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A simple transferable potential for carbon is developed for use in atomistic simulation. It describes all the
phases of carbon, from the close packed, such as face centered cubic, to the open systems, such as diamond
cubic, graphite, and even linear chains. The parameters are fit to a total-energy local-density functional theory
database augmented by the known cohesive energies of diamond and graphite. Further, structures such as
simple molecules, not in the database, are well described. For example, it predicts that odd number of atom
molecules form chains whereas even atom number molecules form rings. The diamond cubic and graphitic
structures are dynamically stable. The formalism also allows for interaction with an external electric field.
Further, it can be generalized to other covalent systems as well ad-biigtk elements.
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[. INTRODUCTION tial, which has utility with the high coordinatiofand there-
fore high-energy structures also.

Carbon, besides being the basis for all organic chemistry, Most extant interatomic potentials for covalent systems
displays amazingly varied and important materials propermake use of molecular-orbital concepts. Examples include
ties: from the structural and radiation hardness implicit inStillinger and Webet! Tersoff!® Biswas and Hamant,
diamond, to its lubricating and conducting properties inChelikowski and co-worker® ?2and Bazant, Kaxiras, and
graphite, to its novel strength coupled with electronic andiustd® for silicon. Another example is the extremely useful
encapsulating abilities in the fullerenes. Much has beeiinteratomic potential for carbon, due to BrenA&mhich
learned and predicted about carbon by using atomistic simuwises the concept of bond order to allow description of graph-
lation whether such was at the purely empirical potential oiite and diamond. The strength of a bond, here, is a function
at the fully ab initio level. of its environment. These ideas have been generalized and

The list of successes in the simulation of carbon is tooplaced on a firm theoretical footing by Pettifor and
long to be addressed properly here. Suffice it to give someo-workeré>?®such that the concept of bond order applies to
representative examples: The relative energies of differerd wide range of systems.
crystalline forms of carbon have been obtained by local- In developing the present interatomic potential we make
density functional(LDA) calculations-?> LDA molecular-  use of two other concepts—that of the valence b¢viB)
dynamics(MD) calculations have elucidated the structure ofand that of the radius ratio. Both of these ideas owe their
liquid® and amorphodscarbon. LDA calculation$,and ato-  lineage to Pauling’ The radius ratio rules explain why some
mistic potentials for the intramolecular interactidiishave  ionic systems choose to crystallize with eight nearest neigh-
evaluated and predicted vibrational modes i @olecules bors while others choose six or fo(mr even three or twpo
very accurately. Semiempirical tight-bindin@B) simula- The rules are derived from hard-sphere packing arguments
tions have predicted stabilities of whole families of which rely upon the idea that ionic radii are transferable and
fullerene$ Empirical potential MD simulations have pre- that smaller cations fit in the interstices of the larger anion
dicted the G, phase diagram.LDA calculations have as- lattice.(Usually, the cations are smaller than the anipfibe
sisted our understanding of fullerene polymerizatid.B interstice size must be as small as possible and yet still be
MD simulations have investigated the effects of helicity onable to accommodate the cation. The valence bond concept
the phonon modes in fullerene tubufé<zirst-principles and  involves representing the electronic structure of a system as a
TB methods have studied the electronic effects due to dopginear combination of contributing states. The best example
ants in diamond?~*®And last, high quality quantum chemi- of this is in the Kekule structures for benzene.
cal calculations have addressed the nature of small carbon That these ideas might work well for pure carbon is illus-
clusterst® trated thus. Behrmaet al?® observed, while trying to find

Such is carbon’s centrality to materials science; it wouldthe ground state of ZnO clusters, that rather than relaxing to
be useful to have a robust transferable interatomic potentiatructures related to truncations of the bulk zinc blende lat-
which allows the description of carbon in its many guises:tice, fullerene structures were found instead. Apparently,
the fourfold coordination of diamond, the threefold coordi- within the language of radius ratios, the cation to anion size
nation of graphite and the fullerenes, and the twofold natureatio for ZnO is such that it lies on the borderline between
of simple carbon molecules. Here we develop such a poterthreefold and fourfold coordination. Table | gives the stabil-
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TABLE I. Radius ratio ranges and examples of structure typesrings while odd number atom systems do not. Section IV
bcc represents body centered cubic; sc represents simple cubic; O§fesents our conclusions as well as suggestions as to how
represents diamond cubic; Gr. represents graphite; and chain reprguch a Hamiltonian might be applied to disordefieel., frus-

sents a linear chain. trated systems such as amorphous and liquid carbon. We
i further suggest that this formalism will generalize simply to
re /i Coord. Structure Lattice other covalent systems such as silicon, to mhiblock ele-
1.000-0.732 8 CsCl bee ments and to systems i.n the presence of an electrostatic field.
0.732-0.414 6 NaCl sc The latter will be particularly useful for fullerene tubules
0.414-0.225 4 7nS DC which are often grown under high-field conditions.
0.225-0.155 3 BN Gr.
0.155-0.000 2orl (SN) chain IIl. FUNCTIONAL FORM

We wish to be able to describe high coordination metallic
ity ranges of radius ratios for different structuréable | systems as well as the low coordination covalent systems.

also defines shorthand notation for different structyriesa 0" the fr,_,i%fg}e“ we expect an embedded at.QE.]‘M)
bulk system, perhaps it is the Madelung field which flips thedeScriptior™="to be good. For the latter, we anticipate our
packing decision away from threefold towards fourfold co-linear combination of degenerate ionic representations will

ordination. Madden and co-workéfshave used these ideas work well. Thus we require a scheme which interpolates be-

to great effect in the study of mixed ionic/covalent systemsWeen these two extremes depending upon atomic structure.
The simplest approximation that has this interpolative

In their formalism, a full integer charge equal to the formal e
oxidation state is assigned to each ion. The ions are theAu@lity is to solve for the energyE(g) of the system from
taken to be polarizable and are assigned point dipole anti€ following determinant. It borrows, as we have said, from
quadrapole moments as dynamical variables. In this way se(£ONCepts within VB theory. Although, within the develop-
eral different phases of ionic/covalent systems may be dement of the present Hamiltonian, such VB expansion is not
scribed. rigorous, we shall henceforth use VB terminology to imply

In applying similar ideas to carbon, we note that carbort€ Mixing of contributing states:
sits in the middle of the square plan@p block. It is an
amphoteric atom; that is it has intermediate electronegativity (He—Evys) (Hec—EvsSec)
and may be atomically _positively or negatively charggd qQ- (Hee—EvgSec) (Hc—Evyg) =Y @
pending upon the chemical nature of the atoms to which it is
bonded. In other words, carbon atoms are capable of donathe solution is
ing or accepting electrons. We note that carbon has two
phases of almost identical stability under ambient 1
conditions—namely diamond and graphite. Thus one way o :[5(HC+ He) ~SecHecl
thinking about carbon is that it sits on a similar stability Ve (1_séc)
border as the ZnO example given above—that is, if only it
had an ionic radius. We may impart an ionic radius to carbon [F(Hc—Hg)?+ (SecHe—Heo) (SecHe—Heo) 12
by taking advantage of its amphoteric nature and by employ- * > .
ing a valence bond description. In a lattice without frustra- (1=Seo)
tion we may, to first order, consider assigning half the atoms (2)
a charge oft g and the other half a charge efqg. But since
the atoms in pure carbon should be indistinguishable an@he Hg term represents the energy of the system when all
carry no charge we take a linear combination of this stat@toms are neutral and described by an EAM Hamiltonian.
with the equivalent ongenergetically in which all identities  TheH¢ term is the energy of the ioni€oulomb represen-
have been switched; this is the valence bond concept. Othéation of the system. For the simple ordered structures in our
charge distributions will, of course, contribute to a VB de- database, we wilassumethat only the lowest energgi.e.,
scription, such as those in which charges are no longer atomlominanj distribution of charges contributes. Thus for fcc
centric, but for the sake of simplicity aimed at pursuing thewe use a TiAl(see below arrangement of charges; for bcc
impact of the radius ratio concept, we chose initially to con-we use CsClI; for simple cubisc) we use NaCl; for diamond
fine our attention to ionic distributions. cubic(dc) we use ZnS; for graphitéGr.) we use BN, and for

All that remains is to formulate a physically intuitive the linear chairichain we use (SN) (see Table)l Actually,
functional form for our picture of bonding in carbon and alsoin the case of graphite, the basal plane stacking is not iden-
to fit the free parameters in such to a database. Unlike thecally that of BN—there is a lateral shift of one relative to
formulation of Wilson and Maddef?, our dynamical vari- another. Such is the charge transfer in true BN, the boron of
ables are taken to be the chardgsin the system—dipole one layer prefers to sit directly above a nitrogen in the layer
and quadrapole moments are not used. In Sec. Il we descrilteneath. This is not true in graphite; atoms sit above the
the functional form to which we will fit and also the raw data hexagonal hollow of the layer beneath. In our database, to
generated by LDA calculations. In Sec. Ill we employ ouraccount for such energetic differences, we have calculated
Hamiltonian to examine the dynamical stability of diamondthe total energies of hexagonal carbon in both the true gra-
and graphite. Also we show that the Hamiltonian correctlyphitic and BN stackings(see Tables Il and I}l
predicts that even number atom carbon molecules will form  The form of H: is that advocated by Johnson and Bh:
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TABLE 1. LDA energy database for graphitevith graphitic TABLE Ill. LDA energy database for graphit@vith boron ni-
stacking and for orthorhombic distortions. Energy given in ryd- tride stacking and linear chains. Two and one atoms/cell, respec-
bergs per unit cell. Distances in bohr. Four atoms/cell. tively. Distances in bohr. Energy given in rydbergs per unit cell.

a; a, as Energy a, as Energy

4.20 7.00 —301.810522 BN stacking

4.20 7.50 —301.974497 4.6201238 5.82099625 —151.252402

4.20 8.00 —302.092591 4.6201238 6.02099625 —151.254336

4.20 8.50 —302.171984 4.6201238 6.22099625 —151.255612

4.20 9.50 —302.255620 4.6201238 6.32099625 —151.256029

4.20 10.50 —302.287088 4.6201238 6.42099625 —151.256325

4.30 7.00 —301.914106 4.6201238 6.52099625 —151.256520

4.30 7.50 —302.071556 4.6201238 6.62099625 —151.256637

4.30 8.00 —302.187328

4.30 8.50 —302.267314 Linear chain

4.30 9.50 —302.352279 2.40184 —75.5355495620

4.30 10.50 —302.384850 2.41885 —75.5355262685

4.40 8.00 —302.250926 2.45664 —75.5338797346

4.40 8.50 —302.330777 2.54641 —75.5222224060

4.40 9.00 —302.383258

4.40 9.50 —302.416745

4.40 10.50 —302.450213 The form ofHc¢ is

4.50 8.50 —302.367080

4.50 9.00 —302.419785 1

450 9.50 —302.453716 HCZE % ¢+7(rAB)+%\ ¢++(rAA)+§3 ¢__(rgp)

4.50 10.00 —302.475007

4.50 10.50 —302.487902 1

4.60 10.50 ~302.502134 + % be(d”)+ EB: $e(d7)|* 5 AEB ¢+ (Tap)

4.60 11.50 —302.513776

4.60 12.50 —302.515853 _

pipos 15290 302514758 T2 b (Tt 2 bii(Tee)t 2 be(a)

4.63 13.470 —302.515226

4.70 10.502 —302.496220 +

4.70 11.506 —302.508253 " EB Pela™) ] ©

4.70 13.505 —302.509636

4.18726 5.11776 13.47096  —302.366606 We assume that, for given lattice structure, we have assigned
4.31573 4.96541 13.47096 —1302.442370 some atoms an identit% and others an identiti. In the first
4.40324 4.86674 13.47096  —302.476848 half of this equation we have assigned positive charges to the
4.86674 4.40324 13.47096  —302.473846 A atoms and negative charges to Bhatoms. The sum of the
4.96541 4.31573 13.47096  —302.435900 charges, of course, is zero. The second half of the equation
5.11776 4.18726 13.47096 —302.362061 implies that the signs of these charges have been flipped. The

mean charge on each atom in tHe Hamiltonian is thereby
zero. The order of the —) is important here. The first sign
rrho is applied to the charge on the first identity in the double sum

while the second sign is applied to the charge on the second
identity. ¢ (wherec is either+ or —) represents the on-site
3 electron affinity/ionization potential term:
wherei andj represent atom indices. Henceforth we use the

HE:Zj ¢eam(rij)_)\2i [1—|n(ﬂ) nrhoHPi

Po Po

convention that double sums exclude self-interaction terms ¢.(9)=U_(q—0qo)?>—U,q3,
and include unique pairs only. The pair EAM term is given
b
g $-()=U_(a—0o)*~U..q3. @
20'0 ”r 2(7'0 7yb
beanflij) = a(r_) —B<T) } (49 Whenqis more positive thau, the first of these equations
. ! in used. Otherwise the second is used. Thus, conforming
while p; represents the background charge density in whiclwith experiment, the on-site energydependence is that of
atomi sits. It is obtained from a pairwise sum: an asymmetric parabola. Thig, term is designed to have the
value zero when the charge is zegg. has a negative value
pi=> e XM, (5) since carbon has an electron affinity.

IEa ¢ represents a Coulomb pairwise interaction term:
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[U(qL)+U(qM)] Yoo a4, [%(H(’:"'HE)_SECHEC]
beo(r )=a| ———"=| +K—" ®) Ey= ;
LM LM (1-S0)
The indicesL andM can be eitheA or B type atoms. The [Z(Hc—He)?+ (SecHe—Hec) (SecHe— Heo) 1M
value ofK is defined below. The constantis positive and * > ,
has the same value for both thig andH¢ terms. The hard- (1-Sgo)
core radiio are small for cations and large for anions. In our (12)

fit, we constrain the ratio of these for the DC and Gr. struc- ) .

tures in the database to be near the threefold to fourfoldvhere we use the solution with the lowest energy.
transition of Table I. Note that for reasons described below, Finally, so as to make these functional forms computa-
the long-range Coulomb term it damped. A linear depen- tionally efficient, every pair term in the above equations is

dence ofo(q) is assumed: truncated to zero at a cutoff dis'Eancg which will be a
parameter in the fit. Thus thg,. , €X', and ¢, terms are
o, (q)=0+k.q, truncated as follows:
df
o_(q)=ootk-q. 9 fe(N =1 =fro)—(r=rog| (13
r

c

o, or o_ is used depending upon the charge on atoor ) ) )
M. o has the same value for both thi andH¢ terms.q ~ Wheref is generic andf. represents the function actually

will be a parameter to be fit. used in the final fitted Hamiltonian.
And finally, for the cross termsigc and Sgc, we have The various parameters of our Hamiltonian are obtained
assumed: by a nonlinear least-squares fit, using a Monte Carlo simu-
lated annealing approach to minimize the following least-

Sec=e" Aal squares objective functioff,;:
#types#members o'?Ei’j 2
e(lab) , _ _n F= Ebl_ENL )24 A j)
HEC:T(HE"' Hc)SECe SIN|Hg Hc|, (10) El = ( VB LDA) ‘9|q|i ’

(14

where N is the total number_of gtoms in the system. Thewhere the sum runs over the number of typBscorrespond-
cross terms have the correct intuitive behavior. As the charg@]gl to fce, bee, sc, DC, GIGr.), Gr(BN), and chain, and
in the ionic state becomes large, we expect the overlap Wity ar the number of members of these ty(ks, 8, 6, 35, 36,
the EAM state _to bgcome small. 8- becomes smgll, We 7 and 4, respectivelyE, p represents theohesiveenergy
expectHec to likewise decrease. As the energy differenceyg ohtained by LDA calculation. The derivative with respect
between the Coulomb and EAM states becomes small, Wg, charge is included in order to “regularize” the fit, i.e., to
expect the off-diagonal term to become large. And last, Wgngyre the fit obeys known physical and mathematical re-
expectHec to be proportional to some function éfe and  giraints. We se, somewhat arbitrarily, to 0.05 but we find
Hc; we chose to take the mean. . this value suffices. Note that the derivative with respedj to
Note the prime modifyintHc in Eq. (10). To avoid pa-  has a single superscrit We define a single charge per
thologies as|q[ goes to zero, bottz and Hc must have  grycture type. Since these are 1:1 stoichiométBysystems
specific behavior. First; must tend to unity afq| tends to  ithin our VB formalism, the charge oA is equal in mag-
zero, and second, the ionic contribution must tend to thgi,de to that orB: hence we need only concern ourselves in
EAM energy. Thus afg| tends to zero, the overall determi- the fitting procedure with the absolute magnitude of this
nantal energyEyg tends to the EAM energy. We chose  charge. This much simplifies the fitting proceduiéle also
set the value ofy equal for both the G(Gr.) and Gr(BN)

e(|a))=1+€lal, structures. For G(Gr.), there are actually two distinct sites
in the unit cell which could be assigned different charges.
He=Hge™ vlal 4 He(l—e™ vlaly (11)  Again, for simplicity, we set these equiln principle, the fit

could be improved by having a differejuf| for each member

For the open structures such as the diamond, graphite, and each structure type.
linear chain wheregq| is expected to be largédc andH¢ We imagine, in using this Hamiltonian for simulation, that
should be almost equal. the charges as well as the atomic positions will be dynamical

It might be asked whether a van der Waals term should bgariables. In principle the charges should be chosen for each
included in the Hamiltonian. It is commonly thought that atomic configuration such that the Hamiltonian is minimized.
such a term accounts for most of the interlayer interaction inn practice, however, a method similar to that advocated by
graphite. However, as we shall see, much of what holdSprik and Klein®® in their simulation of polarizable ammo-
graphite planes together is tiieuncatedd Madelung field of  nia, could be used. Here, a fictitious Lagrangian with both
our VB Coulomb model. In our original fits an © term was  positions and charges as dynamical variables is defined. The
included in the Hamiltonian but we found it held negligible latter are given small masses and thermostateti=ab so
advantage. It has therefore been omitted from the final formthat they follow a close to minimum energy path as the
The final equation to which the data base is fit is nuclear positions change. In E@), we have implicitly as-
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TABLE IV. LDA energy database for face centered, body cen- TABLE V. LDA energy database for diamond cubic structure
tered, and simple cubic structures. Energy given in rydbétgs and simple tetragonal and orthorhombic distortions. Energy given
Ry=13.6057 eV; 1 e¥96.487 kd/molgper unit cell. Distances in  in rydbergs per unit cell. Distances in bohr. Two atoms/cell.
bohr (1 bohr=0.5292 A. One atom/cell.

a, a, ag Energy

a, Energy

5.80000 —150.997145
fcc 5.90000 —151.062386
3.40 —73.630888 6.00000 —151.116265
3.60 —74.117360 6.10000 —151.159919
3.80 —74.470111 6.20000 —151.194377
4.00 —74.725308 6.30000 —151.220635
4.20 —74.908302 6.50000 —151.251905
4.40 —75.038282 6.60000 —151.258347
4.60 —75.129459 6.67500 —151.259724
4.80 —75.193404 6.80000 —151.256150
5.00 —75.237540 7.00000 —151.237460
5.40 —75.282101 7.10000 —151.223113
5.60 —75.288850 7.20000 —151.205964
5.70 —75.289538 7.591643 5.314150 —151.109161
5.80 —75.288971 7.261145 5.808916 —151.191636
5.90 —75.286988 6.981589 6.283430 —151.242173
6.00 —75.283651 6.856891 6.514046 —151.254634
6.20 —75.273964 6.786196 6.650472 —151.258063
6.60 —75.246447 6.718330 6.785513 —151.258522
7.00 —75.212836 6.631911 6.963506 —151.254761
7.40 —75.177557 6.529865 7.182852 —151.243194

6.343195 7.611833 —151.199087
bcc 6.176190 8.029047 —151.130417
2.80 —73.942855 6.83598 6.64532 6.74200 —151.257744
3.40 —74.996865 6.89138 6.58992 6.74402 —151.256299
3.90 —75.256660 6.95381 6.52749 6.74740 —151.253896
4.30 —75.308258 7.04210 6.43920 6.75416 —151.249107
4.40 —75.309672 7.10985 6.37145 6.76093 —151.244336
4.50 —75.307974 7.21729 6.26401 6.77452 —151.234862
4.60 —75.303841 7.32441 6.15689 6.79159 —151.223125
4.90 —75.282560 7.41472 6.06659 6.80874 —151.211501

7.69392 5.78738 6.87821 —151.166916
sc 7.90816 5.57314 6.94912 —151.124724
2.40 —74.694901 8.08878 5.39252 7.02151 —151.085908
2.70 —75.198740 8.24791 5.23339 7.09542 —151.050293
3.10 —75.418211
3.40 —75.432528
3.70 —75.394521 tential. In each lattice we used a regulapoint mesh(in-
3.90 —75.356841 cluding theI” point) of sufficient density to insure energy

convergence to about 0.005 eV/atom. For the insulating dia-
mond structure, this involves 1 points in the irreducible

A . rt of the Brillouin zone. For the semimetallic graphite
sumed a 50/50 weighting of degenerate representations @ﬁucture we need 14Bpoints in the irreducible part of the

the sy_stem._ In t_he discussion in Sec. _IV below, we sh_all S€Brillouin zone. We controlled the basis set size by setting
that this weighting could be changed in a dynamical simula-

tion so that the mean charge on each atom is not identically Gumax=8.5Rut, (15)
zero. This will be particularly useful when there is an applied
electrostatic field. Such will be possible by generalizing thewhere G,,,, is the length of the longest reciprocal lattice
determinantal representation given in Ef). above. vector used to construct the LAPW basis aRgl; is the

The databasésee Tables Il, Ill, IV, and ¥ as suggested muffin-tin radius assigned to each carbon atom. We used
in Eq. (14) was generated by a full-potential linearized aug-R,,;=1.2 bohrs (1 boh#5.292<10 2 nm), yielding a
mented plane-wavéLAPW) codé*>° with additional local basis of at least 100 functions per atom even at the smallest
orbitals in the basis sé. We wused the volumes used in the data base.
Vosko-Wilk-Nusaif”%® parametrization to represent the  Such a scheme should be good at obtaining relative ener-
local-density approximation of the exchange-correlation pogies not only within structure types but also across these
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TABLE VI. Final parameters foE,g .

Parameter Value Parameter Value
Y 1.109921195543710 % do —1.048413751366910"%°
B 1.541088160638910 °2 k. —1.736764427583710° %
oo 8.322946686488910 %1 k_ 3.510996569711410
Po 2.9372373965752 10" % Ofec 2.381471150252610
X 8.674079648811810 % Obce 2.611446515027710
\ 2.832790240062010" % Osc 1.5806510728854 10" %
7, 8.674079648811810 % Qe 2.676688169236910" %
7 8.003341454217210" % Ugr 2.7780445412292 1079
Mo 3.0151646931658 10" % Qchain 2.8194966559386 10"
/R 1.1287885983356 10" ¢ U, 3.986729254077810
7 _ 5.2234855528247 10" % u_ 1.487855505313710" %
/. 8.160970125139910" % v 4.452238595446610" %
re 6.009375207177810" % € 6.018361843705210
) 8.425406959231010 % v 3.1544940894354 10

condensed phase families, including the very small energyange Coulomb term to electron volts and has the value 2
difference between the optimal geometries of diamond anck 13.605% 0.5292=14.4003 eV A . The fcc system does
graphite. Unfortunately, LDA gets the incorrect order of sta-not have a simple two component system with which to
bility. Whereas experimentally the graphite is Iov_ver ir_1 eN-map—there is nCAB system in which both the\ and B
ergy by 0.0195 eV/atonil.883 kJ/molg the LDA finds in  5¢oms are twelvefold coordinated with the opposite species.
favor of diamond by 0.0122 eV/atod.181 kd/mol& (We — yqyever, there are a few common lattices which are fcc
view this accuracy as impressiyé uniform shift of 0.0318 o 011 There is the idealizeld1, (TiAl) structure which is

eViatom is therefore applied to the entire DC database t%mAB system with 1:1 stoichiometry in which each atom has

bring it in line with the experimental Gr./DC equilibrium . : : .
energy difference. Further, a constant shift of 1021.535 e our ne_arest n_(alghk_Jors of its own kind a_nd e_lght of the other.
here is the idealized 1, structure which is also aAB

(75.0814 Ry per atom is applied to the entire database so th 1-1 stoichi b h h .
that all energies are referenced to zero as the infinitely sep&YStem with 1:1 stoichiometry but now each atom has six
rated atom limit. In other words, the energies thereby bel€IghPors of its own kind and six of the other. And finally,

come cohesive energies which is what is assumed in thihere is the CyAu structure WhICh' has a 3:1 stoichiometry.
form of Eyg. Also, both the DC and Gr. databases are nowFach Au atom has twelve Cu neighbors and each Cu atom
compatible withexperimentalcohesive energies. The equi- has four Au and eight Cu neighbors. We find that of these
librium cohesive energy for graphite is 7.45 eV/atom. Notethree structure types, it is the TiAl structure which has the
that LDA finds, in accord with experiment, that the @t.)  lowest Coulomb energy; the other two are much higher.
structure is slightly lower in energy than the @N) struc-  (There are two other fcc structure types: thgTland the
ture. The experimental lattice parameter of DC is 3.57 AAl;Zn. We did not consider these. It is unnecessary; the Cou-
whereas LDA finds 3.53. Graphite is similarly well de- lomb energy is so high that it does not contribute tg;, &
scribed: LDA findsa,;=2.43 andaz=6.7 A, whereas ex- Thus it is the TiAl structure that we use to represent fcc in
periment finds 2.46 and 6.70, respectively. Again, we viewfitting to our database. The fit describes each structure well.
the structural determination as impressive, particularly beAs expected, most of the weight for the metallic fcc and bcc
cause, for graphite, the interplanar bonding is weak and LDAstructures is in the EAM term whereas for the DC, Gr., and
might be expected to do less well. Indeed, we give only onehain structures it is in the ionic part of the VB Hamiltonian.
decimal place accuracy for the interplanar separation becaudée sc structure marks the crossover from the EAM to the
the energy minimum along this ordinate is so shallow. LastVB ionic description but, in contrast to our LDA calculations
within our data base for the DC and Gr. structures, latticawhich show the structure to be metallic, it is the Coulomb
parameters which break the symmetry of the ideal lattice areerm which carries the most weight here. The Coulomb con-
included so thak, g contains elastic constant information. tribution is ~2 eV/atom lower than that of the EAM. Last,
Unlike the cohesive energies, we chose not to shift the latticas anticipated from our ideas about radius ratios, for the DC
parameters of our LDA database to bring them into line withand Gr. structures, the Coulomb energy is significantly lower
experiment—we view them as good enough as they are. Thihan that of the EAM: by~5 eV/atom.
sum of all considerations made in this paragraph is what Some other comments are in order about the fit. The ionic
constitutesE, pa as defined in Eq(14). charge on carbon for the DC and Gr. structures is very
Table VI gives the final fitted parameters. This fit repre-similar—this occurs naturally with no applied constraint.
sents the best of many optimizations with different startingThis fact lends credence to the intrinsic insight of the model,
points and different annealing schedules. Note that energiagamely that diamond and graphite are on the cusp of stability
are in eV, distances are in angstroms, and the charge is givdretween fourfold and threefold coordination dictated by
in atomic units. The constait in Eq. (8) converts the long- ionic radius ratios. The ionic charges of 2.68 and 2.78, re-
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spectively, for the DC and Gr. structures produce effective TABLE VII. Comparison of equilibrium experimentally aug-
cation hard-core radfias defined by the in Eq.(9)] of 0.37  mented LDA cohesive energidsV/atom and lattice parameters
and 0.35 A and anion radii of 1.77 and 1.81 A. These pro{angstrompwith those predicted bfyg.

duce radius ratios for these structures of 0.21 and 0.19 which

are near the value of 0.22 suggested by Table I. As expected.StrUCture Evoa {a}ioa Eve {alve
for the fcc and bcc structures, the ionic charges are small, Fcc —-2.83 3.02 -2.81 3.02
whereas that of the linear chain is large. Chemical intuition Bcc —-3.11 2.33 —2.80 2.38
would predict that the latter structure might be dynamically SC —4.77 1.80 —4.54 1.80
stable. Indeed, MD with the present potential shows suchto pc —7.43 3.53 -7.38 3.46
be true. However, the linear form of carbon does not occur  Gr. —7.45 2.43/6.7 —7.73 2.41/7.64
naturally in nature, it being thermodynamically less stable chain -6.18 1.275 —6.09 1.30

than either diamond or graphite. The charge for the lineat
structure is very similar to that of Gr. resulting in a radius

ratio of 0.19 which is larger than that predicted by Table 1.so efficient that the damping coefficient had no discernible
However, Pauling’s radius rafibrules pertaironly to stable ~ effect on the final fit. We have therefore omitted it from both
structures. Eq. (8) and Table VI.

The only part of the fit which is unphysical is the value of ~ Table VII compares the equilibrium cohesive energies
the electron affinity and ionization potential as suggested b@nd lattice parameters from our experimentally adjusted da-
Eq. (7). The experimental first electron affinity for carbon is tabase to those predicted from the fit. Our Hamiltonian does
near 1.2 eV and the first three ionization potentials are 11.3€markably well over the entire range of structures. It cap-

24.4, and 47.9 eV. Thus the value fqg of —1.05 a.u. tures the energy versus bond-length relationshipst

found in the fit is near what we would expect; it is the chargeShown: a figure containing all the-structures is too complex
at which the energy versus charge “parabola” is at a mini—very well. It also obtains a slightly lower energfby

H tﬁy fit orod Cesgforahe DC and Gr. str C_~0.1 eV/atom) for the G(Gr.) structure than the GBN)
mum. However, the 1it produces, - STUCShucture. If there is a deficiency in the functional forms cho-
tures on-site energiesgp, and ¢_, of ~5.2 and

: : ) . sen for the fit, it is probably the EAM term: it has trouble
~42 eVl/atom, respectively. Given that the fitted charges inyitterentiating between the energies of the fcc and bec struc-

DC and Gr. are 2.68 and 2.78, respectively, the fitted on-sitgres although it does obtain their lattice parameters well.
ionization energy should be much larger than the electrofytyre work will focus on improving thisEyg predicts the
affinity. The sumof the two is the correct order of magni- energy of the DC structure very well. On the other hand it
tude, however, and it is this sum that affects the ovetall predicts too low an energy for Gr. by approximately 0.3
energy. Unfortunatelyl) . andU _ cannot be adjusted retro- eV/atom. Also, it obtains too large an interbasal plane spac-
actively to maintain a constant sum for the on-site energiesng for Gr. This is the “soft” direction which competes with
while producing a more reasonable set of ionization energieghe much harder in-plane bonds. Given the nature of our
and electron affinities since derivatives of these terms withHamiltonian, we still view this ability to describe both
respect theg} are also part of the fitsee Eq(14)]. Never-  “chemical” and “physical” bonds simultaneously as im-
theless, with this one caveat, the resulting fit as we shalpressive.
show below has proven to have good predictive power and The next section describes other implications of the
transferability for many situations in carbon molecules ancHamiltonian including the dynamical stability of the graphite
crystals. and diamond systems as well as the thermodynamic stability
In examining the derivatives dE, g with respect to the of linear versus ring carbon molecules.
chargeq, the final fit produces respectably small values for
all members of the database, but particularly so for the equi-
librium geometries of the DC and Gr. structures. Indeed a
sensitive way to determine the equilibrium geometry of the Our first prediction concerns the dynamical stability of the
final fit is not only to look for the minimum iy g but also  diamond and graphite systems. We employ a constant tem-
for the structure with the smallest derivative with respect toperature, constant pressure algorithm which allows for flex-
charge. The rms error for the energy of the entire database ible computational cell lengths and angles. The algorithm is
0.18 eV/atom while the RMS error for the derivative of the described fully elsewher&.Figures 1 and 2 show the energy
energy with respect to the charge is 0.76 eV/a.u. While thisand density of these systems as a function of temperature at
latter value might seem large, the variation of the energya pressure of 1 atmosphere. The DC structure is completely
with g, for values ofq slightly different from the optimal, is stable up to the highest temperatuf4500 K) studied. This
extremely rapid. If the computational expense of optimizingis near the temperature at which experimental carbon rhelts.
g for everymember of the database had been tractable, th€he Gr. structure is stable up to 2500 K at which point the
rms error of the derivative would have been significantlybasal planes start to move freely over one another. At ap-
lower. proximately 3900 K the Gr. phase melts to a disordered
The fitted value ofr, of 6.01 A coupled with Eq(13) structure; this is the system’s attempt to produce liquid car-
ensures that there are no demanding long-range sums bmn (recall that the present code will bias against frustrated
compute. In fact, our original fit included an exponential systemg We note thaE, g also produces a graphitic struc-
damping term which multiplied the long-range Coulomb po-ture which is almost exactly of equal energy to the perfect
tential of Eq.(8) but it transpired that the use of Ed.3) was  Gr. stacking. This structure is not the BN stacking, but in-

IIl. HAMILTONIAN PREDICTIONS
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FIG. 1. Total (kinetic plus potential energy as a function of FIG. 3. Radial distribution function of diamond at 2400 K. The
temperature at a pressure of one atmosphere. “AA”* BB,” and “AB” components are also showsee text

volves atoms in one basal plane layer sitting above thétion for graphite is rather simpler. Data ferare known up
carbon-carbon bonds of the layer below. Although there aré0 approximately 3000 K and at this pointa is nearly

no reports of such structures in the literature, different formsaturated at a value of about %20~ %K. This is much

of graphite other than the ideal, which depend upon methotfirger than the value obtained in our experiment. Last, Figs.
of preparation, do exi$f Such forms differ from the ideal 3 and 4 show the radial distribution functions of DC and Gr.
only in the basal plane stacking. Figure 2 can be used t@t 2400 K. These functions are also decomposed into their
predict a linear thermal-expansion coefficieat of 8.3 “AA” “ BB,” “ AB"” components. Note that, as expected,
% 107 8/K for diamond and 1.4 10" %/K for graphite. These the “AA” and “BB" contributions are identical.

numbers are difficult to compare to experiment, especially Our second prediction concerns the stability of the lower
for diamond. The Debye temperature of diamond is on théiomologues of ¢ molecules. High quality first-principles
order of 2000 K* Thus quantum effects are very important calculations, which include many-body perturbative correc-
experimentally, and we can only hope to compare our resultons beyond Hartree-FocR indicate that even number atom
to the high-temperature limit ofe. This, too, is difficult, ~molecules should form rings, while odd numbered atom sys-
because the available experimental data for diamond onl{ems should form chains. The existing empirical potentials
goes up to 1600 K2 i.e., below the Debye temperature and Previously described would have great difficulty in duplicat-
well below the asymptotic region. Using this data and theng such behavior. However, in the case of the present
experimental behavior of the specific Have estimate the Hamiltonian in which the EAM contribution for low coordi-
high-temperature thermal expansion coefficient of diamondation numbers is weak and in which identiti@sther A or

to be between 6 and>10 8/K. We consider this to be in B) must necessarily be assigned in an alternating fashion
good agreement with our simulation. The experimental situalong the chain in order to keep the Coulomb energy low, it
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FIG. 2. Density as a function of temperature at a pressure of one FIG. 4. Radial distribution function of graphite at 2400 K. The
atmosphere. “AA,” “ BB,” and “ AB” components are also showsee text
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TABLE VIIl. Comparison of equilibrium structures and energies gfabd G clusters as predicted from
first-principles calculatiort§ and fromE, 5. Energies in eV/atom and distances in angstroms. Distances and
chargegof the VB Hamiltonian ordered with central atom/bond rightmost. “Frustrated” neighboring atoms
in pentagonal € have smallest charge. Bond angles in hg; ring structures are not optimized and are
maintained as ideal; first-principle calculations show theri@ig structure to comprise nonideal angles.
“HFMP” implies Hartree-Fock plus Moller-Plesset level of theory. The energy of lineaisiot given to
high precision in Ref. 16.

Structure Enrvpe {riveme Eve {rive {a}ve
Cs pentagon —2.582 1.40 1.15,2.2,21
Cs chain —4.892 1.271, 1.275 —-4.162 1.32,1.31 2.05, 2.6, 2.7
Cs hexagon —4.948 1.316 —5.094 1.33 2.55
Cg chain —-4.8 —4.485 1.32,1.31, 1.31 2.05, 2.6, 2.7

is simple to see why even atom systems form rings and whyalue is firmly in the fourfold region. Further, because of the
odd atom molecules form chains. In the case of the formemproximity of near lyingd states and the narrowness of its
identities can be assigned without “frustration” whereas inband gap relative to carbon, the EAM contribution will be
the latter case, a ring necessarily causes two like charges tore significant in the determinantal representation of the
be adjacent. Odd atom systems prefer to maximize the disnergy E, . This latter contribution favors higher coordina-
tance between such unfavorable interactions by forming gn.

chain. In order to determine the energetics of @ ring, Turning now to elements in the middle of tieblock
wheren is odd, it is necessary to average over several deynhere metallic bonding as well as covalency is important
generate representations corresponding to rthdifferent (e.g., those elements forming bcc structiyréise present for-
ways of placing the unfavorable interactions around the ringma"Sm may again be useful. Simple EAM descriptions are
known to handle such systems with difficulty. However, the

section which discusses the handling of frustrated s;ystems.present treatment, which allows a mixing of EAM and Cou-

Table VIl gives the_ pred|ct|9ns of thEVB Hamiltonian . _lomb descriptions, is expected to work better. The effective
and compares them with the high quality quantum chemic

) . il adius ratio rules will now place the element in the range
calculations of Raghavachari and Binkteyor Cs and G.  \yhere eightfold coordination is favored. The ionic and EAM
The present Hamiltonian correctly predicts that odd-membeg iy tions in the determinantal representation of the en-

molecules are chains and even-membered systems forgyq, i strongly couple; that is, the off-diagonal terms will
rings. The bond lengths of our Hamiltonian are a little longery, important.

than those obtained from first principles calculations. Fur- Last, two-component systems, such as SiC, should also
ther, the energy difference between chains and rings is larg@fonefit from such a description. The exact degeneracy of
than Raghavachari and Binkley calculate, although it seemg,neting charge distributions will now be lifted, but never-
that the present Hamiltonian does extremely well at predicti,ojess the same VB treatment should still pertain. Even a
ing the cohesive energies of even-membered ring structureg,ateria| exhibiting as much charge transfer as GaAs should
Note that, for cyclic G, the “frustrated” charges which ponefit from the VB description since the EAM term, just as
neighbor one another are, as expected, small. There is g {he giscussion above for Si, is likely to have nonzero
tradeoff between their mutual repulsion if this charge is Iargquight_ It remains to be seen whether explicit introduction
and the reduction of the attraction to their other neighbors it\i1"the Hamiltonian of charge distributions which are al-
itis too small. The energy of thesGing predicted byEvg IS |gyyed 1o “float” off atomic centers, much in the same way
very different from the linear form. Unfortunately, an energy (ot quantum chemitsuse floating Gaussians to improve
for the cyclic form is not given in Ref. 16. Nevertheless, {qir bases, will be necessary.
given that these £and G molecules were not in our data  Tyrming now to systems exhibiting frustration, how might
base, the VB Hamiltonian behaves well. such a representation be generalized for more complex situ-
ations? VB methods have the drawback of a combinatoric
explosion: in principle, all possible ways of assigning charge
distributions to atoms within the system should contribute to
the Hamiltonian. Hopefully, if this general approach is to be
We have seen that the Hamiltonian represented byEHqg. useful for simulation, only a small number of these actually
works well for highly symmetric, nonfrustrated systems.carry much weight. In the case of systems like @ Cg
Such a formalism is expected to work well for other sp(which has five membered ringshe number of important
bonded single component systems, such as silicon. In thédegenerate representations is low and we expect that gener-
language of the present model, the reason why silicon doealization of our Hamiltonian will be computationally trac-
not form graphitic structures is because its effective cationfable.
anion radius ratio is not near the value 0.238e Table)l Returning to Eq(1), a better determinantal expression for
separating fourfold from threefold coordination. Rather, thethe energy of highly symmetric nonfrustrated systems is:

IV. HAMILTONIAN GENERALIZATION
AND CONCLUSIONS
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(He—Eyp) (Hec,~EveSec,)  (Hec,~EveSec))
(Hec, —EveSec)) (He,~Eve) (Hc,c,—EveSc,c,)
(Hec,~EveSec,) (Hc,c,~EveSc,c,) (He,~Eve)

=0, (16)

where G and G represent the two degenerate charge districase of a €ring, if the “AB/BA” representation used in the
butions within Eq.(6). H¢ is no longer the mean of these earlier sections is enforced, the determinant would be 11
degenerate states, but is the Coulomb energy of a givex 11 (i.e., the EAM state plus the>25 degenerate charges
charge distributionHg remains as before. In the absence ofstate$. However, if this constraint is removed, then the de-
a field, we expect that the overlap between these two degemerminant would be &6 (i.e., the EAM state plus the five
erate representations would be zero; that is we expect thgegenerate ways of cyclically permuting atomic chargks
off-diagonal Heoc, and Sc,c, terms to be zero. Thus the remains to be seen which representation is the more accurate.
following forms for SandH suggest themselves for the case (The results quoted in the prior section for pentagonal C
where there ar® degenerate contributing VB states and theused the 1X 11 determinan}.In either case, those frustrated
charges in each state are allowed to be dynamical variablegtoms which have like neighboring polarity will lower their
energy by reducing their ionic charge.
Sec :(P,l/z)e,y /UNZ (qicn)Z’ Turning now to _systems of Iow_symm_etry, suc_h as qu_uids,
n [ there could potentially be a combinatoric explosion of differ-
ent contributing VB states. Unfortunatelyg{Js in this class

SEcn({CI}) , _ SINJHg—HL. | also. The number of contributing ionic states in its degener-
Hec, = —— —(HetHc )Sec e B ate manifold is extremely large. However, it may well be that

only a finite number of such states are important to describe

Sc c.=Snm: the ene_rgetics of these systems quitg accurately. We antici-

nem pate this because, for any configuration, the total energy of

the system is being minimized with respect to all fug
dynamical variables in the system. There ahX(P) of

17
C, and G, represent states of given charge distribution. m_t_he;e. ‘{%‘S in the case of tight-binding moment methods for
liquids;”™ where the number of moments is increased, or

dexi runs over all atoms in the system. The pre-exponentia thint | ) imulatiofs wh th b ¢
factor in Sec, is a required normalization for a Hamiltonian path-integral quantum simuiations,where the number o

ith P d ibuting ionic VB Si imaginary time slices is increased, an approach in which the
with P degenerate contributing ionic VB states. Since{tle  ,yher of contributing states is increased until there are no
are now dynamical variables, both and H: have to be

further changes in the system properties would be an appro-

chcm: SamHc

n

defined more generally than before: priate way to proceed. Notice that even here, the computa-
1 tional complexity would scale &(N), albeit with a signifi-
eec (g =1+ €~ /NZ (qun)z, cant prefactor. I_-|owever, even with th|s p.refgctor, the
n i method should still be much faster than tight-binding abd

initio methods. The important ionic states are almost cer-
tainly not degenerate representations and thgs and Scc

HL = (HEn) . e " eC
G 4 i/ terms now contribute to thE, g Hamiltonian. Continuing in
similar vein to Eqs(17) and(18), these terms should have
(HE")’ =HEe"lail4+ HEn(1— e ail), (19 theform
Here it is necessary to define an energy for each atom. This a7 [IND, (@S —qCmy2
may be done in intuitive fashion by examining E¢3). and Sc,c, =€ T

(6). The above Eq917) and(18) both reduce to those given
earlier when there was only one value|qf per state. e dad)

In the case of nonfrustrated systems, &3 determinant He o = ZCnCm
for the energy is likely to behave well and be computation- nem 2
ally efficient. Such would be the case, for example, for
fullerene tubules in which there are no five or seven mem-
bered ring defects. A good description at finite temperatures = 1 Cn_ gCm)2

g A9 P P sc,c,{a)=1+e\/g2 (@"—aq;m% (19

may require dynamical charges. In contrast, for frustrated i
systems of high symmetry, the determinant is larger. Here,
the number of equivalent states is known exactly and thdhe expressions fd.c andHc reduce to the same form as
determinant can be written out in its entirety. The size of thehose ofSzc and Hgc when one recognizes that the EAM
determinant, however, depends upon what assumptions astate has zero effective charge on each atom. Note that the
made about the contributing ionic states. For example, in thdefinition of Sc¢ in Eq. (19) does not equal zero between

! !
(He, +He,)Sc,c e MHen e,
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states in a degenerate manifold, but the value of the overlagion, in which the “AB/BA” charge equality constraint has
exponenty is sufficiently large that such concerns may bebeen removed, would probably describe the energetics very
academic. well.

Wheng; is a dynamical variable one or more constraints  In conclusion, we have developed an interatomic potential
will be necessary. For example, charge conservation in ead®r carbon, which may easily be generalized to other cova-
contributing state is required. It may also be necessary Nt systems such as silicon, silicon carbide, or even mid
introduce, particularly for systems of low symmetry, overall d-block transition elements. Unlike potentials based upon
charge neutralityin the absence of an external figldpon molecular orbital ideas, the functional form does not involve

each atom. Such constraint might be either hard or soft. Pe@ngular terms; it is based upon concepts rooted in valence
ond theory. We have shown that it is capable of stabilizing

haps & constraint that imposes uniform charge-charge corr oth the diamond and graphite structures and that it has re-
markable predictive power for small carbon clusters. It is
computationally very efficient for high-symmetry, nonfrus-
trated systems. We have suggested a way forward for more
complex systems such as liquids and fullerene systems with
r{ive and seven member rings. We emphasize that even for
éhe low symmetry systems where many important ionic
states may be required in the Hamiltonian, the approach still
r§cales a®(N). The ideas introduced in this final section are
the subject of ongoing work.

lations across the system would also be useful. As noted i
the Introduction, a computationally efficient way to deal with
extra degrees of freedom would be to use the fictitious La
grangian method advocated by Sprik and K¥im their
study of polarizable liquid ammonia.

Finally, when simulating a system in the presence of a
external field, although each contributing state, whether it b
ionic or EAM, couples to the field, the weight of the ionic
terms is so great for the systems of low coordination whe
using this Hamiltonian, that merely coupling the ionic
charges to the external field may suffice to capture most of
the important physics. Certainly atomic charges, if they are
allowed to be dynamical variables, will redistribute in re- J.Q.B. and M.J.M. wish to acknowledge support of the
sponse to the field. For example, if a fullerene tubule with noONR. J.Q.B. would like to thank the NSF and the ITP at
five or seven membered rings is to be simulated in the presSanta Barbara for support and hospitality during the spring
ence of an external field, a §33) determinant representa- of 1997.
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