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Intermediate-temperature dynamics of one-dimensional Heisenberg antiferromagnets

Chiranjeeb Buragohain and Subir Sachdev
Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120

~Received 11 November 1998!

We present a general theory for the intermediate-temperature~T! properties of Heisenberg antiferromagnets
of spin-S ions onp-leg ladders, valid for 2Speven or odd. Following an earlier proposal for 2Speven@Damle
and Sachdev, Phys. Rev. B57, 8307 ~1998!#, we argue that an integrable, classical, continuum model of a
fixed-length, three-vector applies over an intermediate-temperature range; this range becomes very wide for
moderate and large values of 2Sp. The coupling constants of the effective model are known exactly in terms
of the energy gap above the ground stateD ~for 2Speven!, or a crossover scaleT0 ~for 2Spodd!. Analytic and
numeric results for dynamic and transport properties are obtained, including some exact results for the spin-
wave damping. Numerous quantitative predictions for neutron scattering and NMR experiments are made. A
general discussion on the nature ofT.0 transport in integrable systems is also presented: an exact solution of
a toy model proves that diffusion can exist in integrable systems, provided proper care is taken in approaching
the thermodynamic limit.@S0163-1829~99!00714-6#
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I. INTRODUCTION

One-dimensional Heisenberg antiferromagnets
strongly interacting quantum many-body systems for whic
detailed quantitative confrontation between theory and
periment has been possible. A rather precise and param
free understanding of their low-temperature dynamic prop
ties has emerged in a number of recent NMR experime
performed by Takigawa and collaborators.1–4 These systems
can therefore serve as useful springboards towards decip
ing the behavior of interacting systems of greater compl
ity.

The past theoretical work on the dynamic properties
these quantum antiferromagnets has focused mainly on
universal behavior in the asymptotic low-temperature~T! re-
gime T→0.4,5–8 In the present paper we will extend th
theory to a separate range of intermediate temperatures
shall argue that under suitable conditions, to be descri
precisely below, this intermediate-temperature range can
quite wide, and is described by a continuum dynami
model quite different from that required forT→0. This
intermediate-temperature dynamics was discussed briefly
a limited class of antiferromagnets in the last section
Ref. 4.

Our work will also connect with earlier investigations
the dynamics of classical lattice antiferromagnets~Refs. 9
and 10, and references therein!. In a sense, our paper pro
vides a bridge between the modern quantum dynamics
the classical studies of the 1970s. There is an overlapp
window of validity for our theory and the classical inves
gation of Reiter and Sjo¨lander,10 and here our results ar
generally consistent with theirs, although there are some
tails that disagree. We will review this earlier work, in th
context of our results, in Sec. V.

A large fraction of the experimental examples of on
dimensional Heisenberg antiferromagnets consist ofp paral-
lel, coupled chains of spin-S ions ~for p51 these are ordi-
nary spin chains, while forp.1 these are commonly
referred to asp-leg ladders!. For all T,Tmax

(1) , whereTmax
(1)
PRB 590163-1829/99/59~14!/9285~19!/$15.00
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will be defined shortly, these antiferromagnets are descri
by a universal quantum field theory: the one-dimensio
O(3) nonlinear sigma model. This field theory has the qu
tum partition function~in units with\5kB51, which we use
throughout!

ZQ5E Dn~x,t!d~n221!expS 2E dxE
0

1/T

dt LD
L5

1

2cgF S ]n

]t
2 iH3nD 2

1c2S ]n

]xD 2G1
iu

4p
n•S ]n

]x
3

]n

]t D .

~1.1!

Here n(x,t) is a three-component unit vector representi
the orientation of the antiferromagnetic order paramete
spatial positionx and imaginary timet, c is a spin-wave
velocity, andH is a uniform external magnetic field—w
will be interested only in the linear response toH. There are
two dimensionless coupling constants inL, u, and g. The
first, u, is the coefficient of a topological term, and has t
value u5p for 2Sp an odd integer, and the spectrum
excitations above the ground state is then gapless. ForSp
an even integer,u50, and then there is gap to all excitation
The couplingg plays a role in determining the energy sca
at which certain crossovers~to be discussed below! take
place, but does not modify the physics otherwise. A straig
forward semiclassical~largeS) derivation shows that

g'
2

SpF11S 12
1

pD J'

J G1/2

c'2JSaF11S 12
1

pD J'

J G1/2

, ~1.2!

whereJ is the exchange constant along the legs of the lad
J' is exchange on the rungs, anda is the lattice spacing
along the legs; we have assumed here a model with o
nearest-neighbor exchange, but the estimatesg;1/Sp and
c;JSahold far more generally. An important observation
9285 ©1999 The American Physical Society
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that g becomes small for either largeS or p. We will be
especially interested in the smallg case in this paper.

Let us now discuss the value ofTmax
(1) below which Eq.

~1.1! holds. The basic argument follows that made by Elst
et al.11 in d52. At a temperatureT, the characteristic excited
spin-wave has wavelengthc/T, and the continuum quantum
theory will apply as long as this wavelength is longer th
the lattice spacinga of the underlying antiferromagnet. Fo
p-leg ladders, description by a one-dimensional quant
model requires that the wavelength be larger than the w
of the ladder,pa.12 Using the value ofc in Eq. ~1.2!, our
estimate forTmax

(1) is then

Tmax
~1! ;

2JS

p F11S 12
1

pD J'

J G1/2

. ~1.3!

To reiterate, the quantum theory~1.1! applies to the lattice
antiferromagnet at allT below that in Eq.~1.3!.

Let us now review the well-known, T50,
renormalization-group properties of Eq.~1.1!.13 The topo-
logical angleu remains fixed atu50,p, while the flows of
the couplingg are sketched in Fig. 1.

For both casesu50,p there is a fixed pointg50 which is
unstable at low energies. Indeed the beta function descri
the flow away fromg50 is independent ofu to all orders in
g. However, nonperturbative topological effects do dist
guish the two values ofu. For u50, the flow is believed to
continue all the way tog5`, corresponding to a quantum
paramagnetic ground state with an energy gapD. In contrast,
for u5p, the flow is into a strong-coupling infrared stab
fixed point atg5gc . There is a scale-invariant and gaple
theory which describes this fixed point—thek51, SU(2),
Wess-Zumino-Witten model. Forg.gc , there is a runaway
flow to g5`, usually associated with the appearance
spin-Peierls order; this last regime will not be discussed
this paper.

Our primary interest here shall be in the region in t
vicinity of the unstableg50 fixed point. For bothu50,p,
there is a characteristic energy scale, usually denotedLMS ,
which determines the location of the crossover from the
cinity of the g50 fixed point to the strong-coupling beha
ior. For energies or temperatures smaller thanLMS , the
strong-coupling behavior should apply, and as we have
discussed, this is quite different foru50 andu5p. How-

FIG. 1. Renormalization-group flows for the dimensionless c
pling g in Eq. ~1.1!. Foru50,g has a runaway flow tog5` and the
ground state is a quantum paramagnet with a gapD. For u5p,
there is a fixed point atg5gc , of order unity, and near it the flow
is dg/dl }(g2gc)

2. This fixed point is described by thek
51,SU(2) Wess-Zumino-Witten model. The crossover betwe
the g50 andg5gc fixed points takes place at an energy scale
orderT0 . The regiong.gc usually corresponds to a gapped sta
with spin-Peierls order, and is not considered in this paper.
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ever, the physics at energies or temperatures larger thanLMS
is controlled by the flow in the vicinity of theg50 fixed
point, and this is common to bothu50 andu5p. The en-
ergy scaleLMS can be estimated from the structure of t
perturbativeb function. For smallg,

LMS;J expS 2
2p

g D ; ~1.4!

we have neglected here a prefactor of a power ofg coming
from higher-loop corrections. So from Eq.~1.2!, for eitherS
or p moderately large, the scaleLMS becomesexponentially
small.

We are now ready to discuss the static thermodyna
properties of the quantum field theory~1.1! as a function of
T. We will characterize the system byT dependence of two
important observables:xu(T) andj(T). The first is the uni-
form susceptibilityxu , which is the linear response to th
field H5(0,0,H): xu5(T/L)(d2 ln ZQ /dH2)uH50, whereL is
the ~infinite! length of the spatial direction; this is the su
ceptibility per rungof the ladder. The second is the correl
tion lengthj(T), which determines the exponential decay
the equal-time two-pointn field correlator as a function ofx.

We will consider temperatures above and belowLMS in
turn.

A. T<LMS

For T,LMS , as just noted, we must distinguishu50 and
u5p.

1. u50

For u50, there is an energy gapD, and the susceptibility
is simply that of a dilute, thermally activated, classical gas
triplet magnons above the gap; these contribute an expo
tially small susceptibility:14,15

xu~T!5S 2D

pTc2D 1/2

e2D/T; T,LMS , u50. ~1.5!

Experimentally, we can view Eq.~1.5! as the definition of
the gapD and the velocityc, which are to be determined b
fitting measurements to Eq.~1.5!. The correlation length
j(T) takes a finite,T-independent value in this quantum
paramagnet, up to correlations exponentially small inD/T;
for the case whereD is significantly smaller thanJ, we
have12,16

j~T!5
c

D
; T,LMS , u50. ~1.6!

2. u5p

For the gapless caseu5p, there are excitations with non
zero spin at arbitrarily low energies, and soxu(T) remains
nonzero asT→0:18,19

xu~T!5
1

2pcS 11
1

2 ln~T0 /T!
2

ln@ ln~T0 /T!#

4 ln2~T0 /T!
1••• D ;

T,LMS , u5p. ~1.7!
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Again, this experimentally definesc and a temperature sca
T0 which determines the onset of a logarithmic correction
the T50 susceptibility due to the slow flow into the fixe
point at g5gc . The correlation length of this critical para
magnet now diverges asT→0:5–8,20

j~T!5
c

pT S 11
1

2 ln~T0 /T!
2

ln@ ln~T0 /T!#21

4 ln2~T0 /T!
1•••G ;

T,LMS , u5p. ~1.8!

The dynamical properties of quantum antiferromagnets in
low-temperature regimeT,LMS have been discussed
length in Ref. 4 for the gapped case (u50) and in Refs. 5–8
for the gapless case (u5p).

Note that bothD andT0 are energy scales characterizin
the flow into the strong-coupling region. These should the
fore be universally related toLMS which is the scale of flows
out of the weak-coupling region. We will discuss the unive
sal relation shortly, once we have definedLMS more pre-
cisely.

B. T>LMS

Let us now consider the regimeLMS,T,Tmax
(1) ; the up-

per bound is necessary to ensure that the continuum qua
theory still applies. The existence of this intermedia
temperature regime requires thatLMS,Tmax

(1) , a condition
that is not well satisfied for smallSandp, and so this regime
almost certainly does not exist forp51 andS51/2,1, but
there is evidence that it is present forp51,S52.17 Here we
are controlled by physics in the vicinity of theg50 fixed
point, and it should be possible to treat quantum fluctuati
in a renormalized perturbation theory ing. As discussed in
Ref. 4, a nonperturbative treatment of the thermal fluct
tions is still necessary, but this can be carried out exa
because of the low spatial dimensionality. The result of s
a calculation is4

xu~T!5
1

3pcF lnS 4pe212gT

LMS
D1 ln ln

T

LMS
1••• G ;

LMS,T,Tmax
~1! , ~1.9!

whereg is Euler’s constant. This result can also be view
as the precise experimental definition ofLMS . For complete-
ness, we also quote the result in this regime for the corr
tion lengthj(T):

j~T!5
c

2pTF lnS 4pe2gT

LMS
D1 ln ln

T

LMS
1••• G ;

LMS,T,Tmax
~1! . ~1.10!

We now give the promised universal relationship betwe
the energy scales characterizing the weak- (LMS) and
strong- (D,T0) coupling regimes. This requires nonperturb
tive knowledge of the renormalization-group flows, and c
only be obtained from an analysis of the full thermodynam
Bethe-ansatz solution of the quantum field theory~1.1!. For
u50, such an analysis was carried out in Ref. 21, and
result is now well known:
o

e

-

um
-

s

-
ly
h

d
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n

-
n
c

e

LMS5
e

8
D; u50. ~1.11!

For the gapless caseu5p, we will present a derivation of
the required relationship in Appendix A, building upon som
recent results;22,23 our result is

LMS5S p

2 D 1/2

e3/42gT0 ; u5p. ~1.12!

We are now finally in a position to state precisely t
main objective of this paper. We will describe the dynamic
properties of one-dimensional antiferromagnets in
intermediate-temperature regimeLMS,T,Tmax

(1) . We
quickly note as an aside that most of our results actually h
over a wider regime of temperaturesLMS,T,Tmax

(2) , where
we will define and discuss the origin ofTmax

(2) .Tmax
(1) below;

for now we ignore this point. A common treatment is po
sible for theu50 and u5p in this regime, with the two
cases differing only in the input values of the static para
etersxu(T) andj(T) as defined by Eqs.~1.9!–~1.12!. More-
over, asLMS becomes exponentially small for moderate v
ues ofS or p, this regime can be quite wide and should
readily observable experimentally. Indeed, there is good
dence from recent measurements of static properties in q
tum Monte Carlo simulations17 that this universal
intermediate-temperature regime exists even forS52 spin
chains.

The formulation of the dynamics properties forLMS,T
,Tmax

(1) was already discussed in Ref. 4. The key point4 is to
notice that the energy of a typical spin-wave excitatio
which is of ordercj21(T), is parametrically smaller thanT
whenj obeys Eq.~1.10!. So the thermal occupation numbe
of these spin-wave modes is large:

1

ecj21/T21
'

T

cj21~T!
.1. ~1.13!

The second expression in Eq.~1.13! is the classical equipar
tition value, which indicates that the spin-wave excitatio
may be treated classically. The classical partition funct
controlling these fluctuations can be deduced by demand
that its correlations match with Eqs.~1.9! and ~1.10!, while
the dynamic equation of motions follow by replacing th
quantum commutators with Poisson brackets. In this man
the problem reduces to the effective classical phase-sp
partition function4

ZC5E Dn~x!DL ~x!d~n221!d~L•n!expS 2
HC

T D ,

HC5
1

2E dxFTj~T!S dn

dxD
2

1
1

xu'~T!
L2G . ~1.14!

Heren(x) is a classical variable representing the orientat
of the antiferromagnetic order andL (x) is its classical, ca-
nonically conjugate angular momentum. Becausen(x) is of
unit length, its motion is always in a direction orthogonal
its instantaneous direction, and there is no radial kinetic
ergy: the square of angular momentum represents the e
kinetic energy, andxu' is the moment of inertia of the fluc
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tuatingn. The value ofxu,' can be determined by realizing4

that L (x) is simply the classical limit of the quantum oper
tor corresponding to the magnetization density

L52
dL
dH

; ~1.15!

then demanding thatZC reproduce the correct uniform su
ceptibility to a uniform external field under whichHC
→HC2*dx H•L , we obtain

xu~T!5
2

3
xu'~T!; ~1.16!

the factor 2/3 comes from the constraintL•n50, so there are
only two independent components ofL at each spatial point

Notice that Eq.~1.14! involves a functional integral ove
the commuting fieldsn and its conjugate momentumL as
functions only of the spatial coordinatex, but is independen
of the real timet. It therefore yields only equal-time corre
lation functions, as is the usual situation in classical stati
cal mechanics. To obtain unequal time correlators, we h
to separately specify the equations of motion, and these
obtained by replacing quantum commutators with Pois
brackets. For the fieldsn(x),L (x) these are

$La~x!,Lb~x8!%PB5eabgLg~x!d~x2x8!,

$La~x!,nb~x8!%PB5eabgng~x!d~x2x8!,

$na~x!,nb~x8!%PB50, ~1.17!

wherea,b,g51,2,3. The equations of motion~in real time!
now follow from the HamiltonianHC , and they are

]n

]t
5

1

xu'~T!
L3n

]L

]t
5@Tj~T!#n3

]2n

]x2
. ~1.18!

We are now interested in unequal time correlation functio
of Eq. ~1.18!, averaged over the classical ensemble of ini
conditions specified byZC .

To complete the quantum to classical mapping, we rec4

the relationship between the correlations of the underly
antiferromagnet and the quantum field theoryZQ , and those
of the classical nonlinear wave problem defined by E
~1.14! and ~1.18!. Correlations of the antiferromagnet in th
vicinity of the antiferromagnetic wave vector are given
the correlations ofn(x,t) underZQ , and are related to thos
in the classical problem by4

^n~x,t !•n~0,0!&Q5AF lnS T

LMS
D G2

^n~x,t !•n~0,0!&C ,

~1.19!

where the subscriptQ represents averages under the quant
partition functionZQ , the subscriptC represents average
under the classical dynamical problem defined by Eqs.~1.14!
and~1.18!, andA is an overallT-independent normalization
related to the amplitude of the correlations atT50. Next,
correlations of the antiferromagnet in the vicinity of ze
i-
e
re
n

s
l

ll
g

.

wave vector are given by the correlations ofL (x,t) under
ZQ , and are essentially equal to those in the classical pr
lem by4

^L ~x,t !•L ~0,0!&Q5^L ~x,t !•L ~0,0!&C . ~1.20!

The absence of an overall rescaling factor here is relate
the conservation of the total magnetization density.

The main objective of this paper is to evalua
^n(x,t)n(0,0)&C and ^L (x,t)L (0,0)&C . An important prop-
erty of these correlators is that they satisfy simple scal
laws which allow us to completely scale away all depend
cies onj(T) andxu'(T), and to express everything in term
of parameter-free universal functions. These scaling laws
low from the fact that Eqs.~1.14! and ~1.18! define a con-
tinuum classical problem which is free of all ultraviolet d
vergences: this will become evident from our analy
computations in Sec. II and the numerical results of Sec.
Consequently, simple engineering dimensional analysis
volving rescaling ofx, t, andL can be used to absorb depe
dences on the dimensionful parameters. In this manner,
not difficult to show that4

^n~x,t !•n~0,0!&C5Fn~ x̄, t̄ !,

^L ~x,t !•L ~0,0!&C5S Txu'~T!

j~T! DFL~ x̄, t̄ !, ~1.21!

where

x̄[
x

j~T!
,

t̄[tS T

j~T!xu'~T! D
1/2

, ~1.22!

andFn( x̄, t̄ ) andFL( x̄, t̄ ) are universal scaling functions. I
is the primary task of this paper to determine these sca
functions. In principle, these scaling functions are det
mined by solving Eqs.~1.14! and ~1.18! after setting all pa-
rameters equal to unity,T5j5xu'51, while replacingx,t
by x̄, t̄ . Notice that the resulting equation is then paramet
free, and so there is no explicit small parameter in which a
kind of expansion can be carried out; nothing short of
exact solution will do. We think this reasoning invalidat
some of the conjectures on exactness of results made in
10, as we will discuss further in Sec. V. However, when t
arguments of the scaling functions are themselves small,
ux̄u,u t̄ u!1, then a systematic perturbation expansion is p
sible, and this will be presented in Sec. II.

We close this introductory discussion by returning to t
issue of the maximum temperature up to which these res
can be applied to lattice antiferromagnets. The appeara
here of a classical spin model suggests that one should t
about classical spin models obtained by starting direc
from the lattice quantum spin model, without the use of t
quantum field theoryZQ as an intermediate step.11 Such a
classical description will only work for largeS, and we can
ask the question of when the resulting classical model can
described by a continuum classical theory, which will clea
be the one defined by Eqs.~1.14! and~1.18!. The correlation
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length of a classical spin antiferromagnet is of ord
JS2pa/T, and a continuum description will work provide
this is larger than the lattice spacinga and the width of a
ladder systempa. This gives us the estimate11

Tmax
~2! ;JS2. ~1.23!

In the regimeTmax
(1) ,T,Tmax

(2) , we can use a purely classic
description of the spin model: its correlation length and u
form susceptibility will not be universal, but has to be com
puted for the specific model under consideration. For
model with only nearest-neighbor exchange, a standard c
putation on the classical antiferromagnet gives for the u
form susceptibility

xu~T!5
p

6JaF11S 12
1

pD J'

J G21

; Tmax
~1! ,T,Tmax

~2! ,

~1.24!

and for the correlation length

j~T!5
JS2pa

T
; Tmax

~1! ,T,Tmax
~2! . ~1.25!

It is satisfying to note that there is a precise agreement
tween the results~1.9!, ~1.10! and ~1.24!, ~1.25! at the com-
mon boundary of their respective regions of validity,T
;Tmax

(1) : for the nearest-neighbor model under considerat
we use the estimates forg andc in Eq. ~1.2!, and then using
ln(T/LMS)'2p/g, we find the required agreement.

It appears useful to review the final status of the regim
of validity of the model studied here. The universal co
tinuum classical model@Eqs.~1.14! and~1.18!# describes all
one-dimensional Heisenberg antiferromagnets in the t
perature regimeLMS,T,Tmax

(2) ; this regime is wide and
well defined for moderately large values ofSor p, and there
is evidence that it exists already forp51,S52.17 The com-
plete definition of this classical dynamical model requires
input of the temperature-dependent static parametersj(T)
and xu(T). In the regimeLMS,T,Tmax

(1) these parameter
are universally specified by Eqs.~1.9! and ~1.10!, with LMS
given by Eq.~1.11! for gapped spin chains (u50) and by
Eq. ~1.12! for gapless spin chains (u5p). In the higher
temperature regimeTmax

(1) ,T,Tmax
(2) , these parameters ar

given by Eqs.~1.24! and ~1.25! for the model with only
nearest-neighbor exchange, and by related nonuniversa
pressions for other antiferromagnets.

The following sections contain technical details towar
the determination of the scaling functionsFn andFL in Eq.
~1.21!, along with some theoretical analysis on the relatio
ship between integrability and diffusion. We will begin
Sec. II by describing the analytical short-time expansion
the correlatorsFn andFL . The long-time limit will then be
studied numerically in Sec. III. The subsequent Sec. IV d
cusses issues which are somewhat peripheral to the m
focus of this paper: the continuum equations of mot
~1.18! are known to be integrable,24 and this raises numerou
fundamental questions on the nature of spin transport in
tegrable systems. These will be addressed in Sec. IV by
study of a simple integrable toy model whose spin corre
tors can be determined in close form. Further, we will s
that these correlators have a striking similarity to those
r
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Eq. ~1.18!. Readers interested primarily in spin chains c
omit Sec. IV and skip ahead to Sec. V where we will d
scribe the implications of our results for experiments.

II. SHORT-TIME EXPANSION

This section will determine the smallt expansion of the
scaling functionsFn andFL in Eq. ~1.21!. Normally, there
is a completely straightforward way of determining th
short-time expansion of interacting systems25—it can be re-
lated, order by order, to equal-time correlators involvi
higher moments of the fields. However, this standard pro
dure doesnot work for the model@~1.14! and ~1.18!# of in-
terest here. This is because we are dealing with a continu
model with an infinite number of degrees of freedo
n(x),L (x), present at arbitrary short-distance scales. If
naively generate the moment expansion, we find that
terms quickly acquire rather severe ultraviolet divergence

A separate theoretical tool is necessary to generate
short-time expansion, and this shall be described here.
shall use an analog of the field-theoretic method known
chiral perturbation theory. As we shall see below, the exp
sion is actually in powers ofutu—this implies a nonanalytic-
ity in the t dependence att50, which is in fact the reason fo
the ultraviolet divergences in the moment expansion. T
latter method only gives an analytic expansion int, by con-
struction.

In this section, and in Appendix B, we will use units
which T5xu'(T)51. However, we will retain explicit de-
pendence onj[j(T). It turns out to be quite useful to kee
track of powers ofj. Indeed, our computations will be de
signed to generate an expansion of the correlators in pow
of 1/j, and this isa posterioriseen to be a short-time expan
sion. We will return to physical units in stating our fina
results.

We will therefore consider the problem of unequal tim
correlation functions of the nonlinear partial differenti
equations

]n

]t
5L3n,

]L

]t
5jn3

]2n

]x2
~2.1!

when averaged over the ensemble of initial conditions
fined by the partition function

ZC5E Dn~x!DL ~x!d~n221!d~L•n!

3expH 2
1

2E dxFjS dn

dxD
2

1L222jm2nzG J .

~2.2!

The last term in the action represents a field of stren
jm2 turned on in thez direction and serves as a regulariz
tion parameter for our perturbation expansion. At the end
our calculations we shall letm→0. From this partition func-
tion, one can immediately find the equal-time correlati
functions to be
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^L ~x,0!•L ~0,0!&52d~x!,

^n~x,0!•n~0,0!&5e2uxu/j; ~2.3!

the subscriptC is implied on all averages in this sectio
unless stated otherwise.

We first construct our perturbation expansion in powers
1/j for the equal-time problem specified by Eq.~2.2!, and
check that we do arrive at the correct correlation functions
specified in Eq.~2.3!. The extension to the unequal tim
problem will then be straightforward. First, the constrain
on the fieldsn andL are solved by introducing two comple
scalar fieldsf andc:

nx5
1

A2j
~f1f* !,

ny5
1

iA2j
~f2f* !,

nz5A122ff* /j,

Lx5
1

A2
~c1c* !,

Ly5
1

iA2
~c2c* !,

Lz52
fc* 1f* c

AjA122ff* /j
. ~2.4!

We introduce this decomposition to the functional integ
~2.2! and expand the square roots in power series of 1/j. In
this manner, we arrive at an interacting field theory with
infinite number of interactions, with 1/j as the small cou-
pling. However, to any particular order in perturbatio
theory in 1/j, we only need to keep a finite set of interactio
terms. We evaluate the correlation functions in real sp
using the ordinary machinery of diagrammatic perturbat
theory. It is well known that such a perturbation expansion
plagued by infrared divergences. The decomposition~2.4!
takes it for granted that then field is ordered in thez direc-
tion and f represents small spin-wave fluctuations arou
the ordered state. The infrared divergences are a signatu
the fact that this assumption is wrong in one dimension.
introducing the external fieldjm2, we introduce long-range
order into the system and thus regularize the divergen
The divergences show up as poles in 1/m. But if we calculate
the O(3) invariant correlation functions as in Eq.~2.3!, we
find that all poles cancel. Keeping this in mind, it is n
difficult to show that the results of perturbation theory ag
with Eq. ~2.3! at every order. The details are to be found
Appendix B.

Once we have the correlation functions in the equal-ti
ensemble, we proceed to evaluate the unequal time cor
tion functions. To do that we again insert Eq.~2.4! into the
equations of motion~2.1! and expand in powers of 1/j to get
f

s

l

n

e
n
s

d
of

y

s.

e

e
la-

]c

]t
5 i j1/2F ]2f

]x2
1

1

j

]

]xS f2
]f*

]x D1•••G ,

]f

]t
52 i j1/2Fc1

1

j
~f2c* !1••• G . ~2.5!

Higher-order terms add further nonlinear interactions. W
solve the initial value problem for each of the fields by
iterative strategy. First the free wave equation is solved
the solution is plugged back into the lowest-order nonlin
term to solve the problem to the first order. To evaluate
correlation functions, we just multiply the fields and car
out the average over initial conditions. The initial conditio
averages are, of course, known from the calculations
scribed above. The technical details are relegated to App
dix B and here we only quote the results to one-loop ord

S j~T!

Txu'~T! D ^L ~x,t !•L ~0,0!&

5@d~ x̄2 t̄ !1d~ x̄1 t̄ !#S 12
u t̄ u
2

D
1

1

2
@u~ x̄1 t̄ !2u~ x̄2 t̄ !#1O~ x̄, t̄ !, ~2.6!

^n~x,t !•n~0,0!&C

512
1

2
~ ux̄1 t̄ u1ux̄2 t̄ u!

1
1

16
@3~ x̄1 t̄ !213~ x̄2 t̄ !212ux̄1 t̄ uux̄2 t̄ u#

1O~ x̄, t̄ !3, ~2.7!

wherex̄ and t̄ are defined in Eq.~1.22!, and the delta func-
tion in Eq. ~2.6! is interpreted asO( x̄, t̄ )21.

In these results if we sett50, we immediately recover the
equal-time results~2.3! to the corresponding order in 1/j.
The structure of the correlation function~2.6! reflects the
causal propagation of the conserved angular-momentumL .
The first term simply represents the free propagation of
angular-momentum density which is completely conce
trated on the ‘‘light cone.’’ However, interactions to ord
1/j do modify the free propagation and transfer the angu
momentum density from the surface of the light cone to
interior. This is represented by the second term which
nonvanishing only inside the light cone. It can be check
that the spatial integral of Eq.~2.6! remains independent oft,
as must be the case due to conservation of total angular
mentum.

The result~2.7! has significant implications for the dy
namic structure factorS(k,v) of the antiferromagnetic orde
parameter:

S~k,v!5E dx dt̂ n~x,t !•n~0,0!&Qe2 i ~kx2vt !. ~2.8!

First, we note that the result~1.19! and the scaling form
~1.21! imply that the dynamic structure factor satisfies
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S~k,v!5S j~T!xu'~T!

T D 1/2

S~k!FS~ k̄,v̄ !, ~2.9!

where S(k) is the equal-time structure factor, which
known exactly~apart from the overall normalizationA):

S~k!5E
2`

` dv

2p
S~k,v!5AF lnS T

LMS
D G2 2j~T!

11k2j2~T!
,

~2.10!

andFS is a universal scaling function of

k̄5kj~T!,

v̄5vS j~T!xu'~T!

T D 1/2

, ~2.11!

which describes the relaxation of the equal-time correlatio
The prefactor in Eq.~2.9! has been chosen so that the fr
quency integral overFS is normalized to unity for everyk̄

E
2`

` dv̄

2p
FS~ k̄,v̄ !51. ~2.12!

We will now show that, modulo some very mild assum
tions, the result~2.7! exactly fixes the form ofFS( k̄,v̄) for
uk̄u@1. In this short-distance regime, we are at distan
shorter than the correlation length, and the system sho
look almost ordered. So we may expect that the spect
consists of weakly damped spin waves, and this motiva
the following ansatz forFS in the regimeuk̄u@1 and uv̄u
;uk̄u:

FS~ k̄,v̄ !5
g~ k̄!

~v̄2 k̄!21g2~ k̄!
1

g~ k̄!

~v̄1 k̄!21g2~ k̄!
,

~2.13!

whereg( k̄) is the unknown spin-wave damping paramet
we will shortly determine the largek̄ limit of g( k̄). We now
have to take the Fourier transform of Eqs.~2.9!, ~2.10!, and
~2.13!, and compare the result with Eq.~2.7!. In making this
comparison, we should keep in mind that the largek,v be-
havior of S(k,v) can only determine thenonanalytic terms
in the smallx,t expansion. First, the integral over freque
cies can be performed exactly for the form~2.13!, and Eq.
~2.9! implies

^n~x,t !•n~0,0!&C5E dk̄

p

eik̄x̄2g~ k̄!u t̄ u cos~ k̄ t̄ !

k̄211
1•••.

~2.14!

We reiterate that Eq.~2.13! is valid only for uk̄u@1, and so
only the 1/k̄2 contribution from the (k̄211) denominator in
Eq. ~2.14! can be taken seriously. Also, we already have
nonanalyticu t̄ u dependence in the exponential, and so we
expand this in powers ofu t̄ u; in this manner we reduce Eq
~2.14! to
s.

-

s
ld
m
s

;

a
n

^n~x,t !•n~0,0!&C5
2

pEk1

`

dk̄
cos~ k̄x̄!cos~ k̄ t̄ !

k̄2

2
2u t̄ u
p E

k2

`

dk̄
g~ k̄!cos~ k̄x̄!cos~ k̄ t̄ !

k̄2
1•••,

~2.15!

where k1,2 are some large positive constants, and we h
assumed thatg is an even function ofk̄. The values of the
integrals overk̄ surely depend uponp and p8, but the key
observation is that the nonanalytic terms inx̄ and t̄ do not.
This follows from the result

E
k1

`dk

kn
cos~kx!5

puxun21

2G~n!cos~pn/2!
1•••, ~2.16!

where all omitted terms can be written as a series in n
negative, even integer powers ofx ~this allows an additive
constant, independent ofx). We now assumeg( k̄→`)
; k̄a, and then demand consistency between Eqs.~2.15! and
~2.16! and the nonanalytic terms in Eq.~2.7!. It is easy to see
that we must havea50, and sog(`) is a constant. Further
the unknown additive constant associated with the sec
integral in Eq.~2.15! must be such that there is no singleutu
term in the correlator. Applying Eq.~2.16! to Eq.~2.15! with
this understanding, we deduce that

^n~x,t !•n~0,0!&C5•••2
1

2
~ ux̄1 t̄ u1ux̄2 t̄ u!~12g~`!u t̄ u!

1•••, ~2.17!

where all omitted terms are either analytic inx̄ and t̄ , or
involve subleading nonanalyticities. We should now co
pare Eq.~2.17! with Eq. ~2.7! by matching only the nonana
lytic terms in the vicinity of the light conex̄56 t̄ . In this
latter region we can approximateux̄1 t̄ uux̄2 t̄ u in Eq. ~2.7! by
2u t̄ uux̄6 t̄ u—then the nonanalytic terms in Eqs.~2.17! and
~2.7! match perfectly, and we obtain one of our importa
exact results

g~`!5
1

2
. ~2.18!

Returning to physical units via Eq.~2.11!, we conclude that
the frequencyG(T)[(v/v̄)g(`), given by

G~T!5
1

2S T

j~T!xu'~T! D
1/2

, ~2.19!

describes damping of spin waves forukuj(T)@1. We will
discuss the experimental implications of this result in Sec.

Results for the spin-wave damping have been obtai
earlier by Reiter and Sjo¨lander,10 in their studies of classica
lattice antiferromagnets. If we insert the classical valu
~1.24! and ~1.25! into Eq. ~2.19!, we obtain

G~T!5
T

SpF11S 12
1

pD J'

J G1/2

, ~2.20!
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which agrees with their result forp51. Keep in mind,
though, that our result~2.19! has a much wider regime o
applicability, beyond temperatures in which a purely clas
cal thermodynamics holds. Further discussion on the r
tionship between our and earlier results appear in Sec. V

III. NUMERICAL RESULTS

The previous section allowed us to determine the tw
point correlators for smallu t̄ u. Here we will present numeri
cal simulations which examine the largeu t̄ u limit. These
were performed on a discrete lattice realization of Eqs.~1.14!
and ~1.18!, with lattice spacings ofj/16 or larger, and had
only nearest-neighbor couplings between then vectors. Ini-
tial states were generated by thermalizing the system by
Wolff algorithm.26 The time evolution was carried out by
fourth-order predictor-corrector method, and its accura
was tested by keeping track of the conserved total energy
the lengths of then vectors.

Our simulations are similar to many earlier studies
classical spin chains~see Refs. 27 and 28, and referenc
therein!. However, there is an important difference in that w
are dealing with rotor variablesn and L , rather than classi-
cal spinsS which obey Poisson bracket relations like tho
for L in Eq. ~1.17!.

We will consider correlators ofn andL in the following
two subsections.

A. Correlations of n

We first consider dynamic correlators ofn. The aim of
our simulations is to obtain results for the dynamic struct
factor S(k,v) in regimes beyond the caseuk̄u@1, uv̄u;uk̄u
which was studied by the short-time expansion. Our res
were obtained for two cases—at equal positions~local! and
at zero wave vector.

The local correlator is measured in NMR experimen
and we computed the local dynamic structure factor,Sl(v),
defined by

Sl~v!5E
2`

`

dt^n~0,t !•n~0,0!&Qeivt5E
2`

` dk

2p
S~k,v!.

~3.1!

FIG. 2. The correlator̂ n(0,t)•n(0,0)&C as a function of t̄ ,
which is defined in Eq.~1.22!. Results with lattice spacingj/16 and
j/8 are shown, and their near perfect overlap indicates we h
reached the continuum limit.
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By Eqs.~1.19! and ~1.21!, Sl satisfies the scaling form

Sl~v!5AF lnS T

LMS
D G2S j~T!xu'~T!

T D 1/2

F l~v̄ !, ~3.2!

whereF l is a fully universal function~with no arbitrariness
in its overall amplitude or the scale of its argument! with a
unit integral over frequency

E dv̄

2p
F l~v̄ !51. ~3.3!

Our results for the local time-dependent correlations
shown in Fig. 2 and its Fourier transform to frequency in F
3. Two different lattice spacings were used, and the go
overlap of the data confirms that we are examining the c
tinuum limit. The correlations decay rapidly in time, but al
show a brief, but clear oscillation; this oscillation results in
finite frequency peak inSl(v). We will discuss the physica
origin of this oscillation after we have considered the ze
momentum correlator.

Turning to the zero-momentum correlator, we express
results in the scaling form~2.9! and obtain values for the
scaling functionFS(0,v̄). We emphasize that the ansa
~2.13! doesnot hold for k̄50. Our results for thek50 cor-
relators ofn are shown in the time domain in Fig. 4 and aft
the Fourier transform to frequency in Fig. 5.

ve

FIG. 3. The Fourier transform of Fig. 2 into frequency. Th
yields the universal scaling functionF l defined in Eq.~3.2!.

FIG. 4. The correlator*dx^n(x,t)•n(0,0)&C /j(T) as a function

of t̄ , which is defined in Eq.~1.22!. We used a lattice spacingj/8.
By Eq. ~2.10!, thet50 value of this should be 2, and the differenc
is due to the finite lattice spacing.
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As with thex50 correlations above, thek50 correlator
shows a rapid decay, along with a brief oscillation; the lat
leads to a finite frequency shoulder inFS(0,v̄).

How do we understand this finite oscillation frequen
observed in both thex50 andk50 correlators ofn? One
way is to compare with the exactly known results29,30 of the
model with anN-component vectorn in the limit of largeN.
At N5`, S(0,v) consists of a delta function at a finit
frequencyv;T/ ln(T/LMS). So we can view the finite fre
quency as a remnant of theN5` response atN53. How-
ever, there is a related, more physical, way to interpre
The underlying degrees of freedom have a fixed amplitu
with unu51. However, correlations ofn decay exponentially
on a length scalej(T)—so if we imagine coarse graining ou
to j(T), it is reasonable to expect significantamplitude fluc-
tuationsin the coarse-grained field, which we callfa . On a
length scale of orderj(T), we expect the effective potentia
controlling fluctuations offa to have a minimum at a non
zero value ofufau, but to also allow fluctuations inufau
about this minimum. The finite frequency in Figs. 3 and 5
due to the harmonic oscillations offa about this potential
minimum, while the dominant peak atv50 is due to angular
fluctuations along the zero energy contour in the effect
potential. This interpretation is also consistent with the la
N limit, in which we freely integrate over all components
n, and so angular and amplitude fluctuations are not dis
guished.

B. Correlations of L

We obtained numerical results only for thex50 cor-
relator ofL . The short-time behavior of this is given in E
~2.6!. At long times, we expect the conservation of totalL to
be crucial in determining its asymptotic form. In particula
one natural assumption is that the long-time correlators oL
are diffusive; in this case we expect

^L ~0,t !•L ~0,0!&5
3Txu

~4pDt !1/2
~3.4!

at larget. Consistency of this with the scaling form~1.21!
implies that the diffusion constantD must obey

FIG. 5. The Fourier transform of Fig. 2 into frequency, whi
when combined with Eq.~2.9!, leads to the universal scaling func

tion FS(0,v̄). The full line is at lattice spacingj/8, and the dashed
line is for j/16. The data atj/16 is ‘‘noisier’’ because of insufficient
averaging for the longer time data.
r

t.
e,

e
e

-

D5B
T1/2@j~T!#3/2

@xu'~T!#1/2
, ~3.5!

whereB is a dimensionless universal number.
Our numerical analysis of the autocorrelation was carr

out on a system of 800 sites. The predictor-corrector met
turns out to exactly conserve angular-momentum and
maintained energy conservation to four significant dig
over the duration of the simulation. We averaged over 96
initial conditions.

First we tested our results against the known exact sh
time expansion. This is shown in Fig. 6. At these short tim
the lattice corrections are quite significant, and our comp
son in Fig. 6 is with the chiral perturbation theory carried o
in the presence of a lattice—the generalization of the re
~2.6! to a lattice model with nearest-neighbor couplings a
lattice spacingej is

^L ~x,t !•L ~0,0!&52E
2p/e

p/e dk

2p
eikx̄ cos~vkt̄ !

3S 11E
2p/e

p/e dp

2p

cos~vpt̄ !eipx̄21

vp
2 D

12S E
2p/e

p/e dk

2p
eikx̄ sin~vkt̄ ! D 2

, ~3.6!

wherevk5$2@12cos(k̄e)#/e2%1/2. It can be verified that Eq
~3.6! reduces to Eq.~2.6! in the limit e→0. As is clear from
Fig. 6, the agreement between the analytical and nume
computations is quite satisfactory.

Finally, we turn to the numerical results at larget̄ . These
are shown in Fig. 7. A best fit to the data with a power la
t̄ 2a gave an optimum value ofa50.61. However, an
equally good fit to the data was obtained by the funct

a1 /A t̄ 1a2 / t̄ , with the second subleading term contributin
only about a 10% correction at the largestt̄ ~we found
a2 /a150.65). This second fit is consistent with diffusion—
assuming this is the correct form, we obtain the estimate
the numerical prefactor in Eq.~3.5!:

B'3.32. ~3.7!

FIG. 6. Numerical results~full line! for the @j(T)/Txu'(T)#

3^L (0,t)•L (0,0)& correlation function for short timest̄ ,1 on a
lattice with spacingj/8. The results are compared with short tim

expansion~dashed line! in Eq. ~3.6!, valid for t̄ !1.
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In their studies of the classical lattice model, Reiter a
Sjölander,10 also computed the spin diffusivity. Diffusion is
property of theuk̄u!1 regime, and we do not expect the
perturbative techniques to be exactly valid. Combining
classical values ofxu(T),j(T), in Eqs. ~1.24! and ~1.25!
with Eq. ~3.5!, their result translates into the valueB51.
This value is clearly inconsistent with our numerical res
above.

IV. INTEGRABILITY AND DIFFUSION

This section will examine an integrable toy model of sp
transport; readers interested mainly in the experimental
plications of our results so far can move ahead to Sec
Others, not interested in the details of the toy model, m
want to jump to Sec. IV C where we will discuss gene
implications of the toy model solution on spin transport
integrable systems.

The toy model we shall introduce is a variant of an effe
tive model, considered in Ref. 4, for the dynamics in t
regimeT,D for gapped chains. Here, our strategy will be
introduce the model as worthy of study in its own right, as
is simple enough to allow determination of the spin-dens
correlator in closed form at all times. In the long-time lim
the correlator has a diffusive form, and so this exam
provesthat there is no general incompatibility between in
grability and diffusion. Further motivations in examining th
model are the following:

~i! We shall show that the short-time behavior of the t
model is very similar to our result~2.6! for the continuum
wave model@~1.14! and ~1.18!#. This is suggestive, and in
dicates that the long-time diffusive behavior in Eq.~3.4! is
not an unreasonable postulate.

~ii ! The correlators of the integrable toy model can also
studied for the case of finite system of sizeL with periodic
boundary conditions. This allows us to carefully examine
interplay of the limitst→` andL→`. The diffusive form
only appears if theL→` is taken first. In the opposite orde

FIG. 7. Numerical results for @j(T)/Txu'(T)#

3^L (0,t)•L (0,0)& as a function of t̄ in a log-log plot. The
smoother line is for lattice spacingj/8, while the noisier line is for
lattice spacingj/16. The agreement of the two results is eviden
that this decay is a property of the continuum limit. A straight-li
fit ~not shown! to thej/8 data is almost perfect, and its slope ind

cates that the correlator decays ast̄ 20.61. An equally good fit to the

data was obtained by the functiona1 /A t̄ 1a2 / t̄ , with the second
subleading term contributing only about a 10% correction at

largest t̄ .
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of limits we find recurrent behavior with a great deal
structure dependent upon the microscopic details of
model. We think this issue of the orders of limit oft→` and
L→` is of considerable relevance to recent studies oT
.0 transport in integrable systems,31–35and this will be dis-
cussed further in Sec. IV C.

We begin by describing the toy model. PlaceN point
particles of equal mass at positionsxi ( i 50,1, . . .N21)
which are chosen independently from a uniform distributi
on a circle of lengthL. Now independently give each particl
a velocity v i , drawn from some distributiong(v), and a
‘‘spin’’ mi , drawn from some distributionh(m). As the sys-
tem evolves, the particles will move in straight trajectorie
transporting their spin along with them. This will happe
until two particles collide, and we now have to describe t
nature of such collisions. We will restrict the collisions
satisfy the important constraints of conservation of total
ergy, momentum, and spin in each collision. The first two
already sufficient to determine the fate of the velocities~see
Fig. 8!: if we consistently label the particles from left to righ
~i.e., as we move around the circle counterclockwise,
always encounter the particles in the orderx0 ,x1 ,x2 , . . . ,
xN21), then the particles will simply exchange velocities
each collision.

In other words, in a collision between particlei and par-
ticle i 11, the velocity of the particlei after the collision is
that of particlei 11 before the collision, and vice versa. Ho
about the fate of the spinsmi andmi 11? In principle, we can
choose numerous possibilities interpolating between z
and total reflection, consistent with conservation of total s
( imi . The exactly solvable models are the two extrem
zero or total reflection. The case of zero reflection is rat
trivial and leads only to simple ballistic transport of sp
along straight lines. We will therefore consider only the ca
of total reflection here: in the convention we are following
labeling the particles here, this corresponds to the statem
that eachmi is a constant of the motion~see Fig. 8!. So to
summarize: in each collision the particles exchange velo
ties but their spins ‘‘bounce off’’ each other. We note th
although no exact solution is known, we expect the lon
time correlations of a model with only partial reflection to b
quite similar to that of the total reflection case, but wi
renormalized transport coefficients.

We shall be interested here in computing the correlat
of the ‘‘spin’’ density L(x,t), defined by

e

FIG. 8. Collision of two particles. They initially have velocitie
v,v8 and spinsm,m8. After the collision they exchange velocitie
but retain their spin.
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L~x,t !5 (
i 50

N21

mid@x2xi~ t !#, ~4.1!

wherexi(t) are the positions of the particles: these consis
piecewise straight lines which reflect at each collision. W
shall compute the two-point correlator ofL(x,t), averaged
over the ensemble of initial conditions defined above. F
ther, we will choose our distributionsg(v) andh(m) to be
even, i.e., on the average, the total net momentum and
are zero. Then, because the initial momenta and spin
uncorrelated, we have

^L~x,t !L~0,0!&5(
i ,i 8

^mimi 8&^d@x2xi~ t !#d@xi 8~0!#&

5^m2&(
i

^d@x2xi~ t !#d@xi~0!#&

5^m2&rP~x,t !, ~4.2!

whereP(x,t) is the probability that a particle atx50 at time
t50 is at the positionx at time t,

^m2&5(
m

m2h~m!, ~4.3!

andr5N/L is the density of particles.
Most of our results will be on a particular simple veloci

distribution, which is designed to mimic the properties of t
continuum model@~1.14! and ~1.18!#:

g~v !5
1

2
@d~v2c!1d~v1c!#. ~4.4!

So each particle is allowed to have only one of two velocit
6c. This is similar to the fact that linear spin waves in t
continuum wave model also have velocities6c.

The remainder of this section will describe the compu
tion of the functionP(x,t) using the method of Jepsen.36

Although later more elegant solutions were put forward
Lebowitz and Percus37 for solving the model in the thermo
dynamic limit, we shall use the relatively cumbersome m
chinery of Jepsen because it allows us to consider finite
tems.

At time t50 the N particles are at random positions o
the ring. We shall put the origin of the coordinate system
the location of particle 0. The rest of the particles fro
0,1,2, . . . ,N21 are numbered such that the (i 11)th particle
is immediately to the right of thei th one. As a particle move
with uniform velocity, in a ‘‘space-time’’ diagram we ca
represent its motion as a straight line which will call a tr
jectory. When two trajectories cross, there is a collision. T
particles bounce off each other, and in effect the partic
exchange trajectories. So at the beginning the zeroth par
starts on the zeroth trajectory and as this trajectory cro
others, the zeroth particle moves onto a different trajecto

Now defineAjk(t) to be one if the particlej is on the
trajectoryk at time t and zero otherwise. If we form an en
semble of systems, the average^Ajk(t)& is the probability
that the particlej is on the trajectoryk at timet. A knowledge
of Ajk(t) for all values ofj ,k,t constitutes a full solution to
the dynamics of the system. The solution is defined by36
f
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Ajk~ t !5
1

N(
u

e2 i ju )
h50

N21

S@u,wkh#,

u5
2p l

N
, l 50,1,2, . . . ,N21; (

u
[ (

l 50

N21

,

S@u,w#5einu when ~n21!L,w<nL for each n,

wkh5xk2xh1~vk2vh!t. ~4.5!

We shall note some periodicity properties ofS@u,w# and
Ajk(t) here. By the above definition

S@u,w1L#5eiuS@u,w#, hence S@u,w1NL#5S@u,w#.
~4.6!

Also, for the distribution~4.4!, noting the fact thatuvk2vhu
50,2c, we arrive at

AjkS t1
NL

2c D5
1

N(
u

e2 i ju )
h50

N21

SS u,wkh1NL
vk2vh

2c D
5Ajk~ t !. ~4.7!

Let us define a timeT[L/c which is the time required by a
free particle to go once around the system. Every traject
returns exactly to its starting point after this interval of tim
It is now obvious that in a period of timeNL/c5NT, each
particle will return to its initial positions and velocities. Thu
the Poincare´ recurrence time of the system, with the veloc
ties chosen under Eq.~4.4!, is of orderN, rather than being
of the order ofeN or larger.

A. Diffusion in the thermodynamic limit

Now we go to the thermodynamic limit and address t
question of diffusion. The limit is defined such thatN andL
approach infinity while the densityN/L5r is held finite.
The zero particle starts out at the origin and we ask wha
the probability,P(y,t), that it is at positiony at timet ~both
y andt are held finite as the limitL→` is taken!. This can be
written as

P~y,t !5^d@y2x0~ t !#&5(
k

^d~y2xk2vkt !A0k~ t !&,

~4.8!

where the angular brackets are an average over all pos
initial ensembles of velocity and positions of particles, wh
keeping the zero particle at the origin. The average can
evaluated exactly, and there is a simple, closed-form res

P~y,t !5
1

2
@d~y1ct!1d~y2ct!#e2rcutu1

r

2
@u~y1ct!

2u~y2ct!#e2rcutuS cutu

Ac2t22y2
I 1~rAc2t22y2!

1I 0~rAc2t22y2!D . ~4.9!

I 0 andI 1 are the modified Bessel functions of order zero a
one, respectively. The resemblance to the correlation fu
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tion of the nonlinear wave model given in Eq.~2.6! is clear.
The first term in Eq.~4.9! is a delta function along the ligh
cone, but its contribution decreases exponentially with tim
The second term lies within the light cone, and becom
increasingly important for large time. Also, if we take th
short time limit of Eq.~4.9!, we get

P~y,t !5
1

2
@d~y1ct!1d~y2ct!#~12rcutu1••• !

1
r

2
@u~y1ct!2u~y2ct!#, ~4.10!

which is precisely of the form~2.6!. However, unlike Eq.
~2.6!, we can now also study the long-time limit analyticall
We take this limit within the light cone withy;At, and then
the asymptotic expansions of the modified Bessel functi
yields

P~y!'
1

~4pDt !1/2
expS 2

y2

4Dt D , ~4.11!

D5
c

2r
, ~4.12!

which is the diffusive form assumed for the classical wa
model in Eq.~3.4!. As shown by Jepsen, this calculation c
also be done for a general velocity distributiong(v), and
provided the distribution is symmetric inv, we obtain Eq.
~4.12! but with

D5
1

rE0

`

vg~v !dv. ~4.13!

B. Effect of periodic boundary conditions in a finite geometry

Here we go back to the finite system and think more ab
it. The fact that the Poincare´ recurrence time is only linear in
N, is because of the fact that the phase space becomes
restricted once we allow only two possible velocities. A
interesting effect is that the recurrence time can be very
ferent depending upon whether there are an even or
number of particles in the system. The recurrence time is
lowest common multiple ofT ~the time required for trajec
tories to return to their initial position! and NL/2c5NT/2
~the time required for particles to come back to their init
trajectory!. With an odd number of particles,N52p21, the
recurrence time isNT5(2p21)T as mentioned above. Bu
if we add one single extra particle to the system, the rec
rence time almost becomes half becauseNL/2c5NT/25pT
is an exact multiple ofT.

In fact, the recurrence time could be even smaller. If
take an even numberN of particles and choose their veloc
ties as6c randomly, the most likely scenario is one whe
half of them have velocity1c, and the rest have velocitie
2c. In that case,

Ajk~ t1T!5
1

N(
u

e2 i ju )
h50

N21

S@u,wkh1T~vk2vh!#.

~4.14!
.
s

s

e

t

ery

f-
dd
e

l

r-

e

Amongst all the factors that we have in the product on
right-hand-side~RHS!, half of them will not contribute any
phase to the product because for themvk2vh50. The other
half will contribute a phase of exactly exp(62iu) each. So
the total phase contribution will be exp(62iuN/2)[1. Hence
the most probable recurrence time for a random ensembl
even number of particles isT. It turns out that with reflecting
hard wall boundary conditions, the recurrence time isT
regardless of the initial conditions.

Now let us see how the effect of the recurrence tim
might show up in the probability distribution of a diffusin
particle. We shall essentially try to find the autocorrelati
function for a single specific particle moving around in a ri
for all times t,T5L/c and t.T5L/c. We shall again
choose this particle to be the zero particle and at timet50,
its position and velocity arex0[0 and v0 , respectively.
The probability distribution is defined as before in Eq.~4.8!.
SinceAjk(t) is periodic with a period ofNT/2, all distribu-
tion functions will also be periodic with the same perio
Moreover,

Ajk~NT/22t !5
1

N(
u

e2 i ju

3 )
h50

N21

S@u,wkh1~vk2vh!~NT/22t !#

5
1

N(
u

e2 i ju )
h50

N21

S@u,wkh2~vk2vh!t#.

~4.15!

When we carry out the average over the initial conditio
the particlesk andh will have the velocities1vk ,1vh and
2vk ,2vh with equal probability. So the probability distri
bution function will satisfy

P~y,NT/22t !5P~y,t !. ~4.16!

Thus we need to evaluate this function only for 0<t
<NT/4.

The details of the evaluation ofP(y,t) are again relegated
to the appendix. Let us represent the distribution function

P~y,t !5@d~y1ct!1d~y2ct!#P~1!~ t !

1@u~y1ct!2u~y2ct!#P~2!~y,t !. ~4.17!

We write down explicit series solutions forP(1)(t) and
P(2)(0,t). These sums could not be evaluated in a clos
analytic form. So we carried out the sums numerically
specific values ofN andL. P(1)(t) andP(2)(0,t) are plotted
in Figs. 9 and 10, respectively.

For times t!T and N@1 with N/L fixed, these results
reduce to the results~4.9! derived in the thermodynamic
limit. For t.T, we see lots of complicated structures. Not
of them are well understood. But some of the prominent o
are easy to understand. For example at timest5nT,
n51,2,3, . . . , we seepeaks inP(1), each of whose heigh
turns out to be 1/A2pN. The origin of this is very easy to
understand. Out of the whole ensemble of initial conditio
a fraction of them will have exactly half of the particles wi
velocity 1c and the others with velocity2c ~with the as-
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sumption thatN is even!. Since these sets of initial cond
tions have a recurrence time of onlyT, so they come back to
the original distribution after a timeT and hence contribute
to this peak. Using the binomial distribution, it is easy
prove that the fraction of ensembles which have exactly h
the particles with one velocity and the other half with t
opposite velocity is exactlyA2/pN. The extra factor of 1/2
comes from the fact that we have both left- and right-go
initial conditions for our test particle. If we change the num
ber of particles by one,N becomes odd. So no set of initia
conditions will have a recurrence timeT, and these peak
will disappear as shown in Fig. 11.

C. Discussion

Our study of an integrable toy model in this section h
highlighted the extreme importance of taking the limits
long time t→`, and large system sizeL→` with proper
care. If we sendL→` first, then we explicitly demonstrate
the existence of spin diffusion in the subsequent long-ti
limit. This is, of course, the correct thermodynamic lim
and the presence of spin diffusion also makes physical se
Once the limitL→` has been taken, an infinite number
parameters are needed to specify the initial thermal stat
the system; diffusion then arises when some local degre
freedom starts to sample an increasing number of these
nite number of random initial conditions with the passage
time.

FIG. 9. The probability distribution functionP(1)(t) plotted as a
function of time 0<t<NT/4 for N550. The unit of time isT. The
stronger peaks at multiples of five are due to the fact that five
prime factor ofN.

FIG. 10. The probability distribution functionP(2)(t) plotted as
a function of time forN550 for 0,t,NT/4. The unit of time isT.
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On the other hand, very different results were obtained
the limit t→` at any fixedL. Here the integrable nature o
the system was immediately evident, and we observed a
zarre set of recurrences dependent sensitively on detai
the microscopic Hamiltonian. The Poincare´ recurrence time
of our toy model was quite short, and this was clearly due
its integrability. No sign of spin diffusion was seen.

A number of recent studies have examined the issue
T.0 spin transport in integrable quantum systems.31–35 A
model of particular interest has been theS51/2 XXZ chain.
At the SU(2) symmetric point~the XXX chain!, the low-T
properties of this antiferromagnet are expected to be in
universality class ofL in Eq. ~1.1! at u5p. So studies of the
XXX model will explicate the nature of spin transport
temperaturesT,T0 at u5p. This is a regime for which our
paper has no results~although, spin transport in the lowT
,D regime foru50 was studied in Ref. 4!. However, we
have examined the higher temperature regimeT0,T,Tmax

(2)

in Sec. III B, and found that our numerical results are n
inconsistent with the presence of spin diffusion. It wou
then seem natural that diffusion may also exist forT,T0 ,
although this is, of course, not a rigorous argument. T
latest numerical evidence for theXXX chain33,35seems to be
consistent with the existence of diffusion.

Here we wish to issue a small caution towards the met
used to study transport in Refs. 31–33 and 35~this caution
does not apply to Ref. 34!. These works computed a ‘‘stiff-
ness,’’ which is the coefficient of zero-frequency delta fun
tion in the frequency dependent conductivity. By its ve
construction, such a quantity is defined atv50 in a finite
system; so implicitly, the limitv→0 has been taken befor
the L→` limit. The considerations of this section make
amply clear that such a procedure is potentially dangero

V. IMPLICATIONS FOR EXPERIMENTS

First, we summarize the main theoretical results of t
paper. We have shown that there is an intermedia
temperature range over which the static and dynamic pr
erties of a large class of one-dimensional Heisenberg ant
romagnets are described by the deterministic, continu
model defined by Eqs.~1.14! and~1.18!. Forp-leg ladders of

a
FIG. 11. The probability distribution functionP(1)(t) plotted as

a function of time forN550 ~dashed line! and N551 ~full line!.
The unit of time isT. Notice the disappearance of the peak at
51 for N551.
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spin-S ions, this temperature range rapidly becomes qu
wide asSp increases. For 2Sp even, our universal result
hold for D,T,Tmax

(2) , whereD is the ground-state energ
gap, andTmax

(2) is estimated in Eq.~1.23!, while for 2Sp odd,
they hold for T0,T,Tmax

(2) , where T0 is an energy scale
measuring the strength of logarithmic corrections at the lo
est T. Both T0 and D become exponentially small asSp
increases, and so the intermediate-temperature regim
clearly defined. The dynamical properties of such antifer
magnets are encapsulated in the scaling forms~1.21!, which
relate them to universal functions dependent only upon
thermodynamic parameters: the antiferromagnetic corr
tion lengthj(T), and the uniform spin susceptibilityxu(T).
We obtained information on the universal functions in Se
II and III, including exact results on the spin-wave dampin
while exact results forj(T) and xu(T) were presented in
Sec. I.

We now briefly review the work in the 1970s on the d
namics of classical antiferromagnetic chain~Refs. 9 and 10
and references therein!. As we saw in Sec. I, there is a win
dow of temperaturesTmax

(1) ,T,Tmax
(2) @Tmax

(1) was estimated in
Eq. ~1.3!#, over which Eqs.~1.24! and~1.25! are valid, where
our results apply to purely classical models; so there i
common regime of validity between our and earlier wo
These earlier classical results were all obtained on studie
lattice antiferromagnets, and all used some variant of
short-time moment expansion to extrapolate to the long-t
limit by a physically motivated ansatz, e.g., the memo
function formalism; however, there is a degree of arbitra
ness in any such ansatz. In a regime where their correla
length j@a ~where a is a lattice spacing!, and the wave
vectorska!1, their results should be described by the co
tinuum model we have discussed here. However, we ex
their short-time methods to be exact only forkj@1. Indeed,
our paper provides a proper description of the scaling st
ture, along with quantitative information on the scaling fun
tions, in the nonperturbative regimekj!1. Consistent with
these expectations, we saw in Sec. II that our result~2.20! for
the spin-wave damping forkj@1, andTmax

(1) ,T,Tmax
(2) , was

in precise agreement with that of Reiter and Sjo¨lander.10 It
should be noted, however, that our result~2.19! for the
damping remains exact over a much wider window of te
peratures (T0 ,D,T,Tmax

(2) ), including whenxu andj have
the quantum renormalizedT dependence in Eqs.~1.9! and
~1.10!. Moreover, we believe, despite conjectures by Re
and Sjölander to the contrary, that the results in Ref. 10
not exact forkj!1—we saw in Sec. III B that our value fo
the spin-diffusion constant~assuming the existence of diffu
sion! D disagreed with theirs.

Turning to experiments, single chain (p51) antiferro-
magnets with S.1 which have been studied ar
(CD3)4NMnCl3 ~TMMC! ~Refs. 38 and 39! which hasS
55/2, (C10H8N2)MnCl3 ~Ref. 40! which has S52, and
CsVCl3 ~Ref. 41! which hasS53/2. We think it would be
worthwhile to reexamine these materials from a modern p
spective, given the numerous exact results that are
available.

Among static properties, neutron-scattering experimen38

have measured the correlation lengthj(T), and these have
been compared to purely classical theories in whichj(T)
e
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behaves like Eq.~1.25!. At lower temperatures,j(T) should
exhibit the logarithmic temperature dependence in E
~1.10!, arising from quantum fluctuations. Combined wi
measurements of the uniform susceptibilityxu(T), a rather
precise test of the quantum-renormalized static theory sho
then be possible.

Dynamic tests of the theory have focused mainly on
linewidth of the spin-wave excitations in the regimekj@1.
The measured linewidths have been compared39,41 with the
prediction of the classical theory,10 which yields the result
~2.20!. This is in general agreement with the theory, bu
quantitative discrepancy was observed41 for S53/2. We
think it would be useful to compare the experiments with o
exact result~2.19!, while using the actual experimentally ob
served values ofj andxu .

We think future neutron-scattering experiments sho
also examine the interesting regimekj!1. Here we have
provided numerically exact results in Sec. III. In particula
there is some interesting physics in the structure of
frequency-dependent lineshapes in Figs. 3 and 5, and t
should be subjected to experimental tests. Also, we can
ily generate additional universal spectra at other position
the energy-momentum space, as needed.

The results in Sec. III also provide quantitative pred
tions for NMR experiments on spin chains. The nuclear
laxation rate 1/T1 is given by local low-frequency dynami
structure factor of the electronic spins. This has two con
butions, one from the ferromagnetic component given by
correlator of L , and the other from the antiferromagnet
component given by the correlator ofn. Let us parametrize
the electronic spinSi by

Si5~21! iSn~xi !1
a

p
L ~xi !, ~5.1!

wherea is the lattice spacing. If we assume that

1

T1
5

G

2E2`

`

dt eivNt^@Sxi~ t !1 iSyi~ t !#@Sxi~0!2 iSyi~0!#&,

~5.2!

whereG is related to the hyperfine coupling, andvN→0 is
the nuclear Larmor frequency. The electron-spin correla
has to be evaluated in the presence of an applied magn
field H, and the electron Larmor precession can usually
neglected. However, for the case where there is spin di
sion, as in the assumed form~3.4!, then this electron preces
sion must be included for the Fourier transform is diverg
at low frequencies. Combining Eqs.~5.1! and ~5.2! with the
results of Sec. III, we obtain

1

T1
5GHAS2

3 F lnS T

LMS
D G2S j~T!xu'~T!

T D 1/2

F l~0!

1
Txu~T!~a/p!2

A2DH
J , ~5.3!

whereD is estimated in Eqs.~3.5! and ~3.7!. If we ignore
logarithmic factors, the first antiferromagnetic term in E
~5.3! is of orderG/T while the second ferromagnetic term
of order (G/T)(Ta/c)2(T/H)1/2; either term could be domi-
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nant, depending upon the magnitude ofH. Further, our result
~5.3! has assumed the existence of spin diffusion, but
expect that Eq.~5.3! will provide a reasonable quantitativ
estimate of theH and T dependence for experimental pu
poses, even if this assumption is not entirely correct in
details: there is clearly a long-time tail in Fig. 7, even if it
not precisely diffusive.

Finally, we compare our theoretical predictions wi
quantum Monte Carlo simulations on odd-leg ladders. N
merical results forxu(T) have been obtained recently b
Frischmuthet al.42 on antiferromagnets withS51/2 andp
53,5. We compared their results forp55 with our result
@Eqs.~1.9! and ~1.12!#. This is shown in Fig. 12.

The fitting parameters in this comparison are the value
c andT0 . There is an arbitrariness in choosing the ranges
T over which to fit the intermediateT prediction~1.9!, and
this can lead to some variation in the values ofc andT0 . A
reasonable set of values arec52.06Ja andT050.0058J, are
used in Fig. 12. The value ofc is roughly consistent with tha
estimated earlier,42 but the value ofT0 does appear to be
rather small.
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APPENDIX A: CROSSOVER ENERGY SCALES FOR u5p

This appendix will derive the relationship~1.12! between
the two energy scalesT0 andLMS associated with the quan
tum O(3) nonlinear sigma model atu5p. This model has a
flow from the high-energy fixed point atg50 to the low-
energy fixed point atg5gc . The flows near both fixed point
are marginal:LMS is the energy scale characterizing the flo
away from theg50 fixed point, whileT0 is the scale char-
acterizing the flow into theg5gc fixed point. These scale
appear in the logarithmic corrections that appear in both
high-temperature@Eqs. ~1.9! and ~1.10!# and low- tempera-

FIG. 12. Comparison of the numerical results of Ref. 42~plus
marks! for the uniform susceptibilityxu of a five-leg ladder with
S51/2 with the theoretical predictions of Eqs.~1.9! and ~1.12!
~dashed line!. All exchange constants are nearest neighbor and h
magnitudeJ, and the lattice spacing isa. The value ofxu is per
rung.
e

s

-

of
f

R

e

ture @Eq. ~1.7!# limits. A complete Bethe ansatz analysis
the flow between the two fixed points matches the t
scales, and leads to the relationship~1.12!.

We will perform the matching by considering various lim
iting regimes of the free-energy densityFQ of ZQ as a func-
tion of T and H. This is will allow us to make an intricate
series of mappings between numerous results which h
appeared recently in the literature.

First, let us consider the low-T and low-H regime, where
T,H!T0 . In this regime, the model is in the vicinity of th
g5gc fixed point, which is thek51, SU(2) Wess-Zumino-
Witten model. We know from Eq.~1.7! that for H!T
!T0 , the free energy has a contribution

FQ52
H2

4pcS 11
1

2 ln~T0/T! D1•••; H!T!T0 .

~A1!

From this we anticipate that forT!H!T0 , we will have a
corresponding contribution

FQ52
H2

4pcS 11
1

2 ln~C1T0/H ! D1•••; T!H!T0 ,

~A2!

whereC1 is a universal number we would like to determin
The universality ofC1 implies that we can use any mod
which is in the vicinity of thek51, SU(2) Wess-Zumino-
Witten fixed point. In particular, Lukyanov22 has recently
computed the detailedH andT dependence of the free energ
of the S51/2 antiferromagnetic chain with nearest-neighb
exchange which fulfills this requirement, and we can use
results to obtainC1 . In particular, from Eqs.~3.18! and
~3.20! of Ref. 22 we determine that

T05S p

2 D 1/2

eg11/4J ~A3!

for the nearest-neighborS51/2 antiferromagnet, and that

FQ52
H2

4pcS 11
1

2 ln~2pe2gT0/H !
D 1•••;

H!T0 , T50. ~A4!

We emphasize that the result~A3! is nonuniversal, while Eq.
~A4! is universal, i.e., only the latter is a property of th
continuum O(3) nonlinear sigma model atu5p. In the re-
sult ~A4! we have setT50, as this is the limit in which we
shall use in the following.

Let us now consider the vicinity of theg50 fixed point
for nonzeroH at zero temperature, i.e., forH@LMS;T0 at
T50. In this case, a renormalized perturbation theory ing
can be used to determine the free-energy density, and
was carried out by Hasenfratzet al.21 They obtained

FQ52
H2

4pc
lnS H

e1/2LMS
D 1•••; H@LMS , T50.

~A5!

Finally, we need to match Eqs.~A4! and~A5! by comput-
ing the T50 free energy forHÞ0 in both the low- and

ve
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high-field limits of the O(3) nonlinear sigma model atu
5p. Fortunately, precisely this computation was carried
by Fateev, Onofri, and Zamolodchikov.23 They obtained Eq.
~A5! in the limit H@LMS , while the result for the opposite
limit H!LMS is in Eq. ~4.97! of Ref. 23:

FQ52
H2

4pcS 11
1

2 ln~2A2pe23/4LMS /H !
D 1•••;

H!LMS , T50. ~A6!

Comparing Eq.~A6! with Eq. ~A4!, we immediately obtain
Eq. ~1.12!.

APPENDIX B: SHORT-TIME EXPANSION: DETAILS

We start with the expression~2.2! and insert Eq.~2.4! into
it and expand to first order to find

Zc5E Dc Dc* Df Df* expS 2E dxLD , ~B1!

where

L5cc* 1
1

2j
~fc* 1f* c!21U]f

]xU
2

1
1

2jS f
]f

]x

*
1f*

]f

]x D 2

1m2ff* 1
m2

2j
f2f* 2

2
1

2aj
ff* . ~B2!

Here we have dropped some additive constants and
grated by parts in places. As advertised before, the magn
field in thez direction parametrized bym2 adds a mass term
to the action and makes the^ff* & propagator infrared fi-
nite. The last term in the action arises from the Jacobian
the delta functionalsd(n•L )d(n221) in the measure. This
Jacobian is infinite for a continuum system. To regularize
we can introduce a discrete lattice in space. In that case
parametera is the lattice constant, or equivalently the vo
ume of the Brillouin zone:

1

a
[

1

L (
kPBZ

1. ~B3!

This can be finite only in a finite-volume system, but w
shall carry it through and ultimately it will cancel all ultra
violet divergences arising from unrestricted momentum su
over the ^cc* & propagator. In terms ofc and f, the
^L (x,t)•L (0,0)& is written as

^L ~x,t !•L ~0,0!&

5^c~x,t !c* ~0,0!&1c.c.

1
1

j
^f~x,t !c* ~x,t !f~0,0!c* ~0,0!&1c.c.

1
1

j
^c~x,t !f* ~x,t !c* ~0,0!f~0,0!&1c.c.

~B4!
t

e-
tic

of

t,
he

s

Using Eq.~2.4! in the dynamical Eqs.~2.1!, we find the
following equations of motion:

]c

]t
5 i F ]2f

]x2
1

1

j

]

]xS f2
]f*

]x D G ,

]f

]t
52 i Fc1

1

j
~f2c* !G . ~B5!

These equations differ from Eq.~2.5! in that we have ab-
sorbed a factor ofc5j1/2 into the definition of time so tha
time and distance have the same units.

To solve for c(x,t), we make a Fourier transform in
space of Eq.~B5! and convert it to an initial value problem
given by

]

]tS c~k,t !

f~k,t ! D 5S 2 ik2f~k,t !

2 ic~k,t ! D 1S A~k,t !

B~k,t ! D . ~B6!

We have here written the nonlinearities as the inhomo
neous part of a set of first-order equations. The solution
the initial value problem is given by

S c~k,t !

f~k,t ! D 5K~ t !K21~0!S f~k,0!

c~k,0!
D

1K~ t !E
0

t

dtK21~t!S A~k,t!

B~k,t!
D . ~B7!

The columns of the 232 matrixK(t) is made up of the two
linearly independent solution vectors of the homogene
problem:

K~ t !5S ke2 ikt 2keikt

e2 ikt eikt D ~B8!

Armed with this, we can solve for the fields in terms
the initial conditions and iterate the solution to go to high
orders by plugging the solution back inA and B. Also cal-
culations simplify very much if we work out everything bac
in real space. So at last we write down the final iterative fo
from which the entire perturbation series can be generat

c~x,t !5
1

2
@c~x1t,0!1c~x2t,0!#1

i

2

]

]x
@f~x1t,0!

2f~x2t,0!#1
1

2E0

t

dtE dx8@d~x2x81t2t!

1d~x2x82t1t!#A~x8,t!1
i

2E0

t

dtE dx8

3@d~x2x81t2t!2d~x2x82t1t!#

3
]

]x8
B~x8,t!, ~B9!
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f~x,t !5
1

2
@f~x1t,0!1f~x2t,0!#2

i

2E dx8@u~x2x81t !

2u~x2x82t !#c~x8,0!1
1

2E0

t

dtE dx8

3@d~x2x81t2t!1d~x2x82t1t!#B~x8,t!

2
i

2E0

t

dtE dx8@u~x2x81t2t!

2u~x2x82t1t!#A~x8,t! ~B10!

To simplify notation let us denote the zero-order solutio
for the fields asc (0)(x,t) andf (0)(x,t):

c~0!~x,t !5
1

2
@c~x1t,0!1c~x2t,0!#

1
i

2

]

]x
@f~x1t,0!2f~x2t,0!#,

f~0!~x,t !5
1

2
@f~x1t,0!1f~x2t,0!#

2
i

2E dx8@u~x2x81t !2u~x2x82t !#c~x8,0!.

~B11!

Now we can proceed to evaluate each of the correlation fu
tions in Eq. ~B4!. As an example let us look a
^c(x,t)c* (0,0)&. The correlations to zero order are

^c~0!~x,t !c~0!* ~0,0!&5
1

2
@d~x1t !1d~x2t !#,

^f~0!~x,t !f~0!* ~0,0!&5
1

4m
~e2mux1tu1e2mux2tu!,

^f~0!~x,t !c~0!* ~0,0!&5
i

2
@u~x1t !2u~x2t !#.

~B12!

To compute the one-loop correlation̂c(x,t)c* (0,0)&,
we write down

^c~x,t !c* ~0,0!&

5^c~0!~x,t !c~0!* ~0,0!&

1
1

2E0

t

dtE dx8@d~x2x81t2t!1d~x2x82t1t!#

3
1

j

]

]x8
K f2~x8,t!

]f* ~x8,t!

]x8
c~0!* ~0,0!L

1
i

2E0

t

dtE dx8@d~x2x81t2t!2d~x2x82t1t!#

3
]

]x8
K 2

i

j
f2~x8,t!c* ~x8,t!c~0!* ~0,0!L . ~B13!
s

c-

On the second and third terms of the RHS, we can repl
f(c) by f (0) (c (0)) since it is already first order in 1/j.
Now all the correlation functions on the RHS are expres
in terms of correlation functions at timet50. So we evaluate
them using the partition function~B1!. Other correlations can
be evaluated in the same manner. So we shall only w
down the final answers here:

^c~x,t !c* ~0,0!&5
1

2
@d~x1t !1d~x2t !#S 12

1

2mj D ,

~B14!

^f~x,t !c* ~x,t !f~0,0!c* ~0,0!&5
1

4j
@u~x1t !2u~x2t !#,

~B15!

^c~x,t !f* ~x,t !c* ~0,0!f~0,0!&

5
1

8mj
@d~x1t !1d~x2t !#~11e22mt!.

~B16!

Adding them all and taking the limitm→0 leads to the
expression quoted in Eq.~2.6!. Note that all terms which
diverge asm→0, cancel each other only when we evalua
the O(3) invariant correlation̂L (x,t)•L (0,0)&.

APPENDIX C: EVALUATION OF THE ONE-PARTICLE
DISTRIBUTION FUNCTION

Let us start with Eq.~4.8!. Following Jepsen’s notation
we write

P~y,t !5 (
kÞ0

^d~y2xk2vkt !A0k~ t !&1^d~y2v0t !A00~ t !&

5
1

N(
u

N21

L
e2 i juE

0

L

dxkE
2`

`

dvk g~vk!

3Q~u,xk1vkt,vk!

3F 1

LE0

L

dxhR@u,xk1vkt2xh#GN22

1
1

N
e2 i juE

2`

`

dv0 g~v0!d~y2v0t !

3F 1

LE0

L

dxh R@u,x01v0t2xh#GN21

, ~C1!

with the definitions that

g~vk!5
1

2
@d~vk2c!1d~vk1c!#,
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Q~u,xk1vkt,vk!5E
2`

1`

dv0 g~v0!d~y2xk2vkt !

3S~u,xk1vkt2v0t !

5
1

2
d~y2xk2vkt !

3@S~u,y2ct!1S~u,y1ct!#,

R@u,xk1vkt2xh#5E
2`

1`

dvh g~vh!S~u,xk1vkt2xh2vht !.

~C2!

The second term in the RHS of Eq.~C1! clearly repre-
sents the probability that the zero particle stays in the z
trajectory at timet, while the first term represents the pro
ability that it has been scattered to another trajectory. T
second term can be easily simplified using the definitio
given above and in Eq.~4.5!. It is

@d~y1ct!1d~y2ct!#P~1!~ t !

5d~y2ct!
1

2N(
u

H 1

2F11eipuS 11
2ct2pL

L

3~eiu21! D G J N21

1d~y1ct!
1

2N(
u

3H 1

2F11e2 ipuS 11
2ct2pL

L
~e2 iu21! D G J N21

.

~C3!

Herep is defined so that

0,2ct2pL,L. ~C4!

P(1)(t) cannot be evaluated in a closed analytic form. But
have evaluated it numerically for fixed values ofN and L.
P(1)(t) has been plotted in Fig. 9 forN550,L51,c561. As
mentioned before, the peaks at timesT,2T,3T, . . . , are due
a,

h

ys

ev

. B

ir
ro

e
s

e

to the exact recurrence of some configurations. We plot
function again forN550 and 51,L51,c561 in Fig. 10.
Note that the peaks at timesT,2T . . . , disappear.

The first term will be handled in a manner similar
above. For simplicity we shall evaluate only the autocorre
tion part. To do this, we sety5nL wheren is an integer.

P~2!~ t !5 (
kÞ0

^d~xk1vkt2nL!A0k~ t !&. ~C5!

Using previous definitions we find that

P~2!~ t !5
1

4N(
u

N21

L
@u~nL2ct!2u~nL2ct2L !

1u~nL1ct!2u~nL1ct2L !#

3~S@u,nL1ct#1S@u,nL2ct# !

3S E
0

L dx

2L
~S@u,nL2x2ct#

1S@u,nL2x1ct# ! D N22

. ~C6!

Here it will be convenient to define an integerp as before
such that

0,ct2pL,L. ~C7!

Carrying out the integrals above we get

P~2!~ t !5
1

4N(
u

N21

L
~e2 iu1e2ipu!

1

2N22

3FL2~ct2pL!

L
~11e2ipu!1

ct2pL

L

3~e2 iu1ei ~2p11!u!GN22

1c.c. ~C8!

The above functionP(2)(t) has been plotted in Fig. 11.
ett.
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