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Transferable potential for carbon without angular terms
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A simple transferable potential for carbon is developed for use in atomistic simulation. It describes all the
phases of carbon, from the close packed, such as face centered cubic, to the open systems, such as diamond
cubic, graphite, and even linear chains. The parameters are fit to a total-energy local-density functional theory
database augmented by the known cohesive energies of diamond and graphite. Further, structures such as
simple molecules, not in the database, are well described. For example, it predicts that odd number of atom
molecules form chains whereas even atom number molecules form rings. The diamond cubic and graphitic
structures are dynamically stable. The formalism also allows for interaction with an external electric field.
Further, it can be generalized to other covalent systems as well as mid-d-block elements.
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I. INTRODUCTION

Carbon, besides being the basis for all organic chemis
displays amazingly varied and important materials prop
ties: from the structural and radiation hardness implicit
diamond, to its lubricating and conducting properties
graphite, to its novel strength coupled with electronic a
encapsulating abilities in the fullerenes. Much has be
learned and predicted about carbon by using atomistic si
lation whether such was at the purely empirical potentia
at the fully ab initio level.

The list of successes in the simulation of carbon is
long to be addressed properly here. Suffice it to give so
representative examples: The relative energies of diffe
crystalline forms of carbon have been obtained by loc
density functional~LDA ! calculations.1,2 LDA molecular-
dynamics~MD! calculations have elucidated the structure
liquid3 and amorphous4 carbon. LDA calculations,5 and ato-
mistic potentials for the intramolecular interactions,6,7 have
evaluated and predicted vibrational modes in C60 molecules
very accurately. Semiempirical tight-binding~TB! simula-
tions have predicted stabilities of whole families
fullerenes.8 Empirical potential MD simulations have pre
dicted the C60 phase diagram.9 LDA calculations have as
sisted our understanding of fullerene polymerization.10 TB
MD simulations have investigated the effects of helicity
the phonon modes in fullerene tubules.11 First-principles and
TB methods have studied the electronic effects due to d
ants in diamond.12–15And last, high quality quantum chem
cal calculations have addressed the nature of small ca
clusters.16

Such is carbon’s centrality to materials science; it wo
be useful to have a robust transferable interatomic poten
which allows the description of carbon in its many guis
the fourfold coordination of diamond, the threefold coord
nation of graphite and the fullerenes, and the twofold nat
of simple carbon molecules. Here we develop such a po
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tial, which has utility with the high coordination~and there-
fore high-energy! structures also.

Most extant interatomic potentials for covalent syste
make use of molecular-orbital concepts. Examples inclu
Stillinger and Weber,17 Tersoff,18 Biswas and Hamann,19

Chelikowski and co-workers,20–22 and Bazant, Kaxiras, and
Justo23 for silicon. Another example is the extremely usef
interatomic potential for carbon, due to Brenner,24 which
uses the concept of bond order to allow description of gra
ite and diamond. The strength of a bond, here, is a func
of its environment. These ideas have been generalized
placed on a firm theoretical footing by Pettifor an
co-workers25,26such that the concept of bond order applies
a wide range of systems.

In developing the present interatomic potential we ma
use of two other concepts—that of the valence bond~VB!
and that of the radius ratio. Both of these ideas owe th
lineage to Pauling.27 The radius ratio rules explain why som
ionic systems choose to crystallize with eight nearest ne
bors while others choose six or four~or even three or two!.
The rules are derived from hard-sphere packing argum
which rely upon the idea that ionic radii are transferable a
that smaller cations fit in the interstices of the larger an
lattice.~Usually, the cations are smaller than the anions.! The
interstice size must be as small as possible and yet stil
able to accommodate the cation. The valence bond con
involves representing the electronic structure of a system
linear combination of contributing states. The best exam
of this is in the Kekule structures for benzene.

That these ideas might work well for pure carbon is illu
trated thus. Behrmanet al.28 observed, while trying to find
the ground state of ZnO clusters, that rather than relaxin
structures related to truncations of the bulk zinc blende
tice, fullerene structures were found instead. Apparen
within the language of radius ratios, the cation to anion s
ratio for ZnO is such that it lies on the borderline betwe
threefold and fourfold coordination. Table I gives the stab
9259
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9260 PRB 59JEREMY Q. BROUGHTON AND MICHAEL J. MEHL
ity ranges of radius ratios for different structures.~Table I
also defines shorthand notation for different structures.! In a
bulk system, perhaps it is the Madelung field which flips t
packing decision away from threefold towards fourfold c
ordination. Madden and co-workers29 have used these idea
to great effect in the study of mixed ionic/covalent system
In their formalism, a full integer charge equal to the form
oxidation state is assigned to each ion. The ions are t
taken to be polarizable and are assigned point dipole
quadrapole moments as dynamical variables. In this way
eral different phases of ionic/covalent systems may be
scribed.

In applying similar ideas to carbon, we note that carb
sits in the middle of the square planar~sp! block. It is an
amphoteric atom; that is it has intermediate electronegati
and may be atomically positively or negatively charged
pending upon the chemical nature of the atoms to which
bonded. In other words, carbon atoms are capable of do
ing or accepting electrons. We note that carbon has
phases of almost identical stability under ambie
conditions—namely diamond and graphite. Thus one way
thinking about carbon is that it sits on a similar stabil
border as the ZnO example given above—that is, if only
had an ionic radius. We may impart an ionic radius to carb
by taking advantage of its amphoteric nature and by emp
ing a valence bond description. In a lattice without frust
tion we may, to first order, consider assigning half the ato
a charge of1q and the other half a charge of2q. But since
the atoms in pure carbon should be indistinguishable
carry no charge we take a linear combination of this st
with the equivalent one~energetically! in which all identities
have been switched; this is the valence bond concept. O
charge distributions will, of course, contribute to a VB d
scription, such as those in which charges are no longer a
centric, but for the sake of simplicity aimed at pursuing t
impact of the radius ratio concept, we chose initially to co
fine our attention to ionic distributions.

All that remains is to formulate a physically intuitiv
functional form for our picture of bonding in carbon and al
to fit the free parameters in such to a database. Unlike
formulation of Wilson and Madden,29 our dynamical vari-
ables are taken to be the charges$q% in the system—dipole
and quadrapole moments are not used. In Sec. II we des
the functional form to which we will fit and also the raw da
generated by LDA calculations. In Sec. III we employ o
Hamiltonian to examine the dynamical stability of diamo
and graphite. Also we show that the Hamiltonian correc
predicts that even number atom carbon molecules will fo

TABLE I. Radius ratio ranges and examples of structure typ
bcc represents body centered cubic; sc represents simple cubic
represents diamond cubic; Gr. represents graphite; and chain r
sents a linear chain.

r1 /r2 Coord. Structure Lattice

1.000–0.732 8 CsCl bcc
0.732–0.414 6 NaCl sc
0.414–0.225 4 ZnS DC
0.225–0.155 3 BN Gr.
0.155–0.000 2 or 1 (SN)x chain
e
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rings while odd number atom systems do not. Section
presents our conclusions as well as suggestions as to
such a Hamiltonian might be applied to disordered~i.e., frus-
trated! systems such as amorphous and liquid carbon.
further suggest that this formalism will generalize simply
other covalent systems such as silicon, to mid-d-block ele-
ments and to systems in the presence of an electrostatic fi
The latter will be particularly useful for fullerene tubule
which are often grown under high-field conditions.

II. FUNCTIONAL FORM

We wish to be able to describe high coordination meta
systems as well as the low coordination covalent syste
For the former, we expect an embedded atom~EAM!
description30,31 to be good. For the latter, we anticipate o
linear combination of degenerate ionic representations
work well. Thus we require a scheme which interpolates
tween these two extremes depending upon atomic struct

The simplest approximation that has this interpolat
quality is to solve for the energy (EVB) of the system from
the following determinant. It borrows, as we have said, fro
concepts within VB theory. Although, within the develop
ment of the present Hamiltonian, such VB expansion is
rigorous, we shall henceforth use VB terminology to imp
the mixing of contributing states:

U ~HE2EVB! ~HEC2EVBSEC!

~HEC2EVBSEC! ~HC2EVB!
U50. ~1!

The solution is

EVB5
@ 1

2 ~HC1HE!2SECHEC#

~12SEC
2 !

6
@ 1

4 ~HC2HE!21~SECHE2HEC!~SECHC2HEC!#1/2

~12SEC
2 !

.

~2!

The HE term represents the energy of the system when
atoms are neutral and described by an EAM Hamiltoni
The HC term is the energy of the ionic~Coulomb! represen-
tation of the system. For the simple ordered structures in
database, we willassumethat only the lowest energy~i.e.,
dominant! distribution of charges contributes. Thus for fc
we use a TiAl~see below! arrangement of charges; for bc
we use CsCl; for simple cubic~sc! we use NaCl; for diamond
cubic~dc! we use ZnS; for graphite~Gr.! we use BN, and for
the linear chain~chain! we use (SN)x ~see Table I!. Actually,
in the case of graphite, the basal plane stacking is not id
tically that of BN—there is a lateral shift of one relative
another. Such is the charge transfer in true BN, the boron
one layer prefers to sit directly above a nitrogen in the la
beneath. This is not true in graphite; atoms sit above
hexagonal hollow of the layer beneath. In our database
account for such energetic differences, we have calcula
the total energies of hexagonal carbon in both the true g
phitic and BN stackings~see Tables II and III!.

The form of HE is that advocated by Johnson and Oh:32

s.
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HE5(
i j

feam~r i j !2l(
i

F12 lnS r i

r0
D hrhoGF r i

r0
Ghrho

,

~3!

wherei and j represent atom indices. Henceforth we use
convention that double sums exclude self-interaction te
and include unique pairs only. The pair EAM term is giv
by

feam~r i j !5FaS 2s0

r i j
D h

r

2bS 2s0

r i j
D h

bG ~4!

while r i represents the background charge density in wh
atom i sits. It is obtained from a pairwise sum:

r i5(
j Þ i

e2xr i j . ~5!

TABLE II. LDA energy database for graphite~with graphitic
stacking! and for orthorhombic distortions. Energy given in ry
bergs per unit cell. Distances in bohr. Four atoms/cell.

a1 a2 a3 Energy

4.20 7.00 2301.810522
4.20 7.50 2301.974497
4.20 8.00 2302.092591
4.20 8.50 2302.171984
4.20 9.50 2302.255620
4.20 10.50 2302.287088
4.30 7.00 2301.914106
4.30 7.50 2302.071556
4.30 8.00 2302.187328
4.30 8.50 2302.267314
4.30 9.50 2302.352279
4.30 10.50 2302.384850
4.40 8.00 2302.250926
4.40 8.50 2302.330777
4.40 9.00 2302.383258
4.40 9.50 2302.416745
4.40 10.50 2302.450213
4.50 8.50 2302.367080
4.50 9.00 2302.419785
4.50 9.50 2302.453716
4.50 10.00 2302.475007
4.50 10.50 2302.487902
4.60 10.50 2302.502134
4.60 11.50 2302.513776
4.60 12.50 2302.515853
4.60 13.50 2302.514758
4.63 13.470 2302.515226
4.70 10.502 2302.496220
4.70 11.506 2302.508253
4.70 13.505 2302.509636
4.18726 5.11776 13.47096 2302.366606
4.31573 4.96541 13.47096 2302.442370
4.40324 4.86674 13.47096 2302.476848
4.86674 4.40324 13.47096 2302.473846
4.96541 4.31573 13.47096 2302.435900
5.11776 4.18726 13.47096 2302.362061
e
s

h

The form ofHC is

HC5
1

2F(
AB

f12~r AB!1(
AA

f11~r AA!1(
BB

f22~r BB!

1(
A

fc~q1!1(
B

fc~q2!G1
1

2F(
AB

f21~r AB!

1(
AA

f22~r AA!1(
BB

f11~r BB!1(
A

fc~q2!

1(
B

fc~q1!G . ~6!

We assume that, for given lattice structure, we have assig
some atoms an identityA and others an identityB. In the first
half of this equation we have assigned positive charges to
A atoms and negative charges to theB atoms. The sum of the
charges, of course, is zero. The second half of the equa
implies that the signs of these charges have been flipped.
mean charge on each atom in theHC Hamiltonian is thereby
zero. The order of the (12) is important here. The first sign
is applied to the charge on the first identity in the double s
while the second sign is applied to the charge on the sec
identity.fc ~wherec is either1 or 2) represents the on-sit
electron affinity/ionization potential term:

f1~q!5U1~q2q0!22U1q0
2 ,

f2~q!5U2~q2q0!22U1q0
2 . ~7!

Whenq is more positive thanq0, the first of these equation
in used. Otherwise the second is used. Thus, conform
with experiment, the on-site energyq dependence is that o
an asymmetric parabola. Thefc term is designed to have th
value zero when the charge is zero.q0 has a negative value
since carbon has an electron affinity.

fcc8 represents a Coulomb pairwise interaction term:

TABLE III. LDA energy database for graphite~with boron ni-
tride stacking! and linear chains. Two and one atoms/cell, resp
tively. Distances in bohr. Energy given in rydbergs per unit cell

a1 a3 Energy

BN stacking
4.6201238 5.82099625 2151.252402
4.6201238 6.02099625 2151.254336
4.6201238 6.22099625 2151.255612
4.6201238 6.32099625 2151.256029
4.6201238 6.42099625 2151.256325
4.6201238 6.52099625 2151.256520
4.6201238 6.62099625 2151.256637

Linear chain
2.40184 275.5355495620
2.41885 275.5355262685
2.45664 275.5338797346
2.54641 275.5222224060
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fcc8~r
LM

!5aS @s~q
L
!1s~q

M
!#

r
LM

D h
cc8

1K
q

L
q

M

r
LM

. ~8!

The indicesL and M can be eitherA or B type atoms. The
value ofK is defined below. The constanta is positive and
has the same value for both theHE andHC terms. The hard-
core radiis are small for cations and large for anions. In o
fit, we constrain the ratio of these for the DC and Gr. str
tures in the database to be near the threefold to four
transition of Table I. Note that for reasons described bel
the long-range Coulomb term isnot damped. A linear depen
dence ofs(q) is assumed:

s1~q!5s01k1q,

s2~q!5s01k2q. ~9!

s1 or s2 is used depending upon the charge on atomL or
M . s0 has the same value for both theHE andHC terms.q
will be a parameter to be fit.

And finally, for the cross termsHEC and SEC , we have
assumed:

SEC5e2guqu,

HEC5
«~ uqu!

2
~HE1HC8 !SECe2d/NuHE2HC8 u, ~10!

where N is the total number of atoms in the system. T
cross terms have the correct intuitive behavior. As the cha
in the ionic state becomes large, we expect the overlap w
the EAM state to become small. IfSEC becomes small, we
expectHEC to likewise decrease. As the energy differen
between the Coulomb and EAM states becomes small,
expect the off-diagonal term to become large. And last,
expectHEC to be proportional to some function ofHE and
HC ; we chose to take the mean.

Note the prime modifyingHC in Eq. ~10!. To avoid pa-
thologies asuqu goes to zero, both« and HC must have
specific behavior. First,« must tend to unity asuqu tends to
zero, and second, the ionic contribution must tend to
EAM energy. Thus asuqu tends to zero, the overall determ
nantal energyEVB tends to the EAM energy. We chose

«~ uqu!511euqu,

HC8 5HEe2nuqu1HC~12e2nuqu!. ~11!

For the open structures such as the diamond, graphite,
linear chain whereuqu is expected to be large,HC and HC8
should be almost equal.

It might be asked whether a van der Waals term should
included in the Hamiltonian. It is commonly thought th
such a term accounts for most of the interlayer interaction
graphite. However, as we shall see, much of what ho
graphite planes together is the~truncated! Madelung field of
our VB Coulomb model. In our original fits anr 26 term was
included in the Hamiltonian but we found it held negligib
advantage. It has therefore been omitted from the final fo
The final equation to which the data base is fit is
r
-
ld
,
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EVB5
@ 1

2 ~HC8 1HE!2SECHEC#

~12SEC
2 !

6
@ 1

4 ~HC8 2HE!21~SECHE2HEC!~SECHC8 2HEC!#1/2

~12SEC
2 !

,

~12!

where we use the solution with the lowest energy.
Finally, so as to make these functional forms compu

tionally efficient, every pair term in the above equations
truncated to zero at a cutoff distancer c which will be a
parameter in the fit. Thus thefcc8 , e2xr , andfeam terms are
truncated as follows:

f c~r !5 f ~r !2 f ~r c!2~r 2r c!
d f

dr U
r c

, ~13!

where f is generic andf c represents the function actuall
used in the final fitted Hamiltonian.

The various parameters of our Hamiltonian are obtain
by a nonlinear least-squares fit, using a Monte Carlo sim
lated annealing approach to minimize the following lea
squares objective function,F:

F5 (
i 51

#types

(
j 51

#membersF ~EVB
i , j 2ELDA

i , j !21AS ]EVB
i , j

]uqu i
D 2G ,

~14!

where the sum runs over the number of types~7! correspond-
ing to fcc, bcc, sc, DC, Gr.~Gr.!, Gr.~BN!, and chain, and
over the number of members of these types~19, 8, 6, 35, 36,
7, and 4, respectively!. ELDA represents thecohesiveenergy
as obtained by LDA calculation. The derivative with respe
to charge is included in order to ‘‘regularize’’ the fit, i.e., t
insure the fit obeys known physical and mathematical
straints. We setA, somewhat arbitrarily, to 0.05 but we fin
this value suffices. Note that the derivative with respect tq
has a single superscripti . We define a single charge pe
structure type. Since these are 1:1 stoichiometryAB systems
within our VB formalism, the charge onA is equal in mag-
nitude to that onB; hence we need only concern ourselves
the fitting procedure with the absolute magnitude of t
charge. This much simplifies the fitting procedure.@We also
set the value ofq equal for both the Gr.~Gr.! and Gr.~BN!
structures. For Gr.~Gr.!, there are actually two distinct site
in the unit cell which could be assigned different charg
Again, for simplicity, we set these equal.# In principle, the fit
could be improved by having a differentuqu for each member
of each structure type.

We imagine, in using this Hamiltonian for simulation, th
the charges as well as the atomic positions will be dynam
variables. In principle the charges should be chosen for e
atomic configuration such that the Hamiltonian is minimize
In practice, however, a method similar to that advocated
Sprik and Klein,33 in their simulation of polarizable ammo
nia, could be used. Here, a fictitious Lagrangian with bo
positions and charges as dynamical variables is defined.
latter are given small masses and thermostated atT50 so
that they follow a close to minimum energy path as t
nuclear positions change. In Eq.~6!, we have implicitly as-
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sumed a 50/50 weighting of degenerate representation
the system. In the discussion in Sec. IV below, we shall
that this weighting could be changed in a dynamical simu
tion so that the mean charge on each atom is not identic
zero. This will be particularly useful when there is an appli
electrostatic field. Such will be possible by generalizing
determinantal representation given in Eq.~1! above.

The database~see Tables II, III, IV, and V! as suggested
in Eq. ~14! was generated by a full-potential linearized au
mented plane-wave~LAPW! code34,35 with additional local
orbitals in the basis set.36 We used the
Vosko-Wilk-Nusair37,38 parametrization to represent th
local-density approximation of the exchange-correlation

TABLE IV. LDA energy database for face centered, body ce
tered, and simple cubic structures. Energy given in rydbergs~1
Ry513.6057 eV; 1 eV596.487 kJ/mole! per unit cell. Distances in
bohr ~1 bohr50.5292 Å!. One atom/cell.

a1 Energy

fcc
3.40 273.630888
3.60 274.117360
3.80 274.470111
4.00 274.725308
4.20 274.908302
4.40 275.038282
4.60 275.129459
4.80 275.193404
5.00 275.237540
5.40 275.282101
5.60 275.288850
5.70 275.289538
5.80 275.288971
5.90 275.286988
6.00 275.283651
6.20 275.273964
6.60 275.246447
7.00 275.212836
7.40 275.177557

bcc
2.80 273.942855
3.40 274.996865
3.90 275.256660
4.30 275.308258
4.40 275.309672
4.50 275.307974
4.60 275.303841
4.90 275.282560

sc
2.40 274.694901
2.70 275.198740
3.10 275.418211
3.40 275.432528
3.70 275.394521
3.90 275.356841
of
e
-

lly

e

-

-

tential. In each lattice we used a regulark-point mesh~in-
cluding theG point! of sufficient density to insure energ
convergence to about 0.005 eV/atom. For the insulating
mond structure, this involves 19k points in the irreducible
part of the Brillouin zone. For the semimetallic graphi
structure we need 148k points in the irreducible part of the
Brillouin zone. We controlled the basis set size by setting

Gmax58.5/Rmt , ~15!

where Gmax is the length of the longest reciprocal lattic
vector used to construct the LAPW basis andRmt is the
muffin-tin radius assigned to each carbon atom. We u
Rmt51.2 bohrs (1 bohr55.29231022 nm), yielding a
basis of at least 100 functions per atom even at the sma
volumes used in the data base.

Such a scheme should be good at obtaining relative e
gies not only within structure types but also across th

- TABLE V. LDA energy database for diamond cubic structu
and simple tetragonal and orthorhombic distortions. Energy gi
in rydbergs per unit cell. Distances in bohr. Two atoms/cell.

a1 a2 a3 Energy

5.80000 2150.997145
5.90000 2151.062386
6.00000 2151.116265
6.10000 2151.159919
6.20000 2151.194377
6.30000 2151.220635
6.50000 2151.251905
6.60000 2151.258347
6.67500 2151.259724
6.80000 2151.256150
7.00000 2151.237460
7.10000 2151.223113
7.20000 2151.205964
7.591643 5.314150 2151.109161
7.261145 5.808916 2151.191636
6.981589 6.283430 2151.242173
6.856891 6.514046 2151.254634
6.786196 6.650472 2151.258063
6.718330 6.785513 2151.258522
6.631911 6.963506 2151.254761
6.529865 7.182852 2151.243194
6.343195 7.611833 2151.199087
6.176190 8.029047 2151.130417
6.83598 6.64532 6.74200 2151.257744
6.89138 6.58992 6.74402 2151.256299
6.95381 6.52749 6.74740 2151.253896
7.04210 6.43920 6.75416 2151.249107
7.10985 6.37145 6.76093 2151.244336
7.21729 6.26401 6.77452 2151.234862
7.32441 6.15689 6.79159 2151.223125
7.41472 6.06659 6.80874 2151.211501
7.69392 5.78738 6.87821 2151.166916
7.90816 5.57314 6.94912 2151.124724
8.08878 5.39252 7.02151 2151.085908
8.24791 5.23339 7.09542 2151.050293



9264 PRB 59JEREMY Q. BROUGHTON AND MICHAEL J. MEHL
TABLE VI. Final parameters forEVB .

Parameter Value Parameter Value

a 1.1099211955437310201 q0 21.0484137513669310100

b 1.5410881606389310202 k1 21.7367644275837310201

s0 8.3229466864889310201 k2 3.5109965697114310201

r0 2.9372373965752310100 qf cc 2.3814711502526310201

x 8.6740796488118310201 qbcc 2.6114465150277310201

l 2.8327902400620310100 qsc 1.5806510728854310100

hr 8.6740796488118310201 qdc 2.6766881692369310100

h r 8.0033414542172310100 qgr 2.7780445412291310100

hb 3.0151646931655310100 qchain 2.8194966559386310100

h11 1.1287885983356310101 U1 3.9867292540778310201

h22 5.2234855528247310100 U2 1.4878555053137310101

h12 8.1609701251399310100 g 4.4522385954466310100

r c 6.0093752071775310100 e 6.0183618437052310201

d 8.4254069592310310201 n 3.1544940894354310201
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condensed phase families, including the very small ene
difference between the optimal geometries of diamond
graphite. Unfortunately, LDA gets the incorrect order of s
bility. Whereas experimentally the graphite is lower in e
ergy by 0.0195 eV/atom~1.883 kJ/mole!, the LDA finds in
favor of diamond by 0.0122 eV/atom~1.181 kJ/mole!. ~We
view this accuracy as impressive.! A uniform shift of 0.0318
eV/atom is therefore applied to the entire DC database
bring it in line with the experimental Gr./DC equilibrium
energy difference. Further, a constant shift of 1021.535
~75.0814 Ry! per atom is applied to the entire database
that all energies are referenced to zero as the infinitely s
rated atom limit. In other words, the energies thereby
come cohesive energies which is what is assumed in
form of EVB . Also, both the DC and Gr. databases are n
compatible withexperimentalcohesive energies. The equ
librium cohesive energy for graphite is 7.45 eV/atom. No
that LDA finds, in accord with experiment, that the Gr.~Gr.!
structure is slightly lower in energy than the Gr.~BN! struc-
ture. The experimental lattice parameter of DC is 3.57
whereas LDA finds 3.53. Graphite is similarly well d
scribed: LDA findsa152.43 anda356.7 Å , whereas ex-
periment finds 2.46 and 6.70, respectively. Again, we vi
the structural determination as impressive, particularly
cause, for graphite, the interplanar bonding is weak and L
might be expected to do less well. Indeed, we give only o
decimal place accuracy for the interplanar separation bec
the energy minimum along this ordinate is so shallow. La
within our data base for the DC and Gr. structures, latt
parameters which break the symmetry of the ideal lattice
included so thatEVB contains elastic constant informatio
Unlike the cohesive energies, we chose not to shift the lat
parameters of our LDA database to bring them into line w
experiment—we view them as good enough as they are.
sum of all considerations made in this paragraph is w
constitutesELDA as defined in Eq.~14!.

Table VI gives the final fitted parameters. This fit repr
sents the best of many optimizations with different start
points and different annealing schedules. Note that ener
are in eV, distances are in angstroms, and the charge is g
in atomic units. The constantK in Eq. ~8! converts the long-
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range Coulomb term to electron volts and has the valu
313.605730.5292514.4003 eV Å . The fcc system doe
not have a simple two component system with which
map—there is noAB system in which both theA and B
atoms are twelvefold coordinated with the opposite spec
However, there are a few common lattices which are
overall. There is the idealizedL10 ~TiAl ! structure which is
anAB system with 1:1 stoichiometry in which each atom h
four nearest neighbors of its own kind and eight of the oth
There is the idealizedL11 structure which is also anAB
system with 1:1 stoichiometry but now each atom has
neighbors of its own kind and six of the other. And finall
there is the Cu3Au structure which has a 3:1 stoichiometr
Each Au atom has twelve Cu neighbors and each Cu a
has four Au and eight Cu neighbors. We find that of the
three structure types, it is the TiAl structure which has t
lowest Coulomb energy; the other two are much high
~There are two other fcc structure types: the Al3Ti and the
Al3Zn. We did not consider these. It is unnecessary; the C
lomb energy is so high that it does not contribute to EVB.)
Thus it is the TiAl structure that we use to represent fcc
fitting to our database. The fit describes each structure w
As expected, most of the weight for the metallic fcc and b
structures is in the EAM term whereas for the DC, Gr., a
chain structures it is in the ionic part of the VB Hamiltonia
The sc structure marks the crossover from the EAM to
VB ionic description but, in contrast to our LDA calculation
which show the structure to be metallic, it is the Coulom
term which carries the most weight here. The Coulomb c
tribution is ;2 eV/atom lower than that of the EAM. Las
as anticipated from our ideas about radius ratios, for the
and Gr. structures, the Coulomb energy is significantly low
than that of the EAM: by;5 eV/atom.

Some other comments are in order about the fit. The io
charge on carbon for the DC and Gr. structures is v
similar—this occurs naturally with no applied constrain
This fact lends credence to the intrinsic insight of the mod
namely that diamond and graphite are on the cusp of stab
between fourfold and threefold coordination dictated
ionic radius ratios. The ionic charges of 2.68 and 2.78,
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spectively, for the DC and Gr. structures produce effect
cation hard-core radii@as defined by thes in Eq. ~9!# of 0.37
and 0.35 Å and anion radii of 1.77 and 1.81 Å. These p
duce radius ratios for these structures of 0.21 and 0.19 w
are near the value of 0.22 suggested by Table I. As expec
for the fcc and bcc structures, the ionic charges are sm
whereas that of the linear chain is large. Chemical intuit
would predict that the latter structure might be dynamica
stable. Indeed, MD with the present potential shows suc
be true. However, the linear form of carbon does not oc
naturally in nature, it being thermodynamically less sta
than either diamond or graphite. The charge for the lin
structure is very similar to that of Gr. resulting in a radi
ratio of 0.19 which is larger than that predicted by Table
However, Pauling’s radius ratio27 rules pertainonly to stable
structures.

The only part of the fit which is unphysical is the value
the electron affinity and ionization potential as suggested
Eq. ~7!. The experimental first electron affinity for carbon
near 1.2 eV and the first three ionization potentials are 1
24.4, and 47.9 eV. Thus the value forq0 of 21.05 a.u.
found in the fit is near what we would expect; it is the char
at which the energy versus charge ‘‘parabola’’ is at a mi
mum. However, the fit produces, for the DC and Gr. str
tures on-site energies,f1 and f2 , of ;5.2 and
;42 eV/atom, respectively. Given that the fitted charges
DC and Gr. are 2.68 and 2.78, respectively, the fitted on-
ionization energy should be much larger than the elect
affinity. The sumof the two is the correct order of magn
tude, however, and it is this sum that affects the overallEVB
energy. Unfortunately,U1 andU2 cannot be adjusted retro
actively to maintain a constant sum for the on-site energ
while producing a more reasonable set of ionization ener
and electron affinities since derivatives of these terms w
respect the$q% are also part of the fit@see Eq.~14!#. Never-
theless, with this one caveat, the resulting fit as we s
show below has proven to have good predictive power
transferability for many situations in carbon molecules a
crystals.

In examining the derivatives ofEVB with respect to the
chargeq, the final fit produces respectably small values
all members of the database, but particularly so for the e
librium geometries of the DC and Gr. structures. Indee
sensitive way to determine the equilibrium geometry of
final fit is not only to look for the minimum inEVB but also
for the structure with the smallest derivative with respect
charge. The rms error for the energy of the entire databas
0.18 eV/atom while the RMS error for the derivative of th
energy with respect to the charge is 0.76 eV/a.u. While
latter value might seem large, the variation of the ene
with q, for values ofq slightly different from the optimal, is
extremely rapid. If the computational expense of optimizi
q for everymember of the database had been tractable,
rms error of the derivative would have been significan
lower.

The fitted value ofr c of 6.01 Å coupled with Eq.~13!
ensures that there are no demanding long-range sum
compute. In fact, our original fit included an exponent
damping term which multiplied the long-range Coulomb p
tential of Eq.~8! but it transpired that the use of Eq.~13! was
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so efficient that the damping coefficient had no discerni
effect on the final fit. We have therefore omitted it from bo
Eq. ~8! and Table VI.

Table VII compares the equilibrium cohesive energ
and lattice parameters from our experimentally adjusted
tabase to those predicted from the fit. Our Hamiltonian d
remarkably well over the entire range of structures. It ca
tures the energy versus bond-length relationships~not
shown: a figure containing all the structures is too compl!
very well. It also obtains a slightly lower energy~by
;0.1 eV/atom) for the Gr.~Gr.! structure than the Gr.~BN!
structure. If there is a deficiency in the functional forms ch
sen for the fit, it is probably the EAM term: it has troub
differentiating between the energies of the fcc and bcc str
tures although it does obtain their lattice parameters w
Future work will focus on improving this.EVB predicts the
energy of the DC structure very well. On the other hand
predicts too low an energy for Gr. by approximately 0
eV/atom. Also, it obtains too large an interbasal plane sp
ing for Gr. This is the ‘‘soft’’ direction which competes with
the much harder in-plane bonds. Given the nature of
Hamiltonian, we still view this ability to describe bot
‘‘chemical’’ and ‘‘physical’’ bonds simultaneously as im
pressive.

The next section describes other implications of t
Hamiltonian including the dynamical stability of the graphi
and diamond systems as well as the thermodynamic stab
of linear versus ring carbon molecules.

III. HAMILTONIAN PREDICTIONS

Our first prediction concerns the dynamical stability of t
diamond and graphite systems. We employ a constant t
perature, constant pressure algorithm which allows for fl
ible computational cell lengths and angles. The algorithm
described fully elsewhere.39 Figures 1 and 2 show the energ
and density of these systems as a function of temperatu
a pressure of 1 atmosphere. The DC structure is comple
stable up to the highest temperatures~4500 K! studied. This
is near the temperature at which experimental carbon me3

The Gr. structure is stable up to 2500 K at which point t
basal planes start to move freely over one another. At
proximately 3900 K the Gr. phase melts to a disorde
structure; this is the system’s attempt to produce liquid c
bon ~recall that the present code will bias against frustra
systems!. We note thatEVB also produces a graphitic struc
ture which is almost exactly of equal energy to the perf
Gr. stacking. This structure is not the BN stacking, but

TABLE VII. Comparison of equilibrium experimentally aug
mented LDA cohesive energies~eV/atom! and lattice parameters
~angstroms! with those predicted byEVB .

Structure ELDA $a%LDA EVB $a%VB

FCC 22.83 3.02 22.81 3.02
BCC 23.11 2.33 22.80 2.38
SC 24.77 1.80 24.54 1.80
DC 27.43 3.53 27.38 3.46
Gr. 27.45 2.43/6.7 27.73 2.41/7.64

Chain 26.18 1.275 26.09 1.30
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9266 PRB 59JEREMY Q. BROUGHTON AND MICHAEL J. MEHL
volves atoms in one basal plane layer sitting above
carbon-carbon bonds of the layer below. Although there
no reports of such structures in the literature, different for
of graphite other than the ideal, which depend upon met
of preparation, do exist.40 Such forms differ from the idea
only in the basal plane stacking. Figure 2 can be used
predict a linear thermal-expansion coefficienta of 8.3
31026/K for diamond and 1.431026/K for graphite. These
numbers are difficult to compare to experiment, especi
for diamond. The Debye temperature of diamond is on
order of 2000 K.41 Thus quantum effects are very importa
experimentally, and we can only hope to compare our res
to the high-temperature limit ofa. This, too, is difficult,
because the available experimental data for diamond o
goes up to 1600 K,42 i.e., below the Debye temperature an
well below the asymptotic region. Using this data and
experimental behavior of the specific heat43 we estimate the
high-temperature thermal expansion coefficient of diamo
to be between 6 and 731026/K. We consider this to be in
good agreement with our simulation. The experimental s

FIG. 2. Density as a function of temperature at a pressure of
atmosphere.

FIG. 1. Total ~kinetic plus potential! energy as a function o
temperature at a pressure of one atmosphere.
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ation for graphite is rather simpler. Data fora are known up
to approximately 3000 K,44 and at this pointa is nearly
saturated at a value of about 7.231026/K. This is much
larger than the value obtained in our experiment. Last, F
3 and 4 show the radial distribution functions of DC and G
at 2400 K. These functions are also decomposed into t
‘‘ AA,’’ ‘‘ BB,’’ ‘‘ AB’’ components. Note that, as expecte
the ‘‘AA’’ and ‘‘ BB’’ contributions are identical.

Our second prediction concerns the stability of the low
homologues of Cn molecules. High quality first-principles
calculations, which include many-body perturbative corre
tions beyond Hartree-Fock,16 indicate that even number atom
molecules should form rings, while odd numbered atom s
tems should form chains. The existing empirical potenti
previously described would have great difficulty in duplica
ing such behavior. However, in the case of the pres
Hamiltonian in which the EAM contribution for low coordi
nation numbers is weak and in which identities~eitherA or
B) must necessarily be assigned in an alternating fash
along the chain in order to keep the Coulomb energy low

e FIG. 4. Radial distribution function of graphite at 2400 K. Th
‘‘ AA,’’ ‘‘ BB,’’ and ‘‘ AB’’ components are also shown~see text!.

FIG. 3. Radial distribution function of diamond at 2400 K. Th
‘‘ AA,’’ ‘‘ BB,’’ and ‘‘ AB’’ components are also shown~see text!.
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TABLE VIII. Comparison of equilibrium structures and energies of C5 and C6 clusters as predicted from
first-principles calculations16 and fromEVB . Energies in eV/atom and distances in angstroms. Distances
charges~of the VB Hamiltonian! ordered with central atom/bond rightmost. ‘‘Frustrated’’ neighboring ato
in pentagonal C5 have smallest charge. Bond angles in theEVB ring structures are not optimized and a
maintained as ideal; first-principle calculations show the C6 ring structure to comprise nonideal angle
‘‘HFMP’’ implies Hartree-Fock plus Moller-Plesset level of theory. The energy of linear C6 is not given to
high precision in Ref. 16.

Structure EHFM P $r %HFM P EVB $r %VB $q%VB

C5 pentagon 22.582 1.40 1.15, 2.2, 2.1
C5 chain 24.892 1.271, 1.275 24.162 1.32, 1.31 2.05, 2.6, 2.7

C6 hexagon 24.948 1.316 25.094 1.33 2.55
C6 chain 24.8 24.485 1.32, 1.31, 1.31 2.05, 2.6, 2.7
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or
is simple to see why even atom systems form rings and w
odd atom molecules form chains. In the case of the form
identities can be assigned without ‘‘frustration’’ whereas
the latter case, a ring necessarily causes two like charge
be adjacent. Odd atom systems prefer to maximize the
tance between such unfavorable interactions by formin
chain. In order to determine the energetics of a Cn ring,
wheren is odd, it is necessary to average over several
generate representations corresponding to then different
ways of placing the unfavorable interactions around the ri
The exact way in which this is done is described in the n
section which discusses the handling of frustrated system

Table VIII gives the predictions of theEVB Hamiltonian
and compares them with the high quality quantum chem
calculations of Raghavachari and Binkley16 for C5 and C6.
The present Hamiltonian correctly predicts that odd-mem
molecules are chains and even-membered systems
rings. The bond lengths of our Hamiltonian are a little long
than those obtained from first principles calculations. F
ther, the energy difference between chains and rings is la
than Raghavachari and Binkley calculate, although it see
that the present Hamiltonian does extremely well at pred
ing the cohesive energies of even-membered ring structu
Note that, for cyclic C5, the ‘‘frustrated’’ charges which
neighbor one another are, as expected, small. There
tradeoff between their mutual repulsion if this charge is la
and the reduction of the attraction to their other neighbor
it is too small. The energy of the C5 ring predicted byEVB is
very different from the linear form. Unfortunately, an ener
for the cyclic form is not given in Ref. 16. Nevertheles
given that these C5 and C6 molecules were not in our dat
base, the VB Hamiltonian behaves well.

IV. HAMILTONIAN GENERALIZATION
AND CONCLUSIONS

We have seen that the Hamiltonian represented by Eq~1!
works well for highly symmetric, nonfrustrated system
Such a formalism is expected to work well for other
bonded single component systems, such as silicon. In
language of the present model, the reason why silicon d
not form graphitic structures is because its effective cati
anion radius ratio is not near the value 0.225~see Table I!
separating fourfold from threefold coordination. Rather,
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value is firmly in the fourfold region. Further, because of t
proximity of near lyingd states and the narrowness of i
band gap relative to carbon, the EAM contribution will b
more significant in the determinantal representation of
energy,EVB . This latter contribution favors higher coordina
tion.

Turning now to elements in the middle of thed block
where metallic bonding as well as covalency is importa
~e.g., those elements forming bcc structures!, the present for-
malism may again be useful. Simple EAM descriptions a
known to handle such systems with difficulty. However, t
present treatment, which allows a mixing of EAM and Co
lomb descriptions, is expected to work better. The effect
radius ratio rules will now place the element in the ran
where eightfold coordination is favored. The ionic and EA
contributions in the determinantal representation of the
ergy will strongly couple; that is, the off-diagonal terms w
be important.

Last, two-component systems, such as SiC, should
benefit from such a description. The exact degeneracy
competing charge distributions will now be lifted, but neve
theless the same VB treatment should still pertain. Eve
material exhibiting as much charge transfer as GaAs sho
benefit from the VB description since the EAM term, just
in the discussion above for Si, is likely to have nonze
weight. It remains to be seen whether explicit introducti
into the Hamiltonian of charge distributions which are a
lowed to ‘‘float’’ off atomic centers, much in the same wa
that quantum chemists45 use floating Gaussians to improv
their bases, will be necessary.

Turning now to systems exhibiting frustration, how mig
such a representation be generalized for more complex
ations? VB methods have the drawback of a combinato
explosion: in principle, all possible ways of assigning char
distributions to atoms within the system should contribute
the Hamiltonian. Hopefully, if this general approach is to
useful for simulation, only a small number of these actua
carry much weight. In the case of systems like C5 or C60
~which has five membered rings!, the number of important
degenerate representations is low and we expect that ge
alization of our Hamiltonian will be computationally trac
table.

Returning to Eq.~1!, a better determinantal expression f
the energy of highly symmetric nonfrustrated systems is:
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!
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where C1 and C2 represent the two degenerate charge dis
butions within Eq.~6!. HC8 is no longer the mean of thes
degenerate states, but is the Coulomb energy of a g
charge distribution.HE remains as before. In the absence
a field, we expect that the overlap between these two de
erate representations would be zero; that is we expect
off-diagonal HC1C2

and SC1C2
terms to be zero. Thus th

following forms forSandH suggest themselves for the ca
where there areP degenerate contributing VB states and t
charges in each state are allowed to be dynamical variab

SECn
5~P21/2!e2gA1/N(

i
~q

i

Cn!2
,

HECn
5

«ECn
~$q%!

2
~HE1HCn

8 !SECn
e2d/NuHE2HCn

8 u,

SCnCm
5dnm ,

HCnCm
5dnmHCn

8 . ~17!

Cn and Cm represent states of given charge distribution.
dex i runs over all atoms in the system. The pre-exponen
factor in SECn

is a required normalization for a Hamiltonia
with P degenerate contributing ionic VB states. Since the$q%
are now dynamical variables, both« and HC8 have to be
defined more generally than before:

«ECn
~$q%!511eA1

N(
i

~qi
Cn!2,

HCn
8 5(

i
~Hi

Cn!8,

~Hi
Cn!85Hi

Ee2nuqi u1Hi
Cn~12e2nuqi u!. ~18!

Here it is necessary to define an energy for each atom.
may be done in intuitive fashion by examining Eqs.~3! and
~6!. The above Eqs.~17! and~18! both reduce to those give
earlier when there was only one value ofuqu per state.

In the case of nonfrustrated systems, a 333 determinant
for the energy is likely to behave well and be computatio
ally efficient. Such would be the case, for example,
fullerene tubules in which there are no five or seven me
bered ring defects. A good description at finite temperatu
may require dynamical charges. In contrast, for frustra
systems of high symmetry, the determinant is larger. He
the number of equivalent states is known exactly and
determinant can be written out in its entirety. The size of
determinant, however, depends upon what assumptions
made about the contributing ionic states. For example, in
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case of a C5 ring, if the ‘‘AB/BA’’ representation used in the
earlier sections is enforced, the determinant would be
311 ~i.e., the EAM state plus the 235 degenerate charge
states!. However, if this constraint is removed, then the d
terminant would be 636 ~i.e., the EAM state plus the five
degenerate ways of cyclically permuting atomic charges!. It
remains to be seen which representation is the more accu
~The results quoted in the prior section for pentagonal5
used the 11311 determinant.! In either case, those frustrate
atoms which have like neighboring polarity will lower the
energy by reducing their ionic charge.

Turning now to systems of low symmetry, such as liquid
there could potentially be a combinatoric explosion of diffe
ent contributing VB states. Unfortunately, C60 is in this class
also. The number of contributing ionic states in its degen
ate manifold is extremely large. However, it may well be th
only a finite number of such states are important to desc
the energetics of these systems quite accurately. We an
pate this because, for any configuration, the total energy
the system is being minimized with respect to all the$q%
dynamical variables in the system. There are (N3P) of
these. As in the case of tight-binding moment methods
liquids,46 where the number of moments is increased,
path-integral quantum simulations,47 where the number of
imaginary time slices is increased, an approach in which
number of contributing states is increased until there are
further changes in the system properties would be an ap
priate way to proceed. Notice that even here, the comp
tional complexity would scale asO(N), albeit with a signifi-
cant prefactor. However, even with this prefactor, t
method should still be much faster than tight-binding andab
initio methods. The important ionic states are almost c
tainly not degenerate representations and thusHCC andSCC
terms now contribute to theEVB Hamiltonian. Continuing in
similar vein to Eqs.~17! and ~18!, these terms should hav
the form

SCnCm
5e2gA1/N(

i
~q

i

Cn2q
i

Cm!2
,

HCnCm
5

«CnCm
~$q%!

2
~HCn

8 1HCm
8 !SCnCm

e2d/NuHCn
8 2HCm

8 u,

«CnCm
~$q%!511eA1

N(
i

~qi
Cn2qi

Cm!2. ~19!

The expressions forSCC andHCC reduce to the same form a
those ofSEC and HEC when one recognizes that the EAM
state has zero effective charge on each atom. Note tha
definition of SCC in Eq. ~19! does not equal zero betwee
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states in a degenerate manifold, but the value of the ove
exponentg is sufficiently large that such concerns may
academic.

Whenqi is a dynamical variable one or more constrain
will be necessary. For example, charge conservation in e
contributing state is required. It may also be necessary
introduce, particularly for systems of low symmetry, over
charge neutrality~in the absence of an external field! upon
each atom. Such constraint might be either hard or soft.
haps a constraint that imposes uniform charge-charge co
lations across the system would also be useful. As note
the Introduction, a computationally efficient way to deal w
extra degrees of freedom would be to use the fictitious
grangian method advocated by Sprik and Klein33 in their
study of polarizable liquid ammonia.

Finally, when simulating a system in the presence of
external field, although each contributing state, whether i
ionic or EAM, couples to the field, the weight of the ion
terms is so great for the systems of low coordination wh
using this Hamiltonian, that merely coupling the ion
charges to the external field may suffice to capture mos
the important physics. Certainly atomic charges, if they
allowed to be dynamical variables, will redistribute in r
sponse to the field. For example, if a fullerene tubule with
five or seven membered rings is to be simulated in the p
ence of an external field, a (333) determinant representa
tt.

tt.

om

.D

hy
ap

ch
to
l

r-
re-
in

-

n
e

n

of
e

o
s-

tion, in which the ‘‘AB/BA’’ charge equality constraint ha
been removed, would probably describe the energetics v
well.

In conclusion, we have developed an interatomic poten
for carbon, which may easily be generalized to other co
lent systems such as silicon, silicon carbide, or even m
d-block transition elements. Unlike potentials based up
molecular orbital ideas, the functional form does not invol
angular terms; it is based upon concepts rooted in vale
bond theory. We have shown that it is capable of stabiliz
both the diamond and graphite structures and that it has
markable predictive power for small carbon clusters. It
computationally very efficient for high-symmetry, nonfru
trated systems. We have suggested a way forward for m
complex systems such as liquids and fullerene systems
five and seven member rings. We emphasize that even
the low symmetry systems where many important io
states may be required in the Hamiltonian, the approach
scales asO(N). The ideas introduced in this final section a
the subject of ongoing work.
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