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With the aid of the Keldysh technique we develop a path-integral formalism which allows us to nonpertur-
batively study the quantum dynamics of electrons in a disordered metal in the presence of interactions. We
derive a formally exact equation of motion for the electron density matrix and demonstrate that the effect of
interaction of the electron with other electrons in a disordered metal is equivalent to that of an effective
dissipative environment. We obtain nonperturbative results for the weak localization correction to the conduc-
tancedo and show that the effective decoherence length extracted &&omemains finite down td =0 due
to electron-electron interactionsS0163-182@08)06942-3

[. INTRODUCTION derived the effective action for the case of linear Ohmic dis-
sipation. The same type of analysis was also developed by
Recent experimentattracted a great deal of attention to Schmid who formulated a quasiclassical Langevin equation
an old but fundamental question: how fast can a quantunapproach describing real time dynamics of a quantum par-
particle lose information about its initial state in the presencsdicle in the presence of dissipation and quantum noise.
of interaction? In other words, how fast can interaction de- Although the above papers are dealing with the model of
stroy the quantum phase coherence? The answer to this quesbosonic environment it is obvious that the ideasan be
tion essentially depends on the type of interaction. applied to a fermionic bath as well. This was done, e.g., by
It follows from general principles of quantum mechanics Ambegaokar, Eckern, and Satfoin the case of supercon-
that quantum coherence of the wave function cannot be deducting tunnel junctions and later by Schand one of the
stroyed due telasticinteraction with a static potential. An- present authof$ in a somewhat broader context of a metal-
other physical situation may take place if the quantum parlic system with dissipation. Although the microscopic
ticle interacts with other(quantum degrees of freedom Hamiltonian describing electrons in a mé&tlis quite dif-
which play the role of an effective environment. In this caseferent from the one used in the modehe final expressions
guantum dynamics of the particle cannot be described by thfor the influence functionals for various metallic systems and
wave function but only by the density matrix. Various ex- tunnel junctions obtained A turn out to be similar or even
amples(to be discussed belgwshow that such interactions completely equivalent to those considered in Refs. 4,5. This
may leadto a destruction of quantum coherence. equivalence is just an illustration of the property discussed
A general approach to the problem was formulated byabove: the effect of physically different environments is in-
Feynman and Verndrf who demonstrated that the effect of distinguishable provided they are described by the same in-
environment can be taken into account by means of averadluence functional.
ing over all its possible quantum states. As a result the envi- In Refs. 6—8 quantum dynamics of a certain collective
ronment variables are integrated out and quantum dynamiogariable of interes{the phasgwas considered. This variable
of the particle can be described only in terms of its ownwas extracted “from interaction,” after that electronic de-
degrees of freedom. Within this approach, interaction withgrees of freedom were integrated out and the effective action
the external environment is taken into account by means dr the phase was derived. One can also generalize this pro-
the so-callednfluence functionalvhich appears in théef-  cedure and describe quantum dynamics of superconductors
fective) action for the particle as a result of averaging overconsidering the phase as a quantum field.all these cases
the bath variables. It is quite clear that specific properties othe collective variable is intimately linked to the electronic
the environment are not important unless they explicitly enbath, quantum dynamics of the former does not exist without
ter the expression for the influence functional. In otherthe latter at all.
words, the particle does not “feel” the difference between In this paper we will analyze a somewhat different situa-
physically different bathes provided they are described byion. Namely, we will study quantum dynamics of an elec-
the same influence functional. tron propagating in a disordered metal and interacting with
These ideas were developed further by Caldeira andther electrons which play the role of an effective environ-
Leggetf who showed that the above arguments can be usedhent. It is well known that quantum interference of electrons
to describe quantum dynamics of dissipative systems anslcattered on impurities lead to quantum corrections to the
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classical Drude conductivi’!! These so-called weak- model can be solved exactly and for the reduced density
localization corrections have been extensively discussed imatrix of the particleg one obtain¥’
the literature(see, e.g., Refs. 12,13 for revigvirhe magni-
tude of these corrections is known to be determined by the p(d1,92)cexd —m(E)(q;—0,)?2], (1)
time within which electrons in a metal can be described by a
phase coherent wave function. At times exceeding this sowhere (E) is the expectation value of the particle kinetic
called decoherence timeg, quantum coherence is destroyed, energy. At high temperatures one hés)~T/2 while at
quantum interference is not anymore possible, and therefolewer temperatures this expectation value saturates and is
the classical diffusion picture is restored. determined by interactioE) = (y/27)In(w./y)>0, where
The decoherence time, or the decoherence length,  the parametery is the effective coupling strength between
=D, in a disordered metal can be determined by varioughe particle and the bath. These results do not depend on the
physical processes, such as electron-electron and electroimitial conditions and can also be obtained, e.g., by an exact
phonon interactions, electron scattering on magnetic impurigiagonalization of the initial Hamiltoniaff.Any perturbation
ties, etc.(see, e.g., Refs. 12,13t was shown by Altshuler, of the density matrix will relax to the same equilibrium form
Aronov, and Khmelnitskii* that at not very low tempera- (1) and the information about the initial phase of the particle
tures the effect of electron-electron interaction on the decowave function is lost as a result of interaction eve at0.
herence time is equivalent to that of classical Nyquist noisell these results cannot be derived within the simple Golden-
in a disordered conductor. In this case one fifid$ 7,  rule-type perturbation theory in the interaction.
«T2@-4) whered is the effective system dimension. This At this point we would like to emphasize that in the above
result demonstrates that the decoherence effect of thexample weon purposgconsider the basis of “noninteract-
electron-electron interaction becomes weaker as the tempermg” eigenstates of the system. It is obvious that the full
ture is lowered. wave function of the total system with interaction as well as
Down to which temperature does the above result remaieach of the eigenmodes obtained by an exact diagonalization
correct? Or, more generally, dokg increase with decreas- always stay coherent. However, if the behavior of the par-
ing T at all temperatures thus going to infinity 8-0? A  ticle q (and not that of the eigenmodeis of interest, the
positive answer on the latter question would mean that at reduced density matrig(q,,q,) should be studied. The de-
=0 the electron in a disordered metal can be described bgay of the off-diagonal elements @f on the length scale
the phase-coherent wave function even in the presence @f;~ 1/Jm(E) justimplies that the bath in some conventional
Coulomb interaction with other electrons. sense “measures” the particle positifhin principle the
It is sometimes believed that this answer can be obtainedff-diagonal elements of(q;.9,) (and thus the coherence
without any calculation. One can argue thafat0 in equi-  of the particleq) can be suppressed completely, (tends to
librium all quantum states below the Fermi energy are occuzero if one, e.g., chooses,— ), while the eigenmodes of
pied. Thus scattering into any of these states is forbidden dugae total system obviously remain fully coherent. Therefore,
to the Pauli principle and the electron energy cannot changehe question about the presence or absence of quantum co-
Since purely elastic processes do not destroy the coherenberence in the interacting many-body system can be dis-
of the wave function one can conclude that should di- cussed only after the physical quantity of interest is defined.
verge atT—0. An illustration for this point is provided, e.g., by the well-
Here the role of the Pauli principle is merely to provide known problem of single electrofr Cooper pairtunneling
the energy constraint. Hence, the above argument is not spi the presence of an effective environment produced by
cific for fermions and should also apply to a low-energyother electron&?'-2%|f one takes into account only the ef-
Bose particle interacting with a collection of harmonic oscil- fective charging energy of a tunnel junction and ignores the
lators. If initially all the oscillators were in theironinteract-  effect of the electronic environment one arrives at the con-
ing ground states and the particle kinetic enegwas small  clusion that aff=0 and small voltages noninteractirtgnd
E— O after the scattering process this energy cannot changeerefore fully coherentelectrons stay at each side of a tun-
and remains equal to zero because none of the oscillators cael barrier and do not tunnel. Tunneling is blocked due to
either be excited or give energy to a particle. Therefore, th&€€oulomb interaction at the junction and no current can flow
coherence of the particle wave function is preserved. Similain the system. It is well known, however, that interaction
arguments were used by the autttémsho argued against an with other electrongequivalent to the presence of an effec-
attempt®to relate the low-temperature saturationrgfto the  tive impedancg lifts the Coulomb blockade of tunneling
effect of zero-point fluctuations of impurities. even atT=0 leading to a nonzero current in the system at
The above arguments can be applied to a scattering prolany nonzero voltage. Tunneling beconiasoherentdue to
lem for which the total energy of the system is fixed to be theinteraction with the effective electronic environment. It is
sum of energies ohoninteractingparticles. In this case— also important to emphasize that this effect cannot be de-
provided the interaction is small—a standard Golden rulescribed perturbatively in the interaction, the Golden-rule-
perturbation theory is usually sufficient. It is obvious, how-type expansion in the effective impedance is insufficient and
ever, that the above physical situation does not account foyields the incorrect result in this case. The validity of the
the equilibrium properties of amteracting system. In the above theoretical picture was confirmed in experimésee,
latter case the above arguments ao¢ correct As a simple  e.g., Refs. 26,27the results of which can be interpreted as a
example one can consider a quantum partfelégh massm  direct evidence for the low temperature saturation of the ex-
and coordinatey) interacting with the Caldeira-Leggett bath pectation value of the electron ener¢f) and the effective
of oscillators (with the high-frequency cutoffw.). This  lengthLy due to interaction.
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The problem to be considered here is similar to the abovéhe quasiclassical kinetic equation and demonstrate the rela-
example in several important aspects. In both cases we at®n of our analysis to the standard kinetic approach which
dealing with interacting electrons in a disordered metal anallows us to evaluate the inelastic scattering timeWe also
therefore the Pauli principle should be explicitly accountedderive the quasiclassical Langevin equation which under cer-
for. In both cases an electron propagating in a disorderethin conditions can be used to describe propagation of elec-
metal interacts with a fluctuating electric field produced bytrons in a disordered metal. Discussion of the results is given
other electrons which play the role of an effective dissipativen Sec. VI. We also briefly compare our theoretical predic-
environment® In both cases the Golden rule perturbationtions with the experimental datsSome details of our calcu-
theory in the interaction is not sufficient for calculation of lation are presented in Appendixes.
the system conductance and a nonperturbative analysis
should be developed. This analysis is presented below. Il. DENSITY MATRIX

The paper is organ!zed as follows. In Sec. Il we make US€  We will consider a standard Hamiltonian describing elec-
of the general formalism of the Green-Keldysh functfons t : :

4 ; . rons in a disordered metal
and derive a formally exact equation of motion for the elec-
tron density matrix in the presence of Coulomb interaction. Ho=Ho+ Hint, 2
This equation explicitly accounts for the Pauli principle and
allows for a clear understanding of its role in the process o
electron-electron interaction in a metal. In Sec. Il the effec-
tive action (or the influence functionalfor the fluctuating H0=f drzp;(r)
scalar potential in a metallic conductor is derived. We also
demonstrate that in the equilibrium this influence functional 1
satisfies the fluctuation-dissipation theofrand establish Him=§f drf dr' gl (D) (1) 20 (r=1") iy (1) o (1).
the relation with the real time effective action derived in the 4)
Caldeira-Leggett modefs>®3! In Sec. IV with the aid of
these general results we will derive the real time effectivéiere u is the chemical potentialJ(r) accounts for a ran-
action for the electron propagating in a metal and determinéom potential due to nonmagnetic impurities, an(r)
the decoherence time, and the weak localization correction =1/r| represents the Coulomb interaction between elec-
to conductivity at low temperatures. Our formalism naturallytrons.
includes both electron-electron and electron-phonon interac- Let us define the generating functional for the electron
tions and allows us to establish the corresponding contribuGreen-Keldysh functions in terms of the path integral over
tions to, from each of these processes. In Sec. V we deriveéhe Grassmann fieldg and i

yvhere

V2
—ﬁ—/ﬁLU(f)}%(f), )

fpvf Dﬂ Dl,//exp(iseﬁ[l,w,vwﬂdtf dr[¢(t,r) p(t,r)+ ¥(t,r) 7* (t,r)]

.7 ]= , (5)

| ov| | Dyexstisutiuv

where S, is the effective action The electron Green-Keldysh functid® can be determined
from Eq. (5) by taking the derivatives with respect to the
source fieldsy and 7*:

Sl o0V ]= det( [ artiwenauen

R o é
_ _ G(t,r;t',r')=i — I 7, 9*1 =% =0-
_elﬂ(t,r)lﬂ(t,r)V(t,r)]—Ho[lﬂ,lﬂ] 577*(t!r) 577(': 1 ) 777] ( )
7
+ EJ dtJ er' dr'V(t,r) Making use of Eqs(5),(7) and the definition of the Green-
2)k ’ Keldysh function for an electron interacting with the fiérd
Xo Hr=rV(tr), © &yt
wherev " (r—r’)= —V?/4s. Integration over time in Eq. — — i —
(6) goes along the Keldysh contol which runs in the | DY | D p(tr) (1) expliSel 4,4, V])
forward and then in the backward time directidfisn Egs. =i — — ,
(5),(6) we performed a standard Hubbard-Stratonovich trans- j D j Dy expliSerl 0, 4,V])

formation introducing the path integral over a scalar poten-
tial field V in order to decouple the¢* interaction in Eq(4). (8)
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it is easy to prove the identity

f DV,DV, G, e IVi-Val

G= : 9
f DV]_DVZ eis[vl'VZ]
where
~ t VV 2_ VV 2
i5[V11V2]=2TrInG\71+if dt’fdr V)" (Vo)
0 8w
(10

The factor 2 in front of the trace comes from the summation
over a spin index. In Eqg9),(10) we explicitly defined the
fields V4(t) and V,(t) equal toV(t), respectively, on the
forward and backward parts on the Keldysh contdéur

AnalogouslyG andG,=G[V,,V,] are the 22 matrices in

the Keldysh space:

A ( Gu — Glz)
G= .

11
G —Gp

The matrix functionG, obeys the equation

d ~ ~ ~
I —— —Ho(ry) +eV(ty :rl)) Gy=0(t1—tp)8(ry—ry);

oty
(12
where
_v2
) ) >m —pu+U(r) O
H0=H01= _v2 X
0 W—,U,'FU(I')
Vi(t,r) 0 13
L0 vutn) (13
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and Uv(tl,tz) is the matrix evolution operator
Ot t)_(ul(tl.tz) 0 ) 16
Vit 0 Up(ty,tp) )’

which consists of the scalar evolution operators

Upolty tp) =T exp[ - ftzdt’[Ho—eVLz(t’)]}
t

1

r(ty)=r¢

= f Dr(t')
r(ty)=r;

[t ,(m'rz , )
X ex |ft1dt 7—U(r)+evlvz(t D
17

T being the time ordering operator. In E44) and below we
always imply integration over the internal coordinate vari-
ables in the product of operators, whereas integration over
time is written explicitly. For the sake of brevity we also do
not indicate the coordinate dependence in @¢) and many
subsequent expressions. This dependence can be trivially re-
stored if needed.

Note that Eq(14) is completely equivalent to the standard
representation of the Green-Keldysh matrix which elements
can be expressed in terms of retarded, advanced and
Keldysh-Green functions. The representati@d) defines a
general solution of the linear differential EGL2): the term
Uy(ty,to)Fy(t,) with an arbitrary matrix operatofy(t,)
represents a general solution of the homogeneous equation,
while the terms with¥ functions give a particular solution of

the inhomogeneous equation. The operator fundtigt,) in
Eq. (14) is fixed by the Dyson equation

~ ~ t ~ ~ ~
Gty 1) = Bolt 1) — fodt'eoul.t')eva')GV(t',t2>.

Note that the functiorGy is to some extent similar to the (18
Green-Keldysh function of an electron in an external field.

However, there exists an important difference: in our caserhe matrixG, is the electron Green-Keldysh function with-

the electron interacts with a fluctuatinguantum field V. out the field. This function is defined by Eq44)—(17) with
Formally this implies that the fieldg(t,r) on two parts of V. At,1)=0 andf,(t,) has the form

the Keldysh contour diffeV(t,r) # V,(t,r), while for the
external field one always has,(t,r)=V,(t,r).

The general solution of the E¢L2) can be expressed in
the form

po(tz)
polta))’

—po(t2)

19
1- po(t) 19

fo(tz)Z(

wherepg(t)=e Molp(0)eMo! is the electron density matrix
for V, ,=0 at a timet.
Equation(18) can be solved perturbatively V. Com-

(14) bining this solution with Eq(9) one reproduces the standard
Keldysh diagrams. This way of treating the problem is quite
complicated in general and becomes particularly nontrans-
parent in the interesting limit of low temperatures.

We will proceed differently. It is well known that the 1,2

component of the Green-Keldysh matfbiis directly related
to the exact electron density matrix

Gu(ty,t)=—i0y(ty,ty)

X[ O(ty—tp)a— O(t,—t))b+TFy(t)].
Here we defined

A_(l 0) A_(o o)
a=lo o) P=lo 1) (15)
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p(tr,r')=—=iGy(t,t;r,r'), (200  equation for the electron density matrix with the Hamiltonian
Ho. In the presence of the fieN,,, Eq. (24) exactly ac-
which contains all necessary information about the systencounts for the Pauli principle. This is obvious from our deri-
dynamics in the presence of interaction. Analogously onevation which automatically takes care about the Fermi statis-
can define the “density matrix’p,(t)=f, (t) related to the tics through the integration over the Grassmann figldmd

1,2 component of the matric}‘;\, by the equation equivalent . This is also quite clear from the form of the last two terms
to Eq. (20). Our strategy is as follows. First we will derive in the right-hand side of Eq24). In Sec. V we will demon-
the exact equation of motion for the density matpiy(t) strate that within the quantum kinetic analysis these terms
which turns out to have a very simple and transparent formare responsible for the standard in- and out-scattering terms
Already at this stage we will clarify the role of the fluctuat- in the collision integral.
ing fieldsV, , and the Pauli principle in our problem. Then  In order to understand the role of the Pauli principle let us
we will evaluate the influence functiong[V,,V,] (10) and  rewrite Eq.(24) in the form
find the density matriyp from the equation
Ipy " ev: ev:
Pt ) =(pu(t;1I )y, v, 2y i =[Ho=eVipvl=(1=pv)—5—pv=pv—(1=pv),

where the average over fieldfs andV, is defined in Eq(9). 9

Thg derl\_/atlon of the equation for the _denslty ma?nx where we defined/* = (V;+V,)/2 andV™=V,—V,. It is
py(t) is straightforward. Let us perform the time integration quite obvious from Eq(25) that the fieldV* (t,r) plays the
in the last term of Eq(18). Integrating by parts and making same role as an external field. All electrons move collec-
use of Eq.(12) after a simple algebrésee Appendix Awe  tjyely in this field. The Pauli principle does not play any role

obtain here. Below we will demonstrate that quantum fluctuations
A A A R of the fieldV™ are responsible for the low-temperature satu-
Go(t1,1)G(t,t5) — Gy(t4,00G(0t,)=0. (220 ration of the decoherence time, and the weak localization
correction to conductivity in disordered metals.
Substituting the representatiobd) into Eq.(22) we arrive at The field V™ is, on the contrary, very sensitive to the

the matrix equation which relates the matfixt), the evo-  Pauli principle. It will be shown below that this field is re-

lution operatorU,(t), and the initial density matriyo(0)  SPonsible for damping due to radiation of an electron which
defined forV, ,=0. With the aid of this equation one deter- moves in a metal. The corresponding energy losses can be
mines the 1 2 component of the matfiy(t) and thus the only due to electron transitions into lower energy states. At

density matrixpy(t). The details of this calculation are pre- T=0 in equilibrium all such states are already occgpled by
sented in Appendix A. As a result we find other electrons, therefore such processes are forbidden and

the electron energy remains unchanged due to the Pauli prin-
ciple. We will demonstrate, however, that these processes are
irrelevant for the decay of the off-diagonal elements of the
Ielectron density matrix and, therefore, the Pauli principle can
hardly affect quantum decoherence in a disordered metal
even atT=0.

[1—po(t)(ux(t,00us(0t) —1)]py(t) =po(t). (23

One can also rewrite this result in the form of the differentia
equation describing the time evolution of the density matrix:

. dpy
i~ =[Ho.pv]— (1= py)eVipy+pveVa(1-py), lIl. INFLUENCE FUNCTIONAL FOR THE FIELD

Let us now derive the expression for the influence func-
pv(0)=po(0). (24 tional (effective action S[V,,V,] for the fieldV. A formally

Equation(24) is the main result of this section. We would €xact action§V,,V,] obtained by integration over all elec-
like to emphasize that our derivation was performethout ~ tron degrees of freedom is given by Hd0). Let us expand
any approximationi.e., the resul(24) is exact It contains  this expression up to the second ordeWi,. The first-order
all information about the system dynamics hidden in the fout®rms of this expansion vanish because the Green function
components of the Green-Keldysh matrix. In the absence dB, corresponds to a zero current and zero charge-density
the fluctuating fieldv, ,=0 Eq.(24) reduces to the standard state of the system. In the second order we obtain

i 58(2): - TF(GOEVGOG% = — e2 tl’ G:|_:|_V+G:|_:|_V+ - G]_zVJer]_V+ - Gz]_V+G12V+ + G22V+622V+GllV+G11V7

1 1 1
~G1V GV + GV G1V T~ GV TGV GV GV + 3 G1V GV + 7 GV GV

1
+ ZGZZV‘GZZV‘} . (26)
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Here the subscripg for the Green functions is omitted for demonstratdsee Appendix Bthat in thermodynamic equi-
the sake of simplicity, all the Green functions here and belowibrium the kernelsy(w) and Imy(w) (Fourier transformed
in this section are defined for; ,=0. Expression(26) can  with respect to the time differendg—t,) satisfy the equa-
be simplified with the aid of the identities tion

1
G11=Gpt GR=G,+ G, G,=G;,— G =G, — G(r;7) 7(@,ry,ry)=— Ecotf( %) Im x(w,rq,r5). (33

which allow us to exclude the functiorg;; and G,, from  The latter equation is just the fluctuation-dissipation
the action(26). The terms containiny*V* are reduced to  theorent?
Finally, for a homogeneous system one can also perform

tr (GRVFGRV* + GAV* GAV ™). (28) the Fourier transformation with respectrtp-r, and find
Making use of the expressions . [ dod®k k?e(w,K)
IS[V]_,VZ]:IJ (2 )4V (—a),—k)TV+(w,k)
aa
GR=—i0(t;—ty)ug(ty,ty), GA=i6(ty—ty)ug(ty,ty),
(29 1(dod®k k? Ime( w,k)
‘zf A
and writing the trace$28) in the time-space representation, (2)
we immediately observe that the produéft,—t,)6(t, »
—1,) =0 appears under the integral, and the whole combina- Xcotk( ﬁ)V(w,k), (39

tion (28) vanishes. In other words, the tertdd$V* give no

contribution to the actioi26). The remaining terms in com- . . . .
bination with the last two terms in Eq10) describing the where e(w,k) is the dielectric susceptibility of the system.
free field action yield For a homogeneous electron gas it is given by the standard

random-phase approximatigRPA) formula:

W 'ftdt’f q (VVTVV) 5
I Vo] =1 r— e Npi—N
trE o 4 e(w,k)=1+ J dp—L P (35
2k w_§p+k+§p+|0
t t
—f dtlf dtzf dr,dr,
0 0 Equation(35) includes only the electron contribution to
- the susceptibility. In general the effect of ions should also be
X +
[Vt r) x(t b, r )V (t2, ) accounted for. Here we will describe this effect within a very
+V 7 (ty,r) p(ty,to,ry, 1)V (t5,12)], simple approximation which is, however, sufficient for our

analysis. Namely, the ion contribution to the susceptibility
will be taken in the formde;= —wgi/wz, where w,; is the
ion plasma frequency. Then the phonon spectrum is deter-
mined by the equatior(w,k)=0. In the long-wave limit
this approximation works sufficiently well for longitudinal
x(t,ta,r1,12) = =€ GR(ty,t5,r1,12)[Garlts ty,15,11) phonons which mainly interact with electrons. The effect of
transverse phonons cannot be described within this simple
TGtz 1,12, 1) ] [GaAty 12, 11.12) model. But such phonons are weakly coupled to the elecrons
+ Gyy(ty,tp,r1,12) IGA(ty,t1,12,1)}, anyway, and therefore their effect can be safely ignored. If
needed, further generalizations of this simple model can be
(3D also incorporated into our analysis.
In the relevant case of a disordered metal a standard cal-
e? culation of polarization bubbles yields
7(ty,12.11,12) = 5 [Grally 2,1.12) Gan(tz, 1,12,

(30

where

2
+Goa(ts,to,r1,12) Gt t1,r2,11) ] E(w’k):1+4—’77—0'_%. (36)
(32 —iw+Dk?® ?

Expressiong30)—(32) define the influence functional for Here o=2e?N,D is the classical Drude conductiviti{, is
the fieldV in terms of the Green-Keldysh functions for the the metallic density of states, ald=uv¢l/3 is the diffusion
(in general nonequilibriumelectron subsystem. It is easy to coefficient.
check that the above expressions satisfy the requirement of Expression(36) is valid for wave vectors smaller than the
causality: in theV~(t;)V*(t,) terms the time, is always inverse elastic mean free patks 11 and for small frequen-
larger thant, due to analytic properties of retarded and ad-ciesw=<1/7,, wherer.=I/v¢ is the elastic mean free time.
vanced Green functionf9). It is also straightforward to Note, that if one neglects the effect of phonons and considers
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only nearly uniform in spacek& 0) fluctuations of the field where the effective actioS\,x[Vl,Vz] reads
V one immediately observes that E¢34),(36) exactlycoin-
cide with the real time version of the Caldeira-Leggett

actiorf>"®in this limit. For a disordered metal this action 1Sy [V1,V2]=2TrinGy 1y,
was derived by means of the quasiclassical Eilenberger equa- ) )
tions in Refs. 7,8. Our analysisee, also Ref.)eproduces A (VV1)*—(VVy)
‘ , +i [ dt’ | dr , (38
these results and generalizes them to the case of nonuniform 0 8

fluctuations of the field/.

_ Taking into account only uniform fluctuations of the elec- ynere the subscripy+V, indicates the shift of the fields
tric field one can also derive the Caldeira-Leggett action eXy, , -V, ,+V,. Here we use the formally exact expression
pressed in terms of thelectron coordinate onlyin the o/ the effective action, the approximatid4) will be intro-
quasi-one-dimensional situation one should simply writey,ced after the expansion W, will be carried out.
down the electron action on the Keldysh contour, take into  tpe density matrixpy(t,V,) obeys Eq.(25) with V*

. . 1 V' X .
account the potential energy Ex of the electron with the _.V*+V, . Assuming the fieldv, is sufficiently small one

coordinatex(t) in the fluctuating electric fiel&(t) and add -5, jinearize the equation far (t.V.) = pu(t) + Sou(t.V
the action for the field34),(36) [with the last term in Eq. and get d LV =pult)+ Spv(t. V)

(36) being droppefl After identification E(w)=

—ikV(w,k)— —V(w)/L (L is the sample lengjhand inte- 98py

gration over the fluctuating field/, one arrives at the i—— =H1dpy—dpyHo—[eVipvl, (39)

Caldeira-Leggett action for the electron coordinz{€). In

this case the effective viscosity in the Caldeira-Leggett influwhere

ence functional is proportional to &/(in contrast to the ef-

fective viscosity for the field/ which is proportional tar).

The whole procedure is completely analogous to that dis-

cussed in details in Ref. 31 where we considered the real

time effective action for a dissipative system characterized 1

by two collective degrees of freedofthe phase and the H,=H,—eV'+ EeV*(l—ZpV). (40

charge. Integrating over the charge variable one arrives at

the Caldeira-Leggett action in the “phase-only” representa-

tion. The same can be done here if we use a formal analogy

of x(t) with the phase an¥/i » with the charggas defined t

in Ref. 3. 5pv(t)=iJ dt’Uq(t,t)[eVy,py(t’)JUs(t',t), (4D
For our present purposes it is not sufficient to restrict 0

ourselves to uniform fluctuations of the collective coordinatenere

V of the electron environment. We will see that fluctuations

with nonzerok play an important role and should be taken t

into account in the quantitative analysis. The corresponding Upoty ta)=T ex;{ —if dt’ Hl,z(t,)}- (42

effective action will be derived in the next section. However, h

the main message is clear already from the simple examplehe operator$i; , Eq. (40) are nonlocalsince they contain

considered above: in a disordered metal the effect of Couthe density matrix therefore the path-integral representation

lomb interaction of the electron with other electrons isfor the evolution operator&42) contains an additional inte-

equivalent to that of an effectivelissipative environment  gration over momentum. The operat¢4§) can be written in
with the correspondent effective viscosity governed by thehe form

Drude conductivityo.

1
Hi=Ho—eV' ~ 5 (1-2py)eV,

The formal solution of Eq(39) can be easily found:

2

Hi(p.r)= Zp—+U(r)—eV*(t,r)

IV. DECOHERENCE TIME AND CONDUCTANCE m

A. Conductance and electron effective action 1 3
_ = 5[1=2n(Ho(pr)leV (L),
In order to evaluate the system conductance we will de-

termine the single-particle density matgixin the presence

of an external electric potentidl,(r) applied to the metal.
Generalization of the results obtained in the previous sec-
tions to the cas¥,# 0 is straightforward. The density matrix

is determined by the equation

2

Hao(pr)= Zp—m+U(r)—eV+(t,r)

1
+EeV‘(t,r)[l—2n(H0(p,r))], (43
f DV, DV, py(t,V,)e N,V1:Val wheren(§) =1/exp(&/T) + 1] is the Fermi function. In de-
riving Eq. (43) from Eqg. (40) we setpy, to be an equilibrium
density matrix. We also neglected the effect of Coulomb
interaction in the expression fok,(t). This approximation is
(37)  justified as long as Coulomb interaction is sufficiently weak.

p()={pv(t,V))v, v,=
f DV, DV, e' v [V1Val
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It is consistent with the RPA approximation for the electro- e? [t
magnetic part of the actiof84). Note that the same approxi- =3 dt'J drigdria(Ve, = Vraole, -,
mation for py(t) can be used in Eq41). o
The evolution operatorgl2) acquire the form X It 0 Fop i1 oF21) (Foi—F2i) po(Tei Fai). (49)

UpAts,ta;rs,1)

- [ ey [ o

(ty)=r;

Here we have shifted the initial time tec. The functionJ
is the kernel of the operator

J=2 U[V)(VIU™,
t 3 \%
xex;{if 2dt’(pr—Hlvz(p,r))}. (44) .

ty where the sum runs over all possible states of the electro-

) , magnetic environment. This function can be expressed in
For the sake of generality we note that in the presence g5 of the path integral

interaction there exists an additiori@ihear in the field cor-
rection to the density matrix. In order to see that let us ext,t’

HETHOTHETR D)
pand the actior§38) to the first order inv,: e

frl(t)=r1fp frZ(t)erf’D f Do D

. = r r

| 95 V,] = ~ 26tr(Gyy~ G2V, (49 =y M= 2] TP

This correction to the action gives an additional contribution X<eiSO[r1,p1]—iSO[rz,pZ]+i;t,dt"[dr(f’V++f+V’)> o

to the density matrix37). Expressing the functiong,; and vive
G, in terms of the density matrix, and the evolution op- (50

eratorsu, , and combining this correction to the density ma-

trix with one defined in Eq(41) we find Here the actiory[x,p] has the form

. 2
p(t)=(Ipv)v+ v-T{Opinv+ v- (46) So[r,p]:ftldt”(pr—zp—m—U(r)), (51)

where dpy is given by Eq.(41) and opiy, has the form and the “charge densitiest ~,f ™ are defined by the equa-

t tions:
Opint= _Zipv(t)f dt’ tr(uy(t,t’)
0 f(t,r)=ed(r—rq(t))—edr—ry(t)),
X[eVy(t"),py(t")Jua(t’,1)). (47) 1
In the limit of weak interaction between electrons the aver- frtrn= >1el1=2n(py(t),ra(H))18(r—ry(t))
aging in Eq.(46) may be performed with the approximate
actionS[V,,V,] Eq. (34). +e[1—2n(py(t),r(t))]8(r—ry(t))}. (52

It is easy to observe that the second term in &®) is
small in the limit of weak interaction and vanishes com- Averaging ovelV*,V~ in Eg.(50) amounts to calculating
pletely if interaction is neglected. The weak localization cor-Gaussian path integrals with the acti@#) and can be easily
rection is described by the first term in E46) which will performed. We obtain
be only considered further below.

Making use of a standard definition of the current densityd(t,t";rq¢,ro¢ ;i ,r2i)

ry(t)=ryf ro(t)=rp¢
= Dry Dr, | Dp1Dp;
r r

1(t")=ry; 2(t") =1

j:

) ie
jtn= E[Vrlap(trl-rz)_Vrzép(tarlarZ)”rl:rZ:r1
(48) X exp{iSo[r1,P1]—iSo[r2,P2] 1Skl r1,P1,12,P2]
combining it with the above equations and assuming the ex- —S[r.ro0h (53)

ternal electric field to be constant in space and tiMgs
—Er, we arrive at the expression for the system conductancehere

e? rt t
SRlr1,P1.T2,P2]= ?Jt,dtljt,dtz{R[tl_tZarl(tl)_ r1(t2) I11=2n(pa(t2),r1(t2)) 1= Rty —t,rp(ty) —ra(ty) ]

X[1—=2n(py(tp),ro(t2))]+ Rty —to,ry(ty) —ro(tx) 11— 2n(pa(ty),ro(t2))]
—R[ty—t5,rp(ty) —ry(ta) [1—2n(pa(to),r1(t2))1}, (54
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and an(p)
op =—Ved(§),

e2 rt t
Sr,r=—fdtfdt|t—t,rt—rt .
e 2)v e Al ~ 2,1t =1i(to)] and arrives at the standard residt., e.g., Ref. 13

1=ty aty) — ra(ty)] 2e°No f "t (vovie)) (60
o= 3 . V(L)V .

=1ty —ty,ry(ty) —ra(ty)]
B. Weak localization correction and decoherence time

—I[ty—tp,ry(ty) —ry(ta) I} (59 , ,
Let us analyze the structure of the functidiicq. (53) in
At the scaledr|=| the functionsR and| are defined by the the same spirit as it has been done in Ref. 13. In the zero-
equations order approximation one can neglect the ter§sand S
describing the effect of Coulomb interaction. Then in the
quasiclassical limitpgl>1 the path integral Eq(53) is

R(t r):f dod’k 47 e iwttike (56) dominated by the saddle-point trajectories for the acBgn
’ (2m)* K2€e(w,K) ' which are just classical paths determined by the Hamilton
equations
(L) fdwdgkl AT t)'( "’) . Mo(pr) . dHo(pD)
= m coth s=|e™'? . : Nt . N
2m)* | Ke(w,k) 2T p=— 2P0 . HoRD (61)

If necessary, more general expressionsRoand | for the
whole ranggr|= 1/pg can be derived. We will avoid doing

this here because the approximatié) is already sufficient tion Sy[r,.p,]. Substituting these saddle-point trajectories

for our present purposes. . ) . .
Note that the expression in the exponent of Exf) de- ![r;]t:mEgr.]éSf:i%?];Snd integrating out small fluctuations around

fines the real time effective action of the electron propagat-
ing in a disordered metal and interacting with other elec-

trons. The first two terms represent the electron acipEg. , . , ,

(51) on two branches of the Keldysh contour while the lastd(Lt i F1fs 21 3 Fai 'r2i)=r2 ArlrE Ar, eXHISo(t,5r5,i)
two terms Sz and S, determine the influence functional ' 2

which comes from the effective electréand/or phonohen- . .

vironment. As can be seen from E¢§54)—(57) this influence ~iSo(t,t5rar,r2i) ], (62)
functional is not identical to one derived in the Caldeira-

Leggett model. However, on a qualitative level the similaritywhere the action$y(t,t’;ry »,r; ;) are taken on the classi-
is obvious: in both models the influence functionals describeal pathsr; f(t) and
the effect of a certain effectivaissipativeenvironment.

Let us now analyze expressiéfh9) and establish connec- 3 >
tion with other conductivity calculations. It is convenient to \/ | de( 9°So(r 1r1i))
introduce the Wigner functionn(p,r)=/dr e " p(r " aryedry )|
+r-/2r—r"/2) instead of the density matrix. For homoge-
neous systems it does not depend @ scales exceeding the The valueA
mean free path. With this in mind we obtain

with obvious boundary conditions(t')=ry;, r(t)=rq for
the actionSy[rq,p;] andry(t’)=ry, ryo(t)=ry for the ac-

(63

r, Is defined analogously.

Since in a random potentid (r) there is in general no

262 [t dp . an(p) correlation be_tween differ_ent _classical pathét) andr,(t)
o=— —f dt’f pW(t,t')——, (58)  these paths give no contribution to the double 468): the
3mJ (2m)® ap difference of two actions in the exponent of H§2) may
have an arbitrary value and the result averages out after sum-
mation. Thus only the paths for whichSy[rq,p;]
=Sy[r,,p2] provide a nonvanishing contribution to E§2).
Two different classes of such paths can be distinguisbee,
e.g., Ref. 1}

(i) The two classical paths are almost the samét”)
=r,(t"), pi(t")=p(t") [see Fig. 18)]. For such pairs we
The kernel of this operator and that dEq. (53) are related obviously haveryj=r,; andri;=r,;. In other words, in the
by means of the Fourier transformation with respect topath integral(53) one integrates only over trajectories with
Fi.1¢— f2i 2t - IN equilibrium one has(p)=1Mexp ET)+1], [ri(t")—ry(t")|=1/pe. Physically this corresponds to the
and therefore, at small one finds picture of electrons propagating as nearly classical particles

whereW(t,t") is the evolution operator for the Wigner func-
tion:

n(t,x,p)=\7V(t,t’)n(t’,x,p). (59
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FIG. 1. Different quasiclassical trajectories:
a b (& ry andr, are close to each othefb) time-
reversed pathg(c) time-reversed paths returning
to the vicinity of the initial point, these paths de-
termine the weak localization correction to the

conductivity.
i ry
Iy ry
c
which can be described by the diagonal elements of the den- ( J3e?
sity matrix only. In the diffusive limit these paths give rise to — d=3,
diffusons (see, e.g., Ref. 32and yield the standard Drude 214
conductance. e? r
(i) The pairs of time reversed paths. In this case doy= ——2|n<—‘*’>, d=2 (65)

=Ty, I13=ry [Fig. 1(b)]. In the path integra(53) the tra- 2m Te
jectoriesr, andr, are related as,(t")=rq(t+t'—t") and e2
p,(t")=—p,(t+t'—t"). In other words, in Eq(53) one in- T Dr,, d=1.
tegrates over paths with,(t”) —r(t+t’' —t")| < 1/pg, how- \

ever, the differencér,(t”) —r,(t")| may be arbitrarily large

in this case. In a disordered metal these paths essentiallyere and belowry=ca® ? is the Drude conductance of a
determine the dynamics of off-diagonal elements of the elecd-dimensional sample.

tron density matrix. They correspond to Cooperons and give To evaluater, we first note that the functiorR andl Eq.
rise to the weak localization correction to the conductivity.(57) change slowly at distances of the order of the Fermi

This correction is defined by the following equatibi®? wavelength 18-. Therefore, we may setr(t")
=r(t"), ro(t")=r(t")=r(t+t'—t"). Herer(t") is a classi-
2 cal trajectory with the initial point(t’)=0 (its position can

22D (= 2e
So=— f dtW(t)=—

= th_Tedt’W(t—t’). be chosen arbitrarilyand the final pointr(t)|=<I [Fig. 1(c)].

In other words, we consider trajectories which return to the
(64)  vicinity of the initial point. Then the return probability(t)

can be written in the form
Here we changed the parameter of integration in order to
make the relation with the Eq49) more transparent. The
quantityW(t) represents the effective probability for the dif-
fusive path to return to the same point after the timBlote
thatW(t) contains the contribution from time-reversed paths
and therefore differs from a classical probability. However,where the average is taken over all diffusive paths returning
in the absence of any kind of interaction which breaks theo the initial point. The average in E¢6) decays exponen-
time-reversal symmetry this value coincides with the classitially in time, therefore, we may defing, as follows:
cal return probability and is given by the formul&/y(t)
=(47wDt) 922~ C~9) whered is the system dimension and

V\/(t_t/)zv\lo(t_t/)<e—iSR[t,t’;r,p;rt ,pt]—S|[t,t’;r,rt]>r ’
(66)

a is the transverse sample sigbe film thickness fod=2  © e O

and the square root of the wire cross sectionderl). ~ e ISRIL P Pl =S nrD (/) oo
The weak localization correctiof64) diverges ford<2. ' ’

This divergence can be cured by introducing the upper limit (67)

cutoff for the integrak64) at a certain timer,,. This time is

usually referred to as decoherence time. As we have alreadyhere the average is again taken over all classical paths re-
discussed, in a disordered metal the timds determined by  turning to the same point at the tinte

electron-electron, electron-phonon, and other types of inter- Let us consider the terr8z Eq. (54). Making use of the
action which may destroy quantum coherence. From&). obvious relation®R(t,—r)=R(t,r), n(—p,r)=n(p,r) after

one find413 a trivial algebra we get
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e? rt t
Seltt';r,pire,p]= Eﬁ,dtljt,dtZ{ZR[tl_tZvr(tl)_r(tz)][n(p(tl)vr(tl))_ n(p(tz),r(tz))]

+R[t;+t,—t—t'r(t)) —r(ty)]J[1—2n(p(ty),r(ty)) ] — R[t;+to—t—t' r(t+t' —ty) —r(t+t' —t,)]
X[1-2n(p(t+t' —t,),r(t+t' —t,))]}. (68)

It is clear that the difference of the occupation numbers Herec= w,(D/4m0) V2s the speed of sound in our system.
in the first term of Eq(68) vanish:n depends only on the Possible corrections to E¢72) may become important only
energy and not on time because the energy is conserved special cases of one-dimensioitaD) and (2D) semicon-
along the classical patt61). Thus the first term in the inte- ductor systems, where the capacitance may become impor-
gral (68) is identically zero already before averaging overtant. We will come back to this point later.
diffusive paths. The difference of two other terms vanishes Expression(72) can be significantly simplified foc/D
after averaging over such paths. It can be easily seen if week=<1/. In this limit we obtain
again bear in mind that the occupation numbers do not de-
pend on time and make use of the fact that the average -1 -1
(R[ts,r(t;) —r(t,)1), is a function of the timet; and the Mok ™ e(wk)
absolute value of the time differen¢g —t,|. This implies
that after averaging the two last terms in E68) are equal where
and cancel each other exactly. As a result the whole func-
tional Sg does not give any contribution to7/. -1 o
The same analysis can be appliedSjo We find Im T Ano’ (74)

+1m
ee

L ) 73
e(w,k) eph' (73

and

e? rt t
S|[t,tl;r;rt]: ?J‘t/dtlﬁldtz{ZI[tl_tz,r(tl)_r(tz)]

, -1 Dck3
—I[ty+t,—t—=t'r(ty) —r(ty)] Im(e(w k)) [5(w ck)—d(w+ck)]. (75

—I[ty+t,—t—t" r(t+t' —t;)
Phonons with small wave vectork=c/D are strongly

—r(t+t' —ty)]}. (69  damped. For suck we may set Im¢1/e(w,k))ep=0.

Averaging over diffusive paths(t) and taking the limitt
—t'— 4+, we observe that, is determined by the first C. Results
term under the integral, the other terms grow slower in time  ith the aid of the above results we can now calculate the
and therefore are irrelevant. Thus we get decoherence time,. Let us first take into account only

1 o electron-electron contribution t©and obtain the result for a

_ZEZJ dt(1[t,r(t)—r(0)]),. (70) quasi-one-dimensional system with<I|. Substituting Eg.

Te — (74) into Eq. (71 and integrating over time and the wave

ector we arrive at the integral overwhich diverges at both
ow and high frequencies. The low-frequency divergence is
cured in a standard manriéby neglecting the effect of en-

To find the average over the diffusive paths, we introduce th
Fourier transform of the functioni(t,r) and replace

—ik(r(t)—r(t")) —DK?[t—t'| ;
(e ) by e - Then we obtain vironmental fluctuations with frequencies belowrl/ At
dodk high frequencies the integral should be cut at the scale of the
f f @ order of the inverse transport time because at highé¢he
T approximation of electron diffusion becomes incorrect. Then
(27)9+2 imati f el diffusion b i Th
we obtain
—47 w . 2
- | a—iwt—DKAt]
m ( sz(w,k)>cow< ZT)e - 1 e*2D (v dw coth(w/zT) -
As it was already discussed, E.1) includes the effect of ‘P(T) Yry Vo
both electron-electron and electron-phonon interactions. . :
: . ; Equation(76) yields
To evaluater,, we use expressiof86) for the dielectric g 78y
susceptibility. For typical metallic systems one can usually
neglect the first term in the expression fdw,k) Eq. (36). —\ / [ZT‘/Te +1]. (77)
Then we find o
1 e _ 42/ D2 At sufficiently high temperature the first term dominates and
Im( _ )= @ [1+ Ck—Co _ the standard resdft ,~ (o, /€°D¥?T)#3is recovered. This
e(w,k)|  4mo| T (02— c?k?)2+ctw?/D? is a classical contribution te, . As T is lowered the number

(720  of classical(low frequency modes decreases and eventually
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vanishes in the limiT—0. At T<T(1) 1/\r,7. expression into Eq. (71) and applying the same cutoff procedure after a
(77) is dominated by the second term anpsaturates at the simple integration one obtains

value
2
T~ o l€%vE. (78 i_ e’c In UF + eD T 1D
7PN 42, 3c)  4moic '
The estimate for the crossover temperatmg@ is obvious #
from Eqs.(77),(798):
B ! °C 4 ¢ Tin| min{ 25, 2T 2D
~ N — = n{min{ —,— |, ,
Tq ~eve/2yoyl. (79 " 87loveT,  ATo, 3¢’ ¢?
Making use of Eqs(65),(78) it is also easy to find the weak (82
localization correctionSo; to the Drude conductance in the
limit T=0. ForT=<T{" we obtain 1 e2c o2 Tl
o= T 23T 3 Tmini 1,—¢, 3D.
5oy e? 1 7o 16mioveTe AmoUETe c
e DT¢~——1/2, (80)
01 mo 1 pFS

Comparing these expressions with the above results-for

i.e., o1~ — o 1 Ngn, whereNg,~ p2s is the effective num-  We find 7577 e ¢c/ye<1. Obviously this estimate will not

ber of conducting channels in a 1D mesoscopic system. hold for systems where the effective high-frequency cutoff

For 2D and 3D systems the same analysis yields we in Eq. (76) should be chosen smaller thanrd/ The
temperature-dependent term in the expression for the inverse
1 e? dephasing time due to phonons obtained within our simple

™ 477027,e[1+ 2T7In(T7,)], 2D, model is of the same order as the corresponding electro-
electron term in 1D and 2D, and can be bigger in 3D at not

1 2 very low temperatures.

—=—————[1+6(T7)%3, 3D. (81) The above results in 1D and 2D are valid if the number of

To 37720\/575/2 conducting channelll, in the system is sufficiently big. In

typical metallic systems this condition is usually well satis-
fied. However, in semiconductors one can, in principle,
achieve the situation witN,=<10. In this case the first term

in the expression foe Eq. (36) cannot be neglected in gen-
eral. Moreover for 1D and 2D samples with smhll;, the
energy of the electromagnetic field outside the sample may
also give a substantial contribution. In order to account for
this effect we introduce the effective capacitance of the sys-
tem C. Then the influence functional for the fie\dhas the
form (see, also, Ref.)9

We would like to emphasize that the validity of the high-
frequency cutoff procedure .~ 1/7. in Eq. (76) and the re-
sults (77)—(81) derived on its basis is essentially linked to
the assumption that a simple approximati@d) holds up to
frequencies of order 1/. This assumption may not be jus-
tified for relatively strongly disordered metals with smal|,
in which case the effective high-frequency cuteff in Eq.
(76) and the corresponding results should be modified ac
cordingly.

Note that in the 2D case we again assuraed . Provided
this condition is satisfied, the above results for 1D and 2D
systems are valid for the whole temperature range. At suff|- [ dwd¥
ciently high temperatures this condition can be softened be>c 'f (2m)d+1
cause in this case, is determined by the low-frequency

K[ e(w,k)—1]

V(—w,—k)[C(w,k)—i—
4

fluctuations of the environment. Then the system can be con- dwd3k

sidered as a quasi-1@uasi-2D one if its transversal dimen- XV (w,k)— —f 7V (—w,—k)

sion is smaller that the corresponding phase breaking length (2m)

a<L,~yDr7, However, at low temperatures high- k21m e(w,K)

frequency modes become important and the situation X T I—(ZT)V (w,k), (83

changes. E.g., in the lim#>| the diffusion process has two
(and sometimes even thpestages: at short time§.e., at
frequencies higher tha®/a?) diffusion is obviously 3D,
whereas for longer times it can be 1D or 2D.

For a>L, the system is obviously 3D at all. In the
intermediate case<a<L,, one should use the correspond-
ing 1D or 2D formulas forr at high temperaturegsT(?

where C(w,k)=[1+ e5(w)]/4In(Lka) for a 1D wire and
C(w,k)=[1+ e4(w)]k/87 for a 2D film. Here e5(w) is the
dielectric susceptibility of the substrate. The Fourier trans-
form of the functionl (t,r) takes the form

and the 3D resul(81) in the Tow- -temperature limiT<T{J . Lo k= {IVicol®)

The crossover temperatur'éq) can be determined elther o coth( w/2T)

directly from the integral71) or just by comparison of the = > 5 5 5
corresponding  expressions  forr,. We get T{? [@C(w,K)]Togk+0oqq 1+ C(w,k)D/oy]
~TO(a/ml)® 9 (84)

Now let us analyze the effect of the electron-phonon in-
teraction on the decoherence timg. Substituting Eq(75) Substituting this expression into E.0) we get for 1D wire
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1 e2\2D [V dw cOth »/2T) thg equati_on for the.density_ matrix, Eqg. (2_5). ngriting _
= f T this equation in the “interaction representation,” i.e., substi-
7T o1 Jur, 27 o[ 1+2f(w)] tuting py— e~ Motp,e™Mot we find
w1 f) ) (85)
1+f(w))’ dpy or .-
i——=—eV ()py+pyeV' (1)
wheref(w)=[1+ e5(w)]D/4c; In(1/kya) and the valukya ot
is roughly of order one. We estimate e
5 [A=pV (Opy+ oV (O(1=py)],
f(w)~1+Es(w)~[1+fs(w)]pFrB (86
e’Ngs Neh ' (87

whererg=1/me?=0.5 A is the Bohr radius. For metallic A _ _
wires perg~1, Ng>1 and the functionf(w) is usually ~ WhereV=(t)=e'"o'v=(t)e~""o". Let us integrate this equa-
small unlesse,(w)>1 at frequencies of the order of 7/. tion over time, then substitute the resulting expressiomp{or
However, for semiconductof§w) may be large and, may into the right-hand side of Eq87) and average ovev ™. If
become significantly longer than one could expect from Eqthe Coulomb interaction is sufficiently weak one can proceed
(77). perturbatively inV and neglect the dependence of the density
The same analysis can be carried out for 2D films. In thignatrix py on this field in the right-hand side of the resulting
case the effect of capacitance is described by the function equation. Then the result of averaging can be expressed in
terms of the correlation functiod®/V). More precisely, two

: B [1+e(w)]VDow [1+ew)]VoToyg such functions turn out to be important:
2((1)) B 8’770'2 p,:la ’
Again one can conclude that this effect is typically negligible (VF(t,r)VT (to,r))=1(t1—ty,r1—ry),

for metallic films. For semiconductors with small, the
above effect might cause an increasergf
(VT (t1,r)V (tp,1)) =iR(t;—tp,r;—ry). (88)
V. QUANTUM KINETIC APPROACH AND LANGEVIN

EQUATION The function(V*(ty,r;)V~(t,,r,)) differs from zero only

Let us now demonstrate how the usual quantum kinetidor t;>t,. The correlation functiofV"V~) is zero for all
description can be derived from our analysis. We start frontimes. Taking this into account we obtain

t ~ ~ ~ ~ ~ ~ ~ ~
—=e2fmdt’< —VEOVT(E)p(t)+VI(O)p(t )V () + V() p(t)V (D) —pt )V (VT (D)
1. A 1. A 1 A
— 5V (O[L=p(t) IV (t)p(t") = VT (Op(t)V " ()[1=p(t)]+ 5[1=p(t) IV (1)t )V (D)

1 A
+§p(t’)V(t’)[l—p(t’)]V*(t)> , (89
\YAmA Vo

where p(t) =py-o(t). Let us replacep(t’) by p(t) under the integral. This is the standard way of derivation of a kinetic
equation, which is often referred to as the first Bloch approximation. It is fully equivalent to the approach based on the Fermi
golden rule. We would like to emphasize that this method is not applicable at very low temperatures, in which case one cannot
neglect the dependence pft) onV*,V~ in Eq. (89).

For simplicity let us consider a clean metal. Making use of the momentum conservation one can significantly simplify Eq.
(89). In this case the density matrix is given pyr; —r,) = [[d3p/(27)3]n,e'P"1~"2). The operatoe™ o' reduces te~'%".
Performing the averaging with the aid of E¢88),(56),(57) we find

dn, ¢€° . w
W:?f dwd®k Im 2 cot >T (Np—k=Np) —Np(L—Np_ ) =Ny (1—np)|. (90

1
0 (ot &= &p)

elw,

The right-hand side of this equation represents the standard collision integral which vanishes in equilibrium, ng., for

=1exp&/T)+1].
Equation(90) can be also rewritten in the following form:
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dn +oe
" f dwf d3klm

+ 5(w+gp_gpfk)(l'*'Nw)npfk(l_np)_ 5(‘”"’gp_fpfk)anp(l_npfk)}i (9D

where N,=1[exp(/T)—1] is the Bose function. This equation describes the standard photon absorption and emission
processes and thus establishes a transparent relation between our approach and one describing the kinetics of an electro
interacting with the quantized electromagnetic field. In our case the Viégtddue to fluctuations of conducting electrofos
lattice ions—see below It is quite clear, however, that the physical nature of this field is not important for the electron
dynamics, at least as long as this Bose field remains in equilibrium.

It is important to emphasize that the effect of electron-phonon interaction is also taken into accour(®it).Eche phonon
spectrum is determined by the equatidia,k) =0, i.e., the function- 1/e(w,k) has a pole ai= wp,(k) —i0. Therefore, one
can write

){5((‘)+§p k— gp)N Np— kK(1- np) 5((1)+§p k™ gp)(l"_Nw)n (1- Np— k)

= A(K) ( 1
0k e—ox+io] T M™awk

where other contributions te~ ! are denoted by dots. The vald¢k) determines the strength of electron-phonon interaction.
Within the simple mode(75) one hasA(k) =Dck®/80=ck®/16e*N,

Substituting expressiof®2) into Eq. (91) and integrating oveiw we reproduce the standard electron-phonon collision
integral:

):A(k)‘s[w_wph(k)]+"'v (92

2¢2 [ AK)
'ephz?f d k?‘{‘s(‘”ph(k)+§pfk_§p)prh<k)”p*k(1_”p)_quh(k)JrfP*k_fp](lJrN‘”ph<k))np(l_np’k)

+ 5[wph(k) + gp_ fpfk](ldl' prh(k))npfk(l_ np) - 5[wph(k) + gp_ gpfk]prh(k)np(l_ npfk)}- (93

This result demostrates that the functiefw,k) correctly  at the electron-electron collision integral for the degenerate
describes both electron-phonon and electron-electron interaplasma:

tions. It is not surprising, because this function just accounts

for the collective effect of the environment. Electrons propa- d%k  dp’ /47762 2 8

gating in a metal “feel” only the fluctuating electric field Iee—f 3 3 5 5

produced by the environment, both by electrons and lattice (2m)° (2m) \ k | €(&p+k— &p. K]

ions. Therefore it is quite natural that both contributions can XSyt L ) 1-n.,
be successfully treated within the same approach. (Epr it Epic™ &pr = )My ip— (1 Npr)
Equations (90)—(93) are applicable if the distribution X(1—=ngp)—npNp(1—ny ) (1—np_ ) ]. (95

functionsn, andN,, are close to the equilibrium Fermi and

Bose functions. It is not difficult to generalize this approachThus, the kinetic equation can be written in a standard form:
for stronger deviations from equilibrium. Actually the

electron-phonon collision integr&®3) remains the same in dn,

this case, only the distribution functidi, can deviate far ar et lees (96)
from the Bose function. In order to generalize the electron-

electron collision |ntegra| we make use of the fO”OW|ng non- where the collision |ntegra|%ph and|ee are deﬂned respec-

equ|l|br|um formulas: t|ve|y by Eqs (93) and (95)
In order to estimate the characteristic electron scattering
-1 e? s time we have to substitute the functiop+ on, instead of
Im Wk~ <] " |zf piw—E&prkt§p) n, in the collision integral90). The inverse inelastic scat-
’ 7k (@ .k) tering time 1#; is then defined as a coefficient in front of the
X (Npsk—Np), term on, desr_:ribin_g deyiations from equilibrium. Making
use of an obvious identity 22n,,_, = tant (£,—w)/2T] we
get
(VY= —k4| T | @onya-ny
—_—= dwd3k|m(— Now+é&,_— &)
+Np(1=Npe)]18(0—Epict &), (99) T.(p) J k2e( w,K) Prie oP

which can be easily derived from Eq85) and(B6), respec-
tively. Substituting these expressions into E20) we arrive

&p
COthﬁ + tanhT) (97)
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It is clear from this equation that the timebecomes infinite  quasiclassical description of electron dynamics also at scales
at zero temperature and at the Fermi energy due to the Paufil. However, such details are not important for us here, Eq.
principle. The same is true for the inelastic scattering timg98) is presented merely to illustrate important physical ef-
due to electron-phonon interaction. fects.

The above kinetic equations were derived for the simple Equation(98) obviously satisfies the requirement of cau-
case of a clean system and do not account for the effect afality and captures all the essential features of electron dy-
elastic scattering. In the case of a disordered metal the elecamics in a metal. E.g., it demonstrates that electrons in a
tron momentum is not conserved and the whole derivationmetal cannot infinitely decrease their energy: effective damp-
becomes much more complicated. One can demongteée  ing due to the presence of the environmigtgscribed by the
e.g., Ref. 12that in the diffusive limit the result is roughly last term in the left-hand side of E(8)] is zero at the Fermi
equivalent to a substitution energy 6=1/2) and becomes negative below this energy.
Thus electrons with the initial energy aboyewill lose it
before they reach the Fermi level. On the contrary, holes
with the initial energy belowu will be pushed up to the
Fermi surface. This simple example demonstrates again that
our analysis accounts explicitly for the Pauli principle. The
in expressior{97). An extended analysis of the inelastic scat- corresponding information is contained in the influence func-
tering time in various limits is given in Ref. 33. tional which depends on the occupation numbers.

As it was already discussed, the analysis presented in this The damping term in Eq(98) depends on the function
section is essentially equivalent to the Golden rule perturbaR(t,r) which is determined by the correlation function
tion theory in the interaction. At low temperatures this per-(V"V~) [see Eq(88)]. The physical origin of this damping
turbation theory becomes insufficient. One can also formuterm is quite transparent: the electr@r the hol@ propagat-
late an alternative approach and derive the quasiclassicilg in a metal produces the screened electric potential due to
Langevin equations describing electron dynamics in ahe presence of other electrons and “feels” this potential
weakly disordered metal at all temperatures. In doing so, wéself. In this sense Eq(98) is similar to the equation of
follow the same procedure as the one described in Refgnotion of a high-energy particle.g., muonin a metal. The
5,6,31. important difference between these two cases, however, lies

Consider only close electron paths for which the valuesn the factor 1-2n which is present in our case due to the
r—=r,—r, andp =p;—p, are small. Then we can expand Pauli principle. Formally this factor enters due to fluctuations
the effective action in the exponent of E&3) in powers of  of the fieldV™ which is “sensitive” to the Pauli principle.
r~ andp~ keeping only the quadratic terms. The action be-The fluctuating electric field in the right-hand side of Eq.
comes Gaussian in terms of these variables and the integréd8) is, on the contrary, not affected by the Pauli principle
(53 is dominated by the saddle-point trajectori@s/sp~  because its correlation function depends only on the field
=0 and 8S/8r~=0. The first equation coincides with one V*.
without dissipationr = p/m. With the aid of this equation the  With the aid of Eq(98) it is also easy to understand why

iw-+Dk?

5(w+gpk—gp)HRe{

momentum can be easily excluded and we get the real part of the influence functiong Eq. (54) does not
contribute to the decoherence time. According to (@8) the
mF+ VU (r)+ e[ 1—2n(r,mr)] phase difference acquired by the electron propagating along

some classical path can be split into two parts: the regular
. contribution due to dampingSg) which depends only on the
xf dt’'V,R[t—t’,r(t)—r(t')]= —eE(t,r). electron trajectory, and irregular part due to noiSg (Con-
o sidering now the contribution from a pair of time-reversed
paths, we observe that the regular contributions are the same
(99 and cancel each other because they enter with a different
Here E(t,r) is a fluctuating electric field. Equilibrium fluc- sign. iny irregular cor?trlbuk;uo;]]s due Ito NOISE Survive and
tuations of this field are described by the correlator ﬂeterm|n¢7¢. For each pat t e regular contribution may
ave a different value depending on the path and energy and
even vanist{for energies at the Fermi leyeHowever, by no
(Ei(ty,r)Ej(ta,rp)) means does this affect the noise terms and thuswhich
always remains finite.

dwd3k —coth(w/2T)
= 47T5|J f

m
(2m)* e(w,Kk)
VI. DISCUSSION

X etttk =), (99 With the aid of the Keldysh technique we developed a
path-integral formalism which allows us to study quantum
If needed, the generalization of Eq88), (99) to a strongly  dynamics of electrons in a disordered metal in the presence
nonequilibrium situation can be also provided. Also moreof interactions. Our formalism allows us to proceed beyond
general expressions for the keri¥lt,r,,r,) and for the cor-  the perturbation theory in the interaction and obtain nonper-
relation function(99) for the casdr,—r,|<I can be derived. turbative results for the weak localization correction to the
Combining these expressions with E§8) one can obtain a conductivity of a disordered metal at low temperatures. Our
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treatment was carried out with no more assumptions than thacting with the Caldeira-Leggett bath of oscillators. The off-
usual ones in the weak localization theory: the elastic meadiagonal elements of the density matrix of such a particle
free path was considered large as compared to the Ferraiways decay on a finite lengthy~ 1m(E) which is set by
wavelengthpel >1 and interactions were assumed to be sufinteraction. Hence, even at=0 the interference between
ficiently weak. different Feynman paths is suppressed at a typical sealg
Our analysis consists of the two main steps. (see, e.g., Ref. 34Because of the energy exchange with the
(1) The first step is to reformulate the initial many-body path of oscillators the particle kinetic energy is distributed as
problem with the interaction in terms of a single quantumW(E)meXp(_E/%E)) with a nonzero expectation valge)
particle interacting with an effective quantum environment.,, 1. h does not depend on temperature at sufficiently Tow

Wwe derived a formglly exact equation of motion for.the The value(E) depends on the interaction strength and the
single electron density matrixin the presence of interaction bath high-frequency cutoffs,. The latter dependence has

[Eqs.(24-25 for pyl. The .matf'xf’ Is obtained after.averag- nothing to do with the excitation of the bath oscillators, it
ing of py, over the fluctuating field¥.. [Eq. (21)] carried out . . . )
with the (again formally exagteffective action§[V, ,V_] persists even {E) is evaluated in ther_ue grgund §tate)f
Eq. (10) derived by integrating out electronic degrees of free-the |'nteract|ng system. A more deta}lled discussion of .the
dom. No approximations have been made at this stage. relation of our results t.o ones obta'med for the Caldeira-
Although the exact expression f8fV, ,V_] is too com- Leggett-type of modelg is presented in Ref. 35. ,
plicated to deal with, some important observations can be ©On€ can also provide an example of a physical system
made already before making approximations. Namely, thavhere the interaction induced low-temperature saturation of
fluctuating fieldV, enters the equations just like an externalthe parametercéE) andL 4 as well as the dependence of these
field whereas the fiel®/ _ enters in a qualitatively different Pparameters on the high-frequency cuteff of the effective
manner. Fluctuations of the fieM, are essentially respon- bath can be(and have begndirectly measured in experi-
sible for dephasing. ments. This is the well-known problem of single electron and
In order to proceed further we make the first approxima-Cooper pair tunneling in mesoscopic tunnel junctions in the
tion: we evaluate the effective acti® V. ,V_] within the  presence of interaction with other electrons. The effect of
RPA. As a result the actioB becomes quadratic iM.. and  this interaction is equivalent to that of a dissipative environ-
contains the dielectric susceptibilig(w,k) of the effective  ment and was intensively studied in the literattif&2° In-
environment. After that we easily integrate out the fiélls  teraction with the electronic environment destroys the quan-
and arrive at the influence functionglfor interacting elec- tum coherence, lifts the Coulomb blockade, and is
trons in a disordered metal. This completes the first part ofesponsible fomcoherentelectron tunneling across the junc-
our analysis. We can add that this approach can be also us@édn down toT=0.
in_physical situations in which approximations other than  pegpite clear differences this problem is similar in many
RPA are more appropriate. In such cases the actiopegpects(both physically and formallyto the one studied
SV, .V_] and the influence functional should be modified here |n hoth cases the conductance of a disordered metallic
accordingly. _— . system in the presence of the electron-electron interaction is
(2) As a result of our derivation we arrived at the prOblemstudied and the Pauli principle should be accounted for. In

of a quantum partic;le in a fa”do”.‘ potential if‘ the PrESENCEih cases one can map the problem to that of one electron
of the effective environment described by the influence func-

tional F. The Fermi statistics and the Pauli principle are ex-g]tﬁ::ﬁit(l:nsgiSwét:tea:n?il:gg%t'ngugfuaar:itsrrg gf'g'fr% ’rk()elg\cl::g:s In
plicitly accounted for in the expression fér. The kinetic y y '

energy of a particléE is counted from the Fermi energy both cases the physical quantity of interest is expressed in

and the states witE<0 are forbidden. The second step of terms of the cqrrelation function for this field and cannot pe
our analysis is to investigate the quantum dynamics of such 8°ectly described by means of the Golden rule perturbation
particle and to calculate the conductivity of the system theory in the interaction. Althoygh thg expressions for the
The latter quantity is defined by EG9) where the kernel correlator(VV) are somewhat d|ff¢rent in the two problems,
is expressed in terms of the path integ#8) which includes ~ atT—0 they both saturate to a finite value determined by the
the influence functionaF. This integral is evaluated within interaction and the high-frequency cuteit of the effective
the saddle-point approximation which is applicable in theelectronic environment. In the case of single charge tunnel-
quasiclassical limipgl>1. This procedure yields the weak ing the low-temperature saturation of the paramétewas
localization correction to the conductivity which saturates indirectly measured in various experiments, see, e.g., Refs.
the low-temperature limit due to the effect of interactions.26,27. We believe the low-temperature saturation of the de-
This implies a low-temperature saturation of the parametersoherence lengtih, detected in Ref. 1 and other experi-
7, and L, extracted from the measurements of the systenments has exactly the same physical nature: it is caused by
magnetoconductance. the electron-electron interaction.

We would like to emphasize that saturation of the param- Finally, we briefly discuss the agreement between our re-
eterL, at T—0 at a finite value determined by the interac- sults and the experimental datésee, also, Ref. 28 The
tion obviously should notbe interpreted as the absence of comparison between theoretical and experimental values for
coherent eigenmodes in the interacting system. However, ththe decoherence length,= D7, at zero temperature is
presence of such modes does not yet imply that the physicagliven in Table I. To calculate , we first estimate the deco-
measurables should necessarily demonstrate the coherent lbence time with the aid of Eq77). At T=0 the timer, can
havior. An example is provided by a quantum particle inter-be conveniently expressed in terms of measurable quantities:
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TABLE I. Theoretical values of the coherence length= D, in comparison with the experimental
results(Ref. 1).

Sample w(nm) t(hm) L (um) R/L (Q/um) D (10°° m?s) L (um) LT (um)

Au-1 60 25 57.9 29.14 7.8 5.54 1.8

Au-2 110 60 207 1.46 355 16 16.5

Au-3 100 35 155 9.31 10.5 5.2 3.6

Au-4 60 25 57.9 31.29 7.3 3.6 1.6

Au-5 190 40 18.9 191.7 0.24 0.35 0.12

Au-6 180 40 155 291 16.3 8 8.1

RqL ! ’ A INAN/HE N+
TU;:JER—, (100 fdt Go(ty,tHeUt)G(t't,)
VE 0
whereRq:w/292:6453) is a quantum resistanck,is the . 5
wire length ancR is the total resistance. The Fermi velocity _@ _ ' A N,
for gold wires was taken to B&1.39x10° m/s. The diffu- Goltz.t2) Jodt Gollt )(I at’ Holt )>
sion coefficientD was estimated with the aid of the Drude R
formula o=2e2N,D. The density of states for gold is cho- XG(t',t5)
sen to b&® Ny=6x10'? s/n?. Note that the numerical val- . . . . .
ues forD are not identical to those given in Ref. 1. =Go(t1,t2) —1Go(t1,1)G(1,t2) +iGo(t1,00G(0t2)
The width, the thickness, and the length of the wire are . p

denotepl, respectively, by, t, andL; R/L is thg resistance +J dtr( i —+|:|o(t’))éo(tl,t’)é(t',tz)
per unit length and_g*®, Lt;‘eor are the experimental and 0 at’
theoretical values of the decoherence length. The agreement . . . .
between both looks reasonable for all samples, especially if ~=Go(t1,t2) = G(t1,t2) —iGo(t1,t)G(t,t2)
one takes into account an uncertainty in a numerical prefac- A N
tor in our formulas due to the cutoff procedure and possible +iGo(11,006(02) - (A1)

effects of the sample geometry. It is also important to eM+jere we performed the integration by parts over the tife
phasize that our comparison involves fitting parameters.  and made use of the equation

Further experiments are desirable for better understanding
of the electron-electron interaction effects in disordered low g . R
dimensional systems. ( I—+ Ho(x’)) Go(ty,t')=—8(t;—t")8(x,—x"),

Recently, we became aware of a paper by Aleiner, Alt- at
e eveohed & DeTLILAILe which defnes he feldree Green-Kelcysh funci
tivity and arrived at the result for the decoherence ratg 1/ (Szuzt))sututmg the resultAl) into Eq. (18) we arrive at Eq.
which differs from our result at low . This difference is not Lét us substitute the representatigiy) into Eq. (22)
surprising because, as it was discussed above, the G°|d%‘P1en we find ' '
rule perturbation theory is not sufficient and a nonpertur-
bative analysis is needed to properly account for the effect o@

interactions. This analysis is developed in our paper. On a oty O =b+To(HJUv(t to)[a+ Ty(tp)]

perturbative level all the diagrarffsare fully reproduced —Uy(t,0[a+70(0)]0(0,)[ —b+Ty(t,)]=0. (A2)

from our path integral formalism. For a more detailed dis- A

cussion we refer the reader to Ref. 38. It is now convenient to represent the operdtgiin the form
ACKNOWLEDGMENTS fu(ty)=0y(t2,00(t2) Uy(0ty). (A3)
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1305 Let us sett,=t and introduce the scattering matri®

=U,(0t)Uy(t,0)=s,a+s,b. This matrix is diagonal be-
cause botiJ, andU,, are the diagonal matrices. The matrix
elementss, and s, are defined ass; ,=uy(0,t)uy (t,0).

With the aid of Eq.(9) the time integral in the last term of Making use of the above notations and rewriting E) in
the Dyson equatiofil8) can be transformed as follows: components we find

APPENDIX A: DENSITY MATRIX
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10 Po —po\[s1—1 O initial density matrixp, is assumed to be diagonal in the

o 1/ l—14 1- 0 s—1 basisyy , namelypo= = n| #){ ¥/ . This assumption is jus-
Po Po 2 tified only for weakly interacting particles. Then the func-

U911 O —po Po Po —po tions Gy, Gy Eq. (B), GR andG* Eq. (29) can be written
X = - in the form
021 922 1-po po —1+py 1—po
si—1 0 10 Gty by, ry,r) =i, e "&U=2n g (r)g(ry),
X 0 1o of (A5) K

Multiplying matrices and keeping only the part of the result-
ing matrix equation which depends gr, andg,, we obtain

( 1+po(s1—1) —po(s2—1) )
=S+ 1+po(s;—1) sy—po(s—1)

Gty ty,ry,rp)=—i Ek e LT (1—n) i (ry) (1),

g .
12) - ( po) : GR(t1,t2,11,12) = =i 0(t; —t5) D> e &2y (1) gy (),
022 Po (A6) k

Substracting the second equat|0n from the first one we get(BA(tl t,,F1,F)=i6(t,—ty E e 1)y (1) (T).
S1010— S02,=0, Or g,=S5, 's,91,. Subsituting this result e
into the first equation we find (B2)

With the aid of these expressions the kerr{@l,(32) can be

[1+po(s; "1~ 1)1g10= po. (A7) represented as follows:
Note that theS matrices enter the above equation only in the
combinations;, 's; which does not contain the evolution op- X(4ry,r)=2ie20(t) D e & &t(n.—n,)
eratoruy, i.e., we haves, 's;=u,(0t)u,(t,0) and kg K

{1—po(0)[1—ux(0)uy(t,0)]}g12(t) = po(0). (A8) X (1) (1) rg(r2) g(r1), (B3)

Rewriting Eq. (A3) for the 1,2 component of the matrix 1, ,
- =_ —i(&—égit _
fu(t) 7(t,r1.r2) = 5 € qu e & &) n(1-ny)

le(t) = ul(t10)912(t)u2(01t)1 + nq( 1— nk)] z,bk(l’l) l/fk(rz) l/fq(rz) l/fq(rl) .
and making use of the identipy,(t) = f15(t) we arrive at the (B4)
result(37).

Performing the Fourier transformation in time:

APPENDIX B: EFFECTIVE ACTION AND FDT n.—n
— 2 kK "'q

. X(w!rl!rZ)__ze "
ForV, ,=0 the electron Green functioi,, andG,, can kg 0= &t &qti0

be expressed in the form X (1) (1) (T2 G(ry), (BB
G1o=1iup(ty,0)poup(0it,),
n(w,rl,r2>=we2;‘ Sw— &+ E)INK(1—ny)

G21= —iUg(t1,00(1—pg)Ug(Oity). (B1)
In thermodynamic equilibrium we haveg(t,0)pquqg(0t) +Ng(1— ) 1e(11) (1 2) g (12) (1),
= pg for any timet.
Let us introduce the basis of the eigenfunctions for the (B6)

single electron Hamiltoniark o= &b . Without loss of  and substituting the equilibrium distribution functiom,
generality we can choose these eigenfunctions to be real. The1/(et<'T+1) one immediately arrives at E¢33).
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