio

for the system and the reservoir, respectively. Leggett
Vuorio12 expanded the r.h.s. of Eq.~2! in Db5b2be and
retained only the first-order terms in order to apply t
theory to the case where the temperature of the system
close to that of the reservoir. However, in the present ca
Db.b anduDbu@be , so that we proceed with the calcula
tion of Eq.~2! without expanding inDb. In a similar manner
9462 ©1999 The American Physical Society
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as done by Leggett and Vuorio,12 we introduce correlation
functions for the nuclear spins and the conduction-elect
spins:

F ia
~n!~v!5

1

2p\E2`

`

^I ia~ t !I ia&eivt dt, ~3!

F ia
~e!~v!5

1

2p\E2`

`

^sia~ t !sia&eivt dt, ~4!

whereF ia
(n)(v) andF ia

(e)(v) are defined by thermal averag
ing of the nuclear spin and the conduction-electron Hami
nians atb andbe , respectively.

In terms of the correlation functions, Eq.~2! is expressed
as

dQ

dt
522pA2 (

i
(

a5xyz
E

2`

`

\vF ia
~n!~v!F ia

~e!~2v!dv.

~5!

By the fluctuation-dissipation theorem, the correlation fun
tions defined in Eqs.~3! and~4! relate with the local suscep
tibilities, given in the units ofgmB andgNmN :

F ia
~n,e!~v!5

1

p

Im x ia ia
~n,e!~v!

12e2b\v
. ~6!

Though Imx ia ia
(n) (v) changes its sign depending onb,0 or

b.0, F ia
(n)(v) remains positive. If we substitute Eq.~6!

into Eq. ~5!, we can confirm thatdQ/dt vanishes whenb
5be , since Imx(v) is odd inv. Therefore we may rewrite
Eq. ~5! to the form

dQ

dt
522pA2(

i
(

a5xyz
E

2`

`

\v@F ia
~n!~v!2F ia

~n!~v!#

3F ia
~e!~2v!dv, ~7!

whereF ia(v) denotes the thermal average atb5be . Here
we notice that the characteristic frequency of the nucl
spins is much lower than that of the conduction electro
Therefore it is legitimate to replaceF ia

(e)(2v) with
F ia

(e)(0) and to put it outside the integral in Eq.~7!. Then,
with aid of Eq.~6!, it is allowed to write

dQ

dt
522A2(

i
(

a5xyz
lim
v→0

Im x ia ia
~e! ~v!

be\v

3E
2`

`

\v@F ia
~n!~v!2F ia

~n!~v!#dv, ~8!

whereF ia
(n)(v) does not depend oni as far as the system is i

the paramagnetic phase and, as the conduction-electron
tem is paramagnetic and in a weak external field,x ia ia

(e) (v)
does not depend ona. As a result we can write Eq.~8! as

dQ

dt
522A2S 1

N (
i

lim
v→0

Im x i i
~e!~v!

be\v D
3(

i
(

a5xyz
E

2`

`

\v@F ia~v!2F ia~v!#dv, ~9!
n

-

-

r
s.

ys-

whereN denotes the total number of spins. For a nonint
acting electron gas,

lim
v→0

Im x i i
~e!~v!

\v
5

p

2
rF

2 , ~10!

whererF is the density of states at the Fermi energy per sp
In the case when magnetic impurities are present, they in
act with the conduction electrons and remain in thermal eq
librium at be . It is well known that magnetic impurities
enhance the relaxation rate of neighboring nuclear spin
metals.10,11 Therefore to define a unique spin temperature
the presence of magnetic impurities, rapid spin diffusion
necessary among nuclear spins.10 Hereafter we confine our
selves to this case. Then, the effect of magnetic impuri
appears via Imx ia ia

(e) (v) which acts equally atT.0 andT
,0 as can be seen from Eq.~9!. The difference in relaxation
rate betweenT.0 andT,0 must then come from the sec
ond factor in Eq.~9! which consists of the correlation func
tion of nuclear spins. We consider this in the following.

As it can be shown rigorously by returning to the Le
mann representation that

(
a5xyz

E
2`

`

\vF ia~v!dv52
1

\
^@H,I i #I i&b , ~11!

we obtain from Eq.~9!

dQ

dt
5

1

t0
(

i
@^@H,I i #I i&b2^@H,I i #I i&be

#, ~12!

where we have defined

1

t0
5

2A2

\be
lim
v→0

1

N (
i

Im x i i
~e!~v!

\v
. ~13!

For a noninteracting electron gas, Eq.~13! turns into the
Korringa relaxation rate 1/t05pA2rF

2kBT/\ using Eq.~10!.
The nuclear spin Hamiltonian is of the form

H5Hint1Hz , ~14!

whereHint consists of the Ruderman-Kittel interaction, e
pressed as

Hex52(
~ i , j !

Ji j I i•I j , ~15!

and the dipole-dipole interaction between the nuclear sp
The Zeeman energyHz in the presence of an external fie
H0 is given by

Hz52\gH0 (
i

I iz . ~16!

It holds that

(
i

@Hint ,I i #•I i52Hint , ~17!

and
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(
i

@Hz ,I i #•I i5Hz . ~18!

Inserting Eqs.~17! and ~18! into Eq. ~12!, we obtain

dQ

dt
5

1

t0
~2DEint1DEz!, ~19!

where DEint5Eint(b)2Eint(be), with Eint(b)5^Hint&b
andDEz is defined in a similar way. On the other hand,
definition we have

dQ

dt
52

d

dt
~Eint1Ez!. ~20!

Combination of Eqs.~19! and ~20! yields

d

dt
~Eint1Ez!52

1

t0
~2DEint1DEz!. ~21!

By the assumption that the nuclear spin system is in inte
equilibrium atb, Eint andEz are expressed in terms ofb.
Therefore, we rewrite Eq.~21! in the form

db

dt
52

1

t0

2DEint1DEz

d

db
~Eint1Ez!

, ~22!

which determines the relaxation rate ofb. Equation~22! is
our central result which tells that the inverse temperat
approaches the equilibrium in proportion to the differenc
of interaction and Zeeman energies from their equilibriu
values and inversely proportional to the specific heat. In
actual experimental situation,be /b.1025 and, moreover,E
decreases linearly withb at high temperatures. Therefor
Eint,z(be)!Eint,z(b) andDEint,z can be replaced withEint,z
in Eq. ~22!. In order to integrate Eq.~22!, one must know
explicitly Eint(b) andEz(b) as functions ofb. For simplic-
ity we discard the dipole-dipole interaction hereafter, so t
Eint(b) is replaced byEex(b).

III. EVALUATION OF THE RELAXATION RATE

In the high-temperature limit,Eex52b Tr Hex
2 and Ez

52b Tr Hz
2 . Then Eq.~20! is easily solved to giveb2be

5(b i2be)exp(2t/t) with

t215t0
21~2 TrHex

2 1Tr Hz
2!/~Tr Hex

2 1Tr Hz
2!. ~23!

This is a well-known result,9 wheret21 is independent ofb
so that no difference appears betweenb.0 andb,0. How-
ever, when we include the first-order correction

Eex52b Tr Hex
2 1

1

2
b2 Tr ~Hex

3 1HexHz
2!, ~24!

Ez52b Tr Hz
21b2 Tr HexHz

2 , ~25!

Eq. ~22! becomes
al

e
s

e

t

db

dt
52

b

t0

~2 TrHex
2 1Tr Hz

2!

~Tr Hex
2 1Tr Hz

2!

3F11b
~Tr Hex

3 12 TrHexHz
2!Tr Hex

2

~2 TrHex
2 1Tr Hz

2!~Tr Hex
2 1Tr Hz

2!
G .

~26!

It is obvious from Eq.~26! thatb no longer shows exponen
tial decay and that a difference in the relaxation rate betw
b.0 andb,0 appears. Furthermore, in vanishing field t
last factor on the r.h.s. of Eq.~26! turns to @1
1(b/2)TrHex

3 /Tr Hex
2 #, which grows with increasingb.0

for AF exchange interaction (Ji j ,0) since TrHex
3 .0. The

reverse holds for F exchange interaction (Ji j .0). Con-
versely, forb,0 the above relations are reversed. For stro
fields, on the other hand, the last factor on the r.h.s. of
~26! becomes unity, so that the relaxation remains just a
the high-temperature limit. We next discuss in general ter
the roles of the exchange and Zeeman energies.

First, if the exchange interaction can be neglected, it ho
that Ez(b)52N\gH0/2 tanh(b\gH0/2) for I 51/2. Insert-
ing this into Eq. ~22!, we obtain db/dt5
2(1/t0\gH0)sinh(b\gH0) which is integrated as
tanh(b\gH0/2)5c exp(2t/t0), (c5constant). This shows
that relaxation takes place equally forb.0 andb,0. Sec-
ond, if the external field is absent, Eq.~22! turns to

db

dt
52

2

t0

1

d

db
log uEexu

. ~27!

That is, theb dependence ofEex(b) determines fully the
relaxation rate. The steeper is the change ofEex(b), the
slower is the relaxation rate. The rate is no longer symme
with respect tob50 in contrast to the case of the Zeem
energy and this appears via the energy spectrum of the
change interaction. Letr(E) be the density of states due t
the exchange interaction. Then, from the expressionEex(b)
5*Er(E)exp(2bE)dE/*r(E)exp(2bE)dE, it becomes clear
that the larger the density of states is at positive high~nega-
tive low! energy, the steeper isuEexu at b,0 (b.0). This
can be seen to be the case using the results of Monte C
simulations as discussed below. With the change of the s
of exchange interaction, the structure of the energy spect
reverses aroundE50 and so the relaxation rate atb.0 is
replaced with that atb,0. Equation~27! tells also about the
critical behavior at the nuclear ordering temperatureTC
(bC51/kBTC). Let us suppose thatEex;(b2bC)2a near
TC . Then the r.h.s. of Eq.~27! varies proportionally to (b
2bC), which shows critical slowing down of the relaxatio
time. To obtain semiquantitative understanding of the exp
mental results7 we next proceed with estimations based
Monte Carlo simulation and on high-temperature expans

IV. APPLICATION TO RHODIUM SPINS

Rhodium, as well as silver, hasI 51/2 and face-centered
cubic lattice. Following the model for rhodium,6 we replace
the Ruderman-Kittel interaction with the nearest- and ne
nearest-neighbor interactionsJNN /h5217.1 Hz and
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JNNN /h59.8 Hz, respectively. For this system microcano
cal Monte Carlo simulations have been performed to ca
late the density of statesr(E) and the entropyS(E)
} ln r(E) in zero field by treating the spins as classica13

Figure 1 of Ref. 13 shows the asymmetry with respect toE
50 in r(E), which is somewhat extended towards the po
tive, high-energy side. Using thisS(E), we have calculated
Eex(b) which is shown in Fig. 1~a!. The asymmetry inr(E)
betweenb.0 andb,0 is reflected in the energy as we
Note that the slopedEex /db at b50 differs from a
quantum-mechanical high-T expansion by an order of mag
nitude, which is due to the classical treatment of spins hav
I 51/2. By using thisEex(b), Eq. ~27! is integrated and the
resultingb(t) is shown in Fig. 2~a!. Relaxation atb,0 is
clearly slower than atb.0. As the employed Monte Carlo
simulation treats the system as classical spins and is lim
to the case of vanishing field, we next apply the method
high-temperature expansion.14,15

Elaborate calculation of the high-temperature expans

FIG. 1. Energy as a function of inverse temperatureb calculated
using~a! Monte Carlo simulation atH050 ~Ref. 13! and~b! high-
T expansion atH0520 mT ~see text for details!. Exchange and
Zeeman energies are shown by solid and dashed lines, respect

FIG. 2. ~a! Relaxation of inverse spin temperatureb as a func-
tion of time atH050 obtained from Eq.~22! using the energy from
Monte Carlo simulation~solid line! and high-T expansion~dashed
line!. In the latter, the initial values forb have been chosen so th
the expansion remains convergent.~b! Inverse temperature~solid
curve! and spin polarizationp ~dashed curve! as functions of time
calculated using high-T expansion atH0520mT. In all cases, the
upper and lower traces refer tob,0 andb.0, respectively.
-
-

i-

g

d
f

n

with nearest- and next-nearest-neighbor interactions has
made for the susceptibility and the zero-field specific heat
to sixth order inb.15 However, to evaluate Eq.~22! in the
presence of an applied field, we must know the susceptib
and the specific heat in a finite applied field. We made
expansion ofEint(b) andEz(b) up to third order inb which
contains the term ofH0

4 in Ez(b). As the high-temperature
expansion is valid forbJNN , bgmH0!1, it is difficult to
compare directly with the experiments done atH0540 mT
andT;1 nK (520.8 Hz•h) since this field corresponds t
gH0/2p553.6 Hz in Rh (g/2p51.34 MHz/T).7 The calcu-
lated results forEex and Ez at 20 mT are presented in Fig
1~b!. It can be seen from Fig. 1~b! thatEex(b) varies steeper
at b,0 than atb.0. Using these values ofEex andEz , we
integrate Eq.~22! to obtain the time dependence ofb and the
nuclear spin polarization̂I z&, which are displayed in Fig
2~b!. Here we have assumed that the initialb at t50 is
60.25 in the units ofuJNNu21, in which the critical value is
known asbc50.498 for the model withJNN only.14 Al-
though ^I z& is proportional tob in the high-temperature
limit, nonlinearity appears with increasingubu. As a result, a
difference in behavior is seen betweenb and^I z&, as well as
in the initial values of̂ I z& for b560.25. Certainly, one can
see bothb(t) and ^I z(t)& to relax slower atb,0 than at
b.0. This behavior of̂ I z& is consistent with the experimen
tal result.7 For a detailed comparison with the experimen
results, the calculation should be done at the experime
valueH0540 mT. However, such an attempt displayed u
physical behavior in the time dependence ofb(t) in the
third-order approximation. It is therefore necessary to go
higher order in the high-temperature expansion, or to
more accurate results forEex(b) andEz(b).

Nuclear spin relaxation at ultralow temperatures has
cently been studied in silver by Tuoriniemiet al.16 using
neutron transmission techniques. They found that the re
ation timet depends on nuclear entropy. In zero field and
high entropies, i.e., at high temperatures, the experim
yields t215(2.260.5)t0

21 . However, at lower entropies
(S,0.8R ln 2), t215(2.960.2)t0

21 , i.e., the relaxation is
considerably faster. Moreover, they observed that the c
acteristic field at whicht crosses over from low- to high
field regions at small entropies is larger by a factor of ab
three than that given by Eq.~23!. Concerning the low-field
relaxation, as lower temperatures correspond to smaller
tropies, we have found a qualitative agreement with this
perimental result since the exchange interaction is antife
magnetic in Ag. For further comparison with th
experimental result, the exchange and Zeeman ener
should be calculated including the ordered state.

V. CONCLUSIONS

In conclusion, to clarify the anomaly that nuclear rela
ation at negative temperatures is slower than at positive t
peratures, we have derived a formula for the relaxation r
of b. It consists of a product of factors, one of which
governed by the exchange and Zeeman energies for
nuclear spins while the other one is represented by the im
nary part of the conduction electron susceptibility whi
does also include the effect of magnetic impurities. T
former depends on the nuclear spin temperature, in part

ely.
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lar, whether the system is atb.0 or b,0. Since the AF-
dominated exchange interaction increases the density
states at positive energy, and thus enhancesd lnuEexu/db at
b,0, it makes relaxation slow atb,0 ~while the reverse
holds for the F-dominated interaction!. That is, whenb,0,
the positive energy states contribute to the increase ofEex
and suppress the relaxation rate; this just corresponds to
fact that the free energyF is maximized atb,0. Critical
slowing down has been predicted from the theory, wh
shows the relaxation rate to turn proportional to (b2bC)
when b passes through the nuclear ordering tempera
TC (bC51/kBTC). Regarding the effect of magnetic impu
rities, they act to enhance the relaxation rate equally ab
,0 andb.0 and, therefore, do not affect the difference
the relaxation rate betweenT,0 andT.0. We have applied
the results of Monte Carlo simulations with classical spins
well as high-temperature expansions up to third order inb to
y

u-

e

y

of

he

h

re

s

the derived formula and found a qualitative agreement w
the experimental results. For a more quantitative comparis
further improvement is necessary in the evaluation of
exchange and Zeeman energies.
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