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We present a general theory for the intermediate-temperéflugoperties of Heisenberg antiferromagnets
of spinSions onp-leg ladders, valid for 3p even or odd. Following an earlier proposal fd8 geven[Damle
and Sachdev, Phys. Rev. &, 8307 (1998], we argue that an integrable, classical, continuum model of a
fixed-length, three-vector applies over an intermediate-temperature range; this range becomes very wide for
moderate and large values o8p. The coupling constants of the effective model are known exactly in terms
of the energy gap above the ground statéfor 2Spever), or a crossover scalg, (for 2Spodd). Analytic and
numeric results for dynamic and transport properties are obtained, including some exact results for the spin-
wave damping. Numerous quantitative predictions for neutron scattering and NMR experiments are made. A
general discussion on the natureTof 0 transport in integrable systems is also presented: an exact solution of
a toy model proves that diffusion can exist in integrable systems, provided proper care is taken in approaching
the thermodynamic limitfS0163-18229)00714-4

I. INTRODUCTION will be defined shortly, these antiferromagnets are described
by a universal quantum field theory: the one-dimensional
One-dimensional Heisenberg antiferromagnets aré(3) nonlinear sigma model. This field theory has the quan-
strongly interacting quantum many-body systems for which aum partition function(in units with# =kg=1, which we use
detailed quantitative confrontation between theory and exthroughout
periment has been possible. A rather precise and parameter- .
free understanding of their low-temperature dynamic proper- _ 2
ties has emerged in a number of recent NMR experiments ZQ_J Pn(x,)é(n —1)exp( _J dx 0 dTE)
performed by Takigawa and collaboratdré. These systems

can therefore serve as useful springboards towards decipher- 1 [/an 2 L[N 2 i0 Jn  an
i i i i - L=—|——iHXn| +c¢*|—]| |+-—n| —=X—].
:tnyg the behavior of interacting systems of greater complex- £ 2cg (aT IHXn| +c X el ((;X (97.)

. 1.1

The past theoretical work on the dynamic properties of
these quantum antiferromagnets has focused mainly on tHdere n(x,7) is a three-component unit vector representing
universal behavior in the asymptotic low-temperat(ifere-  the orientation of the antiferromagnetic order parameter at
gime T—0.4578 In the present paper we will extend the spatial positionx and imaginary timer, c is a spin-wave
theory to a separate range of intermediate temperatures. Welocity, andH is a uniform external magnetic field—we
shall argue that under suitable conditions, to be describedill be interested only in the linear responseHo There are
precisely below, this intermediate-temperature range can bisvo dimensionless coupling constants4n 6, andg. The
quite wide, and is described by a continuum dynamicafirst, 8, is the coefficient of a topological term, and has the
model quite different from that required foF—0. This value #== for 2Sp an odd integer, and the spectrum of
intermediate-temperature dynamics was discussed briefly faxcitations above the ground state is then gapless. Bgr 2
a limited class of antiferromagnets in the last section ofan even intege=0, and then there is gap to all excitations.
Ref. 4. The couplingg plays a role in determining the energy scale

Our work will also connect with earlier investigations of at which certain crossover@o be discussed belgwiake
the dynamics of classical lattice antiferromagné®efs. 9  place, but does not modify the physics otherwise. A straight-
and 10, and references thereiin a sense, our paper pro- forward semiclassicalarge S) derivation shows that
vides a bridge between the modern quantum dynamics and
the classical studies of the 1970s. There is an overlapping 2 1\J,
window of validity for our theory and the classical investi- 9~ 3_41"' ( 1- _)

p
gation of Reiter and SJander:® and here our results are
generally consistent with theirs, although there are some de-
tails that disagree. We will review this earlier work, in the C%ZJS{LL
context of our results, in Sec. V.

A large fraction of the experimental examples of one-wherelJ is the exchange constant along the legs of the ladder,
dimensional Heisenberg antiferromagnets consigt péral- J, is exchange on the rungs, amdis the lattice spacing
lel, coupled chains of spif-ions (for p=1 these are ordi- along the legs; we have assumed here a model with only
nary spin chains, while forp>1 these are commonly nearest-neighbor exchange, but the estimgted/Sp and
referred to agp-leg ladders For all T<T%§x' whereTﬁ,}gx c~JSahold far more generally. An important observation is
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6=0 ever, the physics at energies or temperatures largerARan
P > > - > is controlled by the flow in the vicinity of thg=0 fixed
9 point, and this is common to both=0 and#= 7. The en-
o=n ergy scaleAys can be estimated from the structure of the
- . . > -~ > perturbativeB function. For smallg,
0 [¢]
’ 9 2
FIG. 1. Renormalization-group flows for the dimensionless cou- Aws~J exp{ - E) ; 14

plinggin Eq.(1.1). For §=0,g has a runaway flow tg=c and the
ground state is a quantum paramagnet with a dagFor 6=, we have neglected here a prefactor of a poweg abming
there is a fixed point ag=g., of order unity, and near it the flow from higher-loop corrections. So from E({..2), for eitherS
is dg/d/«(g—g.)? This fixed point is described by th&  or p moderately large, the scaleys becomesxponentially
=1,SU(2) Wess-Zumino-Witten model. The crossover betweensmall.
the g=0 andg=g, fixed points takes place at an energy scale of We are now ready to discuss the static thermodynamic
orderTy. The regiong>g. usually corresponds to a gapped state properties of the quantum field theoty.1) as a function of
with spin-Peierls order, and is not considered in this paper. T. We will characterize the system Bydependence of two
important observableg,(T) and&(T). The first is the uni-

that g becomes small for either largg or p. We will be  form susceptibilityy,, which is the linear response to the
especially interested in the smalicase in this paper. field H=(0,0H): x,=(T/L)(d?InZy/dH?)|,y—o, whereL is

Let us now discuss the value Gﬁ,}gx below which Eq. the (infinite) length of the spatial direction; this is the sus-
(1.1) holds. The basic argument follows that made by Elstnerceptibility per rungof the ladder. The second is the correla-
et alltin d=2. At a temperatur@, the characteristic excited tion length&(T), which determines the exponential decay of
spin-wave has wavelengtti T, and the continuum quantum the equal-time two-poim field correlator as a function of
theory will apply as long as this wavelength is longer than We will consider temperatures above and beldyys in
the lattice spacin@ of the underlying antiferromagnet. For turn.
p-leg ladders, description by a one-dimensional quantum
model requires that the wavelength be larger than the width A. T<Aws
of the ladder,pa.'? Using the value ot in Eq. (1.2), our
estimate forT(%), is then

(13) 1. 6=0

T§§;X~2is[1+<1— 3)%

P P For =0, there is an energy gap, and the susceptibility

To reiterate, the quantum theofg.1) applies to the lattice is. simply that of a dilute, thermally activated_, classical gas of

antiferromagnet at all below that in Eq(1.3). mplet magnons abqye: the gap; these contribute an exponen-
Let us now review the well-known, T=0, tially small susceptibility:**°

renormalization-group properties of E(l.1).1®> The topo-

logical angled remains fixed a¥= 0,7, while the flows of Xu(T):( 24

For T<Aws, as just noted, we must distinguigl=0 and
0=1r.
1/2

1/2
e T T<Aps, 6=0. (1.5

the couplingg are sketched in Fig. 1. 7Tc2

For both cases= 0, there is a fixed poing= 0 which is _ ) o
unstable at low energies. Indeed the beta function describingxperimentally, we can view Eq1.5) as the definition of
the flow away fromg=0 is independent of to all orders in  the gapA and the velocityc, which are to be determined by
g. However, nonperturbative topological effects do distin-fitting measurements to Ed1.5. The correlation length
guish the two values of. For =0, the flow is believed to  &§(T) takes a finite,T-independent value in this quantum
continue all the way t@y=o0, corresponding to a quantum Paramagnet, up to correlations exponentially smalbi’;
paramagnetic ground state with an energy gam’] ContrasL for thzelecase wheré\ is S|gn|f|cant|y smaller than], we
for 6=, the flow is into a strong-coupling infrared stable have*
fixed point atg=g.. There is a scale-invariant and gapless
theory whiqh des_cribes this fixed point—tkct' 1, SU(2), &(T)= E; T<Ags, 6=0. (1.6)
Wess-Zumino-Witten model. Far>g., there is a runaway A
flow to g=o0, usually associated with the appearance of
spin-Peierls order; this last regime will not be discussed in 2.0=m
this paper.

Our primary interest here shall be in the region in the
vicinity of the unstableg=0 fixed point. For bothd=0,r,
there is a characteristic energy scale, usually dendtgg,
which determines the location of the crossover from the vi-
cinity of the g=0 fixed point to the strong-coupling behav-  , (T)= ! /1+ ! - In{In(To/T)] +...
ior. For energies or temperatures smaller thigs, the 2mc| 7 2In(To/T) 41Ty /T)
strong-coupling behavior should apply, and as we have just
discussed, this is quite different fé#&=0 and 6= 7. How- T<Awys, 0=m. 1.7

For the gapless cagke= , there are excitations with non-
zero spin at arbitrarily low energies, and 8Q(T) remains
nonzero asl —0:18:19
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Again, this experimentally definesand a temperature scale e

T, which determines the onset of a logarithmic correction to AM—5=§A; 6=0. (1.11

the T=0 susceptibility due to the slow flow into the fixed

point atg=g.. The correlation length of this critical para- For the gapless case=m, we will present a derivation of
magnet now diverges a—0:°7820 the required relationship in Appendix A, building upon some

recent result$?3 our result is
c 1 IN[In(Ty/T)]—1
D=7\ M 2w - : (20 . T ™\ s
™ n(To/T) 41n%(To/T) Aws=|5| € To; o= (1.12
T<Aws, 0=m. (1.8

We are now finally in a position to state precisely the

The dynamical properties of quantum antiferromagnets in thenain objective of this paper. We will describe the dynamical

low-temperature regimél <Ays have been discussed at properties of one-dimensional antiferromagnets in the

length in Ref. 4 for the gapped case<0) and in Refs. 5-8 intermediate-temperature regimeAM—S<T<Tfnng. We

for the gapless caseE ). quickly note as an aside that most of our results actually hold
Note that bothA and T, are energy scales characterizing over a wider regime of temperaturds;s<T<T2) | where

the flowinto the strong-coupling region. These should thereye will define and discuss the origin d‘t‘nfggTTf)xybelow;

. N . max
fore be universally related thys which is the scale of flows  for now we ignore this point. A common treatment is pos-
out ofthe weak-coupling region. We will discuss the univer- gjple for the 9=0 and §= = in this regime, with the two
sal relation shortly, once we have definagrs more pre-  cases differing only in the input values of the static param-
cisely. etersy(T) and¢(T) as defined by Eqg1.9—(1.12. More-
over, asAys becomes exponentially small for moderate val-
B. T>Awps ues ofS or p, this regime can be quite wide and should be
Let us now consider the regimegs<T<T(X). : the up- readily observable experimentally. Indeed, there is good evi-

max? . . .
per bound is necessary to ensure that the continuum (:1uantu‘flr‘:r'nce from recent measurements of static properties in quan

theory still applies. The existence of this intermediate—}z{nrmMé)intet ?narlor tsrlml:latil%ﬁé ;r?t t\t“f] Suryver?ﬁl
temperature regime requires thAas<T(L),, a condition ermediate-temperaiure regime exists evensers sp

. o . . chains.
that is not well satisfied for sma8 andp, and so this regime . . .
almost certainly does not exist fqr=1 and S=1/2,1, but The formulation of the dynamics properties frs=T

there is evidence that it is present fo=1,5=2.'" Here we <ThayWas already discussed in Ref. 4. The key pbisito

are controlled by physics in the vicinity of t 0 fixed not_ice_that the energy Of a typical _spin-wave excitation,
point, and it shoﬁlg b}(/a possible to treat}:quan'[l;?n:"n fluctuationg\’hICh is of orderc¢™(T), is parametrically sma_ller thah

in a renormalized perturbation theory @ As discussed in when¢ obeys Eq(1.10. So j[he ther.mal occupation number
Ref. 4, a nonperturbative treatment of the thermal fluctua®f tese spin-wave modes is large:

tions is still necessary, but this can be carried out exactly

because (_)f th_e low spatial dimensionality. The result of such 711 ~ T >1. (1.13
a calculation i% et T—1 c&XT)
1 { Age 17T T The second expression in Ed..13 is the classical equipar-
xu(T)= 3770{'” Ae +Inin A—M_S+ el tition value, which indicates that the spin-wave excitations

may be treated classically. The classical partition function
Are< T<TO 1.9 contr_ollmg thes_e fluctuat|ons_ can be deduced by den_]andmg
MS max (1.9 that its correlations match with Eq€L.9) and(1.10, while
where y is Euler’s constant. This result can also be viewedthe dynamic equation of motions follow by replacing the
as the precise experimental definition/ofis. For complete- quantum commutators with Poisson brackets. In this manner,
ness, we also quote the result in this regime for the correlathe problem reduces to the effective classical phase-space

tion length&(T): partition functiort
T_c|477e7TIIT _ _J Sin? s Hc
&( )—sz_n Ae +In nA_S+ |; Zc= | Dn(x)DPL(x)8(n"=1)S(L -njexp — — |,
Ajgs<T<TL.. (1.10 "y lfd TET) dn 2+ LZ} (114
== dx — . .
€2 dx/  xu (T)

We now give the promised universal relationship between
the energy scales characterizing the wealkvir§) and  Heren(x) is a classical variable representing the orientation
strong- (A, Ty) coupling regimes. This requires nonperturba-of the antiferromagnetic order andx) is its classical, ca-
tive knowledge of the renormalization-group flows, and camonically conjugate angular momentum. Becange) is of
only be obtained from an analysis of the full thermodynamicunit length, its motion is always in a direction orthogonal to
Bethe-ansatz solution of the quantum field the@nyl). For its instantaneous direction, and there is no radial kinetic en-
0#=0, such an analysis was carried out in Ref. 21, and thergy: the square of angular momentum represents the entire
result is now well known: kinetic energy, and,,, is the moment of inertia of the fluc-
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tuatingn. The value ofy, , can be determined by realizihg wave vector are given by the correlations lofx,t) under
thatL (x) is simply the classical limit of the quantum opera- Z,, and are essentially equal to those in the classical prob-

tor corresponding to the magnetization density lem by*
5£ . = . . .
S (115 (LD L(0,0)o=(L(XD-L(0.0)c.  (1.20

The absence of an overall rescaling factor here is related to
then demanding thagc reproduce the correct uniform sus- the conservation of the total magnetization density.
ceptibility to a uniform external field under whichc The main objective of this paper is to evaluate
—Hce—[fdxH-L, we obtain (n(x,t)n(0,0))c and(L(x,t)L(0,0))c. An important prop-
erty of these correlators is that they satisfy simple scaling
laws which allow us to completely scale away all dependen-
cies ong(T) andy,, (T), and to express everything in terms
of parameter-free universal functions. These scaling laws fol-
low from the fact that Eqs(1.14) and (1.18 define a con-
tinuum classical problem which is free of all ultraviolet di-
vergences: this will become evident from our analytic
4 ' | o computations in Sec. Il and the numerical results of Sec. lll.
functions only of the spatial coordinakebut is independent Consequently, simple engineering dimensional analysis in-

of the real timet. It therefore yields only equal-time corre- \1ying rescaling of, t, andL can be used to absorb depen-
lation functions, as is the usual situation in classical statistiyences on the dimensionful parameters. In this manner, it is

cal mechanics. To obtain unequal time correlators, we havgq: gifficult to show that
to separately specify the equations of motion, and these are
obtained by replacing quantum commutators with Poisson
brackets. For the fields(x),L(x) these are

2
XU(T)=§XUL(T); (1.19

the factor 2/3 comes from the constraintn=0, so there are

only two independent componentslofat each spatial point.
Notice that Eq.(1.14 involves a functional integral over

the commuting fieldsy and its conjugate momentuin as

(N(x,1)-n(0,0))c=P(x,1),

{La00, LX)} pe= €yl () S(x=X"), (L(x,t)~L(O,O))Cz(T)gEfl_()T))CDL(Tt), (1.2
{La(X),ng(X") }pe= €apyN(X) S(X—X"), where
{na(x)vnﬁ(xl)}PB: 0! (11D o X
wherea, 8,vy=1,2,3. The equations of motidim real time = @
now follow from the Hamiltoniari{-, and they are
1 _ T 1/2
N
A xem " £ ()

and® (x,t) and®d,(x,t) are universal scaling functions. It
is the primary task of this paper to determine these scaling
functions. In principle, these scaling functions are deter-
_ _ _ _ ~mined by solving Eqs(1.14) and(1.18 after setting all pa-
We are now interested in unequal time correlation functiongameters equal to unityl = &= y,,, =1, while replacingx,t
of Eq...(1.18), avgraged over the classical ensemble of 'n't'albyﬁ Notice that the resulting equation is then parameter-
conditions sipeC|fr|1ed b¥c . lassical . & IIfree, and so there is no explicit small parameter in which any
To complete the quantum to classical mapping, we recally i,y ot expansion can be carried out; nothing short of an
the relationship between the correlations of the underlyingy, oo+ solution will do. We think this reasoning invalidates
antiferromagnet and the quantum field thedky, and those  g,m6 of the conjectures on exactness of results made in Ref.
of the classical nonlinear wave problem defined by Eqle, as we will discuss further in Sec. V. However, when the

L °n
E—[Tf(T)]nxﬁ. (1.18

(n(x,t)-n(0,0))o=A

(1.14 and(1.18. Correlations of the antiferromagnet in the 5.0\ ments of the scaling functions are themselves small, i.e.,
vicinity of the antiferromagnetic wave vector are given by |—| |t_|<1 then a svstematic perturbation expansion is pos-
the correlations ofi(x,t) underZ,, and are related to those X[, , (Nen a sy Ic perturbal xpansion Is p
in the classical problem By sible, and this wa.I be presenteq in Sgc. I. _
We close this introductory discussion by returning to the
T \12 issue of the maximum temperature up to which these results
In(—) (n(x,t)-n(0,0))c, can be applied to lattice antiferromagnets. The appearance
Anis here of a classical spin model suggests that one should think
(1.19 : ; . . .
about classical spin models obtained by starting directly
where the subscrig represents averages under the quantunfrom the lattice quantum spin model, without the use of the
partition functionZ,, the subscriptC represents averages quantum field theoryZ, as an intermediate stép.Such a
under the classical dynamical problem defined by Ef4.4) classical description will only work for largg, and we can
and(1.18, and.A is an overallT-independent normalization ask the question of when the resulting classical model can be
related to the amplitude of the correlationsTat 0. Next,  described by a continuum classical theory, which will clearly
correlations of the antiferromagnet in the vicinity of zero be the one defined by Eg4..14) and(1.18. The correlation
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length of a classical spin antiferromagnet is of orderEg. (1.18. Readers interested primarily in spin chains can
JSpa/T, and a continuum description will work provided omit Sec. IV and skip ahead to Sec. V where we will de-
this is larger than the lattice spacirgand the width of a scribe the implications of our results for experiments.
ladder systenpa. This gives us the estimdfe

ll. SHORT-TIME EXPANSION
Thm— IS (1.23

imeTW () _ This section will determine the smaillexpansion of the
In the regimeT ;< T<T,. We can use a purely classical scaling functionsb, and®, in Eq. (1.21). Normally, there
description of the spin model: its correlation length and uni-<is a completely straightforward way of determining the
form susceptibility will not be universal, but has to be com-short-time expansion of interacting systéfsit can be re-
puted for the specific model under consideration. For theated, order by order, to equal-time correlators involving
model with only nearest-neighbor exchange, a standard configher moments of the fields. However, this standard proce-
putation on the classical antiferromagnet gives for the unigure doesnot work for the model(1.14 and (1.18] of in-

form susceptibility terest here. This is because we are dealing with a continuum
113, 1-1 model with an infinite number of degrees of freedom,

u(T) = L 1+ 1- _)_i : Tg—gxx<T<T§nz.’;)1x1 n(x),L(x), present at arbitrary short-distance scales. If we

6Ja p/J naively generate the moment expansion, we find that the

(1.24  terms quickly acquire rather severe ultraviolet divergences.
A separate theoretical tool is necessary to generate the
short-time expansion, and this shall be described here. We
JSp shall use an analog of the field-theoretic method known as
T

and for the correlation length

Tha< T<Timx (1.29  chiral perturbation theory. As we shall see below, the expan-
sion is actually in powers dt|—this implies a nonanalytic-

It is satisfying to note that there is a precise agreement bty in thet dependence at= 0, which is in fact the reason for
tween the result§l.9), (1.10 and(1.24), (1.295 at the com- the ultraviolet divergences in the moment expansion. The
mon boundary of their respective regions of validify, latter method only gives an analytic expansiort,iby con-
~T§]}§X: for the nearest-neighbor model under consideratiorstruction.
we use the estimates fgrandc in Eq. (1.2), and then using In this section, and in Appendix B, we will use units in
In(T/Ap9)~2mlg, we find the required agreement. which T=y,, (T)=1. However, we will retain explicit de-

It appears useful to review the final status of the regimegendence og=§&(T). It turns out to be quite useful to keep
of validity of the model studied here. The universal con-track of powers of¢. Indeed, our computations will be de-
tinuum classical moddEqgs.(1.14 and(1.18] describes all ~ signed to generate an expansion of the correlators in powers
one-dimensional Heisenberg antiferromagnets in the temef 1/£, and this isa posterioriseen to be a short-time expan-
perature fegime/\m—s<T<Tf§§x; this regime is wide and sion. We will return to physical units in stating our final
well defined for moderately large values $br p, and there ~ results.
is evidence that it exists already fpr=1,S=217 The com- We will therefore consider the problem of unequal time
plete definition of this classical dynamical model requires thecorrelation functions of the nonlinear partial differential
input of the temperature-dependent static parameie¢fs  €guations
and x,(T). In the regimeAys<T<T() these parameters
are universally specified by Eqgl.9) and(1.10), with Ays —=LxXn,
given by Eq.(1.11) for gapped spin chains#&0) and by
Eqg. (1.12 for gapless spin chainsé& 7). In the higher

&T)=

temperature regim@ﬁ,}gx<T<T§nZ§X, these parameters are ﬁzgnxﬂz_” 2.1)
given by E_qs.(1.24) and (1.29 for the model With_ only at IX2 '
nearest-neighbor exchange, and by related nonuniversal ex-

pressions for other antiferromagnets. when averaged over the ensemble of initial conditions de-

The following sections contain technical details towardsfined by the partition function
the determination of the scaling functiots, and®, in Eq.
(1..21), along w_ith some .theoreticgl aljalysis on '_[he relgtic_)n- Zc:f Dn(x)DL (x) 8(n2— 1) &(L - n)
ship between integrability and diffusion. We will begin in
Sec. Il by describing the analytical short-time expansion of 1
the correlatorsb,, and®, . The long-time limit will then be Xexp{ — _f dx ]
studied numerically in Sec. lll. The subsequent Sec. IV dis- 2
cusses issues which are somewhat peripheral to the main (2.2
focus of this paper: the continuum equations of motion
(1.18 are known to be integrabfé,and this raises numerous ~ The last term in the action represents a field of strength
fundamental questions on the nature of spin transport in iném? turned on in thez direction and serves as a regulariza-
tegrable systems. These will be addressed in Sec. IV by thion parameter for our perturbation expansion. At the end of
study of a simple integrable toy model whose spin correlaour calculations we shall leh— 0. From this partition func-
tors can be determined in close form. Further, we will sedion, one can immediately find the equal-time correlation
that these correlators have a striking similarity to those ofunctions to be

dn)? X )
g& +L=2&émn,
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(HK0: (0.0 2000 S LRSI AT
at 2 J J '
(n(x,0)-n(0,0)=e" M, 2.3 ox2 & ax| T o
the subscriptC is implied on all averages in this section, ﬁ__. 1 E I
unless stated otherwise. Frami ¢+§(¢ )+ (2.9

We first construct our perturbation expansion in powers of . . .
1/¢ for the equal-time problem specified by E@.2), and Higher-order terms add further nonlinear interactions. We

check that we do arrive at the correct correlation functions aSC!Ve the initial value problem for each of the fields by an
specified in Eq.(2.3. The extension to the unequal time iterative strategy. First the free wave equation is solved and

problem will then be straightforward. First, the constraintsth€ Solution is plugged back into the lowest-order nonlinear

on the fieldsn andL are solved by introducing two complex term to _solve the_: problem_ to the first order._To evaluate the
scalar fields¢ and y: correlation functions, we just multiply the fields and carry

out the average over initial conditions. The initial condition

1 averages are, of course, known from the calculations de-

n.= (b+ ¢*), scribed above. The technical details are relegated to Appen-
X J2¢ dix B and here we only quote the results to one-loop order:
&(T) )
L g (— (L(x,1)-L(0,0)
Ny= @<¢ ¢*), Txu(T) B
— — - — t
n,=\1-2¢¢* I, =[8(x—1)+ 8(x+1)] 1—7|)
i - I
1 . +5[0(x+1)— O(x—1)]+O(x,1), (2.6)
Lyi=—=(J+9"), 2
V2

<n(X,t) : n(010)>C

1
= (g— " 1 - — — —
TR —1- S+ =)

Lk @4 - B D+ 3 D2+ 2k TR 1)

JEV1-2¢p* 1€

We introduce this decomposition to the functional integral

(2.2) and expand the square roots in power series &f il wherex andt are defined in Eq(1.22), and the delta func-
this manner, we arrive at an interacting field theory with anq, in Eq.(2.6) is interpreted a@(x—t)fl'

infinite number of interactions, with 4/as the small cou- In these results if we sét=0, we immediately recover the
pling. However, to any particular order in perturbation gq51.time result42.3) to the corresponding order in &/
theory in 1£, we only need to keep a finite set of interactionsthe strycture of the correlation functio2.6) reflects the
terms. We evaluate the correlation functions in real spacg, sq propagation of the conserved angular-momertum
using the ordinary machinery of diagrammatic perturbationrye first term simply represents the free propagation of the
theory. Itis V\_/eII known.that such a perturbation eXpansion isynqjar-momentum density which is completely concen-
plagued by infrared divergences. The decomposit®d) i 4164 on the “light cone.” However, interactions to order
tgkes it for granted that the fleld' is ordered in th'ez direc- 1/¢ do modify the free propagation and transfer the angular
tion and ¢ represents small spin-wave fluctuations aroundy,mentum density from the surface of the light cone to its
the ordered state. The infrared divergences are a signature gkarior. This is represented by the second term which is
the fact that this assumption iSZWfO”,g in one dimension. By, onyanishing only inside the light cone. It can be checked
mtrodgcmg the external fielgm?, we mtrqduce Ion.g-range that the spatial integral of E§2.6) remains independent &f
order into the system and thus regularize the divergencegg myst be the case due to conservation of total angular mo-
The divergences show up as poles im1But if we calculate  antum.

the O(3) invariant correlation functions as in £g.3), we The result(2.7) has significant implications for the dy-

find that all poles cancel. Keeping this in mind, it is Not namic structure factoB(k, w) of the antiferromagnetic order
difficult to show that the results of perturbation theory agreeyarameter:

with Eq. (2.3) at every order. The details are to be found in
Appendix B. ,

Once we have the correlation functions in the equal-time S(k,w)=J dx dt{n(x,t)-n(0,0))ge V. (2.9
ensemble, we proceed to evaluate the unequal time correla-
tion functions. To do that we again insert H8.4) into the  First, we note that the resul(tl.19 and the scaling form
equations of motiorf2.1) and expand in powers ofdto get  (1.21) imply that the dynamic structure factor satisfies

+0(x,1)3, 2.7
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T " T 1/2 o
S(k,w)=(w) S(kPs(k,w), (29  (n(x,t)- n(00)>C:— diw

where S(k) is the equal-time structure factor, which is

known exactly(apart from the overall normalizatiod): _% mdfy( k)cogkx)coskt) +

m Jk, K2
=d 2 24T
s= [ 52 sk,w) =4 In(A_ SLU (219
_x27 ms/ | 1+k°E5(T) wherek; , are some large positive constants, and we have
(210 assumed thay is an even function ok. The values of the
and®dg is a universal scaling function of integrals overk surely depend upop andB’, buithe key
- observation is that the nonanalytic termsxirandt do not.
k=Kk&(T), This follows from the result
v—1
— [ETxu ()M fwd_k _ X
“’:“’(f ’ 213 klk”coqu)_ T (vycogmoiz) T (210

which describes the relaxation of the equal-time correlationsvhere all omitted terms can be written as a series in non-
The prefactor in Eq(2.9) has been chosen so that the fre- negative, even integer powers xf(this allows an additive
quency integral ove is normalized to unity for every ~ constant, independent of). We now assumey(k— )
~k¢, and then demand consistency between EZ&85 and
o P (2.16 and the nonanalytic terms in E@.7). It is easy to see
J 7, Ps(kw)=1. (212  that we must haver=0, and soy(«) is a constant. Further,
the unknown additive constant associated with the second

We will now show that, modulo some very mild assump—”"tegral in Eq.(2.15 must be such that there is no single

tions, the result2.7) exactly fixes the form ofbg(k,w) for term in the correlator. Applying Eq2.16 to Eq.(2.19 with

this understanding, we deduce that
[k|>1. In this short-distance regime, we are at distances

— oo

shorter than the correlation length, and the system should 1 - _
look almost ordered. So we may expect that the spectrum(n(X,)-n(0,0)c="-- = S ([x+t[+[x=t)(1=y(=)[t])
consists of weakly damped spin waves, and this motivates

the following ansatz fobg in the regime|k|>1 and|o| ey (217
~KI:

where all omitted terms are either analytic>Tr1andt_, or
_ — involve subleading nonanalyticities. We should now com-
y(K) n y(K) pare Eq.(2.17 with Eq. (2.7) by matching only the nonana-
(0—K)2+%2K) (w+k)2+93(k)’ lytic terms in the vicinity of the light con&=*t. In this
(213 |atter region we can approximajte+ t|[x— t] in Eq.(2.7) by
2|t||x=t|—then the nonanalytic terms in Eq&.17) and

(2.7 match perfectly, and we obtain one of our important
exact results

D y(k,w)=

where y(k) is the unknown spin-wave damplng parameter;

we will shortly determine the Iarglellmlt of ‘y(k) We now
have to take the Fourier transform of E@28.9), (2.10, and
(2.13, and compare the result with E.7). In making this 1
comparison, we should keep in mind that the lakge be- Y(*)=75. (2.18
havior of S(k,w) can only determine theonanalytic terms

in the smallx,t expansion. First, the integral over frequen- Returning to physical units via E¢2.11), we conclude that

cies can be performed exactly for the fo@13, and Eq.  the frequencyl (T)=(w/w) (=), given by
(2.9 implies

T 1/2
ikx— y()[t] r(m= —(—) , (2.19

() -n(0 Oy [ S & eosk) 2 EMxu (M
™ k®+1 describes damping of spin waves filk{&(T)>1. We will
(2.14 discuss the experimental implications of this result in Sec. V.

. . . — Results for the spin-wave damping have been obtained
We re|teraitza that E‘#'lg} is valid 3;1Iy for |k|>1’_ and S,O earlier by Reiter and Sjander? in their studies of classical
only the 1k* contribution from the k*+ 1) denominator in |attice antiferromagnets. If we insert the classical values
Eqg. (2.149 can be taken seriously. Also, we already have &1.24 and(1.25 into Eq.(2.19, we obtain

nonanalytldt| dependence in the exponential, and so we can

expand this in powers dft[; in this manner we reduce Eq. I'(T)= lJ (1_ 1) Jy

(2.1 to p/J

1/2

: (2.20
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FIG. 3. The Fourier transform of Fig. 2 into frequency. This

FIG. 2. The correlatorn(0t)-n(0,0))c as a function oft,  yields the universal scaling functioh, defined in Eq(3.2).
which is defined in Eq(1.22). Results with lattice spacing/16 and

&/8 are shown, and their near perfect overlap indicates we hav
reached the continuum limit.

2

%y Egs.(1.19 and(1.2]), S satisfies the scaling form

which agrees with their result fop=1. Keep in mind, S(w)=A In( T )

though, that our resul2.19 has a much wider regime of Aws

applicability, beyond temperatures in which a purely classi-

cal thermodynamics holds. Further discussion on the relaxhere®, is a fully universal function(with no arbitrariness

tionship between our and earlier results appear in Sec. V. in its overall amplitude or the scale of its argumewnith a
unit integral over frequency

T u T 1/2 .
&( ))-(ri( )) o(@), (32

Ill. NUMERICAL RESULTS

The previous section allowed us to determine the two- J d_wcpl(a)zl_ (3.3
point correlators for smallt|. Here we will present numeri- 2m
cal simulations which examine the lardg limit. These
were performed on a discrete lattice realization of Efjsl.4)
and (1.18), with lattice spacings ot/16 or larger, and ha
only nearest-neighbor couplings between theectors. Ini-
tial states were generated by thermalizing the system by t

Our results for the local time-dependent correlations are
d shown in Fig. 2 and its Fourier transform to frequency in Fig.
3. Two different lattice spacings were used, and the good
h%verlap of the data confirms that we are examining the con-

Wolff algorithmZ® The time evolution was carried out by a tinuum limit. The correlations decay rapidly in time, but also

fourth-order predictor-corrector method, and its accuracf,how a brief, but clear oscillation; this oscillation results in a

was tested by keeping track of the conserved total energy arﬂp.it? frequgncy p_eak 5 (). We wil discus_s the physical
the lengths of the vectors. origin of this oscillation after we have considered the zero-

Our simulations are similar to many earlier studies Ofmomen_tum correlator.
classical spin chaingsee Refs. 27 and 28, and references Turm_ng to the Zero-momentum correla_ttor, WE express our
therein. However, there is an important difference in that we"€SUlts in the scaling forni2.9) and obtain values for the
are dealing with rotor variables and L, rather than classi- Scaling function®s(0,w). We emphasize that the ansatz
cal spinsS which obey Poisson bracket relations like those(2.13 doesnot hold for k=0. Our results for th&=0 cor-
for L in Eq. (1.17. relators ofn are shown in the time domain in Fig. 4 and after
We will consider correlators afi andL in the following  the Fourier transform to frequency in Fig. 5.
two subsections.

1.8
A. Correlations of n

We first consider dynamic correlators of The aim of 1.3
our simulations is to obtain results for the dynamic structure
factor S(k,w) in regimes beyond the cask|>1, |w|~|K| 0.8l
which was studied by the short-time expansion. Our results
were obtained for two cases—at equal positidosal) and 034
at zero wave vector.

The local correlator is measured in NMR experiments,
and we computed the local dynamic structure facBffew), 02y P ) ) s 10

ad|

defined by

FIG. 4. The correlatof dx(n(x,t)-n(0,0))c/&(T) as a function

S(w)= foc dt(n(0y)- n(0,0)>Qei‘”t: fm %S(k,w). of t, which is defined in Eq(1.22. We used a lattice spacing8.
% —w 21T By Eq.(2.10, thet=0 value of this should be 2, and the difference
(3.2 is due to the finite lattice spacing.
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FIG. 5. The Fourier transform of Fig. 2 into frequency, which
when combined with Eq2.9), leads to the universal scaling func-
tion ®4(0,w). The full line is at lattice spacing/8, and the dashed
line is for £/16. The data a§/16 is “noisier” because of insufficient
averaging for the longer time data.

As with thex=0 correlations above, the=0 correlator

shows a rapid decay, along with a brief oscillation; the latter

leads to a finite frequency shoulderdns(o,;).

INTERMEDIATE-TEMPERATURE DYNAMICS OF ONE. ..

9293

0.3+

FIG. 6. Numerical resultgfull line) for the [&(T)/Txy, (T)]

X(L(0)-L(0,0)) correlation function for short times<1 on a
lattice with spacingé/8. The results are compared with short time

expansion(dashed lingin Eq. (3.6), valid for t<1.

T ¢(T)]%2
[xu (T)IY2'

(3.9

How do we understand this finite oscillation frequencyWhereB is a dimensionless universal number.

observed in both the=0 andk=0 correlators oin? One
way is to compare with the exactly known restit® of the
model with anN-component vecton in the limit of largeN.
At N=«, S(0,w) consists of a delta function at a finite
frequencyw~ T/In(T/Ayg). SO we can view the finite fre-
guency as a remnant of tié=o response aN=3. How-

ever, there is a related, more physical, way to interpret it.

Our numerical analysis of the autocorrelation was carried
out on a system of 800 sites. The predictor-corrector method
turns out to exactly conserve angular-momentum and we
maintained energy conservation to four significant digits
over the duration of the simulation. We averaged over 9600
initial conditions.

First we tested our results against the known exact short-

The underlying degrees of freedom have a fixed amplitudetime expansion. This is shown in Fig. 6. At these short times

with |n|=1. However, correlations af decay exponentially
on a length scalé(T)—so if we imagine coarse graining out
to &(T), it is reasonable to expect significaarplitude fluc-
tuationsin the coarse-grained field, which we cdl],. On a
length scale of ordeg(T), we expect the effective potential
controlling fluctuations ofp, to have a minimum at a non-
zero value of|¢,|, but to also allow fluctuations ihe,|

about this minimum. The finite frequency in Figs. 3 and 5 is

due to the harmonic oscillations @f, about this potential
minimum, while the dominant peak at=0 is due to angular

fluctuations along the zero energy contour in the effective

the lattice corrections are quite significant, and our compari-
son in Fig. 6 is with the chiral perturbation theory carried out

in the presence of a lattice—the generalization of the result
(2.6) to a lattice model with nearest-neighbor couplings and
lattice spacingeé is

mle dk

/ Zeikx cog wyt)
€

<Lu¢yL(Q®>=2f

Y

e dp cogw t)eP—1
X 1+f dp coswpt)e 1
_77/6277

|

potential. This interpretation is also consistent with the large

N limit, in which we freely integrate over all components of

n, and so angular and amplitude fluctuations are not distin-

guished.

B. Correlations of L

We obtained numerical results only for the=0 cor-
relator ofL. The short-time behavior of this is given in Eq.
(2.6). At long times, we expect the conservation of tdtaio
be crucial in determining its asymptotic form. In particular,
one natural assumption is that the long-time correlators§ of
are diffusive; in this case we expect

3Txy

<u0n44Q®>:;;§ﬂﬁE

(3.9

at larget. Consistency of this with the scaling for(.21)
implies that the diffusion constam must obey

wp
+2 fﬂn’/e dk
_7.,/6277
where w,={2[1— coske) /2. It can be verified that Eq.
(3.6) reduces to Eq(2.6) in the limit e—0. As is clear from

Fig. 6, the agreement between the analytical and numerical
computations is quite satisfactory.

Finally, we turn to the numerical results at Ia@eThese
are shown in Fig. 7. A best fit to the data with a power law

t~¢ gave an optimum value ok=0.61. However, an
equally good fit to the data was obtained by the function

allx/?+ a, /t, with the second subleading term contributing
only about a 10% correction at the largest(we found
a,/a;=0.65). This second fit is consistent with diffusion—
assuming this is the correct form, we obtain the estimate for
the numerical prefactor in E¢3.5):

B 2
glkx sin(a)kt_)) . (3.6

B~3.32. (3.7
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0.1
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10 ry 10
t FIG. 8. Collision of two particles. They initially have velocities
FIG. 7. Numerical  results  for [&(T)/Txu. (T)] v,v’ and spinsm,m’. After the collision they exchange velocities
X(L(0,t)-L(0,0)) as a function oft in a log-log plot. The but retain their spin.
smoother line is for lattice spacingf8, while the noisier line is for
lattice spacingé/16. The agreement of the two results is evidence
that this decay is a property of the continuum limit. A straight-line
fit (not shown to the £/8 data is almost perfect, and its slope indi-

+50.61 T
cates that the correlator decaystad-5. An equally good fit to the L is of considerable relevance to recent studiesTof

data was obtained by the functian /Vt+a, /t, with the second >0 transport in integrable Syster?fs'%and this will be dis-
. . . 0 . L
subleading term contributing only about a 10% correction at theCussed further in Sec. IV C.

largestt. We begin by describing the toy model. Plabepoint

of limits we find recurrent behavior with a great deal of
structure dependent upon the microscopic details of the
model. We think this issue of the orders of limittsf and

In their studies of the classical lattice model, Reiter anopar_t'des of equal mass at positions (i :0.'1’ o ‘N_.l) .
Sjolander' also computed the spin diffusivity. Diffusion is a which are chosen independently from a uniform distribution

— on a circle of lengti.. Now independently give each particle
property of the|k|<1 regime, and we do not expect their g P yd P

) ) . . a velocity v;, drawn from some distributiog(v), and a
perturbative techniques to be exactly valid. Combining the‘spin” m., drawn from some distributioh(m). As the sys-

classical values of(T),&(T), in Egs. (1.24 and (1.29 tem evolves, the particles will move in straight trajectories,

with Eqg. (3.5, their result translates into the valug=1. . hei in al ith th This will h
This value is clearly inconsistent with our numerical resulttrar_]sportmg t €Ir spin aiong with them. This wi appen
above. until two particles collide, and we now have to describe the
nature of such collisions. We will restrict the collisions to
satisfy the important constraints of conservation of total en-
ergy, momentum, and spin in each collision. The first two are
This section will examine an integrable toy model of spinalready sufficient to determine the fate of the velocitiese
transport; readers interested mainly in the experimental imFig. 8): if we consistently label the particles from left to right
plications of our results so far can move ahead to Sec. V(i.e., as we move around the circle counterclockwise, we
Others, not interested in the details of the toy model, maylways encounter the particles in the ordgrx,,X,, ...,
want to jump to Sec. IV C where we will discuss generalxy_1), then the particles will simply exchange velocities in
implications of the toy model solution on spin transport in each collision.
integrable systems. In other words, in a collision between partiéleand par-
The toy model we shall introduce is a variant of an effec-ticle i + 1, the velocity of the particlé after the collision is
tive model, considered in Ref. 4, for the dynamics in thethat of particle + 1 before the collision, and vice versa. How
regimeT<<A for gapped chains. Here, our strategy will be to about the fate of the spimg; andm; . ;? In principle, we can
introduce the model as worthy of study in its own right, as itchoose numerous possibilities interpolating between zero
is simple enough to allow determination of the spin-densityand total reflection, consistent with conservation of total spin
correlator in closed form at all times. In the long-time limit, =;m;. The exactly solvable models are the two extremes:
the correlator has a diffusive form, and so this examplezero or total reflection. The case of zero reflection is rather
provesthat there is no general incompatibility between inte-trivial and leads only to simple ballistic transport of spin
grability and diffusion. Further motivations in examining this along straight lines. We will therefore consider only the case
model are the following: of total reflection here: in the convention we are following of
(i) We shall show that the short-time behavior of the toylabeling the particles here, this corresponds to the statement
model is very similar to our resulR.6) for the continuum that eachm; is a constant of the motio(see Fig. 8 So to
wave model[(1.14 and (1.18]. This is suggestive, and in- summarize: in each collision the particles exchange veloci-
dicates that the long-time diffusive behavior in E8.4) is  ties but their spins “bounce off” each other. We note that,
not an unreasonable postulate. although no exact solution is known, we expect the long-
(ii) The correlators of the integrable toy model can also be&ime correlations of a model with only partial reflection to be
studied for the case of finite system of sizavith periodic  quite similar to that of the total reflection case, but with
boundary conditions. This allows us to carefully examine therenormalized transport coefficients.
interplay of the limitst—o~ andL—o. The diffusive form We shall be interested here in computing the correlators
only appears if thé — oo is taken first. In the opposite order of the “spin” density L(x,t), defined by

IV. INTEGRABILITY AND DIFFUSION
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N—-1 N—-1

1 .
LOo= 2, midlx=xi(0)], (4. A =52 e T Suwial,

wherex;(t) are the positions of the particles: these consist of o N-1
piecewise straight lines which reflect at each collision. We u=—o1, 1=0,1,2...N=-1; > => ,
shall compute the two-point correlator bfx,t), averaged N u I=0
over the ensemble of initial conditions defined above. Fur-

ther, we will choose our distributiong(v) andh(m) to be S[u,w]=€" when (n—1)L<w=nL foreachn,
even, i.e., on the average, the total net momentum and spin _
are zero. Then, because the initial momenta and spin are Win =Xk~ XpF (vk—vp)t. (4.5
uncorrelated, we have We shall note some periodicity properties $fu,w] and
Ajk(t) here. By the above definition
(L(x,t)L(0,0))= % (mymy )L x—x; (1) ][ i/ (0)]) Slu,w+L]=€e"Ju,w], henceS[u,w+NL]=Su,w].
, (4.6
=(m2)2 (8[x—x;(1)18[x;(0)]) Also, for the distribution(4.4), noting the fact thatv,—vy|
i =0,2, we arrive at
— 2 _
=(m*)pP(x,t), (4.2 NL| 12 —iju'\i‘[l S
whereP(x,t) is the probability that a particle at=0 at time Al T 565N <IN 8 § S| uWin+ NL—5¢
t=0 is at the positiorx at timet,
=Aj(t). 4.7
<m2>=2 m2h(m), 4.3 Let us define a tim@=L/c which is the time required by a
m

free particle to go once around the system. Every trajectory
returns exactly to its starting point after this interval of time.

Most of our results will be on a particular simple velocity 't 1S Now obvious that in a period of imNL/c=N7, each

distribution, which is designed to mimic the properties of theparticle will return to its initial positions and velocities. Thus
continuum ,mode[(l 14 and (1.18]: the Poincareecurrence time of the system, with the veloci-

ties chosen under E@4.4), is of orderN, rather than being
of the order ofeN or larger.

andp=N/L is the density of particles.

1
g(v)=§[5(v—c)+5(v+c)]. (4.4
A. Diffusion in the thermodynamic limit
So each particle is allowed to have only one of two velocities

+c. This is similar to the fact that linear spin waves in the question of diffusion. The limit is defined such tha@andL

Cor}t;]”e“Lr’g‘m‘;"ii‘(’fermoﬁﬁ:Sa'ssscggr‘]’flv‘i’”e'gg'stﬁié the computa 2PPTOACN infinity while the density/L=p is held finite.
tion of the functionP(x.t) using the method of Jeps&h. The zero particle starts out at the origin and we ask what is

Although later more elegant solutions were put forward bythe probability,P(y 1), that it is at positiory at timet (both

Lebowitz and Percd$ for solving the model in the thermo- zvﬁ?tgaa;sa held finite as the limit —c is taken. This can be

dynamic limit, we shall use the relatively cumbersome ma-
chinery of Jepsen because it allows us to consider finite sys-
tems. P(y,0)=(3[y—Xo()])= 2 (3(y =X vit) Agk(t)),

At time t=0 the N particles are at random positions on K 4.9
the ring. We shall put the origin of the coordinate system at ’
the location of particle 0. The rest of the particles fromwhere the angular brackets are an average over all possible
0,1,2 ... ,N—1 are numbered such that theH1)th particle  initial ensembles of velocity and positions of particles, while
is immediately to the right of thigh one. As a particle moves keeping the zero particle at the origin. The average can be
with uniform velocity, in a “space-time” diagram we can evaluated exactly, and there is a simple, closed-form result:
represent its motion as a straight line which will call a tra-
jectory. When two trajectories cross, there is a collision. The P(y,t)= l[ﬁ(y+ct)+ 6(y_ct)]efpc|t\+ 2[0(y+ct)
particles bounce off each other, and in effect the particles ' 2 2
exchange trajectories. So at the beginning the zeroth particle "
starts on the zeroth trajectory and as this trajectory crosses ~oclt C 55>
others, the zeroth particle moves onto a different trajectory. —oly—cyle” | I( ml 1(pNCT =Y

Now defineAj(t) to be one if the particlg is on the
trajectoryk at timet and zero otherwise. If we form an en-
semble of systems, the avera®(t)) is the probability +|0(Pszt?—yz)>- (4.9
that the particlg is on the trajectork at timet. A knowledge
of Aj(t) for all values ofj,k,t constitutes a full solution to |, andl; are the modified Bessel functions of order zero and
the dynamics of the system. The solution is definetf by one, respectively. The resemblance to the correlation func-

Now we go to the thermodynamic limit and address the
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tion of the nonlinear wave model given in EQ.6) is clear.
The first term in Eq(4.9) is a delta function along the light

CHIRANJEEB BURAGOHAIN AND SUBIR SACHDEV
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Amongst all the factors that we have in the product on the
right-hand-sidgRHS), half of them will not contribute any

cone, but its contribution decreases exponentially with timephase to the product because for thegrv,,=0. The other
The second term lies within the light cone, and becomesalf will contribute a phase of exactly expRiu) each. So
increasingly important for large time. Also, if we take the the total phase contribution will be expiuN/2)=1. Hence

short time limit of Eq.(4.9), we get
1
P(y,t)y=5[8(y+ct)+a(y—ct](L—pclt|+---)

+ L0y +c0)— Bly—ct)], (4.10
which is precisely of the forn{2.6). However, unlike Eq.
(2.6), we can now also study the long-time limit analytically.
We take this limit within the light cone witi~ \'t, and then

the most probable recurrence time for a random ensemble of
even number of particles i& It turns out that with reflecting
hard wall boundary conditions, the recurrence time & 2
regardless of the initial conditions.

Now let us see how the effect of the recurrence time
might show up in the probability distribution of a diffusing
particle. We shall essentially try to find the autocorrelation
function for a single specific particle moving around in a ring
for all times t<7=L/c and t>7=L/c. We shall again
choose this particle to be the zero particle and at tim®,
its position and velocity arx,=0 and v,, respectively.

the asymptotic expansions of the modified Bessel functionghe probability distribution is defined as before in F4.9).

yields

P~ Gmpn =™ " ant) .13
B Cc
D=5, (4.12

which is the diffusive form assumed for the classical wave
model in Eq.(3.4). As shown by Jepsen, this calculation can

also be done for a general velocity distributigfv), and
provided the distribution is symmetric i, we obtain Eqg.
(4.12 but with

D

1 )
;J' vg(v)do. (4.13

0

B. Effect of periodic boundary conditions in a finite geometry

Here we go back to the finite system and think more about

it. The fact that the Poincarecurrence time is only linear in

SinceAj(t) is periodic with a period oN772, all distribu-
tion functions will also be periodic with the same period.
Moreover,

1 .
Ajk(N772—t)=N; e ilu

N—-1

><h];[0 S u,Win+ (v—vp) (NTI2—1)]

N—-1

1 .
N; e_”uhl;[o S u,Wgh— (v—vn)t].

(4.195

When we carry out the average over the initial conditions,
the particlesk and h will have the velocitiest v, +v,, and
—vy,— vy With equal probability. So the probability distri-
bution function will satisfy

P(y,N712—t)=P(y,t). (4.19

Thus we need to evaluate this function only fo<D

N, is because of the fact that the phase space becomes vegp774.

restricted once we allow only two possible velocities. An The details of the evaluation &(y,t) are again relegated

interesting effect is that the recurrence time can be very dify, the appendix. Let us represent the distribution function as
ferent depending upon whether there are an even or odd

number of particles in the system. The recurrence time is the

lowest common multiple off (the time required for trajec-
tories to return to their initial positionand NL/2c=N772

P(y,t)=[8(y+ct)+ s(y—ct)]P(t)
+[O(y+ct)—o(y—ct)PP(y,t). (4.1

(the time required for particles to come back to their initial We write down explicit series solutions fd?(l)(t) and

trajectory. With an odd number of particledl=2p—1, the
recurrence time iN7=(2p—1)7 as mentioned above. But

if we add one single extra particle to the system, the recur

rence time almost becomes half becabdg2c=N7/2=p7
is an exact multiple off.

In fact, the recurrence time could be even smaller. If we,

take an even numbe of particles and choose their veloci-

ties as=*c randomly, the most likely scenario is one where

half of them have velocity+c, and the rest have velocities
—c. In that case,

1 i
At D=2 e M 1T Suwt To—vw)]-
(4.14

P()(0,t). These sums could not be evaluated in a closed
analytic form. So we carried out the sums numerically for
Specific values oN andL. P()(t) and P(®)(0) are plotted

in Figs. 9 and 10, respectively.

For timest<7 and N>1 with N/L fixed, these results
reduce to the result$4.9) derived in the thermodynamic
limit. For t>7, we see lots of complicated structures. Not all
of them are well understood. But some of the prominent ones
are easy to understand. For example at timesn7,
n=1,2,3..., we segeaks inPY), each of whose height
turns out to be 1/27N. The origin of this is very easy to
understand. Out of the whole ensemble of initial conditions,
a fraction of them will have exactly half of the particles with
velocity +c¢ and the others with velocity-c (with the as-
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FIG. 9. The probability distribution functioR™®)(t) plotted as a
function of time O<t<N7/4 for N=50. The unit of time isZ. The FIG. 11. The probability distribution functioR¥(t) plotted as
stronger peaks at multiples of five are due to the fact that five is & function of time forN=50 (dashed ling and N=>51 (full line).
prime factor ofN. The unit of time is7. Notice the disappearance of the peak at
=1 for N=51.

sumption thatN is ever). Since these sets of initial condi-

tions have a recurrence time of orlly so they come back to On the other hand, very different results were obtained for
the original distribution after a tim@ and hence contribute the limitt—c at any fixedL. Here the integrable nature of
to this peak. Using the binomial distribution, it is easy tothe system was immediately evident, and we observed a bi-
prove that the fraction of ensembles which have exactly halkarre set of recurrences dependent sensitively on details of
the particles with one velocity and the other half with thethe microscopic Hamiltonian. The Poincaezurrence time
opposite velocity is exactly/2/rN. The extra factor of 1/2  of our toy model was quite short, and this was clearly due to
comes from the fact that we have both left- and right-goingits integrability. No sign of spin diffusion was seen.

initial conditions for our test particle. If we change the num- A number of recent studies have examined the issue of
ber of particles by ond\ becomes odd. So no set of initial T>0 spin transport in integrable quantum systéis® A
conditions will have a recurrence tiniE and these peaks model of particular interest has been e 1/2 XXZ chain.

will disappear as shown in Fig. 11. At the SU(2) symmetric pointthe XXX chain, the low-T
properties of this antiferromagnet are expected to be in the
C. Discussion universality class of in Eq. (1.1) at #= 7. So studies of the

XXX model will explicate the nature of spin transport at

: Ol.” study of an integrgble toy model in'this sec'tio'n hastemperatureg'<TO at = . This is a regime for which our
highlighted the extreme importance of taking the limits of paper has no result@lthough, spin transport in the oW

long time t—c, and large system size—co with proper 5 regime for§=0 was studied in Ref.)4 However, we

care. If we send — first, then we explicitly demonstrated . o o\ amined the higher temperature regifgec T<T(Z),
the existence of spin diffusion in the subsequent Iong-nmelln Sec. Il B, and found that our numerical results are not
limit. This is, of course, the correct thermodynamic limit, . ; '

and the presence of spin diffusion also makes physical sens![ 'Z?]n::asgrar?tngtt?althtﬁa?rgi?fir;(i:gn Or;ziplgsdc;ﬁ:fignf;-rwou'd
Once the limitL—« has been taken, an infinite number of thouah this i f cour not riy i raqum n?[’ Th
parameters are needed to specify the initial thermal state oug S IS, Of course, not a 9°.r$§{§5"" gument. The
the system; diffusion then arises when some local degree ?tes_t numen_cal e"'de!"ce for th@(?( ch_a| seems to be
freedom starts to sample an increasing number of these infi:_onsstent with the existence of diffusion.

. L " . Here we wish to issue a small caution towards the method
nite number of random initial conditions with the passage ofused to study transport in Refs. 31—33 and(8fs caution

time. does not apply to Ref. 34These works computed a “stiff-
0.25- ness,” which is the coefficient of zero-frequency delta func-
P(Z)(t) tion in the frequency dependent conductivity. By its very
021 construction, such a quantity is definedaat0 in a finite
system; so implicitly, the limito— 0 has been taken before
0.151 the L—oo limit. The considerations of this section make it
amply clear that such a procedure is potentially dangerous.
0.1
V. IMPLICATIONS FOR EXPERIMENTS
0.05-
First, we summarize the main theoretical results of this
0 , : : , , : paper. We have shown that there is an intermediate-
0 2 4 6 8 t 10 12 temperature range over which the static and dynamic prop-

erties of a large class of one-dimensional Heisenberg antifer-
FIG. 10. The probability distribution functioR(®(t) plotted as romagnets are described by the deterministic, continuum
a function of time forN=50 for 0<t<<N7/4. The unit of time isT. model defined by Eq€1.14) and(1.18. Forp-leg ladders of
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spin-S ions, this temperature range rapidly becomes quitdbehaves like Eq(1.25. At lower temperatures;(T) should
wide asSp increases. For @p even, our universal results exhibit the logarithmic temperature dependence in Eqg.
hold forA<T<T§nZa)1x' whereA is the ground-state energy (1.10, arising from quantum fluctuations. Combined with

gap, andT® is estimated in Eq(1.23, while for 2Sp odd, measurements of the uniform susceptibility(T), a rather

thov hold n"flagr_l_ —T<T@  whereT. is an enerav scale precise test of the quantum-renormalized static theory should
y 0 max? 0 gy then be possible.

measuring the strength of logarithmic corrections at the low- Dynamic tests of the theory have focused mainly on the

estT. Both To and A become exponentially small &p  ihayidth of the spin-wave excitations in the regikés 1.
increases, and so the intermediate-temperature regime {§,o measured linewidths have been compHr&dwith the
clearly defined. The dynamical properties of such antiferroyegiction of the classical theoi),which yields the result
magnets are encapsulated in the scaling fofti81), which (2 20 This is in general agreement with the theory, but a
relate them to universal functions dependent only upon WQuantitative discrepancy was obsertedor S=3/2. We
thermodynamic parameters: the antiferromagnetic correlahink it would be useful to compare the experiments with our
tion length&(T), and the uniform spin susceptibility,(T).  exact resul(2.19, while using the actual experimentally ob-
We obtained information on the universal functions in Secsserved values of and y,,.
Il and Ill, including exact results on the spin-wave damping, We think future neutron-scattering experiments should
while exact results fog(T) and x,(T) were presented in also examine the interesting regifié<1. Here we have
Sec. |. provided numerically exact results in Sec. Ill. In particular,
We now briefly review the work in the 1970s on the dy- there is some interesting physics in the structure of the
namics of classical antiferromagnetic chaRefs. 9 and 10  frequency-dependent lineshapes in Figs. 3 and 5, and these
and references therginAs we saw in Sec. |, there is a win- should be subjected to experimental tests. Also, we can eas-
dow of temperatures (. <T<T@ [T() was estimated in ily generate additional universal spectra at other positions in
Eq.(1.3)], over which Egs(1.24 and(1.25 are valid, where the energy-momentum space, as needed.
our results apply to purely classical models; so there is a The results in Sec. Il also provide quantitative predic-
common regime of validity between our and earlier work.tions for NMR experiments on spin chains. The nuclear re-
These earlier classical results were all obtained on studies ddixation rate IF, is given by local low-frequency dynamic
lattice antiferromagnets, and all used some variant of tha&tructure factor of the electronic spins. This has two contri-
short-time moment expansion to extrapolate to the long-timéutions, one from the ferromagnetic component given by the
limit by a physically motivated ansatz, e.g., the memorycorrelator ofL, and the other from the antiferromagnetic

function formalism; however, there is a degree of arbitrari-component given by the correlator of Let us parametrize
ness in any such ansatz. In a regime where their correlatiothe electronic spirg by

length £&>a (wherea is a lattice spacing and the wave

vectorska<1, their results should be described by the con- i a

tinuum model we have discussed here. However, we expect S=(=1)'Sn(x;)+ BL(Xi)' (5.)
their short-time methods to be exact only faf> 1. Indeed,

our paper provides a proper description of the scaling strucwherea is the lattice spacing. If we assume that

ture, along with quantitative information on the scaling func- 1T
tions, in the nonperturbative regink&<1. Consistent with _ * i onit . r

these expectations, we saw in Sec. Il that our r¢guR0) for T, Ef_xdt eN([Su() +iSyi(D1[Sa(0) ~iS,i(0) ),
the spin-wave damping fde¢>1, andT( < T<TE) | was (5.2
in precise agreement with that of Reiter and|&joler® It
should be noted, however, that our res(@19 for the
damping remains exact over a much wider window of tem

wherel is related to the hyperfine coupling, aag,—0 is
the nuclear Larmor frequency. The electron-spin correlator
has to be evaluated in the presence of an applied magnetic

peratures To,A<T<T®)) including wheny, and¢ have . )
the quantum renormalized dependence in Eq€1.9) and field H, and the electron Larmor precession can usgally_ be
neglected. However, for the case where there is spin diffu-

(1.10. Moreover, we believe, despite conjectures by Reiter . ; .
and Sjdander to the contrary, that the results in Ref. 10 are>'0n asin the assumed forf@.4), then this electron preces-

. sion must be included for the Fourier transform is divergent
hot exact fork§_<1 We saw In S?C' i B that our value. for at low frequencies. Combining Eq&.1) and (5.2) with the
the spin-diffusion constariessuming the existence of diffu- .
. ) : - results of Sec. Ill, we obtain
sion) D disagreed with theirs.

Turning to experiments, single chaip£1) antiferro-

2 2 1/2
magnets with S>1 which have been studied are izr AS [In T (g(T)Xui(T)) ®,(0)
(CD3),NMNCl; (TMMC) (Refs. 38 and 3@which hasS LB 3| \Aws T '
=5/2, (CHgN,)MnCl; (Ref. 40 which has S=2, and
CsVCk (Ref. 41 which hasS=3/2. We think it would be Txu(T)(a/p)?
worthwhile to reexamine these materials from a modern per- \/m ' 53
spective, given the numerous exact results that are now
available. whereD is estimated in Eqs(3.5 and (3.7). If we ignore

Among static properties, neutron-scattering experiniénts logarithmic factors, the first antiferromagnetic term in Eq.
have measured the correlation lengiT), and these have (5.3) is of orderI'/T while the second ferromagnetic term is
been compared to purely classical theories in whi¢) of order [/T)(Ta/c)?(T/H)Y? either term could be domi-
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0.3+ ture [Eq. (1.7)] limits. A complete Bethe ansatz analysis of

JaXy =t the flow between the two fixed points matches the two
PP scales, and leads to the relationsfipl?).

0.2 PPt We will perform the matching by considering various lim-

- iting regimes of the free-energy densiy, of Z as a func-

R tion of T andH. This is will allow us to make an intricate

series of mappings between numerous results which have

appeared recently in the literature.

/ First, let us consider the loW-and lowH regime, where

! T,H<T,. In this regime, the model is in the vicinity of the

0+—1 . . . . g=g. fixed point, which is th&k=1, SU(2) Wess-Zumino-

0 0.05 01 T/ 015 0.2 Witten model. We know from Eq(1.7) that for H<T

<T,, the free energy has a contribution

+

/

0.1+ /
/

FIG. 12. Comparison of the numerical results of Ref.(gRis

mark9 for the uniform susceptibilityy, of a five-leg ladder with H2 /

S=1/2 with the theoretical predictions of Eql.9) and (1.12 Fo=- 4770\1"" 21In(To/T) T H<T<T,.

(dashed ling All exchange constants are nearest neighbor and have (A1)

magnitudeJ, and the lattice spacing & The value ofy, is per

rung. From this we anticipate that foF<H<T,, we will have a
corresponding contribution

nant, depending upon the magnitudda-bfFurther, our result )

(5.3 has assumed the existence of spin diffusion, but we . _H (1+ 1 s T<H<T

expect that Eq(5.3) will provide a reasonable quantitative T 4mc| 2In(C4Ty/H) ' o

estimate of theH and T dependence for experimental pur- (A2)

poses, even if this assumption is not entirely correct in itsWherec is a universal number we would like to determine
details: there is clearly a long-time tail in Fig. 7, even if it is L '

not precisely diffusive. The universality ofC,; implies that we can use any model

: - - : hich is in the vicinity of thek=1, SU(2) Wess-Zumino-
Finally, we compare our theoretical predictions with "’ ! . :
quanturr%l Monte Caflo simulations on oddE)Ieg ladders. Nu—Wltten fixed point. In particular, Lukyan¥ has recently
merical results fory,(T) have been obtained recently by compute_d the de'ta|leld andT d.epenc.ienc.e of the free energy
Frischmuthet al*? on antiferromagnets witls=1/2 andp of the 5=1/2 _antlferr_omagnetw (_:ham with nearest-nelghbo_r
—3,5. We compared their results fo=5 with our result exchange which fulfills this requirement, and we can use his

[Egs. (1.9 and(1.12]. This is shown in Fig. 12. results to obtainC,. In particular, from Eqgs.3.18 and

The fitting parameters in this comparison are the values o@.z@ of Ref. 22 we determine that

candTg,. There is an arbitrariness in choosing the ranges of 12

T over which to fit the intermediat& prediction(1.9), and TO:(E) eY+1/4y (A3)
this can lead to some variation in the valuesandT,. A

reasonable set of values are 2.08)a andT,=0.0058), are  for the nearest-neighb@= 1/2 antiferromagnet, and that
used in Fig. 12. The value dfis roughly consistent with that

estimated earlie® but the value ofT, does appear to be H2 / 1 )
rather small. Fo=

- 1+
4mc\ T 2 In(2me "Ty/H)
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Let us now consider the vicinity of thg=0 fixed point
for nonzeroH at zero temperature, i.e., fot> Ays~T, at

This appendix will derive the relationshifi.12 between T=0. In this case, a renormalized perturbation theoryin
the two energy scaleB, and A s associated with the quan- can be used to determine the free-energy density, and this
tum O(3) nonlinear sigma model at= 7. This model has a Was carried out by Hasenfraét al** They obtained
flow from the high-energy fixed point @=0 to the low-

H<T,, T=0. (Ad)

APPENDIX A: CROSSOVER ENERGY SCALES FOR 0=

energy fixed point ag=g. . The flows near both fixed points Fe_ H? n H fees H» Ao T=0
are marginalA s is the energy scale characterizing the flow Q" 4mc A 5 ' MS: e
away from theg=0 fixed point, whileT, is the scale char- (A5)

acterizing the flow into thg=g. fixed point. These scales
appear in the logarithmic corrections that appear in both the Finally, we need to match Eq&A4) and(A5) by comput-
high-temperatur¢Eqgs. (1.9 and (1.10] and low- tempera- ing the T=0 free energy forH#0 in both the low- and
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high-field limits of the O(3) nonlinear sigma model &t Using Eq.(2.4) in the dynamical Eqgs(2.1), we find the
= 7. Fortunately, precisely this computation was carried oufollowing equations of motion:
by Fateev, Onofri, and Zamolodchikd¥They obtained Eq.

I(A5t) i;;;hi Iimit H»EATZ,QV%hiI?éh? r;;ult for the opposite oy az¢ 7?61 19 2‘9¢*
imi s IS in Eqg. (4.97) of Ref. 23: E_I £ ox vl
P P : b
O amc| T 2in(22me PAgsiH)) ¢ 1
|2 /) Al (85)
H<Awys, T=0. (AB)
Comparing Eq(A6) with Eq. (A4), we immediately obtain These equations diffelrlzf_rom Eq2.5 in that we have ab-
Eq. (1.12. sorbed a factor o€= ¢+ into the definition of time so that
time and distance have the same units.
APPENDIX B: SHORT-TIME EXPANSION: DETAILS To solve for (x,t), we make a Fourier transform in

space of Eq(B5) and convert it to an initial value problem
We start with the expressid@.2) and insert Eq(2.4) into  given by
it and expand to first order to find

a [ (k1) —ik2p(k,t)| [Akt)
:f'Dl,/f'Dlﬂ* D Dp* exp(—fdxﬁ ., (BY ot "\ gkt | Tleky) B9
where We have here written the nonlinearities as the inhomoge-
(9¢> 2 neous part of a set of first-order equations. The solution to
L= p* + g(d“// + ¢* )2+ the initial value problem is given by
ﬁ* s ¢)2 PO PP ¢<kt>) ) (¢<k,o>)
25 b T m° ¢ + ¢> ¢ s(k.t) K(t)K~~(0) o)
. (k,7)
2a§¢¢ (B2) +/C(t)fdﬂc 1(7)(B(k )) (B7)

Here we have dropped some additive constants and inte-

grated by parts in places. As advertised before, the magnetithe columns of the 2 matrix K(t) is made up of the two

field in thez direction parametrized byn? adds a mass term linearly independent solution vectors of the homogeneous

to the action and makes tHgh¢*) propagator infrared fi- Problem:

nite. The last term in the action arises from the Jacobian of

the delta functionalsi(n-L) 8(n>—1) in the measure. This e ikt _kelkt

Jacobian is infinite for a continuum system. To regularize it, IC(t)z( ikt ikt )

we can introduce a discrete lattice in space. In that case the €

parametera is the lattice constant, or equivalently the vol-

ume of the Brillouin zone: Armed with this, we can solve for the fields in terms of
the initial conditions and iterate the solution to go to higher

1 1 orders by plugging the solution back M andB. Also cal-

== > 1 (B3) D i : -

a L%z culations simplify very much if we work out everything back
in real space. So at last we write down the final iterative form

This can be finite only in a finite-volume system, but we from which the entire perturbation series can be generated:
shall carry it through and ultimately it will cancel all ultra-

violet divergences arising from unrestricted momentum sums

1 i 9
over the {¢y*) propagator. In terms ofy and ¢, the == 0 —t,0)]+= — 0
(L(x,t)-L(0,0)) is written as wxt) ZW(XH )+ dx-t )]+2 ﬂx[d)(XH )

o (B8)

1t
_¢(X_t,0)]+§f drf dX'[S(Xx—X'+t—7)
=(y(x,t)¥*(0,0)+c.c. 0

it
+%<¢(X,t)¢*(x,t)¢(0,0):,b*(0,0))+c.c. T mx—tr D JAKX ’THELde dx

1 X[S(x—=X"+t—7)— (X—=X"—t+17)]
+ E(z//(x,tw*(x,t)z,/;*(O,O)¢(O,0))+c.c.

J
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1 i On the second and third terms of the RHS, we can replace
d(x,t)= §[¢(X+t,0)+¢(X—t,0)]—§f dx'[O(x=x"+1) é(¥) by ¢© () since it is already first order in 4/
Now all the correlation functions on the RHS are expressed

1t in terms of correlation functions at tinte=0. So we evaluate
— O(X=x"=1) Jyp(x’ .0)+§J0d7f dx’ them using the partition functiofB1). Other correlations can
be evaluated in the same manner. So we shall only write
X[O(X—=x"+t—7)+ S(x—x'—t+7)]B(X’,7) down the final answers here:

—%fter’ dx'[O(x—x"+t—7) 1 .
i <¢(X,t)l//*(0,0))=§[5(x+t)+5(x—t)](l_2_m§)'
—0(x—x'—t+7)]JAX',7) (B10) 14

To simplify notation let us denote the zero-order solutions
for the fields as/{9(x,t) and (O (x,t):

1 (D(X,1) g™ (x,1) $(0,0)* (0,0)) = 45[6’(X+t) o(x—1)],
w(o)(x,t)=5[¢(X+t,0)+¢f(x—t,0)] (B15)

+— —[925(X+t 0~ ¢(x-1,0)], (p(x,1) * (x,1) 4% (0,0 ¢(0,0))

1

—_ _ —-2m

¢(°)(x,t)=%[¢(x+t,0)+¢>(x—t,0)] —8m§[6(x+t)+6(x t)](1+e2mY,
(B16)

—%f dX'[O(x—x"+1)— 0(x—X"—1t)]¢(x',0).
Adding them all and taking the limin— 0O leads to the

(B11)  expression quoted in Ed2.6). Note that all terms which

diverge asm—0, cancel each other only when we evaluate

Now we can proceed to evaluate each of the correlation fum:[he O(3) invariant correlatiofL (x,t) - L (0,0)).

tions in Eq. (B4). As an example let us look at
(¥(x,t)¢* (0,0)). The correlations to zero order are

1 APPENDIX C: EVALUATION OF THE ONE-PARTICLE
<,/,<0>(x,t)¢,(0)* (0,0)>=§[5(X+t) +8(x—1)], DISTRIBUTION FUNCTION

Let us start with Eq(4.8). Following Jepsen’s notation

(0) (0)% :i —mixtt] o ammx—t] we write
(7 (x1) 7" (0,0)=7—(e te ),

((ﬁ(o)(x,t)z//(o)*(O,O))Zii[e(ert)—0(x—t)]. P(y,t)= 2, (8(y—Xc—vit)Agi(t)) +((y —vot) Ago(t))

k%0
(B12) 1
. :N ”UJ dxkj dvyg(vy)
To compute the one-loop correlatidns(x,t) * (0,0)),
we write down X Q(UX+ 0t v)
<¢(X:t)¢*(0:0)> 1 (L N-2
=<¢(O)(X,t)1//(0)*(070)> X Efo dXhR[U,Xk+Ukt_Xh]
1 (=
+ %ftdrf dX'[6(Xx—X"+t—7)+ (X=X —t+7)] + Ne*”“J' dvog(vg)d(y—vot)
0 —o
* (! 1L N—-1
é ﬁ_< ¢2(X Mlﬂ(o)*(o 0)> X Efo dxp Rl u,Xo+vot—Xp] , (Cy

it .
+§j er’ dX'[S(X—X'+t—7)— S(Xx—x'—t+7)] with the definitions that
0

s
x§<—'E¢2(x',7)w*(x',r)¢<°>*(o,0)>. (B13) g(vk——[6 —¢)+ (v, +o)],
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+
Q(u, X+ v t,vy) = f_ dvgg(vo) (Y —Xc—vt)
XS(U,Xk+Ukt_U0t)

1
§5(y_xk_vkt)
X[S(u,y—ct) +S(u,y+ct)],
+ o
R[u,Xk+vkt—Xh]= f dl)h g(Uh)S(U,Xk+Ukt_Xh_Uht).

(C2
The second term in the RHS of E¢C1) clearly repre-

sents the probability that the zero particle stays in the zero

trajectory at timet, while the first term represents the prob-

ability that it has been scattered to another trajectory. The
second term can be easily simplified using the definitions

given above and in Eq4.5). It is
[S8(y+ct)+ 8(y—ct)]PD(t)

2ct—pL

+
1 L

1+e'PY

1 1
=aly=—ct 552 [5

: N-1 1
u__ _
X (e 1)) +5(y+ct)2Nu
Y 1 14 2P gy )1
5 e 3 (e ) .
(C3
Herep is defined so that
0<2ct—pL<L. (CH

P()(t) cannot be evaluated in a closed analytic form. But we

have evaluated it numerically for fixed values fand L.
P()(t) has been plotted in Fig. 9 fild=50L=1.c=+1. As
mentioned before, the peaks at tiniER7,37, . .., are due
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to the exact recurrence of some configurations. We plot this
function again forN=50 and 51.=1c==*1 in Fig. 10.
Note that the peaks at timé&27 . . ., disappear.

The first term will be handled in a manner similar to
above. For simplicity we shall evaluate only the autocorrela-
tion part. To do this, we set=nL wheren is an integer.

P<2>(t)=k§O (S(Xe+vit—NL)Agi(t)). (C5)

Using previous definitions we find that
1 N-1
@(ty=—» — = — - —ct—
P(1) 4N§u C [#(nL—ct)—O(nL—ct—L)

+6(nL+ct)—O(nL+ct—L)]
X (Y u,nL+ct]+Fu,nL—ct])
Ldx

XUOT

+Su,nL—x+ct])

Su,nL—x—ct]

N-2
(C6)

Here it will be convenient to define an integeras before
such that

O<ct—pL<L. (C7)
Carrying out the integrals above we get
1 N—1 . .
(2)(t)= —iu 2ipu
P@(t) 4N§ [ et
L—(ct—plL) o ct—pL
- - pu
x[ L (1+e P+ 3
_ _ N-2
X (g U4 gl (2P Uy +c.c. (C8

The above functioP®)(t) has been plotted in Fig. 11.
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