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Scaling theory of magnetic ordering in the Kondo lattices with anisotropic exchange interactions
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The lowest-order scaling consideration of the magnetic state formation in the Kondo lattices is performed
within the s-f model with inclusion of anisotropy for both tHef coupling ands-f exchange interaction. The
Kondo renormalizations of the effective transverse and longitudirfacoupling parameters, spin-wave fre-
guency, gap in the magnon spectrum, and ordered moment are calculated in the case of both ferro- and
antiferromagnets. The anisotropy-driven change of the scaling beh@vipr critical value of the bars-f
coupling parameteg for entering the strong-coupling region and the corresponding critical expgrisnts
investigated numerically fdd=2 and analytically in the largBtlimit. The dependence of the effective Kondo
temperature oy weakens in the presence of anisotropy. The relative anisotropy parameters for bsth the
and f-f coupling are demonstrated to decrease during the renormalization process. The role of next-nearest
exchange interactions for this effect in the antiferromagnet is discugSeti63-182@09)00710-9

[. INTRODUCTION scribed by the isotropic Heisenberg Hamiltonian. The aim of
the present paper is the investigation of formation of the
Anomalous rare-earth and actinide compounds, includingnagnetic Kondo-lattice state for various magnetic phases
so-called Kondo lattices and heavy-fermion systems, ar#ith account of the anisotropy in both the localized-spin sub-
studied extensively by both experimentalists and thectists. System and-f exchange interaction.
It is now a common point of view that the most interesting In Sec. Il we discuss the theoretical model and calculate
peculiarities of electronic and magnetic propeties of thesg¢he logarithmic Kondo corrections to the spin-wave spectrum
systems are due to the interplay of the on-site Kondo effec®f anisotropic metallic ferro- and antiferromagnets. In Sec.
and intersite magnetic interactions. Whereas the onelll we derive the lowest-order scaling equations for the ef-
impurity Kondo problem, being itself very difficult and rich, fective transverse and longitudingdf exchange parameters
is now studied in detafi,the Kondo-lattice problem is still a and renormalized magnon frequencies. In Sec. IV we present
subject of many investigatioris>’ Usually this problem is  a simple analytical solution with magnon spectrum renormal-
studied within the standarstf exchange or Anderson mod- izations being neglected, which is possible in the lage-
els. On the other hand, strong effects of crystal field andimit of the Cogblin-Schrieffer model. In Sec. V we discuss
anisotropic interactions are expected in anomalduant results of the numerical solution of the full scaling equations
systems(see, e.g., Ref.)8 These effects can lead to aniso- for N=2 in the presence of the anisotropy in localized-spin
tropic terms in the Hamiltonian. It is well known that the system only and investigate features which occur in compari-
change of symmetry of thef exchange interaction modifies son with the isotropic case. In Sec. VI, the influence of the
qualitatively the infrared behavior in the one-impurity anisotropics-f coupling is considered.
case>®1° Thus one could expect that similar effects should

take place in the lattice case. Therefore a question arises Il. THEORETICAL MODELS AND KONDO
whether anisotropic contributions are important also in the CORRECTIONS TO THE SPECTRUM
problem of competition of the Kondo effect and magnetism. OF SPIN EXCITATIONS

It should be noted that this question is relevant not only for ) )
magnetic systems, but also for models with pseudospin de- 10 treat the Kondo effect in a lattice we use thel(f)
grees of freedonte.g., for strongly anharmonic crystals dem- €xchange model
onstrating band Jahn-Teller eff&bt

Theoretical investigations of thg Kondo-lattice problem H= 2 tkcl(rcko'—’— H¢+Hg=Ho+Hss, )
use as a rule methods appropriate for calculating low- ko
temperature properties in the strong-coupling regim . : .
(1/N-expansiont? slave-boson technigiieHowever, these %vheretk 's the band_ene_rgy. We consider the pure spin

. - s-d(f) exchange Hamiltonian with

methods are not convenient for the description of the transi-
tion to the weak-coupling regim@én particular, even deriva-
tion of the standard Kondo logarithms is here a nontrivial Hf=2 JgS_ Syt 7;2 JqSZ,qSé—KZ (32)2, (2)
problert?). In our previous papémwe have proposed an al- a a !
ternative approach which starts from the weak-coupling re-

gime and is based on summing up leading divergent terms by Ho=— | (et c—cl o

the renormalization-group method. We have investigated the of kl%ﬁ [ Hi_k (GG = G i)
formation of magnetic state in the periodid exchange and vt -t
Cogblin-Schrieffer models with thé subsystem being de- (S kG Cir S ki Cur) ] 3)
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whereS and S, are spin operators and their Fourier trans- 5<b$bq)=SIf<I>q (8
forms, >0 andK >0 are the parameters of the two-site and

single-site easy-axis magnetic anisotropy in tisebsystem, With

respectively. Note that our consideration can be formally

generalized on the Cogblin-Schrieffer model with arbitrisry PV 22 N(1—Nysq) _ 9)
(cf. Ref. 7 or to a more general form of the-f coupling d K (tk—tk+q—wq)2

parameter matrix° For simplicity, we negleck dependence
of the s-f parameter which occurs in the degeneraté
model due to the angle dependence of the coufbeg Ref.
7). Of course, in fact thef-f exchange has usually the
Ruderman-Kittel-Kasuya-Yosida origin and is determined by

the sames-f coupling. Thus, generally speaking, the anisot- dwq=—2S(17+17) > (Jp=Jq—p+Jq—Jo+ wo/2S) Dy
ropy of thes-f coupling andf subsystem are not indepen- P

dent. However, crystal-field effects are known to be moreThis result can be represented as

important in formation of magnetic anisotropy in rare-earth

Expanding the denominators of E) in the magnon fre-
guencies we obtain the singular correction to the pole of the
magnon Green'’s function

metals than anisotropic exchange interactibfis this case, — 1212V(1— FM

the anisotropics-f coupling is obtained by expansion in the doe( W] we @)= =11 +I])(1 aq)% ©p7, (10
parameterker;, r; being thef-shell radius, and contains,

unlike Eg.(3), terms of the type KS)(k’'S)]. On the other _ 5 2 M

hand, the situation, where anisotropy occurs in sHecou- Swolwo= _(ILHH)% Py, (1D

pling only, may be also considered: this corresponds to the o .
strong “direct” f-f exchangde.g., superexchanginterac-  Where 0<aq<1. Passing into real spacsee Ref. yyields
tion which is characteristic for somecompounds. In the
Coqpblin-Schrieffer model, which is more appropriate for ce-aqu JR|<eikR>tkEF|2[1_COSqR]/
rium compounds, the crystal field results in the occurrence of R
anisotropics-f coupling**® and excitation branchds. For
simplicity, we restrict ourselves to treatment of a single mag- > Jx[1-cosgR], (12
non mode in the simplestf model(1). R

In the ferromagneti¢FM) state the spin-wave spectrum |n the approximation of nearest neighbors at the distahce
for the Hamiltonian(2) reads the quantitya does not depend og. For a spherical Fermi

surface we have
wq=wgt we(q), (4)

(13

sinkgd) 2
we( @) =25(3g—Jo),  wo=—2Sndo+(2S—1K. (5) ked
To find the Kondo logarithmic corrections to the spin-waveHereafter we set=const. Then we may use in further con-

spectrum we calculate the magnon Green’s functions in thgideration of the scaling equations a single renormalization
model (1). For a ferromagnet we obtain to second ordet in parameter, rather than the whole functionqof

aq=a=|e" ) g [*=

(cf. the calculations in the isotropic cdde Now we consider a two-sublattice antiferromag(&EM)
with the wave vector of magnetic structu@®
((bglbd)y,= w—wq—22p (Jo+Iq-p—Jp— Jqt wo/29) (Sf)=ScosQR;, (S/)=(S)=0
(Jo=Imin<<0; 2Q is equal to a reciprocal-lattice vector, so

Ne—Nk—gq 9Nk that codQR;=1, sif QR;=0; only in this case we can re-
o+t—tq I tain the de_finitions oil_andIH_ in_ the local coo_rdinate sys-
tem). Passing to the spin-deviation operators in the local co-
ordinate system where

x(bgbp>—zs; (lf

-1

: (6)

=22 (I pgo=1% poo)
P S'=§cosQR;, §=§cosQR;, =%, (19

where we have taken into account kinematic requirements ie derive

the magnon anharmonicity terms by introducing the factor of

(25—1)/2S at K (this replacement may be justified by con- + 1 ot

sidering higher-order terms in the formal parametes) 1/ Hf=const+§ Cqbgbgt 5Dg(b—gbg+bgb=g) |+ -,

n,=n(t,) is the Fermi function, (15)

Cq=FJo:q+Jq—2Jo(1+ 7)]+(25- 1)K,

Dy=S(J4—Jo+q)- (16)

The averages that enter E() can be obtained from the Diagonalizing Eq(15) we obtain the spin-wave spectrum
spectral representation for the Green'’s functiéh to first s 2 2 o
order in 15 and contain the singular contributions wg=C4—Dg=wy+ we(q), 17

N (1—Nygyp-
¢pqw:2 k( k+p q)

k w+tk—tk+p_q— wp

(@)
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el )= ZS(Jq—‘]Q)l/Z(‘]Q+q—JQ)1/2' (18 sible. Note the difference between the FM and AFM cases by
a factor of 2, which is due to violation of time-reversal sym-
w§=28(J0—JQ)[(ZS— 1)K—-2S7J5], (19 metry in a ferromagnefterms that are linear i give a

contribution.
where we have neglected a weak wave-vector dependence of 1,4 quantities9), (21) determine also the singular cor-
Wo- . rection to the(sublattice magnetization
The Kondo correction to the spectrud?) reads (cf.
Refs. 7,18

_ 1
8SS=—¢ % 8(blbgy=—1 f% PFEMATM - (25)
5w§=—2% [12 w2 +25%12 (Jgsq+ Jq—230)

5 lll. SCALING EQUATIONS
X(JpFIgrp=Iqig-p~Jg-p) T2(1—17)

_ AFM Using the perturbation theory results we can write down
% (CaCp-qaDgDp-) 1P} 20 the system of scaling equations in the case of the Kondo
with lattice for various magnetic phases. Their derivation in the
isotropic case is described in detail in Ref. 7. As well as in
AFM Ni(1—Nysg) this paper, we apply the “poor man scaling” approachn
oy :2; m (2D this method one considers the dependence of effective
q

(renormalizedl model parameters on the cutoff paramefer
For an antiferromagnet in the nearest-neighbor approximat-—D<C<0, here and hereafter the energy is calculated

tion (Jg+q=—Jg) We obtain from Eq(20) from the Fermi energ¥-=0) which occurs at picking out
the Kondo singular terms.

2 2 (N o[ 2 1212 AFM The renormalization of; is obtained from renormaliza-

Swel A we @)= —2[11 ~ a(lf Ii)]Ep: " 22 ion of the magnetic splitting in electron spectrum, and of

from renormalization of the second-order contribution to the
electron self-energysee corresponding perturbation expres-

5“’3/“’(23:_z[lf_(l_“)s(lﬁ_li)]g o, sions for a ferromagnet in Ref. R0The renormalized |

P chosen in such a way coincides with the three-leg vertex
wheres= 482Jé/w§> 1. (with two electron lines with opposite spins and one magnon

Introducing next-nearest-neighbor interactions and settingjne) which yields the most natural definition in a magneti-
for simplicity I =1, =1 we obtain cally ordered case and agrees with the one-impurity scaling

consideratioff. To find the equation for the effective cou-

2_ 2 qc2 (212 2 12 AFM pling parameters(C) [l o —D)=1%] we have to calculate

dwg=—2lwg=8S ag (5" ~Jo)Jg" g )]Ep: o the contribution egf inteerfmediate electron states near the

(23 Fermi level withC<t,,,<C+ 6C in the sums that enter
expressions for the self-energigghich include, unlike Ref.

where 7, magnon frequencies with a gaffhen we obtain
1
J(1,2):_ J.57J o, w
0" =7aTJar0) sIl(C)y=2p12y| - ?ex,— Eo scic, (26)

corresponds to the contribution of nearest and next-nearest

neighbors, andr?) is given by Eq.(12) with the sum over | Bex W0

the next-nearest neighbors. Provided that next-nearest- ol ef(C):zph'm( - E) oCIC,
neighbor exchange interaction is ferromagnésio that the

AFM ordering is stablg J$’—J%)>0 and the next-nearest \where) is the density of states at the Fermi level, is a
neighbors result in decreasing the Kondo suppression of theharacteristic spin-fluctuation energy, is the gap in the
magnon frequency, as well as nearest neighbors in the FMpin-wave spectrumy(x) is a scaling function which satis-
case. Then, instead of E(2), we can use phenomenologi- fies the condition;(0)= 1 which guarantees the correct one-

cally (e.g., in the long-wave limitthe expression impurity limit. For both FM and AFM phases we have
5 ——(1—a")IZ3, PAPM 24 Dex o -
wed )/ we(q)=—(1—a’) % b (29 FMAFM _g’_g =((1- 2 IC) Y Ly k.,
(27)
dwolwo= _|2% ‘DSFM where the magnon frequencies are given by Eds.(17).

The corresponding analytical expressions are presented in
with a’=a@J@/JD)_In the opposite case of AFM next- the Appendix.
nearest-neighbor exchange the situation is more complicated. The C-dependent renormalizations of the spin-wave fre-
In particular, the simple collinear antiferromagnetism can beguencies and ground-state moment are obtained in the same
come unstable, and formation of the spiral structure is posway as in the isotropic caSérom Egs.(10), (20), (22), and
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(24), (25) and expressed in terms of the same scaling func-

tions. Introducing the dimensionless coupling constants

9el C)=—2ple(C), 9.=—2pl,

[we will drop sometimes the indek, but notL, so that
9e(C)=0L(C)] and replacingy,—ge(C), Dex—®elC),
wo— wp(C) in the right-hand parts of Eq26) and expres-
sions for Swy,(C), Swe(C), and 8S.(C), we obtain the
system of scaling equations:

agk(C)1aC=—[gi(C)?A, (28)
994(C)/9C= —gi(C)ge(C)A, (29
dINwe(C)/oC
{[gl(C)12+[g(C)12}/2 FM,

=aA/
A2 Ly allg( O P - [ O} AFM,

(30)
aIn wo(C)/C
{[gl{C)12+[gs(C)1A2  FM,
=pA/2{ [0edC)]?—s(1—-a) (3D
{[gC)P-[g )} AFM,
dInS.(C)/1aC=[g(C)1?A/2, (32)

where

A=A[C,welC),wo(C)]= 5[ — we C)/ C, — wo(C)/CI/C,
(33

and

FM 2 FM
AFM, = |1 AFM.

2(1-a)

a=| ., (34)

The integral of motion of the systef28), (29) reads

[gL(C) 12— [g(C)1?=u’=g}—g?=const, (35
so that Eq(28) takes the form
99e C)/9C=—[gZ%(C) — u?]A. (36)
IV. ANALYTICAL SOLUTION IN THE LARGE- N LIMIT

In the formal largeN limit in the Cogblin-Schrieffer
model where 2N in Egs.(30)—(32), we can neglect renor-

malizations of magnon frequenciésote that the true large-
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FIG. 1. The dependencedl on £é=In|D/C| in the case of an-
isotropics-f coupling for a 3D antiferromagnétipper solid ling,
2D antiferromagnetshort-dashed line and 3D ferromagneiong-
dashed ling The parameters are=In(D/w)=5, g=0.15, u=0.1.
The lower solid line shows the curve for the 3D antiferromagnet
with ©=0.

%[arctanr(,u/gef(C))— arctanh( u/g)]

c dc’

G™(C)=In|C/D|-[(1+wW)/2][(C/w—1)In|1—w/C]
—(Clo+1)In|1+w/C|1+ (W/2)[(Clwy—1)
XIn|1— wo/C|— (Clwg+1)In|1+ wy/C|]—1,
(38)

1
G4i™M(c)=In|C/D|- E[(1+w2)(02/52—1)|n|1—52/c2|
—W?(C?/w3—1)In|1— w3/C?|+1], (39)

Ga™(C)=[ 6(C?— )+ B(wi—C?)]in

1
x| 5(VIC?= wg] + V[C?=w?])/D

+6(C?~ wd) 6(w?~ C)In(@.2D), (40)

wherew = wq/ wey,

-

The scaling trajectories described by E¢87)—(40) are
shown in Fig. 1 foru#0, w=0 and in Fig. 2 forw#0, u
=0. Note that these pictures describe adequately the dase

(1)0+5ex FM,

— 41
ws+ wa, AFM. (4

N limit in the FM case is somewhat different since symmetry=2. Sinceg=0.15 is considerably lower than the critical
of spin-up and spin-down state contributions is violated forvalues.

N>2, see Ref. ¥ Note that the same approximation is valid

for N=2 provided thag is well below the critical valuey,

The anisotropy of6-f coupling results in that the depen-
dence 1g.{ &) becomes nonlinear at smat=In|D/C| where

for entering the strong-coupling region. Then, on taking intothe one-impurity behavior takes place

account Eqs(Al), (A4), Eq. (36) can be integrated analyti-

cally to obtain

1/gef §) = p tani arctani( u/g) — ué]. (42)
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FIG. 2. The dependenceglf on £é=In|D/C| in the presence of
anisotropy in thd system for a 3D antiferromagné&tolid line), 2D
antiferromagnet(short-dashed line and 3D ferromagnetlong-
dashed ling The parameters are=5, g=0.15,w=0.3.

However, this nonlinearity is not too strong even fofg
=2/3 (Fig. 1). Of course, the curves witp#0 go consid-
erably higher, since the bare coupling parameger de-
creases withu.

Forw=0 the function 1g(&) has a minimum both in the
AFM and FM cases, position of whiclg,;,, is determined

by Egs.(A5)—(A7) [in the isotropic case, the minimum oc-

curs in the three-dimension&@BD) AFM case only. The

V. YU. IRKHIN AND M. I. KATSNELSON
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—G(—Tg)= arctanh u/g). 47

Due to the minimum, Ty is also finite atg—g.+0,
T;c:|cmin|-

V. EFFECTS OF THE f-SYSTEM ANISOTROPY
ON SCALING BEHAVIOR

Now we treat the physically real cade=2 with the an-
isotropy being present in thiesystem only. To this end we
have to consider the full scaling equations for= 0w+ 0.

The most important circumstance to be taken into account is
the renormalization of the magnon frequencies. Writing
down the first integrals of the systeff8), (30)

minimum may result in nonmonotonic temperature depenAS follows from Egs.(30), (32)

dences of physical quantities which are sensitive to the
Kondo effect, e.g., of the effective magnetic moment. The

depth of the minimum\ =G,,;,—G(0) is given by

%[(1+W)In(1+w)—wlnw] FM,

1
E[In 24+ (1+w?)In(1+w?) —w?inw?] 3D AFM,

IN(w+ 1+w?)

2D AFM.
(43

Note that atw>1 we have in all the casese«Inw.
The critical valueg,. is determined by the condition

1/gc: - (1/M)tanr(MGmin):|Gmin_(/-L2/3)G§nin|y n<l,
(44)
where
1
)\+1+§[wlnw+(1—w)ln(1+w)] FM,
—Gmin=

1
)\+§[1+In2+ln(1+wz)] 3D AFM,
N 2D AFM.

(45

In the FM case anisotropy in thiesystem results in an in-
crease ofg. [|G(0)| increases withw more rapidly than

|Gnminl], in the 3D AFM caseg, decreases, and in 2D AFM

anisotropy does not influencg.. The effective coupling
constang* =g 0) remains finite ag—g.— 0 and tends to

gy = pltan nA). (46)

The effective(renormalized by spin dynamic&ondo tem-
peratureTg is determined by the conditiondd(—Tg)=0
and satisfies the equation

0ef(C) +(2/a)In wey( C) = const, (48)

0e(C) + (2/b)In wy(C) = const,
results in

e C) = wexeXp(—a[ged C) —91/2), (49

wo(C) = woexp(—b[ged C) —g]/2).

—_— 1/a 1b _

9o ) :(WO(C) _Sel©) 0
Wey Wo S

Substituting Eq(49) into Eq. (28) we obtain

A(1Ger)/ 9€= — mlexp(€— Nex
_a[gef_ g]/2),wexp(§—)\ex— b[gef_g]/z)]y
(51)
where
£=In|D/C|, Aex=IN(D/wg)>1, W= wp/wey.

For an antiferromagnet in the nearest-neighbor approxima-
tion we havea=b and Eq.(51) takes the form

a(]-/gef)/agz —W[hex— €+ a[Qer— gl/2],

V(&) =n"Me {wed).

(52

For finite values oN the singularities of the scaling func-
tions, which occur in the magnetically ordered phases, play
the crucial role due to peculiar properies of the differential
equation(51). In particular, one can proVehat g diverges
at some¢ at arbitrarily smallg (i.e., g.=0) unless the sin-
gularity cutoff is introduced. To make the value g finite
one has to cut the singularities. This may be performed by
introducing small imaginary parts, i.e., by replacing in Egs.
(A1),(A4)

1
Inj1—x|—Relf1-x(1+id)]= Eln[(l—x)2+52x2],
(53
(1—x) " Y20(1—x) > {[[(1—x)2+ 5°x?]?
+1=x)2HVAL(1—x)2+ 8532



PRB 59 SCALING THEORY OF MAGNETIC ORDERING IN THE ... 9353

o O DN O W U

FIG. 3. The scaling trajectoriegs(&) in an anisotropic ferro-

magnet forg=0.1333>g. (upper solid ling¢ and g=0.133%g,, 0.105 0.135 0.165
(lower solid I_ine), and 3D antiferromagnet fcg=0.1_302>gC (up- FIG. 4. The dependencesyt/(g) for g<g. and £* (g)—\ for
per dashed lineandg=0.130k g, (lower dashed ling w=0.3. g>g. in an anisotropic ferromagnet with=5, a=1/2, w=0.3,

6=1/100. The dashed line is the curvey3/\.
The x dependence of the cutoff parameter can be in principle

neglected,. as in Ref. 7., since. it fjoes not influence appreciah—oted that the function @ (g) (Fig. 4 approaches\ at
bly numerical resultdsince & is important atx=1 only); very small|g—g.| which are practically unreachable.

however, this dependence is needed to pass correctly to the On the other hand, strictly speaking® (g) diverges at

limit wy—0). As one can see from EQ7), the value ofs : * :
. . g—9g.+0. The increase of*(g) takes place also in an ex-
should be determined by the magnon damping cat tremely narrow regiorfof order of 10 4~10"%) only and is

:lkt'_k t|':'2lt(F. Tth's da|_r|np|ngft|s due totpoth exchanlge ?ndnot shown in Fig. 4. As demonstrate numerical calculations,
relativistic interactions. Hereafter we put in numerical calcu-nthic reqion we have

lations 6= 1/100. We accept alsh=In(D/w)=5.

The dependenceasy( &) for 3D FM and AFM phases ac-
cording to Egs(51), (52) at g close to the critical value are (g —E=—yIn[(g—g0)/g], TEi~(g—g.)”.
shown in Fig. 3. As well as for the isotropic cas¢here (56)
occur large intervals of a non-Fermi-liquid behavior where
magnon spectrum becomes soft. In this regime, the relatiorllhe .
between the arguments of the scaling functig(ix,y) in Eq.
(51) is fixed by the singularity pointC|=w(C) [see the
Appendix,w(£) is defined in the same way as in E41)] or
by the condition

critical exponents”+y turn out to be nonuniversal, de-
creasing with increasing, i.e., the minimum depth; for the
3D ferro- and antiferromagnets wittv=0.3 we havey
=0.2 andy=0.05(the corresponding values in the isotropic
case arey=1/2 andy=0.1, respectivelf).

—— 1 e A comparison of the critical parameter values in the iso-

Infw/w(£)]= &2 (54) tropic and anisotropic cases is presented in Table I. One can

After substituting Eq(49) into Eq. (54) we see that the de- see that foN=2 the anisotropy results in a decrease of the

pendenceay( &) is linear iné only in the casea=b where critical valueg, in all the cases, unlike the lardé-limit.
This decrease is more appreciable in the FM phase where

Oef(£)—0=2(¢é—\)/a. (55) linear terms in the anisotropy parameter enter the equations.
The value of?g decreases with anisotropy in the AFM
case but increases in the FM case. This is explained by that

in FM w, is renormalized stronger tham,,, so thatw(¢)

Thus for the FM phase the dependengg £) in the NFL
region is different from the isotropic case.

In the 2D AFM case the anisotropy does not practically
influence the behaviog.(C) because of strong singularity
of the scaling function.

The dependencesd/(g) and £ (g) [£* =In(D/Tg)] for
a 3D anisotropic ferromagnet are shown in Fig. 4. These
dependences are more similar to those in the isotropic anti-
ferromagnet rather than isotropic ferromagtsge Fig. 5 of

Ref. 7). In particular, a wide plateau with* (g)=¢* can be
seen in Fig. 4, whereas in the isotropic ferromagétetg

—g.+0) increases in a not too narrow region. The differ- ) g
ence is connected with the absence of the scaling function 0
maximum in the latter case. Thus the anisotropy makes the 4 5 6 7 8 95 10

dependence the effective Kondo temperature on the bare pg 5. The scaling behavior of the effective anisotropy param-

coupling parameter still weaker in comparison with the ISO-gterw,(&) = wo(£)/we,( £) for an anisotropic ferromagnet with the
tropic case. Due to the minimum of the functiomd(¢), 9*  same parameters as in Fig.(lid line9 and an antiferromagnet
remains finite atg—g.—0, as well as in the limitN  with «'=0.4, g=0.1375>g, (upper dashed lineandg=0.1374
—o0, g¥—g%=1/A with A given by Eq.(43). It should be  <g, (lower dashed ling



9354 V. YU. IRKHIN AND M. I. KATSNELSON PRB 59

TABLE I. The critical valuesg, and & for different magnetic ~ Provided that the expansion holdséat 0, this will hold with

phases in the isotropic and anisotropic casdé-ate (from analyti-  increasingge too. Then we obtain from Eq$28), (30), (31)
cal results, see Sec. \andN=2 (from the numerical solution  the integrals of motion

The parameter values axe=5, a=1/2, o' =0. ForN=2, the cut-
off 5=1/100 is used and the “critical valueZ* is estimated from 9ef(C) — 7142/gef C) + (2/a) In o, C) =const,
the plateau in the dependeng®(g) (see the discussion in the téxt

12 FM,

w FM 3D AFM 2D AFM —[ o AFM. (63)
N—s o0 0 g. 0.167 0.171 0.176

0.3 0.169 0.170 0.176 9ef(C) — 0?9 C) + (2/0)In wo( C)=const,

0 & ® 5.35 5

0.3 5.73 5.31 5 1/2 FM,
N=2 0 g.  0.139 0.132 0.127 0% —(1-w)s AFM, (64)

0.3 0.133 0.130 0.127

0 s 6.13 6.07 6.07 so that

0.3 6.24 6.04 6.06

e C) = wexexp{ —a[ge C) — 9~ Tu*(1/ge C) — 1/9)]/(2}5;)

tends to zero more rapidly. As demonstrate numerical calcu- . )
lations, Z* decreases withv in the AFM case too for suffi- ~ ©0(C) = @e€XP ~b[ge(C) —g— fu (1/gef(C)—1/g)]/(26}é)
ciently largea’.

The experimentally observable quantities can be obtainetn substituting Eqs(65), (66) into Eq. (36) we obtain the

by using the formulas closed equation
* —
Tk =Dexp(—¢&*), BN agelot=— (0% w7
(9>9c) and X {eXP £~ ey al Gor— 9= 7142(Lger— 1/9) 112},

S* =S,(C=0)=Sexp —[g* —g]/2),
H(CmO=Sen -l 0l WX €N ocblTer~ 0~ u2(Uger— L) /2. (67)
The presence of the terms that are proportionagk tan the
scaling function arguments in Eq67), results in a weak
smearing of the linear dependengg(£) in the NFL regime

5Z;x:aex(czO)Zaexexp(_a[g* —gl/2), (58

wp =wo(C=0)=wyexp —b[g* —g]/2),

(g<g.). In particular, we obtain the relation even fora=b.
In the FM case, to the accuracy accepted, the expressions
. (S*19)? FM, (65),(66) can be represented as
©0/®0=) g5 ARM ®9
y - ' welC)=weexp(—alge(C)—g,1/2), (68
The quantitieg58) are finite atg— g.— 0. However, as fol-
lows from the standard scaling treatment of the phase tran- 0o(C) = woexp(—b[ge( C) — g, 1/2). (69)

sition, in some region we have the law
Further, as follows from Eq32), in all the cases

0*=0(C=0)~(g.~9)" (60)
Renormalization of relative anisotropy parameter is given by Sef(C) = Sexp(—[ged C) —g]/2). (70
wo(C) b—a Thus the first of relation$50) is violated in AFM case, and
w(C)= — =exp< ———[ge(C)—g]|. (61 the second relation in both FM and AFM cases.
wex(C) 2 However, the violation owing the anisotropef coupling

This is shown in Fig. 5. The corresponding temperature delS Weak: renormalization ab, for AFM, which is most ap-
pendence can be obtained by the replacert@ht:T. preciable, yields in the exponent of E§6) the quantity of
the order ofu?s/gecg only. Thus the most important effect

of u is the deformation of scaling trajectories at not too large

values of¢, which was considered in Sec. I§Fig. 1), and
Strictly speaking, in the case whepe# 0 the full system the main corrections tg. are described by Eq44).

of scaling equations cannot be simplified. However, a simple The case of not smalk (which can be relevant for pseu-

analytical treatment is possible in the casesg which is  dospin systems!) can be investigated by numerically solv-

physically real for magnetic systems. Under this conditioning Eqgs.(28)—(31). The results are shown in Fig. 6. One can

VI. EFFECTS OF ANISOTROPIC s-f COUPLING

we can expand see that the anisotropy eff coupling leads to an increase of
. theg, values in comparison with the isotropic cdsé Table
\_ [P 2 .2 I). This is due to both decrease @f and more weak renor-
Ger= VOer™ 47=Der™ 5 4/ Ger- 62 Mmalization of wey according to Eq(30).
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will change this result; this question needs further investiga-
tions). It should be noted that, unlike the one-impurity
Kondo problem(where the “phase transition,” connected
with disappearance of thivcal moment, exists folN=
only, and a crossover takes place for firlNesee Ref. 18
the phase transition in the Kondo lattices is physically real,
being a magnetic-nonmagnetic transition. The situation is
similar to the onset of magnetism in itinerant electron sys-
tems. Of course, one has to bear in mind that the treatment of
this transition within the lowest-order scaling may be only
qualitatively correct, and a more detailéd.g., numerical
renormalization groupconsideration is needed to describe
FIG. 6. The dependencesgl{ &) in the case of anisotropisf  the crossover region.
coupling (©=0.1, w=0) for a 3D ferromagnet witlg=0.1619 Similar to Ref. 7, at approaching the critical value of mag-
>g. (lower solid line@ andg=0.1618<g. (upper solid lingand a  netic instability g., the transition to an “incoherent” re-
3D antiferromagnet witlg=0.1563>g, (lower dashed ling and  gime, where non-spin-wave excitations of theystem play
g=0.1562<g. (upper dashed line the dominant role, should be considered. In this regime, the
minimum of 18 &) can be suppressed. However, the use of
the model “paramagnetic” scaling function for describing
In the present paper we have generalized the scaling tredf?e incoherent contributiofas in Ref. 7 seems to be unrea-
ment of Ref. 7 by including the anisotropy in both tad sonable in the presence of the anisotropy, since spin dynam-
coupling andf system itself. We have demonstrated that thelCs in the paramagnetic state fofystems in a strong crystal
magnetic anisotropy modifies considerably the scaling befield is rather complicated™
havior in the Kondo lattice problem.
In all the cases, the anisotropy in theubsystengthe gap ACKNOWLEDGMENT
in the magnon spectrunmesults in the occurrence of a non- .
monotonous dependendef a maximum of the effective The work was supported in part by Grant No. 96-02-
coupling constantg.(£). This prevents the increase of 16000 from the Russian Basic Research Foundation.
£*(g) at g—g.+0, which becomes practically not observ-
able even for a ferromagnéFig. 4), unlike the isotropic APPENDIX:  SCALING FUNCTIONS
case. The dependence of the effective Kondo temperature on IN ANISOTROPIC MAGNETS
the bares-f cou_pling parameter becomes_weakt_ar in the pres- Using the long-wave approximationsug)'z"(q)~q2,
ence of the anisotropy. Further, the minimum in the depen- arm . Lo e A
. * w5, (q)~q in the whole Brillouin zongwhich is justified,
dence 1g.(&) results in thatg* (and, consequently, ee" at smalke), we get from Eq(27)
ws, oy, and S*) are always finite ag—g.—0. As for 9 R/ g 9
guantitative changes, the anisotropy favors a nonmagnetic 1
Kondo state(the critical values of bare coupling constant 7™(x,y)==In
o . e o 2Xx
decrease The critical region of magnetic instability be-
comes more narroespecially in the FM cageso that the  wherew.,= we(2ke). For an antiferromagnet we derive
non-Fermi-liquid behavior is suppressed. At the same time,
anisotropics-f coupling influences noticeably the form of AEM 1
the scaling trajectory for smadl, but becomes not important 7 (XY)= 1—y2

2 4 6 8 10

VII. CONCLUSIONS

1+x+y1l-y

Txyiry @

7]AFM< X ) , (AZ)
with increasingged £). 1=y

Owing to a more rapid Kondo renormalization of the gap,where ”™(x) is the corresponding scaling function in the
the system tends to “isotropic” behavior @(£) at ap-  isotropic case,

proaching the strong-coupling regime. Such a renormaliza-

tion (61) may be important for analysis of the spin-excitation AEM —x2n|1-x?|, d=3,

spectrum in anomalouk systems. One can expect that the 77 (X)= (1-x?)~Yg(1—x?), d=2 (A3)
observable renormalized spectrum gap in these systems is ' '
relatively small and strongly temperature-dependent in comé(x) being the step function. Then we have

parison with the “usual”f -electron magnets. As we dem-

onstrate by our calculations, next-nearest-neighbor exchange 1 1-y?

interactions in the AFM phase are important for this effect. ;'” Tz_yz , d=3,

The dependencey(T) can be investigated not only by the 7"M(x,y) =

neutron scattering, but also by simple methods like the fer- O(1—x2—y?)— 6(y*>—1)
romagnetic resonance. |1_ y2| 1/2| 1—x2— y2| 2 YT 2.

The change of the critical exponents of the phase transi- (Ad)
tion atg— g, with changing the bare anisotropy paramater
turns out to be very strong. It is interesting that their valueOne can see that the logarithmic singularities of the functions
depend continuously on the anisotropy and are nonuniversaj™(x)= "™(x,0) and »"™(x) at x=1 are shifted to the
(possibly, higher-order contributions to the scaling equationgoints x+y=1 (FM) and x?+y2=1 (AFM), i.e., |C|=o
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with w defined by Eq(41). Besides that, the anisotropy re- 7°(y)=(1-y? L (A8)
sults in the occurrence of the second singularity=atl (i.e.,
|C|=wg). It should be noted that the influence of magnetic anisotropy

The presence of such singularities is a general propert9n spin dynamics can be also considered for the paramag-
which does not depend on the spectrum mddehe func-  hetic phaséi.e., for the problem of the local moment forma-
tions 7™(x,y) and »"™(x,y) (d=3) change their sign at tion). In this case the singularityA8) also becomes weaker.

y(x+y)=1, ie., If we accept, as in Ref. 7, the “spin diffusion” approxima-
tion with the spin spectral density
|C| = |Cmin| = Vwo(wot wey) (A5) ,
2 2_o 1 Dq
andx“+2y°=2, i.e., Ty(@)=— 5 L (A9)
— T (0= wo)“+(Dq7)
|Crminl = Voot wed2, (A6)

. . D is the spin diffusion constank.,=4Dk2) we obtain
respectively. Ford=2 the function "™(x) has strong ( P Wex F)

square-root singularities a®+y?=1 andy=1, and van-

1 X X
ishes in the interval + x2<y?<1, i.e., PM =— + .
y 7" " (X,Y) ox arc'[anl_—y arctanlJr—y (A10)
|Cmin|: Vw(2)+5§x>|c|>w0a (A7)

This function has a finite jump dC|=wy. Of course, this
changing its sign after passing this interhut a smooth approximation can be hardly justified for rehlsystems.
contribution occurs for more realistic models of magnonTherefore, we do not present concrete calculation results for
spectrum. the PM case. However, one can expect that qualitative ef-

Note that in the limit of strong magnetic anisotropy fects of anisotropy are similar to those in the magnetically
wol we— the singularity aty—1 becomes very strong:  ordered phases.
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