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Scaling theory of magnetic ordering in the Kondo lattices with anisotropic exchange interactions
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The lowest-order scaling consideration of the magnetic state formation in the Kondo lattices is performed
within thes-f model with inclusion of anisotropy for both thef -f coupling ands-f exchange interaction. The
Kondo renormalizations of the effective transverse and longitudinals-f coupling parameters, spin-wave fre-
quency, gap in the magnon spectrum, and ordered moment are calculated in the case of both ferro- and
antiferromagnets. The anisotropy-driven change of the scaling behavior~e.g., critical value of the bares-f
coupling parameterg for entering the strong-coupling region and the corresponding critical exponents! is
investigated numerically forN52 and analytically in the large-N limit. The dependence of the effective Kondo
temperature ong weakens in the presence of anisotropy. The relative anisotropy parameters for both thes-f
and f -f coupling are demonstrated to decrease during the renormalization process. The role of next-nearest
exchange interactions for this effect in the antiferromagnet is discussed.@S0163-1829~99!00710-9#
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I. INTRODUCTION

Anomalous rare-earth and actinide compounds, includ
so-called Kondo lattices and heavy-fermion systems,
studied extensively by both experimentalists and theorists1–5

It is now a common point of view that the most interesti
peculiarities of electronic and magnetic propeties of th
systems are due to the interplay of the on-site Kondo ef
and intersite magnetic interactions. Whereas the o
impurity Kondo problem, being itself very difficult and rich
is now studied in detail,6 the Kondo-lattice problem is still a
subject of many investigations.3–5,7 Usually this problem is
studied within the standards-f exchange or Anderson mod
els. On the other hand, strong effects of crystal field a
anisotropic interactions are expected in anomalous 4f and 5f
systems~see, e.g., Ref. 8!. These effects can lead to anis
tropic terms in the Hamiltonian. It is well known that th
change of symmetry of thes-f exchange interaction modifie
qualitatively the infrared behavior in the one-impuri
case.9,6,10 Thus one could expect that similar effects shou
take place in the lattice case. Therefore a question ar
whether anisotropic contributions are important also in
problem of competition of the Kondo effect and magnetis
It should be noted that this question is relevant not only
magnetic systems, but also for models with pseudospin
grees of freedom~e.g., for strongly anharmonic crystals dem
onstrating band Jahn-Teller effect11!.

Theoretical investigations of the Kondo-lattice proble
use as a rule methods appropriate for calculating lo
temperature properties in the strong-coupling regi
(1/N-expansion,12 slave-boson technique!. However, these
methods are not convenient for the description of the tra
tion to the weak-coupling regime~in particular, even deriva-
tion of the standard Kondo logarithms is here a nontriv
problem13!. In our previous paper7 we have proposed an a
ternative approach which starts from the weak-coupling
gime and is based on summing up leading divergent term
the renormalization-group method. We have investigated
formation of magnetic state in the periodics-f exchange and
Coqblin-Schrieffer models with thef subsystem being de
PRB 590163-1829/99/59~14!/9348~9!/$15.00
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scribed by the isotropic Heisenberg Hamiltonian. The aim
the present paper is the investigation of formation of
magnetic Kondo-lattice state for various magnetic pha
with account of the anisotropy in both the localized-spin su
system ands-f exchange interaction.

In Sec. II we discuss the theoretical model and calcul
the logarithmic Kondo corrections to the spin-wave spectr
of anisotropic metallic ferro- and antiferromagnets. In S
III we derive the lowest-order scaling equations for the
fective transverse and longitudinals-f exchange parameter
and renormalized magnon frequencies. In Sec. IV we pre
a simple analytical solution with magnon spectrum renorm
izations being neglected, which is possible in the largeN
limit of the Coqblin-Schrieffer model. In Sec. V we discu
results of the numerical solution of the full scaling equatio
for N52 in the presence of the anisotropy in localized-sp
system only and investigate features which occur in comp
son with the isotropic case. In Sec. VI, the influence of t
anisotropics-f coupling is considered.

II. THEORETICAL MODELS AND KONDO
CORRECTIONS TO THE SPECTRUM

OF SPIN EXCITATIONS

To treat the Kondo effect in a lattice we use thes-d( f )
exchange model

H5(
ks

tkcks
† cks1H f1Hs f5H01Hs f , ~1!

where tk is the band energy. We consider the pure s
s-d( f ) exchange Hamiltonian with

H f5(
q

JqS2qSq1h(
q

JqS2q
z Sq

z2K(
i

~Si
z!2, ~2!

Hs f52 (
kk8ab

@ I iSk2k8
z

~ck↑
† ck8↑2ck↓

† ck8↓!

1I'~Sk2k8
1 ck↓

† ck8↑1Sk2k8
2 ck↑

† ck8↑!#, ~3!
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whereSi and Sq are spin operators and their Fourier tran
forms,h.0 andK.0 are the parameters of the two-site a
single-site easy-axis magnetic anisotropy in thef subsystem,
respectively. Note that our consideration can be forma
generalized on the Coqblin-Schrieffer model with arbitraryN
~cf. Ref. 7! or to a more general form of thes-f coupling
parameter matrix.10 For simplicity, we neglectk dependence
of the s-f parameter which occurs in the degenerates-f
model due to the angle dependence of the coupling~see Ref.
7!. Of course, in fact thef -f exchange has usually th
Ruderman-Kittel-Kasuya-Yosida origin and is determined
the sames-f coupling. Thus, generally speaking, the anis
ropy of thes-f coupling andf subsystem are not indepen
dent. However, crystal-field effects are known to be m
important in formation of magnetic anisotropy in rare-ea
metals than anisotropic exchange interactions16 @in this case,
the anisotropics-f coupling is obtained by expansion in th
parameterkFr f , r f being the f-shell radius, and contains
unlike Eq. ~3!, terms of the type (kS)(k8S)#. On the other
hand, the situation, where anisotropy occurs in thes-f cou-
pling only, may be also considered: this corresponds to
strong ‘‘direct’’ f -f exchange~e.g., superexchange! interac-
tion which is characteristic for somef compounds. In the
Coqblin-Schrieffer model, which is more appropriate for c
rium compounds, the crystal field results in the occurrenc
anisotropics-f coupling14,15 and excitation branches.8,7 For
simplicity, we restrict ourselves to treatment of a single m
non mode in the simplests-f model ~1!.

In the ferromagnetic~FM! state the spin-wave spectru
for the Hamiltonian~2! reads

vq5v01vex~q!, ~4!

vex~q!52S~Jq2J0!, v0522ShJ01~2S21!K. ~5!

To find the Kondo logarithmic corrections to the spin-wa
spectrum we calculate the magnon Green’s functions in
model~1!. For a ferromagnet we obtain to second order iI
~cf. the calculations in the isotropic case17!

^^bqubq
†&&v5Fv2vq22(

p
~J01Jq2p2Jp2Jq1v0/2S!

3^bp
†bp&22S(

k
S I'

2 nk2nk2q

v1tk2tk2q
2I i

2 ]nk

]tk
D

22(
p

~ I i
2fpqv2I'

2 fp00!G21

, ~6!

where we have taken into account kinematic requirement
the magnon anharmonicity terms by introducing the facto
(2S21)/2S at K ~this replacement may be justified by co
sidering higher-order terms in the formal parameter 1/S),
nk5n(tk) is the Fermi function,

fpqv5(
k

nk~12nk1p2q!

v1tk2tk1p2q2vp
. ~7!

The averages that enter Eq.~6! can be obtained from the
spectral representation for the Green’s function~6! to first
order in 1/S and contain the singular contributions
-

y

y
-

e

e

-
of

-

e

in
f

d^bq
†bq&5SI'

2 Fq ~8!

with

Fq
FM52(

k

nk~12nk1q!

~ tk2tk1q2vq!2
. ~9!

Expanding the denominators of Eq.~7! in the magnon fre-
quencies we obtain the singular correction to the pole of
magnon Green’s function

dvq522S~ I'
2 1I i

2!(
p

~Jp2Jq2p1Jq2J01v0/2S!Fp
FM

This result can be represented as

dvex~q!/vex~q!52~ I'
2 1I i

2!~12aq!(
p

Fp
FM , ~10!

dv0 /v052~ I'
2 1I i

2!(
p

Fp
FM , ~11!

where 0,aq,1. Passing into real space~see Ref. 7! yields

aq5(
R

JRu^eikR& tk5EF
u2@12cosqR#Y

(
R

JR@12cosqR#, ~12!

In the approximation of nearest neighbors at the distancd,
the quantitya does not depend onq. For a spherical Ferm
surface we have

aq5a5u^eikR& tk5EF
u25S sinkFd

kFd D 2

. ~13!

Hereafter we seta5const. Then we may use in further con
sideration of the scaling equations a single renormaliza
parameter, rather than the whole function ofq.

Now we consider a two-sublattice antiferromagnet~AFM!
with the wave vector of magnetic structureQ,

^Si
z&5ScosQRi , ^Si

y&5^Si
x&50

(JQ5Jmin,0; 2Q is equal to a reciprocal-lattice vector, s
that cos2 QRi51, sin2 QRi50; only in this case we can re
tain the definitions ofI' and I i in the local coordinate sys
tem!. Passing to the spin-deviation operators in the local
ordinate system where

Si
z5Ŝi

z cosQRi , Si
y5Ŝi

y cosQRi , Si
x5Ŝi

x , ~14!

we derive

H f5const1(
q

FCqbq
†bq1

1

2
Dq~b2qbq1bq

†b2q
† !G1•••,

~15!

Cq5S@JQ1q1Jq22JQ~11h!#1~2S21!K,

Dq5S~Jq2JQ1q!. ~16!

Diagonalizing Eq.~15! we obtain the spin-wave spectrum

vq
25Cq

22Dq
2.v0

21vex
2 ~q!, ~17!
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vex~q!52S~Jq2JQ!1/2~JQ1q2JQ!1/2, ~18!

v0
252S~J02JQ!@~2S21!K22ShJQ#, ~19!

where we have neglected a weak wave-vector dependen
v0 .

The Kondo correction to the spectrum~17! reads ~cf.
Refs. 7,18!

dvq
2522(

p
@ I'

2 vq
212S2I'

2 ~JQ1q1Jq22JQ!

3~Jp1JQ1p2JQ1q2p2Jq2p!12~ I i
22I'

2 !

3~CqCp2q2DqDp2q!#Fp
AFM ~20!

with

Fq
AFM52(

k

nk~12nk1q!

~ tk2tk1q!22vq
2

. ~21!

For an antiferromagnet in the nearest-neighbor approxi
tion (JQ1q52Jq) we obtain from Eq.~20!

dvex
2 ~q!/vex

2 ~q!522@ I'
2 2a~ I i

22I'
2 !#(

p
Fp

AFM , ~22!

dv0
2/v0

2522@ I'
2 2~12a!s~ I i

22I'
2 !#(

p
Fp

AFM ,

wheres54S2JQ
2 /v0

2@1.
Introducing next-nearest-neighbor interactions and set

for simplicity I i5I'5I we obtain

dvq
2522@vq

228S2aq
~2!~Jq

~2!2JQ!~Jq
~2!2JQ

~2!!#(
p

Fp
AFM ,

~23!

where

Jq
~1,2!5

1

2
~Jq7Jq1Q!

corresponds to the contribution of nearest and next-nea
neighbors, andaq

(2) is given by Eq.~12! with the sum over
the next-nearest neighbors. Provided that next-near
neighbor exchange interaction is ferromagnetic~so that the
AFM ordering is stable!, Jq

(2)2JQ
(2).0 and the next-neares

neighbors result in decreasing the Kondo suppression of
magnon frequency, as well as nearest neighbors in the
case. Then, instead of Eq.~22!, we can use phenomenolog
cally ~e.g., in the long-wave limit! the expression

dvex~q!/vex~q!52~12a8!I 2(
p

Fp
AFM , ~24!

dv0 /v052I 2(
p

Fp
AFM

with a8}a (2)J(2)/J(1). In the opposite case of AFM next
nearest-neighbor exchange the situation is more complica
In particular, the simple collinear antiferromagnetism can
come unstable, and formation of the spiral structure is p
of

a-

g

st

st-

he
M

d.
-

s-

sible. Note the difference between the FM and AFM cases
a factor of 2, which is due to violation of time-reversal sym
metry in a ferromagnet~terms that are linear inv give a
contribution!.

The quantities~9!, ~21! determine also the singular co
rection to the~sublattice! magnetization

dS̄/S52
1

S (
q

d^bq
†bq&52I'

2 (
q

Fq
FM,AFM . ~25!

III. SCALING EQUATIONS

Using the perturbation theory results we can write do
the system of scaling equations in the case of the Ko
lattice for various magnetic phases. Their derivation in
isotropic case is described in detail in Ref. 7. As well as
this paper, we apply the ‘‘poor man scaling’’ approach.19 In
this method one considers the dependence of effec
~renormalized! model parameters on the cutoff parameterC
(2D,C,0, here and hereafter the energy is calcula
from the Fermi energyEF50) which occurs at picking ou
the Kondo singular terms.

The renormalization ofI i is obtained from renormaliza
tion of the magnetic splitting in electron spectrum, and ofI'

from renormalization of the second-order contribution to t
electron self-energy~see corresponding perturbation expre
sions for a ferromagnet in Ref. 20!. The renormalizedI'

chosen in such a way coincides with the three-leg ver
~with two electron lines with opposite spins and one magn
line! which yields the most natural definition in a magne
cally ordered case and agrees with the one-impurity sca
consideration.6 To find the equation for the effective cou
pling parametersI ef

a (C) @ I ef
a (2D)5I a# we have to calculate

the contribution of intermediate electron states near
Fermi level with C,tk1q,C1dC in the sums that ente
expressions for the self-energies~which include, unlike Ref.
7, magnon frequencies with a gap!. Then we obtain

dI ef
i ~C!52rI'

2 hS 2
v̄ex

C
,2

v0

C D dC/C, ~26!

dI ef
'~C!52rI'I ihS 2

v̄ex

C
,2

v0

C D dC/C,

wherer is the density of states at the Fermi level,v̄ex is a
characteristic spin-fluctuation energy,v0 is the gap in the
spin-wave spectrum,h(x) is a scaling function which satis
fies the conditionh(0)51 which guarantees the correct on
impurity limit. For both FM and AFM phases we have

hFM,AFMS 2
v̄ex

C
,2

v0

C D5^~12vk2k8
2 /C2!21& tk5tk85EF

,

~27!

where the magnon frequencies are given by Eqs.~4!, ~17!.
The corresponding analytical expressions are presente
the Appendix.

The C-dependent renormalizations of the spin-wave f
quencies and ground-state moment are obtained in the s
way as in the isotropic case7 from Eqs.~10!, ~20!, ~22!, and
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~24!, ~25! and expressed in terms of the same scaling fu
tions. Introducing the dimensionless coupling constants

gef
a~C!522rI ef

a~C!, ga522rI a

@we will drop sometimes the indexi , but not', so that
gef(C)[gef

i (C)# and replacingga→gef
a (C), v̄ex→v̄ex(C),

v0→v0(C) in the right-hand parts of Eq.~26! and expres-
sions for dv̄ex(C), dv0(C), and dS̄ef(C), we obtain the
system of scaling equations:

]gef
i ~C!/]C52@gef

'~C!#2L, ~28!

]gef
'~C!/]C52gef

i ~C!gef
'~C!L, ~29!

] ln v̄ex~C!/]C

5aL/2H $@gef
i ~C!#21@gef

'~C!#2%/2 FM,

@gef
'~C!#22a$@gef

i ~C!#22@gef
'~C!#2% AFM,

~30!

] ln v0~C!/]C

5bL/2H $@gef
i ~C!#21@gef

'~C!#2%/2 FM,

@gef
'~C!#22s~12a!

$@gef
i ~C!#22@gef

'~C!#% AFM,

~31!

] ln S̄ef~C!/]C5@gef
'~C!#2L/2, ~32!

where

L5L@C,v̄ex~C!,v0~C!#5h@2v̄ef~C!/C,2v0~C!/C#/C,
~33!

and

a5H 2~12a! FM

12a8 AFM,
b5H 2 FM

1 AFM.
~34!

The integral of motion of the system~28!, ~29! reads

@gef
i ~C!#22@gef

'~C!#25m25gi
22g'

2 5const, ~35!

so that Eq.~28! takes the form

]gef~C!/]C52@gef
2 ~C!2m2#L. ~36!

IV. ANALYTICAL SOLUTION IN THE LARGE- N LIMIT

In the formal large-N limit in the Coqblin-Schrieffer
model where 2→N in Eqs.~30!–~32!, we can neglect renor
malizations of magnon frequencies~note that the true large
N limit in the FM case is somewhat different since symme
of spin-up and spin-down state contributions is violated
N.2, see Ref. 7!. Note that the same approximation is val
for N52 provided thatg is well below the critical valuegc
for entering the strong-coupling region. Then, on taking in
account Eqs.~A1!, ~A4!, Eq. ~36! can be integrated analyti
cally to obtain
-

r

1

m
@arctanh„m/gef~C!…2 arctanh~m/g!#

5G~C!52E
2D

C dC8

C8
hS 2

v̄

C8
,2

v0

C8
D , ~37!

GFM~C!5 lnuC/Du2@~11w!/2#@~C/v̄21!lnu12v̄/Cu

2~C/v̄11!lnu11v̄/Cu#1~w/2!@~C/v021!

3 lnu12v0 /Cu2~C/v011!lnu11v0 /Cu#21,

~38!

Gd53
AFM~C!5 lnuC/Du2

1

2
@~11w2!~C2/v̄221!lnu12v̄2/C2u

2w2~C2/v0
221!lnu12v0

2/C2u11#, ~39!

Gd52
AFM~C!5@u~C22v̄2!1u~v0

22C2!# ln

3S 1

2
~AuC22v0

2u1AuC22v̄2u!/D D
1u~C22v0

2!u~v̄22C2!ln~v̄ex/2D !, ~40!

wherew5v0/v̄ex,

v̄5H v01v̄ex FM,

Av0
21v̄ex

2 AFM.
~41!

The scaling trajectories described by Eqs.~37!–~40! are
shown in Fig. 1 formÞ0, w50 and in Fig. 2 forwÞ0, m
50. Note that these pictures describe adequately the caN
52, sinceg50.15 is considerably lower than the critica
values.

The anisotropy ofs-f coupling results in that the depen
dence 1/gef(j) becomes nonlinear at smallj5 lnuD/Cu where
the one-impurity behavior takes place

1/gef~j!.m tanh@arctanh~m/g!2mj#. ~42!

FIG. 1. The dependence 1/gef on j5 lnuD/Cu in the case of an-
isotropics-f coupling for a 3D antiferromagnet~upper solid line!,
2D antiferromagnet~short-dashed line!, and 3D ferromagnet~long-
dashed line!. The parameters arel5 ln(D/v̄)55, g50.15,m50.1.
The lower solid line shows the curve for the 3D antiferromag
with m50.
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However, this nonlinearity is not too strong even form/g
52/3 ~Fig. 1!. Of course, the curves withmÞ0 go consid-
erably higher, since the bare coupling parameterg' de-
creases withm.

For wÞ0 the function 1/gef(j) has a minimum both in the
AFM and FM cases, position of which,Cmin , is determined
by Eqs.~A5!–~A7! @in the isotropic case, the minimum oc
curs in the three-dimensional~3D! AFM case only#. The
minimum may result in nonmonotonic temperature dep
dences of physical quantities which are sensitive to
Kondo effect, e.g., of the effective magnetic moment. T
depth of the minimumD5Gmin2G(0) is given by

D55
1

2
@~11w!ln~11w!2wln w# FM,

1

2
@ ln 21~11w2!ln~11w2!2w2ln w2# 3D AFM,

ln~w1A11w2! 2D AFM.
~43!

Note that atw@1 we have in all the casesD} ln w.
The critical valuegc is determined by the condition

1/gc52~1/m!tanh~mGmin!.uGmin2~m2/3!Gmin
3 u, m!1,

~44!

where

2Gmin55
l111

1

2
@wln w1~12w!ln~11w!# FM,

l1
1

2
@11 ln 21 ln~11w2!# 3D AFM,

l 2D AFM.
~45!

In the FM case anisotropy in thef system results in an in
crease ofgc @uG(0)u increases withw more rapidly than
uGminu#, in the 3D AFM casegc decreases, and in 2D AFM
anisotropy does not influencegc . The effective coupling
constantg* 5gef(0) remains finite atg→gc20 and tends to

gc* 5m/tanh~mD!. ~46!

The effective~renormalized by spin dynamics! Kondo tem-
peratureTK* is determined by the condition 1/gef(2TK* )50
and satisfies the equation

FIG. 2. The dependence 1/gef on j5 lnuD/Cu in the presence of
anisotropy in thef system for a 3D antiferromagnet~solid line!, 2D
antiferromagnet~short-dashed line!, and 3D ferromagnet~long-
dashed line!. The parameters arel55, g50.15,w50.3.
-
e
e

2G~2TK* !5 arctanh~m/g!. ~47!

Due to the minimum,TK* is also finite at g→gc10,
TK*

c5uCminu.

V. EFFECTS OF THE f-SYSTEM ANISOTROPY
ON SCALING BEHAVIOR

Now we treat the physically real caseN52 with the an-
isotropy being present in thef system only. To this end we
have to consider the full scaling equations form50,wÞ0.
The most important circumstance to be taken into accoun
the renormalization of the magnon frequencies. Writi
down the first integrals of the system~28!, ~30!

gef~C!1~2/a!ln v̄ex~C!5const, ~48!

gef~C!1~2/b!ln v0~C!5const,

results in

v̄ex~C!5v̄exexp~2a@gef~C!2g#/2!, ~49!

v0~C!5v0 exp~2b@gef~C!2g#/2!.

As follows from Eqs.~30!, ~32!

S v̄ex~C!

v̄ex
D 1/a

5S v0~C!

v0
D 1/b

5
S̄ef~C!

S
. ~50!

Substituting Eq.~49! into Eq. ~28! we obtain

]~1/gef!/]j52h@exp~j2lex

2a@gef2g#/2!,w exp~j2lex2b@gef2g#/2!#,

~51!

where

j5 lnuD/Cu, lex5 ln~D/v̄ex!@1, w5v0 /v̄ex.

For an antiferromagnet in the nearest-neighbor approxi
tion we havea5b and Eq.~51! takes the form

]~1/gef!/]j52C@lex2j1a@gef2g#/2#, ~52!

C~j!5hAFM~e2j,we2j!.

For finite values ofN the singularities of the scaling func
tions, which occur in the magnetically ordered phases, p
the crucial role due to peculiar properies of the different
equation~51!. In particular, one can prove7 that gef diverges
at somej at arbitrarily smallg ~i.e., gc50) unless the sin-
gularity cutoff is introduced. To make the value ofgc finite
one has to cut the singularities. This may be performed
introducing small imaginary parts, i.e., by replacing in Eq
~A1!,~A4!

lnu12xu→Re ln@12x~11 id!#5
1

2
ln@~12x!21d2x2#,

~53!

~12x!21/2u~12x!→$@@~12x!21d2x2#1/2

112x#/2%1/2/@~12x!21d2x2#1/2.
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Thex dependence of the cutoff parameter can be in princ
neglected, as in Ref. 7, since it does not influence appre
bly numerical results~since d is important atx51 only!;
however, this dependence is needed to pass correctly to
limit v0→0). As one can see from Eq.~27!, the value ofd
should be determined by the magnon damping atq
5uk2k8u.2kF . This damping is due to both exchange a
relativistic interactions. Hereafter we put in numerical calc
lationsd51/100. We accept alsol5 ln(D/v̄)55.

The dependencesgef(j) for 3D FM and AFM phases ac
cording to Eqs.~51!, ~52! at g close to the critical value are
shown in Fig. 3. As well as for the isotropic case,7 there
occur large intervals of a non-Fermi-liquid behavior whe
magnon spectrum becomes soft. In this regime, the rela
between the arguments of the scaling functionh(x,y) in Eq.
~51! is fixed by the singularity pointuCu5v̄(C) @see the
Appendix,v̄(j) is defined in the same way as in Eq.~41!# or
by the condition

ln@v̄/v̄~j!#5j2l. ~54!

After substituting Eq.~49! into Eq. ~54! we see that the de
pendencegef(j) is linear inj only in the casea5b where

gef~j!2g.2~j2l!/a. ~55!

Thus for the FM phase the dependencegef(j) in the NFL
region is different from the isotropic case.

In the 2D AFM case the anisotropy does not practica
influence the behaviorgef(C) because of strong singularit
of the scaling function.

The dependences 1/g* (g) andj* (g) @j* 5 ln(D/TK* )# for
a 3D anisotropic ferromagnet are shown in Fig. 4. Th
dependences are more similar to those in the isotropic a
ferromagnet rather than isotropic ferromagnet~see Fig. 5 of
Ref. 7!. In particular, a wide plateau withj* (g). j̃c* can be
seen in Fig. 4, whereas in the isotropic ferromagnetj* (g
→gc10) increases in a not too narrow region. The diffe
ence is connected with the absence of the scaling func
maximum in the latter case. Thus the anisotropy makes
dependence the effective Kondo temperature on the
coupling parameter still weaker in comparison with the is
tropic case. Due to the minimum of the function 1/gef(j), g*
remains finite atg→gc20, as well as in the limitN
→`, g*→gc* 51/D with D given by Eq.~43!. It should be

FIG. 3. The scaling trajectoriesgef(j) in an anisotropic ferro-
magnet forg50.1333.gc ~upper solid line! and g50.1332,gc

~lower solid line!, and 3D antiferromagnet forg50.1302.gc ~up-
per dashed line! andg50.1301,gc ~lower dashed line!, w50.3.
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noted that the function 1/g* (g) ~Fig. 4! approachesD at
very smallug2gcu which are practically unreachable.

On the other hand, strictly speaking,j* (g) diverges at
g→gc10. The increase ofj* (g) takes place also in an ex
tremely narrow region~of order of 1024–1023) only and is
not shown in Fig. 4. As demonstrate numerical calculatio
in this region we have

j* ~g!2 j̃c* .2g ln@~g2gc!/g#, TK* ;~g2gc!
g.

~56!

The ‘‘critical exponents’’g turn out to be nonuniversal, de
creasing with increasingw, i.e., the minimum depth; for the
3D ferro- and antiferromagnets withw50.3 we haveg
.0.2 andg.0.05~the corresponding values in the isotrop
case areg51/2 andg.0.1, respectively7!.

A comparison of the critical parameter values in the is
tropic and anisotropic cases is presented in Table I. One
see that forN52 the anisotropy results in a decrease of t
critical value gc in all the cases, unlike the large-N limit.
This decrease is more appreciable in the FM phase wh
linear terms in the anisotropy parameter enter the equati

The value ofj̃c* decreases with anisotropy in the AFM
case but increases in the FM case. This is explained by
in FM v0 is renormalized stronger thanv̄ex, so thatv̄(j)

FIG. 4. The dependences 1/g* (g) for g,gc andj* (g)2l for
g.gc in an anisotropic ferromagnet withl55, a51/2, w50.3,
d51/100. The dashed line is the curve 1/g2l.

FIG. 5. The scaling behavior of the effective anisotropy para
eterwef(j)5v0(j)/v̄ex(j) for an anisotropic ferromagnet with th
same parameters as in Fig. 2~solid lines! and an antiferromagne
with a850.4, g50.1375.gc ~upper dashed line!, and g50.1374
,gc ~lower dashed line!.
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tends to zero more rapidly. As demonstrate numerical ca
lations, j̃c* decreases withw in the AFM case too for suffi-
ciently largea8.

The experimentally observable quantities can be obtai
by using the formulas

TK* 5D exp~2j* !, ~57!

(g.gc) and

S* 5S̄ef~C50!5Sexp~2@g* 2g#/2!,

v̄ex* 5v̄ex~C50!5v̄exexp~2a@g* 2g#/2!, ~58!

v0* 5v0~C50!5v0 exp~2b@g* 2g#/2!,

(g,gc). In particular, we obtain the relation

v0* /v05H ~S* /S!2 FM,

S* /S AFM.
~59!

The quantities~58! are finite atg→gc20. However, as fol-
lows from the standard scaling treatment of the phase t
sition, in some region we have the law

v̄* 5v̄~C50!;~gc2g!g. ~60!

Renormalization of relative anisotropy parameter is given

w~C!5
v0~C!

v̄ex~C!
5expS 2

b2a

2
@gef~C!2g# D . ~61!

This is shown in Fig. 5. The corresponding temperature
pendence can be obtained by the replacementuCu→T.

VI. EFFECTS OF ANISOTROPIC s-f COUPLING

Strictly speaking, in the case wheremÞ0 the full system
of scaling equations cannot be simplified. However, a sim
analytical treatment is possible in the casem!g which is
physically real for magnetic systems. Under this condit
we can expand

gef
'5Agef

2 2m2.gef2
1

2
m2/gef . ~62!

TABLE I. The critical valuesgc andjc* for different magnetic
phases in the isotropic and anisotropic cases atN5` ~from analyti-
cal results, see Sec. IV! and N52 ~from the numerical solution!.
The parameter values arel55, a51/2, a850. ForN52, the cut-

off d51/100 is used and the ‘‘critical value’’j̃c* is estimated from
the plateau in the dependencej* (g) ~see the discussion in the text!.

w FM 3D AFM 2D AFM

N→` 0 gc 0.167 0.171 0.176
0.3 0.169 0.170 0.176
0 jc* ` 5.35 5

0.3 5.73 5.31 5
N52 0 gc 0.139 0.132 0.127

0.3 0.133 0.130 0.127
0 j̃c* 6.13 6.07 6.07

0.3 6.24 6.04 6.06
u-

d

n-

y

-

le

n

Provided that the expansion holds atj50, this will hold with
increasinggef too. Then we obtain from Eqs.~28!, ~30!, ~31!
the integrals of motion

gef~C!2tm2/gef~C!1~2/a!ln v̄ex~C!.const,

t5H 1/2 FM,

2a AFM,
~63!

gef~C!2um2/gef~C!1~2/b!ln v0~C!.const,

u5H 1/2 FM,

2~12a!s AFM,
~64!

so that

v̄ex~C!5v̄exexp$2a@gef~C!2g2tm2
„1/gef~C!21/g…#/2%,

~65!

v0~C!5v̄exexp$2b@gef~C!2g2um2
„1/gef~C!21/g…#/2%.

~66!

On substituting Eqs.~65!, ~66! into Eq. ~36! we obtain the
closed equation

]gef /]j52~gef
2 2m!h

3$exp~j2lex2a@gef2g2tm2~1/gef21/g!#/2%,

w exp$j2lex2b@gef2g2um2~1/gef21/g!#/2!%. ~67!

The presence of the terms that are proportional tom, in the
scaling function arguments in Eq.~67!, results in a weak
smearing of the linear dependencegef(j) in the NFL regime
even fora5b.

In the FM case, to the accuracy accepted, the express
~65!,~66! can be represented as

v̄ex~C!5v̄exexp„2a@gef
'~C!2g'#/2…, ~68!

v0~C!5v0exp„2b@gef
'~C!2g'#/2…. ~69!

Further, as follows from Eq.~32!, in all the cases

S̄ef~C!5Sexp„2@gef~C!2g#/2…. ~70!

Thus the first of relations~50! is violated in AFM case, and
the second relation in both FM and AFM cases.

However, the violation owing the anisotropics-f coupling
is weak: renormalization ofv0 for AFM, which is most ap-
preciable, yields in the exponent of Eq.~66! the quantity of
the order ofm2s/g}g only. Thus the most important effec
of m is the deformation of scaling trajectories at not too lar
values ofj, which was considered in Sec. IV~Fig. 1!, and
the main corrections togc are described by Eq.~44!.

The case of not smallm ~which can be relevant for pseu
dospin systems11! can be investigated by numerically solv
ing Eqs.~28!–~31!. The results are shown in Fig. 6. One ca
see that the anisotropy ofs-f coupling leads to an increase o
thegc values in comparison with the isotropic case~cf. Table
I!. This is due to both decrease ofg' and more weak renor
malization ofv̄ex according to Eq.~30!.
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VII. CONCLUSIONS

In the present paper we have generalized the scaling t
ment of Ref. 7 by including the anisotropy in both thes-f
coupling andf system itself. We have demonstrated that
magnetic anisotropy modifies considerably the scaling
havior in the Kondo lattice problem.

In all the cases, the anisotropy in thef subsystem~the gap
in the magnon spectrum! results in the occurrence of a non
monotonous dependence~of a maximum! of the effective
coupling constantgef(j). This prevents the increase o
j* (g) at g→gc10, which becomes practically not obser
able even for a ferromagnet~Fig. 4!, unlike the isotropic
case. The dependence of the effective Kondo temperatur
the bares-f coupling parameter becomes weaker in the pr
ence of the anisotropy. Further, the minimum in the dep
dence 1/gef(j) results in that g* ~and, consequently
v̄ex* , v0* , and S* ) are always finite atg→gc20. As for
quantitative changes, the anisotropy favors a nonmagn
Kondo state~the critical values of bare coupling consta
decrease!. The critical region of magnetic instability be
comes more narrow~especially in the FM case!, so that the
non-Fermi-liquid behavior is suppressed. At the same ti
anisotropics-f coupling influences noticeably the form o
the scaling trajectory for smallj, but becomes not importan
with increasinggef(j).

Owing to a more rapid Kondo renormalization of the ga
the system tends to ‘‘isotropic’’ behavior ofgef(j) at ap-
proaching the strong-coupling regime. Such a renormal
tion ~61! may be important for analysis of the spin-excitati
spectrum in anomalousf systems. One can expect that t
observable renormalized spectrum gap in these system
relatively small and strongly temperature-dependent in co
parison with the ‘‘usual’’f -electron magnets. As we dem
onstrate by our calculations, next-nearest-neighbor excha
interactions in the AFM phase are important for this effe
The dependencev0(T) can be investigated not only by th
neutron scattering, but also by simple methods like the
romagnetic resonance.

The change of the critical exponents of the phase tra
tion atg→gc with changing the bare anisotropy parametew
turns out to be very strong. It is interesting that their valu
depend continuously on the anisotropy and are nonunive
~possibly, higher-order contributions to the scaling equati

FIG. 6. The dependences 1/gef(j) in the case of anisotropics-f
coupling (m50.1, w50) for a 3D ferromagnet withg50.1619
.gc ~lower solid line! andg50.1618,gc ~upper solid line! and a
3D antiferromagnet withg50.1563.gc ~lower dashed line!, and
g50.1562,gc ~upper dashed line!.
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will change this result; this question needs further investi
tions!. It should be noted that, unlike the one-impuri
Kondo problem~where the ‘‘phase transition,’’ connecte
with disappearance of thelocal moment, exists forN5`
only, and a crossover takes place for finiteN, see Ref. 13!,
the phase transition in the Kondo lattices is physically re
being a magnetic-nonmagnetic transition. The situation
similar to the onset of magnetism in itinerant electron s
tems. Of course, one has to bear in mind that the treatmen
this transition within the lowest-order scaling may be on
qualitatively correct, and a more detailed~e.g., numerical
renormalization group! consideration is needed to describ
the crossover region.

Similar to Ref. 7, at approaching the critical value of ma
netic instability gc , the transition to an ‘‘incoherent’’ re-
gime, where non-spin-wave excitations of thef system play
the dominant role, should be considered. In this regime,
minimum of 1/gef(j) can be suppressed. However, the use
the model ‘‘paramagnetic’’ scaling function for describin
the incoherent contribution~as in Ref. 7! seems to be unrea
sonable in the presence of the anisotropy, since spin dyn
ics in the paramagnetic state off systems in a strong crysta
field is rather complicated.8,14
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APPENDIX: SCALING FUNCTIONS
IN ANISOTROPIC MAGNETS

Using the long-wave approximationsvex
FM(q);q2,

vex
AFM(q);q in the whole Brillouin zone~which is justified,

e.g., at smallkF), we get from Eq.~27!

hFM~x,y!5
1

2x
lnU11x1y

12x2y

12y

11yU, ~A1!

wherev̄ex5vex(2kF). For an antiferromagnet we derive

hAFM~x,y!5
1

12y2
hAFMS x

A12y2D , ~A2!

wherehAFM(x) is the corresponding scaling function in th
isotropic case,

hAFM~x!5H 2x22lnu12x2u, d53,

~12x2!21/2u~12x2!, d52,
~A3!

u(x) being the step function. Then we have

hAFM~x,y!55
1

x2
lnU 12y2

12x22y2U , d53,

u~12x22y2!2u~y221!

u12y2u1/2u12x22y2u1/2
, d52.

~A4!

One can see that the logarithmic singularities of the functi
hFM(x)5hFM(x,0) andhAFM(x) at x51 are shifted to the
points x1y51 ~FM! and x21y251 ~AFM!, i.e., uCu5v̄
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with v̄ defined by Eq.~41!. Besides that, the anisotropy re
sults in the occurrence of the second singularity aty51 ~i.e.,
uCu5v0).

The presence of such singularities is a general prop
which does not depend on the spectrum model.7 The func-
tions hFM(x,y) andhAFM(x,y) (d53) change their sign a
y(x1y)51, i.e.,

uCu5uCminu5Av0~v01v̄ex! ~A5!

andx212y252, i.e.,

uCminu5Av0
21v̄ex

2 /2, ~A6!

respectively. Ford52 the function hAFM(x) has strong
square-root singularities atx21y251 and y51, and van-
ishes in the interval 12x2,y2,1, i.e.,

uCminu5Av0
21v̄ex

2 .uCu.v0 , ~A7!

changing its sign after passing this interval~but a smooth
contribution occurs for more realistic models of magn
spectrum!.

Note that in the limit of strong magnetic anisotrop
v0 /v̄ex→` the singularity aty→1 becomes very strong:
ty

h0~y!5~12y2!21. ~A8!

It should be noted that the influence of magnetic anisotro
on spin dynamics can be also considered for the param
netic phase~i.e., for the problem of the local moment forma
tion!. In this case the singularity~A8! also becomes weaker
If we accept, as in Ref. 7, the ‘‘spin diffusion’’ approxima
tion with the spin spectral density

Jq~v!5
1

p

Dq2

~v2v0!21~Dq2!2
. ~A9!

(D is the spin diffusion constant,v̄ex54DkF
2) we obtain

hPM~x,y!5
1

2xS arctan
x

12y
1arctan

x

11yD . ~A10!

This function has a finite jump atuCu5v0 . Of course, this
approximation can be hardly justified for realf systems.
Therefore, we do not present concrete calculation results
the PM case. However, one can expect that qualitative
fects of anisotropy are similar to those in the magnetica
ordered phases.
.
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