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Quantum decoherence and weak localization at low temperatures
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With the aid of the Keldysh technique we develop a path-integral formalism which allows us to nonpertur-
batively study the quantum dynamics of electrons in a disordered metal in the presence of interactions. We
derive a formally exact equation of motion for the electron density matrix and demonstrate that the effect of
interaction of the electron with other electrons in a disordered metal is equivalent to that of an effective
dissipative environment. We obtain nonperturbative results for the weak localization correction to the conduc-
tanceds and show that the effective decoherence length extracted fromds remains finite down toT50 due
to electron-electron interactions.@S0163-1829~98!06942-2#
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I. INTRODUCTION

Recent experiments1 attracted a great deal of attention
an old but fundamental question: how fast can a quan
particle lose information about its initial state in the presen
of interaction? In other words, how fast can interaction d
stroy the quantum phase coherence? The answer to this q
tion essentially depends on the type of interaction.

It follows from general principles of quantum mechani
that quantum coherence of the wave function cannot be
stroyed due toelastic interaction with a static potential. An
other physical situation may take place if the quantum p
ticle interacts with other~quantum! degrees of freedom
which play the role of an effective environment. In this ca
quantum dynamics of the particle cannot be described by
wave function but only by the density matrix. Various e
amples~to be discussed below! show that such interaction
may leadto a destruction of quantum coherence.

A general approach to the problem was formulated
Feynman and Vernon2,3 who demonstrated that the effect
environment can be taken into account by means of ave
ing over all its possible quantum states. As a result the e
ronment variables are integrated out and quantum dynam
of the particle can be described only in terms of its o
degrees of freedom. Within this approach, interaction w
the external environment is taken into account by mean
the so-calledinfluence functionalwhich appears in the~ef-
fective! action for the particle as a result of averaging ov
the bath variables. It is quite clear that specific properties
the environment are not important unless they explicitly
ter the expression for the influence functional. In oth
words, the particle does not ‘‘feel’’ the difference betwe
physically different bathes provided they are described
the same influence functional.

These ideas were developed further by Caldeira
Leggett4 who showed that the above arguments can be u
to describe quantum dynamics of dissipative systems
PRB 590163-1829/99/59~14!/9195~19!/$15.00
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derived the effective action for the case of linear Ohmic d
sipation. The same type of analysis was also developed
Schmid5 who formulated a quasiclassical Langevin equat
approach describing real time dynamics of a quantum p
ticle in the presence of dissipation and quantum noise.

Although the above papers are dealing with the mode
a bosonic environment it is obvious that the ideas2,3 can be
applied to a fermionic bath as well. This was done, e.g.,
Ambegaokar, Eckern, and Scho¨n6 in the case of supercon
ducting tunnel junctions and later by Scho¨n and one of the
present authors7,8 in a somewhat broader context of a meta
lic system with dissipation. Although the microscop
Hamiltonian describing electrons in a metal6–8 is quite dif-
ferent from the one used in the model,4 the final expressions
for the influence functionals for various metallic systems a
tunnel junctions obtained in6–8 turn out to be similar or even
completely equivalent to those considered in Refs. 4,5. T
equivalence is just an illustration of the property discuss
above: the effect of physically different environments is
distinguishable provided they are described by the same
fluence functional.

In Refs. 6–8 quantum dynamics of a certain collecti
variable of interest~the phase! was considered. This variabl
was extracted ‘‘from interaction,’’ after that electronic d
grees of freedom were integrated out and the effective ac
for the phase was derived. One can also generalize this
cedure and describe quantum dynamics of superconduc
considering the phase as a quantum field.9 In all these cases
the collective variable is intimately linked to the electron
bath, quantum dynamics of the former does not exist with
the latter at all.

In this paper we will analyze a somewhat different situ
tion. Namely, we will study quantum dynamics of an ele
tron propagating in a disordered metal and interacting w
other electrons which play the role of an effective enviro
ment. It is well known that quantum interference of electro
scattered on impurities lead to quantum corrections to
9195 ©1999 The American Physical Society
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classical Drude conductivity.10,11 These so-called weak
localization corrections have been extensively discusse
the literature~see, e.g., Refs. 12,13 for review!. The magni-
tude of these corrections is known to be determined by
time within which electrons in a metal can be described b
phase coherent wave function. At times exceeding this
called decoherence timetw quantum coherence is destroye
quantum interference is not anymore possible, and there
the classical diffusion picture is restored.

The decoherence timetw or the decoherence lengthLw

5ADtw in a disordered metal can be determined by vario
physical processes, such as electron-electron and elec
phonon interactions, electron scattering on magnetic imp
ties, etc.~see, e.g., Refs. 12,13!. It was shown by Altshuler,
Aronov, and Khmelnitskii14 that at not very low tempera
tures the effect of electron-electron interaction on the de
herence time is equivalent to that of classical Nyquist no
in a disordered conductor. In this case one finds14–16 tw

}T2/(d24), whered is the effective system dimension. Th
result demonstrates that the decoherence effect of
electron-electron interaction becomes weaker as the temp
ture is lowered.

Down to which temperature does the above result rem
correct? Or, more generally, doesLw increase with decreas
ing T at all temperatures thus going to infinity atT→0? A
positive answer on the latter question would mean that aT
50 the electron in a disordered metal can be described
the phase-coherent wave function even in the presenc
Coulomb interaction with other electrons.

It is sometimes believed that this answer can be obtai
without any calculation. One can argue that atT→0 in equi-
librium all quantum states below the Fermi energy are oc
pied. Thus scattering into any of these states is forbidden
to the Pauli principle and the electron energy cannot chan
Since purely elastic processes do not destroy the coher
of the wave function one can conclude thatLw should di-
verge atT→0.

Here the role of the Pauli principle is merely to provid
the energy constraint. Hence, the above argument is not
cific for fermions and should also apply to a low-ener
Bose particle interacting with a collection of harmonic osc
lators. If initially all the oscillators were in theirnoninteract-
ing ground states and the particle kinetic energyE was small
E→0 after the scattering process this energy cannot cha
and remains equal to zero because none of the oscillators
either be excited or give energy to a particle. Therefore,
coherence of the particle wave function is preserved. Sim
arguments were used by the authors17 who argued against a
attempt18 to relate the low-temperature saturation oftw to the
effect of zero-point fluctuations of impurities.

The above arguments can be applied to a scattering p
lem for which the total energy of the system is fixed to be
sum of energies ofnoninteractingparticles. In this case—
provided the interaction is small—a standard Golden r
perturbation theory is usually sufficient. It is obvious, ho
ever, that the above physical situation does not accoun
the equilibrium properties of aninteracting system. In the
latter case the above arguments arenot correct. As a simple
example one can consider a quantum particle~with massm
and coordinateq) interacting with the Caldeira-Leggett ba
of oscillators ~with the high-frequency cutoffvc). This
in
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model can be solved exactly and for the reduced den
matrix of the particleq one obtains19

r~q1 ,q2!}exp@2m^E&~q12q2!2#, ~1!

where ^E& is the expectation value of the particle kinet
energy. At high temperatures one has^E&'T/2 while at
lower temperatures this expectation value saturates an
determined by interaction̂E&5(g/2p)ln(vc /g).0, where
the parameterg is the effective coupling strength betwee
the particle and the bath. These results do not depend on
initial conditions and can also be obtained, e.g., by an ex
diagonalization of the initial Hamiltonian.20 Anyperturbation
of the density matrix will relax to the same equilibrium for
~1! and the information about the initial phase of the parti
wave function is lost as a result of interaction even atT50.
All these results cannot be derived within the simple Gold
rule-type perturbation theory in the interaction.

At this point we would like to emphasize that in the abo
example we~on purpose! consider the basis of ‘‘noninteract
ing’’ eigenstates of the system. It is obvious that the f
wave function of the total system with interaction as well
each of the eigenmodes obtained by an exact diagonaliza
always stay coherent. However, if the behavior of the p
ticle q ~and not that of the eigenmodes! is of interest, the
reduced density matrixr(q1 ,q2) should be studied. The de
cay of the off-diagonal elements ofr on the length scale
Ld;1/Am^E& just implies that the bath in some convention
sense ‘‘measures’’ the particle position.20 In principle the
off-diagonal elements ofr(q1 ,q2) ~and thus the coherenc
of the particleq) can be suppressed completely (Ld tends to
zero if one, e.g., choosesvc→`), while the eigenmodes o
the total system obviously remain fully coherent. Therefo
the question about the presence or absence of quantum
herence in the interacting many-body system can be
cussed only after the physical quantity of interest is defin

An illustration for this point is provided, e.g., by the wel
known problem of single electron~or Cooper pair! tunneling
in the presence of an effective environment produced
other electrons.8,21–25 If one takes into account only the e
fective charging energy of a tunnel junction and ignores
effect of the electronic environment one arrives at the c
clusion that atT50 and small voltages noninteracting~and
therefore fully coherent! electrons stay at each side of a tu
nel barrier and do not tunnel. Tunneling is blocked due
Coulomb interaction at the junction and no current can fl
in the system. It is well known, however, that interactio
with other electrons~equivalent to the presence of an effe
tive impedance! lifts the Coulomb blockade of tunneling
even atT50 leading to a nonzero current in the system
any nonzero voltage. Tunneling becomesincoherentdue to
interaction with the effective electronic environment. It
also important to emphasize that this effect cannot be
scribed perturbatively in the interaction, the Golden-ru
type expansion in the effective impedance is insufficient a
yields the incorrect result in this case. The validity of t
above theoretical picture was confirmed in experiments~see,
e.g., Refs. 26,27! the results of which can be interpreted as
direct evidence for the low temperature saturation of the
pectation value of the electron energy^E& and the effective
lengthLd due to interaction.
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PRB 59 9197QUANTUM DECOHERENCE AND WEAK LOCALIZATION . . .
The problem to be considered here is similar to the ab
example in several important aspects. In both cases we
dealing with interacting electrons in a disordered metal a
therefore the Pauli principle should be explicitly accoun
for. In both cases an electron propagating in a disorde
metal interacts with a fluctuating electric field produced
other electrons which play the role of an effective dissipat
environment.28 In both cases the Golden rule perturbati
theory in the interaction is not sufficient for calculation
the system conductance and a nonperturbative ana
should be developed. This analysis is presented below.

The paper is organized as follows. In Sec. II we make
of the general formalism of the Green-Keldysh function29

and derive a formally exact equation of motion for the ele
tron density matrix in the presence of Coulomb interacti
This equation explicitly accounts for the Pauli principle a
allows for a clear understanding of its role in the process
electron-electron interaction in a metal. In Sec. III the effe
tive action ~or the influence functional! for the fluctuating
scalar potential in a metallic conductor is derived. We a
demonstrate that in the equilibrium this influence functio
satisfies the fluctuation-dissipation theorem30 and establish
the relation with the real time effective action derived in t
Caldeira-Leggett models.4,5,8,31 In Sec. IV with the aid of
these general results we will derive the real time effect
action for the electron propagating in a metal and determ
the decoherence timetw and the weak localization correctio
to conductivity at low temperatures. Our formalism natura
includes both electron-electron and electron-phonon inte
tions and allows us to establish the corresponding contr
tions totw from each of these processes. In Sec. V we de
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the quasiclassical kinetic equation and demonstrate the
tion of our analysis to the standard kinetic approach wh
allows us to evaluate the inelastic scattering timet i . We also
derive the quasiclassical Langevin equation which under
tain conditions can be used to describe propagation of e
trons in a disordered metal. Discussion of the results is gi
in Sec. VI. We also briefly compare our theoretical pred
tions with the experimental data.1 Some details of our calcu
lation are presented in Appendixes.

II. DENSITY MATRIX

We will consider a standard Hamiltonian describing ele
trons in a disordered metal

Hel5H01H int , ~2!

where

H05E drcs
1~r!F2

¹2

2m
2m1U~r!Gcs~r!, ~3!

H int5
1

2E drE dr8cs
1~r!cs8

1
~r8!e2v~r2r8!cs8~r8!cs~r!.

~4!

Here m is the chemical potential,U(r) accounts for a ran-
dom potential due to nonmagnetic impurities, andv(r)
51/uru represents the Coulomb interaction between el
trons.

Let us define the generating functional for the electr
Green-Keldysh functions in terms of the path integral ov
the Grassmann fieldsc̄ andc
J@h,h* #5

E DVE Dc̄E Dc expS iSeff@c̄,c,V#1 i E
K
dtE dr[ c̄~ t,r!h~ t,r!1c~ t,r!h* ~ t,r!] D

E DVE Dc̄E Dc exp~ iSeff@c̄,c,V# !

, ~5!
e

-

whereSeff is the effective action

Seff@c̄,c,V#5E
K
dtS E dr@ i c̄~ t,r!] tc~ t,r!

2ec̄~ t,r!c~ t,r!V~ t,r!#2H0@c̄,c# D
1

1

2EK
dtE drE dr8V~ t,r!

3v21~r2r8!V~ t,r8!, ~6!

wherev21(r2r8)52¹2/4p. Integration over timet in Eq.
~6! goes along the Keldysh contourK which runs in the
forward and then in the backward time directions.29 In Eqs.
~5!,~6! we performed a standard Hubbard-Stratonovich tra
formation introducing the path integral over a scalar pot
tial field V in order to decouple thec4 interaction in Eq.~4!.
s-
-

The electron Green-Keldysh functionĜ can be determined
from Eq. ~5! by taking the derivatives with respect to th
source fieldsh andh* :

Ĝ~ t,r;t8,r8!5 i
d

dh* ~ t,r!

d

dh~ t8,r8!
J@h,h* #uh5h* 50 .

~7!

Making use of Eqs.~5!,~7! and the definition of the Green
Keldysh function for an electron interacting with the fieldV

ĜV~ t,r;t8,r8!

52 i
E Dc̄E Dc c~ t,r!c̄~ t8,r8!exp~ iSeff@c̄,c,V# !

E Dc̄E Dc exp~ iSeff@c̄,c,V# !

,

~8!
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it is easy to prove the identity

Ĝ5

E DV1DV2 ĜV eiS[V1 ,V2]

E DV1DV2 eiS[V1 ,V2]

, ~9!

where

iS@V1 ,V2#52 Tr ln ĜV
211 i E

0

t

dt8E dr T
~¹V1!22~¹V2!2

8p
.

~10!

The factor 2 in front of the trace comes from the summat
over a spin index. In Eqs.~9!,~10! we explicitly defined the
fields V1(t) and V2(t) equal toV(t), respectively, on the
forward and backward parts on the Keldysh contourK.
AnalogouslyĜ andĜV[Ĝ@V1 ,V2# are the 232 matrices in
the Keldysh space:

Ĝ5S G11 2G12

G21 2G22
D . ~11!

The matrix functionĜV obeys the equation

S i
]

]t1
2Ĥ0~r1!1eV̂~ t1 ,r1! D ĜV5d~ t12t2!d~r12r2!;

~12!

where

Ĥ05H01̂5S 2¹2

2m
2m1U~r! 0

0
2¹2

2m
2m1U~r!

D ;

V̂5S V1~ t,r! 0

0 V2~ t,r!
D . ~13!

Note that the functionĜV is to some extent similar to th
Green-Keldysh function of an electron in an external fie
However, there exists an important difference: in our c
the electron interacts with a fluctuating~quantum! field V.
Formally this implies that the fieldsV(t,r) on two parts of
the Keldysh contour differV1(t,r)ÞV2(t,r), while for the
external field one always hasV1(t,r)[V2(t,r).

The general solution of the Eq.~12! can be expressed i
the form

ĜV~ t1 ,t2!52 iÛ V~ t1 ,t2!

3@u~ t12t2!â2u~ t22t1!b̂1 f̂ V~ t2!#.

~14!

Here we defined

â5S 1 0

0 0D , b̂5S 0 0

0 1D , ~15!
n

.
e

and ÛV(t1 ,t2) is the matrix evolution operator

ÛV~ t1 ,t2!5S u1~ t1 ,t2! 0

0 u2~ t1 ,t2!
D , ~16!

which consists of the scalar evolution operators

u1,2~ t1 ,t2!5T expF2 i E
t1

t2
dt8@H02eV1,2~ t8!#G

5E
r~ t1!5ri

r~ t2!5r f
Dr~ t8!

3expF i E
t1

t2
dt8S mṙ2

2
2U~r!1eV1,2~ t8,r! D G ,

~17!

T being the time ordering operator. In Eq.~14! and below we
always imply integration over the internal coordinate va
ables in the product of operators, whereas integration o
time is written explicitly. For the sake of brevity we also d
not indicate the coordinate dependence in Eq.~14! and many
subsequent expressions. This dependence can be triviall
stored if needed.

Note that Eq.~14! is completely equivalent to the standa
representation of the Green-Keldysh matrix which eleme
can be expressed in terms of retarded, advanced
Keldysh-Green functions. The representation~14! defines a
general solution of the linear differential Eq.~12!: the term
ÛV(t1 ,t2) f̂ V(t2) with an arbitrary matrix operatorf̂ V(t2)
represents a general solution of the homogeneous equa
while the terms withu functions give a particular solution o
the inhomogeneous equation. The operator functionf̂ V(t2) in
Eq. ~14! is fixed by the Dyson equation

ĜV~ t1 ,t2!5Ĝ0~ t1 ,t2!2E
0

t

dt8Ĝ0~ t1 ,t8!eV̂~ t8!ĜV~ t8,t2!.

~18!

The matrixĜ0 is the electron Green-Keldysh function with
out the field. This function is defined by Eqs.~14!–~17! with
V1,2(t,r)[0 and f̂ 0(t2) has the form

f̂ 0~ t2!5S 2r0~ t2! r0~ t2!

12r0~ t2! r0~ t2!
D , ~19!

wherer0(t)5e2 iH 0tr(0)eiH 0t is the electron density matrix
for V1,250 at a timet.

Equation~18! can be solved perturbatively ineV̂. Com-
bining this solution with Eq.~9! one reproduces the standa
Keldysh diagrams. This way of treating the problem is qu
complicated in general and becomes particularly nontra
parent in the interesting limit of low temperatures.

We will proceed differently. It is well known that the 1,
component of the Green-Keldysh matrixĜ is directly related
to the exact electron density matrix
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r~ t;r,r8!52 iG12~ t,t;r,r8!, ~20!

which contains all necessary information about the sys
dynamics in the presence of interaction. Analogously o
can define the ‘‘density matrix’’rV(t)[ f 1,2(t) related to the
1,2 component of the matrixĜV by the equation equivalen
to Eq. ~20!. Our strategy is as follows. First we will deriv
the exact equation of motion for the density matrixrV(t)
which turns out to have a very simple and transparent fo
Already at this stage we will clarify the role of the fluctua
ing fieldsV1,2 and the Pauli principle in our problem. The
we will evaluate the influence functionalS@V1 ,V2# ~10! and
find the density matrixr from the equation

r~ t;r,r8!5^rV~ t;r,r8!&V1 ,V2
, ~21!

where the average over fieldsV1 andV2 is defined in Eq.~9!.
The derivation of the equation for the density mat

rV(t) is straightforward. Let us perform the time integratio
in the last term of Eq.~18!. Integrating by parts and makin
use of Eq.~12! after a simple algebra~see Appendix A! we
obtain

Ĝ0~ t1 ,t !Ĝ~ t,t2!2Ĝ0~ t1,0!Ĝ~0,t2!50. ~22!

Substituting the representation~14! into Eq.~22! we arrive at
the matrix equation which relates the matrixf̂ V(t), the evo-
lution operatorÛV(t), and the initial density matrixr0(0)
defined forV1,250. With the aid of this equation one dete
mines the 1,2 component of the matrixf̂ V(t) and thus the
density matrixrV(t). The details of this calculation are pre
sented in Appendix A. As a result we find

@12r0~ t !„u2~ t,0!u1~0,t !21…#rV~ t !5r0~ t !. ~23!

One can also rewrite this result in the form of the different
equation describing the time evolution of the density mat

i
]rV

]t
5@H0 ,rV#2~12rV!eV1rV1rVeV2~12rV!,

rV~0!5r0~0!. ~24!

Equation~24! is the main result of this section. We wou
like to emphasize that our derivation was performedwithout
any approximation, i.e., the result~24! is exact. It contains
all information about the system dynamics hidden in the f
components of the Green-Keldysh matrix. In the absenc
the fluctuating fieldV1,250 Eq. ~24! reduces to the standar
m
e

.

l
:

r
of

equation for the electron density matrix with the Hamiltoni
H0. In the presence of the fieldV1,2, Eq. ~24! exactly ac-
counts for the Pauli principle. This is obvious from our de
vation which automatically takes care about the Fermi sta
tics through the integration over the Grassmann fieldsc and
c̄. This is also quite clear from the form of the last two term
in the right-hand side of Eq.~24!. In Sec. V we will demon-
strate that within the quantum kinetic analysis these te
are responsible for the standard in- and out-scattering te
in the collision integral.

In order to understand the role of the Pauli principle let
rewrite Eq.~24! in the form

i
]rV

]t
5@H02eV1,rV#2~12rV!

eV2

2
rV2rV

eV2

2
~12rV!,

~25!

where we definedV15(V11V2)/2 andV25V12V2. It is
quite obvious from Eq.~25! that the fieldV1(t,r) plays the
same role as an external field. All electrons move coll
tively in this field. The Pauli principle does not play any ro
here. Below we will demonstrate that quantum fluctuatio
of the fieldV1 are responsible for the low-temperature sa
ration of the decoherence timetw and the weak localization
correction to conductivity in disordered metals.

The field V2 is, on the contrary, very sensitive to th
Pauli principle. It will be shown below that this field is re
sponsible for damping due to radiation of an electron wh
moves in a metal. The corresponding energy losses ca
only due to electron transitions into lower energy states.
T50 in equilibrium all such states are already occupied
other electrons, therefore such processes are forbidden
the electron energy remains unchanged due to the Pauli p
ciple. We will demonstrate, however, that these processes
irrelevant for the decay of the off-diagonal elements of t
electron density matrix and, therefore, the Pauli principle c
hardly affect quantum decoherence in a disordered m
even atT50.

III. INFLUENCE FUNCTIONAL FOR THE FIELD

Let us now derive the expression for the influence fun
tional ~effective action! S@V1 ,V2# for the fieldV. A formally
exact actionS@V1 ,V2# obtained by integration over all elec
tron degrees of freedom is given by Eq.~10!. Let us expand
this expression up to the second order inV1,2. The first-order
terms of this expansion vanish because the Green func
Ĝ0 corresponds to a zero current and zero charge-den
state of the system. In the second order we obtain
idS~2!52Tr~Ĝ0eV̂Ĝ0eV̂!52e2 trFG11V
1G11V

12G12V
1G21V

12G21V
1G12V

11G22V
1G22V

1G11V
1G11V

2

2G12V
1G21V

21G21V
1G12V

22G22V
1G22V

2
1

4
G11V

2G11V
21

1

4
G12V

2G21V
21

1

4
G21V

2G12V
2

1
1

4
G22V

2G22V
2G . ~26!
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Here the subscript0 for the Green functions is omitted fo
the sake of simplicity, all the Green functions here and be
in this section are defined forV1,250. Expression~26! can
be simplified with the aid of the identities

G115G121GR5G211GA, G225G122GA5G212GR,
~27!

which allow us to exclude the functionsG11 and G22 from
the action~26!. The terms containingV1V1 are reduced to

tr ~GRV1GRV11GAV1GAV1!. ~28!

Making use of the expressions

GR52 iu~ t12t2!u0~ t1 ,t2!, GA5 iu~ t22t1!u0~ t1 ,t2!,
~29!

and writing the traces~28! in the time-space representatio
we immediately observe that the productu(t12t2)u(t2
2t1)50 appears under the integral, and the whole comb
tion ~28! vanishes. In other words, the termsV1V1 give no
contribution to the action~26!. The remaining terms in com
bination with the last two terms in Eq.~10! describing the
free field action yield

iS@V1 ,V2#5 i E
0

t

dt8E dr
~¹V1¹V2!

4p

2E
0

t

dt1E
0

t

dt2E dr1dr2

3@ iV2~ t1 ,r1!x~ t1 ,t2 ,r1 ,r2!V1~ t2 ,r2!

1V2~ t1 ,r1!h~ t1 ,t2 ,r1 ,r2!V2~ t2 ,r2!#,

~30!

where

x~ t1 ,t2 ,r1 ,r2!52 ie2$GR~ t1 ,t2 ,r1 ,r2!@G21~ t2 ,t1 ,r2 ,r1!

1G12~ t2 ,t1 ,r2 ,r1!#1@G12~ t1 ,t2 ,r1 ,r2!

1G21~ t1 ,t2 ,r1 ,r2!#GA~ t2 ,t1 ,r2 ,r1!%,

~31!

h~ t1 ,t2 ,r1 ,r2!5
e2

2
@G12~ t1 ,t2 ,r1 ,r2!G21~ t2 ,t1 ,r2 ,r1!

1G21~ t1 ,t2 ,r1 ,r2!G12~ t2 ,t1 ,r2 ,r1!#.

~32!

Expressions~30!–~32! define the influence functional fo
the field V in terms of the Green-Keldysh functions for th
~in general nonequilibrium! electron subsystem. It is easy
check that the above expressions satisfy the requiremen
causality: in theV2(t1)V1(t2) terms the timet1 is always
larger thant2 due to analytic properties of retarded and a
vanced Green functions~29!. It is also straightforward to
w

a-

of

-

demonstrate~see Appendix B! that in thermodynamic equi
librium the kernelsh(v) and Imx(v) ~Fourier transformed
with respect to the time differencet12t2) satisfy the equa-
tion

h~v,r1 ,r2!52
1

2
cothS v

2TD Im x~v,r1 ,r2!. ~33!

The latter equation is just the fluctuation-dissipati
theorem.30

Finally, for a homogeneous system one can also perfo
the Fourier transformation with respect tor12r2 and find

iS@V1 ,V2#5 i E dvd3k

~2p!4
V2~2v,2k!

k2e~v,k!

4p
V1~v,k!

2
1

2E dvd3k

~2p!4
V2~2v,2k!

k2 Ime~v,k!

4p

3cothS v

2TDV2~v,k!, ~34!

wheree(v,k) is the dielectric susceptibility of the system
For a homogeneous electron gas it is given by the stand
random-phase approximation~RPA! formula:

e~v,k!511
e2

p2k2E d3p
np1k2np

v2jp1k1jp1 i0
. ~35!

Equation~35! includes only the electron contribution t
the susceptibility. In general the effect of ions should also
accounted for. Here we will describe this effect within a ve
simple approximation which is, however, sufficient for o
analysis. Namely, the ion contribution to the susceptibil
will be taken in the formde i52vpi

2 /v2, wherevpi is the
ion plasma frequency. Then the phonon spectrum is de
mined by the equatione(v,k)50. In the long-wave limit
this approximation works sufficiently well for longitudina
phonons which mainly interact with electrons. The effect
transverse phonons cannot be described within this sim
model. But such phonons are weakly coupled to the elecr
anyway, and therefore their effect can be safely ignored
needed, further generalizations of this simple model can
also incorporated into our analysis.

In the relevant case of a disordered metal a standard
culation of polarization bubbles yields

e~v,k!511
4ps

2 iv1Dk2
2

vpi
2

v2
. ~36!

Heres52e2N0D is the classical Drude conductivity,N0 is
the metallic density of states, andD5vFl /3 is the diffusion
coefficient.

Expression~36! is valid for wave vectors smaller than th
inverse elastic mean free pathk&1/l and for small frequen-
ciesv&1/te , wherete5 l /vF is the elastic mean free time
Note, that if one neglects the effect of phonons and consid
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only nearly uniform in space (k'0) fluctuations of the field
V one immediately observes that Eqs.~34!,~36! exactlycoin-
cide with the real time version of the Caldeira-Legg
action4,5,7,8 in this limit. For a disordered metal this actio
was derived by means of the quasiclassical Eilenberger e
tions in Refs. 7,8. Our analysis~see, also Ref. 9! reproduces
these results and generalizes them to the case of nonuni
fluctuations of the fieldV.

Taking into account only uniform fluctuations of the ele
tric field one can also derive the Caldeira-Leggett action
pressed in terms of theelectron coordinate only. In the
quasi-one-dimensional situation one should simply w
down the electron action on the Keldysh contour, take i
account the potential energy2Ex of the electron with the
coordinatex(t) in the fluctuating electric fieldE(t) and add
the action for the field~34!,~36! @with the last term in Eq.
~36! being dropped#. After identification E(v)5
2 ikV(v,k)→2V(v)/L (L is the sample length! and inte-
gration over the fluctuating fieldV, one arrives at the
Caldeira-Leggett action for the electron coordinatex(t). In
this case the effective viscosity in the Caldeira-Leggett in
ence functional is proportional to 1/s ~in contrast to the ef-
fective viscosity for the fieldV which is proportional tos).
The whole procedure is completely analogous to that
cussed in details in Ref. 31 where we considered the
time effective action for a dissipative system characteri
by two collective degrees of freedom~the phase and the
charge!. Integrating over the charge variable one arrives
the Caldeira-Leggett action in the ‘‘phase-only’’ represen
tion. The same can be done here if we use a formal ana
of x(t) with the phase andV/ iv with the charge~as defined
in Ref. 31!.

For our present purposes it is not sufficient to rest
ourselves to uniform fluctuations of the collective coordin
V of the electron environment. We will see that fluctuatio
with nonzerok play an important role and should be tak
into account in the quantitative analysis. The correspond
effective action will be derived in the next section. Howev
the main message is clear already from the simple exam
considered above: in a disordered metal the effect of C
lomb interaction of the electron with other electrons
equivalent to that of an effectivedissipativeenvironment
with the correspondent effective viscosity governed by
Drude conductivitys.

IV. DECOHERENCE TIME AND CONDUCTANCE

A. Conductance and electron effective action

In order to evaluate the system conductance we will
termine the single-particle density matrixr in the presence
of an external electric potentialVx(r) applied to the metal.
Generalization of the results obtained in the previous s
tions to the caseVxÞ0 is straightforward. The density matri
is determined by the equation

r~ t !5^rV~ t,Vx!&V1 ,V2
5

E DV1DV2 rV~ t,Vx!e
iSVx

[V1 ,V2]

E DV1DV2 eiSVx
[V1 ,V2]

,

~37!
t
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where the effective actionSVx
@V1 ,V2# reads

iSVx
@V1 ,V2#52 Tr ln ĜV1Vx

21

1 i E
0

t

dt8E dr
~¹V1!22~¹V2!2

8p
, ~38!

where the subscriptV1Vx indicates the shift of the fields
V1,2→V1,21Vx . Here we use the formally exact expressi
for the effective action, the approximation~34! will be intro-
duced after the expansion inVx will be carried out.

The density matrixrV(t,Vx) obeys Eq.~25! with V1

→V11Vx . Assuming the fieldVx is sufficiently small one
can linearize the equation forrV(t,Vx)5rV(t)1drV(t,Vx)
and get

i
]drV

]t
5H1drV2drVH22@eVx ,rV#, ~39!

where

H15H02eV12
1

2
~122rV!eV2,

H25H02eV11
1

2
eV2~122rV!. ~40!

The formal solution of Eq.~39! can be easily found:

drV~ t !5 i E
0

t

dt8U1~ t,t8!@eVx ,rV~ t8!#U2~ t8,t !, ~41!

where

U1,2~ t1 ,t2!5T expF2 i E
t1

t2
dt8 H1,2~ t8!G . ~42!

The operatorsH1,2 Eq. ~40! are nonlocal~since they contain
the density matrix!, therefore the path-integral representati
for the evolution operators~42! contains an additional inte
gration over momentum. The operators~40! can be written in
the form

H1~p,r!5
p2

2m
1U~r!2eV1~ t,r!

2
1

2
@122n„H0~p,r!…#eV2~ t,r!,

H2~p,r!5
p2

2m
1U~r!2eV1~ t,r!

1
1

2
eV2~ t,r!@122n„H0~p,r!…#, ~43!

wheren(j)51/@exp(j/T)11# is the Fermi function. In de-
riving Eq. ~43! from Eq.~40! we setrV to be an equilibrium
density matrix. We also neglected the effect of Coulom
interaction in the expression forrV(t). This approximation is
justified as long as Coulomb interaction is sufficiently wea
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It is consistent with the RPA approximation for the electr
magnetic part of the action~34!. Note that the same approx
mation forrV(t) can be used in Eq.~41!.

The evolution operators~42! acquire the form

U1,2~ t1 ,t2 ;r f ,r i !

5E
r~ t1!5ri

r~ t2!5r f
Dr~ t8!E Dp~ t8!

3expF i E
t1

t2
dt8„pṙ2H1,2~p,r!…G . ~44!

For the sake of generality we note that in the presenc
interaction there exists an additional~linear in the field! cor-
rection to the density matrix. In order to see that let us
pand the action~38! to the first order inVx :

idS@Vx#522e tr„~G112G22!Vx…. ~45!

This correction to the action gives an additional contribut
to the density matrix~37!. Expressing the functionsG11 and
G22 in terms of the density matrixrV and the evolution op-
eratorsu1,2 and combining this correction to the density m
trix with one defined in Eq.~41! we find

dr~ t !5^drV&V1,V21^dr int&V1,V2, ~46!

wheredrV is given by Eq.~41! anddr int has the form

dr int522irV~ t !E
0

t

dt8 tr„u1~ t,t8!

3@eVx~ t8!,rV~ t8!#u2~ t8,t !…. ~47!

In the limit of weak interaction between electrons the av
aging in Eq.~46! may be performed with the approxima
actionS@V1 ,V2# Eq. ~34!.

It is easy to observe that the second term in Eq.~46! is
small in the limit of weak interaction and vanishes co
pletely if interaction is neglected. The weak localization c
rection is described by the first term in Eq.~46! which will
be only considered further below.

Making use of a standard definition of the current dens
j:

j~ t,r!5
ie

m
@¹ r 1

dr~ t,r1 ,r2!2¹ r 2
dr~ t,r1 ,r2!#ur15r25r ,

~48!

combining it with the above equations and assuming the
ternal electric field to be constant in space and time,Vx5
2Er , we arrive at the expression for the system conducta
-

of

-

-

-
-

y

x-

ce

s5
e2

3mE
2`

t

dt8E dr i1dr i2~¹ r 1 f
2¹r 2 f !ur1 f5r2 f

3J~ t,t8;r1 f ,r2 f ;r1i ,r2i !~r1i2r2i !r0~r1i ,r2i !. ~49!

Here we have shifted the initial time to2`. The functionJ
is the kernel of the operator

J5(
V

UuV&^VuU1,

where the sum runs over all possible states of the elec
magnetic environment. This function can be expressed
terms of the path integral

J~ t,t8;r1 f ,r2 f ;r1i ,r2i !

5E
r1~ t8!5r1i

r1~ t !5r1 f
Dr1E

r2~ t8!5r2i

r2~ t !5r2 f
Dr2E Dp1Dp2

3ŠeiS0[ r1 ,p1] 2 iS0[ r2 ,p2] 1 i E t8
t

dt9 Edr~ f 2V11 f 1V2!
‹V1,V2.

~50!

Here the actionS0@x,p# has the form

S0@r,p#5E
t8

t

dt9S pṙ2
p2

2m
2U~r! D , ~51!

and the ‘‘charge densities’’f 2, f 1 are defined by the equa
tions:

f 2~ t,r!5ed„r2r1~ t !…2ed„r2r2~ t !…,

f 1~ t,r!5
1

2
$e@122n„p1~ t !,r1~ t !…#d„r2r1~ t !…

1e@122n„p2~ t !,r2~ t !…#d„r2r2~ t !…%. ~52!

Averaging overV1,V2 in Eq. ~50! amounts to calculating
Gaussian path integrals with the action~34! and can be easily
performed. We obtain

J~ t,t8;r1 f ,r2 f ;r1i ,r2i !

5E
r1~ t8!5r1i

r1~ t !5r1 f
Dr1E

r2~ t8!5r2i

r2~ t !5r2 f
Dr2E Dp1Dp2

3 exp$ iS0@r1 ,p1#2 iS0@r2 ,p2#2 iSR@r1 ,p1 ,r2 ,p2#

2SI@r1 ,r2#%, ~53!

where
SR@r1 ,p1 ,r2 ,p2#5
e2

2 Et8

t

dt1E
t8

t

dt2$R@ t12t2 ,r1~ t1!2r1~ t2!#@122n„p1~ t2!,r1~ t2!…#2R@ t12t2 ,r2~ t1!2r2~ t2!#

3@122n„p2~ t2!,r2~ t2!…#1R@ t12t2 ,r1~ t1!2r2~ t2!#@122n„p2~ t2!,r2~ t2!…#

2R@ t12t2 ,r2~ t1!2r1~ t2!#@122n„p1~ t2!,r1~ t2!…#%, ~54!
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and

SI@r1 ,r2#5
e2

2 Et8

t

dt1E
t8

t

dt2$I @ t12t2 ,r1~ t1!2r1~ t2!#

1I @ t12t2 ,r2~ t1!2r2~ t2!#

2I @ t12t2 ,r1~ t1!2r2~ t2!#

2I @ t12t2 ,r2~ t1!2r1~ t2!#%. ~55!

At the scalesuru* l the functionsR and I are defined by the
equations

R~ t,r!5E dvd3k

~2p!4

4p

k2e~v,k!
e2 ivt1 ikr, ~56!

I ~ t,r!5E dvd3k

~2p!4
ImS 24p

k2e~v,k!
D cothS v

2TDe2 ivt1 ikr.

~57!

If necessary, more general expressions forR and I for the
whole rangeuru*1/pF can be derived. We will avoid doing
this here because the approximation~57! is already sufficient
for our present purposes.

Note that the expression in the exponent of Eq.~53! de-
fines the real time effective action of the electron propag
ing in a disordered metal and interacting with other el
trons. The first two terms represent the electron actionS0 Eq.
~51! on two branches of the Keldysh contour while the la
two terms SR and SI determine the influence functiona
which comes from the effective electron~and/or phonon! en-
vironment. As can be seen from Eqs.~54!–~57! this influence
functional is not identical to one derived in the Caldeir
Leggett model. However, on a qualitative level the similar
is obvious: in both models the influence functionals descr
the effect of a certain effectivedissipativeenvironment.

Let us now analyze expression~49! and establish connec
tion with other conductivity calculations. It is convenient
introduce the Wigner functionn(p,r)5*dr2e2 ipr2r(r
1r2/2,r2r2/2) instead of the density matrix. For homog
neous systems it does not depend onr at scales exceeding th
mean free path. With this in mind we obtain

s52
2e2

3mE
2`

t

dt8E d3p

~2p!3
pŴ~ t,t8!

]n~p!

]p
, ~58!

whereŴ(t,t8) is the evolution operator for the Wigner func
tion:

n~ t,x,p!5Ŵ~ t,t8!n~ t8,x,p!. ~59!

The kernel of this operator and that ofJ Eq. ~53! are related
by means of the Fourier transformation with respect
r1i ,1f2r2i ,2f . In equilibrium one hasn(p)51/@exp (j/T)11#,
and therefore, at smallT one finds
t-
-

t

-

e

o

]n~p!

]p
.2vFd~j!,

and arrives at the standard result~cf., e.g., Ref. 13!

s5
2e2N0

3 E
2`

t

dt8^v~ t !v~ t8!&. ~60!

B. Weak localization correction and decoherence time

Let us analyze the structure of the functionJ Eq. ~53! in
the same spirit as it has been done in Ref. 13. In the z
order approximation one can neglect the termsSR and SI
describing the effect of Coulomb interaction. Then in t
quasiclassical limitpFl @1 the path integral Eq.~53! is
dominated by the saddle-point trajectories for the actionS0
which are just classical paths determined by the Hamil
equations

ṗ52
]H0~p,r!

]r
, ṙ5

]H0~p,r!

]p
~61!

with obvious boundary conditionsr1(t8)5r1i , r(t)5r1 f for
the actionS0@r1 ,p1# and r2(t8)5r2i , r2(t)5r2 f for the ac-
tion S0@r2 ,p2#. Substituting these saddle-point trajectori
into Eq. ~53! and integrating out small fluctuations aroun
them one finds

J~ t,t8;r1 f ,r2 f ;r1i ,r2i !5(
r1

Ar1(r2

Ar2
* exp@ iS0~ t,t8;r1 f ,r1i !

2 iS0~ t,t8;r2 f ,r2i !#, ~62!

where the actionsS0(t,t8;r1,2f ,r1,2i) are taken on the classi
cal pathsr1,2(t) and

Ar1
5A i 3

8p3UdetS ]2S0~r1 f ,r1i !

]r1 f]r1i
D U. ~63!

The valueAr2
* is defined analogously.

Since in a random potentialU(r) there is in general no
correlation between different classical pathsr1(t) and r2(t)
these paths give no contribution to the double sum~62!: the
difference of two actions in the exponent of Eq.~62! may
have an arbitrary value and the result averages out after s
mation. Thus only the paths for whichS0@r1 ,p1#
.S0@r2 ,p2# provide a nonvanishing contribution to Eq.~62!.
Two different classes of such paths can be distinguished~see,
e.g., Ref. 13!:

~i! The two classical paths are almost the same:r1(t9)
.r2(t9), p1(t9).p2(t9) @see Fig. 1~a!#. For such pairs we
obviously haver1i.r2i and r1 f.r2 f . In other words, in the
path integral~53! one integrates only over trajectories wi
ur1(t9)2r2(t9)u&1/pF . Physically this corresponds to th
picture of electrons propagating as nearly classical parti



s:

g
-
e

9204 PRB 59DMITRII S. GOLUBEV AND ANDREI D. ZAIKIN
FIG. 1. Different quasiclassical trajectorie
~a! r1 and r2 are close to each other;~b! time-
reversed paths;~c! time-reversed paths returnin
to the vicinity of the initial point, these paths de
termine the weak localization correction to th
conductivity.
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which can be described by the diagonal elements of the d
sity matrix only. In the diffusive limit these paths give rise
diffusons ~see, e.g., Ref. 12! and yield the standard Drud
conductance.

~ii ! The pairs of time reversed paths. In this caser1i
.r2 f , r1 f.r2i @Fig. 1~b!#. In the path integral~53! the tra-
jectoriesr1 and r2 are related asr2(t9).r1(t1t82t9) and
p2(t9).2p1(t1t82t9). In other words, in Eq.~53! one in-
tegrates over paths withur2(t9)2r1(t1t82t9)u&1/pF , how-
ever, the differenceur1(t9)2r2(t9)u may be arbitrarily large
in this case. In a disordered metal these paths essen
determine the dynamics of off-diagonal elements of the e
tron density matrix. They correspond to Cooperons and g
rise to the weak localization correction to the conductivi
This correction is defined by the following equation:11–13

ds52
2e2D

p E
te

`

dtW~ t !52
2e2D

p E
2`

t2te
dt8W~ t2t8!.

~64!

Here we changed the parameter of integration in orde
make the relation with the Eq.~49! more transparent. The
quantityW(t) represents the effective probability for the d
fusive path to return to the same point after the timet. Note
thatW(t) contains the contribution from time-reversed pa
and therefore differs from a classical probability. Howev
in the absence of any kind of interaction which breaks
time-reversal symmetry this value coincides with the clas
cal return probability and is given by the formulaW0(t)
5(4pDt)2d/2a2(32d), whered is the system dimension an
a is the transverse sample size~the film thickness ford52
and the square root of the wire cross section ford51).

The weak localization correction~64! diverges ford<2.
This divergence can be cured by introducing the upper li
cutoff for the integral~64! at a certain timetw . This time is
usually referred to as decoherence time. As we have alre
discussed, in a disordered metal the timetw is determined by
electron-electron, electron-phonon, and other types of in
action which may destroy quantum coherence. From Eq.~64!
one finds12,13
n-

lly
c-
e
.

to

s
,
e
i-

it

dy

r-

dsd55
2

A3e2

2p3/2l
, d53,

2
e2

2p2
lnS tw

te
D , d52

2
e2

p
ADtw, d51.

~65!

Here and belowsd5sa32d is the Drude conductance of
d-dimensional sample.

To evaluatetw we first note that the functionsR andI Eq.
~57! change slowly at distances of the order of the Fer
wavelength 1/pF . Therefore, we may set r1(t9)
5r(t9), r2(t9)5rt(t9)[r(t1t82t9). Herer(t9) is a classi-
cal trajectory with the initial pointr(t8)50 ~its position can
be chosen arbitrarily! and the final pointur(t)u& l @Fig. 1~c!#.
In other words, we consider trajectories which return to
vicinity of the initial point. Then the return probabilityW(t)
can be written in the form

W~ t2t8!.W0~ t2t8!^e2 iSR[ t,t8;r,p;rt ,pt] 2SI [ t,t8;r,rt]& r ,
~66!

where the average is taken over all diffusive paths return
to the initial point. The average in Eq.~66! decays exponen
tially in time, therefore, we may definetw as follows:

e2 ~ t2t8!/tw5^e2 iSR[ t,t8;r,p;rt ,pt] 2SI [ t,t8;r,rt]& r

.e^2 iSR[ t,t8;r,p;rt ,pt] 2SI [ t,t8;r,rt] &r, ~ t2t8!→1`;

~67!

where the average is again taken over all classical paths
turning to the same point at the timet.

Let us consider the termSR Eq. ~54!. Making use of the
obvious relationsR(t,2r)5R(t,r), n(2p,r)5n(p,r) after
a trivial algebra we get
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SR@ t,t8;r,p;rt ,pt#5
e2

2 Et8

t

dt1E
t8

t

dt2$2R@ t12t2 ,r~ t1!2r~ t2!#@n„p~ t1!,r~ t1!…2n„p~ t2!,r~ t2!…#

1R@ t11t22t2t8,r~ t1!2r~ t2!#@122n„p~ t2!,r~ t2!…#2R@ t11t22t2t8,r~ t1t82t1!2r~ t1t82t2!#

3@122n„p~ t1t82t2!,r~ t1t82t2!…#%. ~68!
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It is clear that the difference of the occupation numbern
in the first term of Eq.~68! vanish:n depends only on the
energy and not on time because the energy is conse
along the classical path~61!. Thus the first term in the inte
gral ~68! is identically zero already before averaging ov
diffusive paths. The difference of two other terms vanish
after averaging over such paths. It can be easily seen if
again bear in mind that the occupation numbers do not
pend on time and make use of the fact that the aver
^R@ t3 ,r(t1)2r(t2)#& r is a function of the timet3 and the
absolute value of the time differenceut12t2u. This implies
that after averaging the two last terms in Eq.~68! are equal
and cancel each other exactly. As a result the whole fu
tional SR does not give any contribution to 1/tw .

The same analysis can be applied toSI . We find

SI@ t,t8;r;rt#5
e2

2 Et8

t

dt1E
t8

t

dt2$2I @ t12t2 ,r~ t1!2r~ t2!#

2I @ t11t22t2t8,r~ t1!2r~ t2!#

2I @ t11t22t2t8,r~ t1t82t1!

2r~ t1t82t2!#%. ~69!

Averaging over diffusive pathsr(t) and taking the limitt
2t8→1`, we observe thattw is determined by the firs
term under the integral, the other terms grow slower in ti
and therefore are irrelevant. Thus we get

1

tw
5e2E

2`

1`

dt^I @ t,r~ t !2r~0!#& r . ~70!

To find the average over the diffusive paths, we introduce
Fourier transform of the functionI (t,r) and replace

^e2 ik„r(t)2r(t8)…& r by e2Dk2ut2t8u. Then we obtain

1

tw
5

e2

a32dE2`

1`

dtE dvddk

~2p!d11

3Im S 24p

k2e~v,k!
D cothS v

2TDe2 ivt2Dk2utu. ~71!

As it was already discussed, Eq.~71! includes the effect of
both electron-electron and electron-phonon interactions.

To evaluatetw we use expression~36! for the dielectric
susceptibility. For typical metallic systems one can usua
neglect the first term in the expression fore(v,k) Eq. ~36!.
Then we find

ImS 21

e~v,k! D5
v

4psF11
c4k42c4v2/D2

~v22c2k2!21c4v2/D2G .

~72!
ed

r
s
e

e-
ge

c-

e

e

y

Herec5vpi(D/4ps)1/2 is the speed of sound in our system
Possible corrections to Eq.~72! may become important only
in special cases of one-dimensional~1D! and~2D! semicon-
ductor systems, where the capacitance may become im
tant. We will come back to this point later.

Expression~72! can be significantly simplified forc/D
&k&1/l . In this limit we obtain

ImS 21

e~v,k! D.ImS 21

e~v,k! D
ee

1ImS 21

e~v,k! D
eph

, ~73!

where

ImS 21

e~v,k! D
ee

5
v

4ps
, ~74!

and

ImS 21

e~v,k! D
eph

5
Dck3

8s
@d~v2ck!2d~v1ck!#. ~75!

Phonons with small wave vectorsk&c/D are strongly
damped. For suchk we may set Im(21/e(v,k))eph.0.

C. Results

With the aid of the above results we can now calculate
decoherence timetw . Let us first take into account only
electron-electron contribution toe and obtain the result for a
quasi-one-dimensional system witha& l . Substituting Eq.
~74! into Eq. ~71! and integrating over time and the wav
vector we arrive at the integral overv which diverges at both
low and high frequencies. The low-frequency divergence
cured in a standard manner32 by neglecting the effect of en
vironmental fluctuations with frequencies below 1/tw . At
high frequencies the integral should be cut at the scale of
order of the inverse transport time because at higherv the
approximation of electron diffusion becomes incorrect. Th
we obtain

1

tw~T!
5

e2A2D

s1
E

1/tw

1/te dv

2p

coth~v/2T!

Av
. ~76!

Equation~76! yields

1

tw
5

e2

ps1
A2D

te
@2TAtetw11#. ~77!

At sufficiently high temperature the first term dominates a
the standard result14 tw;(s1 /e2D1/2T)2/3 is recovered. This
is a classical contribution totw . As T is lowered the number
of classical~low frequency! modes decreases and eventua
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vanishes in the limitT→0. At T&Tq
(1);1/Atwte expression

~77! is dominated by the second term andtw saturates at the
value

tw'ps1 /e2vF . ~78!

The estimate for the crossover temperatureTq
(1) is obvious

from Eqs.~77!,~78!:

Tq
~1!'evF/2As1l . ~79!

Making use of Eqs.~65!,~78! it is also easy to find the wea
localization correctionds1 to the Drude conductance in th
limit T50. ForT&Tq

(1) we obtain

ds1

s1
52

e2

ps1
ADtw'2

1

pFs1/2
, ~80!

i.e.,ds1'2s1 /ANch, whereNch;pF
2s is the effective num-

ber of conducting channels in a 1D mesoscopic system.
For 2D and 3D systems the same analysis yields

1

tw
5

e2

4ps2te
@112Tte ln~Ttw!#, 2D,

1

tw
5

e2

3p2sA2Dte
3/2@116~Tte!

3/2#, 3D. ~81!

We would like to emphasize that the validity of the hig
frequency cutoff procedurevc;1/te in Eq. ~76! and the re-
sults ~77!–~81! derived on its basis is essentially linked
the assumption that a simple approximation~74! holds up to
frequencies of order 1/te . This assumption may not be jus
tified for relatively strongly disordered metals with smallte ,
in which case the effective high-frequency cutoffvc in Eq.
~76! and the corresponding results should be modified
cordingly.

Note that in the 2D case we again assumeda& l . Provided
this condition is satisfied, the above results for 1D and
systems are valid for the whole temperature range. At su
ciently high temperatures this condition can be softened
cause in this casetw is determined by the low-frequenc
fluctuations of the environment. Then the system can be c
sidered as a quasi-1D~quasi-2D! one if its transversal dimen
sion is smaller that the corresponding phase breaking le
a!Lw;ADtw. However, at low temperatures high
frequency modes become important and the situa
changes. E.g., in the limita@ l the diffusion process has tw
~and sometimes even three! stages: at short times~i.e., at
frequencies higher thanD/a2) diffusion is obviously 3D,
whereas for longer times it can be 1D or 2D.

For a@Lw the system is obviously 3D at allT. In the
intermediate casel !a!Lw, one should use the correspon
ing 1D or 2D formulas fortw at high temperaturesT@Tqa

(d)

and the 3D result~81! in the low-temperature limitT!Tqa
(d) .

The crossover temperatureTqa
(d) can be determined eithe

directly from the integral~71! or just by comparison of the
corresponding expressions fortw . We get Tqa

(d)

'Tq
(d)(a/p l )32d.

Now let us analyze the effect of the electron-phonon
teraction on the decoherence timetw . Substituting Eq.~75!
c-

-
e-

n-

th

n

-

into Eq. ~71! and applying the same cutoff procedure afte
simple integration one obtains

1

tw
eph

5
e2c

4p2s1

lnS vF

3cD1
e2D

4ps1c
T, 1D,

1

tw
eph

5
e2c

8p2s2vFte

1
e2

4p2s2

T lnSminH vF

3c
,
DT

c2 J D , 2D,

~82!

1

tw
eph

5
e2c

16p3svF
2te

2
1

e2

4p3svFte

T minH 1,
Tl

c J , 3D.

Comparing these expressions with the above results fortw

we find tw
ee/tw

eph;c/vF!1. Obviously this estimate will not
hold for systems where the effective high-frequency cut
vc in Eq. ~76! should be chosen smaller than 1/te . The
temperature-dependent term in the expression for the inv
dephasing time due to phonons obtained within our sim
model is of the same order as the corresponding elec
electron term in 1D and 2D, and can be bigger in 3D at
very low temperatures.

The above results in 1D and 2D are valid if the number
conducting channelsNch in the system is sufficiently big. In
typical metallic systems this condition is usually well sat
fied. However, in semiconductors one can, in princip
achieve the situation withNch&10. In this case the first term
in the expression fore Eq. ~36! cannot be neglected in gen
eral. Moreover for 1D and 2D samples with smallNch the
energy of the electromagnetic field outside the sample m
also give a substantial contribution. In order to account
this effect we introduce the effective capacitance of the s
tem C. Then the influence functional for the fieldV has the
form ~see, also, Ref. 9!

iSC5 i E dvddk

~2p!d11
V2~2v,2k!FC~v,k!1

k2@e~v,k!21#

4p G
3V1~v,k!2

1

2E dvd3k

~2p!4
V2~2v,2k!

3
k2 Im e~v,k!

4p
cothS v

2TDV2~v,k!, ~83!

where C(v,k).@11es(v)#/4 ln (1/ka) for a 1D wire and
C(v,k)5@11es(v)#k/8p for a 2D film. Herees(v) is the
dielectric susceptibility of the substrate. The Fourier tra
form of the functionI (t,r) takes the form

I v,k5^uVk,v
1 u2&

5
v coth~v/2T!

@vC~v,k!#2/sdk21sdq2@11C~v,k!D/sd#2
.

~84!

Substituting this expression into Eq.~70! we get for 1D wire
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1

tw~T!
5

e2A2D

s1
E

1/tw

1/te dv

2p

coth~v/2T!

Av@112 f ~v!#

3S 12A f ~v!

11 f ~v!
D , ~85!

wheref (v)5@11es(v)#D/4s1 ln(1/k0a) and the valuek0a
is roughly of order one. We estimate

f ~v!;
11es~v!

e2N0s
;

@11es~v!#pFr B

Nch
, ~86!

where r B51/me2.0.5 Å is the Bohr radius. For metalli
wires pFr B;1, Nch@1 and the functionf (v) is usually
small unlesses(v)@1 at frequencies of the order of 1/te .
However, for semiconductorsf (v) may be large andtw may
become significantly longer than one could expect from
~77!.

The same analysis can be carried out for 2D films. In t
case the effect of capacitance is described by the functio

f 2~v!5
@11es~v!#ADv

8ps2
;

@11es~v!#Avter B

pFla
.

Again one can conclude that this effect is typically negligib
for metallic films. For semiconductors with smallNch the
above effect might cause an increase oftw .

V. QUANTUM KINETIC APPROACH AND LANGEVIN
EQUATION

Let us now demonstrate how the usual quantum kin
description can be derived from our analysis. We start fr
.

s

ic

the equation for the density matrixrV Eq. ~25!. Rewriting
this equation in the ‘‘interaction representation,’’ i.e., subs
tuting rV→e2 iH 0trVeiH 0t we find

i
]rV

]t
52eV̂1~ t !rV1rVeV̂1~ t !

2
e

2
@~12rV!V̂2~ t !rV1rVV̂2~ t !~12rV!#,

~87!

whereV̂6(t)5eiH 0tV6(t)e2 iH 0t. Let us integrate this equa
tion over time, then substitute the resulting expression forrV
into the right-hand side of Eq.~87! and average overV6. If
the Coulomb interaction is sufficiently weak one can proce
perturbatively inV and neglect the dependence of the dens
matrix rV on this field in the right-hand side of the resultin
equation. Then the result of averaging can be expresse
terms of the correlation functions^VV&. More precisely, two
such functions turn out to be important:

^V1~ t1 ,r1!V1~ t2 ,r2!&5I ~ t12t2 ,r12r2!,

^V1~ t1 ,r1!V2~ t2 ,r2!&5 iR~ t12t2 ,r12r2!. ~88!

The function^V1(t1 ,r1)V2(t2 ,r2)& differs from zero only
for t1.t2. The correlation function̂V2V2& is zero for all
times. Taking this into account we obtain
etic
e Fermi
e cannot

lify Eq.

for
]r

]t
5e2E

2`

t

dt8K 2V̂1~ t !V̂1~ t8!r~ t8!1V̂1~ t !r~ t8!V̂1~ t8!1V̂1~ t8!r~ t8!V̂1~ t !2r~ t8!V̂1~ t8!V̂1~ t !

2
1

2
V̂1~ t !@12r~ t8!#V̂2~ t8!r~ t8!2

1

2
V̂1~ t !r~ t8!V̂2~ t8!@12r~ t8!#1

1

2
@12r~ t8!#V̂2~ t8!r~ t8!V1~ t !

1
1

2
r~ t8!V̂2~ t8!@12r~ t8!#V1~ t !L

V1,V2

, ~89!

where r(t)5rV50(t). Let us replacer~t8! by r~t! under the integral. This is the standard way of derivation of a kin
equation, which is often referred to as the first Bloch approximation. It is fully equivalent to the approach based on th
golden rule. We would like to emphasize that this method is not applicable at very low temperatures, in which case on
neglect the dependence ofr(t) on V1,V2 in Eq. ~89!.

For simplicity let us consider a clean metal. Making use of the momentum conservation one can significantly simp
~89!. In this case the density matrix is given byr(r12r2)5*@d3p/(2p)3#npeip(r12r2). The operatore2 iH 0t reduces toe2 i jpt.
Performing the averaging with the aid of Eqs.~88!,~56!,~57! we find

dnp

dt
5

e2

p2E dvd3k ImS 21

k2e~v,k!
D d~v1jp2k2jp!FcothS v

2TD ~np2k2np!2np~12np2k!2np2k~12np!G . ~90!

The right-hand side of this equation represents the standard collision integral which vanishes in equilibrium, i.e.,np
51/@exp(jp /T)11#.

Equation~90! can be also rewritten in the following form:
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dnp

dt
5

2e2

p2 E0

1`

dvE d3k ImS 21

k2e~v,k!
D $d~v1jp2k2jp!Nvnp2k~12np!2d~v1jp2k2jp!~11Nv!np~12np2k!

1d~v1jp2jp2k!~11Nv!np2k~12np!2d~v1jp2jp2k!Nvnp~12np2k!%, ~91!

where Nv51/@exp(v/T)21# is the Bose function. This equation describes the standard photon absorption and em
processes and thus establishes a transparent relation between our approach and one describing the kinetics of a
interacting with the quantized electromagnetic field. In our case the fieldV is due to fluctuations of conducting electrons~or
lattice ions—see below!. It is quite clear, however, that the physical nature of this field is not important for the ele
dynamics, at least as long as this Bose field remains in equilibrium.

It is important to emphasize that the effect of electron-phonon interaction is also taken into account in Eq.~91!. The phonon
spectrum is determined by the equatione(v,k)50, i.e., the function21/e(v,k) has a pole atv5vph(k)2 i0. Therefore, one
can write

21

e~v,k!
52

A~k!

p@v2vph~k!1 i0#
1•••, ImS 21

e~v,k! D5A~k!d@v2vph~k!#1•••, ~92!

where other contributions toe21 are denoted by dots. The valueA(k) determines the strength of electron-phonon interacti
Within the simple model~75! one hasA(k)5Dck3/8s5ck3/16e2N0.

Substituting expression~92! into Eq. ~91! and integrating overv we reproduce the standard electron-phonon collis
integral:

I eph5
2e2

p2 E d3k
A~k!

k2
$d~vph~k!1jp2k2jp!Nvph~k!np2k~12np!2d@vph~k!1jp2k2jp#~11Nvph~k!!np~12np2k!

1d@vph~k!1jp2jp2k#~11Nvph~k!!np2k~12np!2d@vph~k!1jp2jp2k#Nvph~k!np~12np2k!%. ~93!
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This result demostrates that the functione(v,k) correctly
describes both electron-phonon and electron-electron inte
tions. It is not surprising, because this function just accou
for the collective effect of the environment. Electrons prop
gating in a metal ‘‘feel’’ only the fluctuating electric field
produced by the environment, both by electrons and lat
ions. Therefore it is quite natural that both contributions c
be successfully treated within the same approach.

Equations ~90!–~93! are applicable if the distribution
functionsnp andNv are close to the equilibrium Fermi an
Bose functions. It is not difficult to generalize this approa
for stronger deviations from equilibrium. Actually th
electron-phonon collision integral~93! remains the same in
this case, only the distribution functionNk can deviate far
from the Bose function. In order to generalize the electr
electron collision integral we make use of the following no
equilibrium formulas:

ImS 21

e~v,k! D52
e2

pk2ue~v,k!u2
E d3pd~v2jp1k1jp!

3~np1k2np!,

^V1V1&v,k5
4e2

k4ue~v,k!u2E d3p@np1k~12np!

1np~12np1k!#d~v2jp1k1jp!, ~94!

which can be easily derived from Eqs.~35! and~B6!, respec-
tively. Substituting these expressions into Eq.~90! we arrive
c-
ts
-

e
n

-
-

at the electron-electron collision integral for the degener
plasma:

I ee5E d3k

~2p!3

d3p8

~2p!3S 4pe2

k2 D 2
8p

ue~jp1k2jp ,k!u2

3d~jp81k1jp2k2jp82jp!@np81knp2k~12np8!

3~12np!2np8np~12np81k!~12np2k!#. ~95!

Thus, the kinetic equation can be written in a standard fo

dnp

dt
5I eph1I ee, ~96!

where the collision integralsI eph and I ee are defined, respec
tively, by Eqs.~93! and ~95!.

In order to estimate the characteristic electron scatte
time we have to substitute the functionnp1dnp instead of
np in the collision integral~90!. The inverse inelastic scat
tering time 1/t i is then defined as a coefficient in front of th
term dnp describing deviations from equilibrium. Makin
use of an obvious identity 122np2k5 tanh@(jp2v)/2T# we
get

1

t i~p!
5

e2

p2E dvd3k ImS 21

k2e~v,k!
D d~v1jp2k2jp!

3Scoth
v

2T
1tanh

jp2v

2T D . ~97!
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It is clear from this equation that the timet i becomes infinite
at zero temperature and at the Fermi energy due to the P
principle. The same is true for the inelastic scattering ti
due to electron-phonon interaction.

The above kinetic equations were derived for the sim
case of a clean system and do not account for the effec
elastic scattering. In the case of a disordered metal the e
tron momentum is not conserved and the whole deriva
becomes much more complicated. One can demonstrate~see,
e.g., Ref. 12! that in the diffusive limit the result is roughly
equivalent to a substitution

d~v1jp2k2jp!→ReF 1

iv1Dk2G
in expression~97!. An extended analysis of the inelastic sca
tering time in various limits is given in Ref. 33.

As it was already discussed, the analysis presented in
section is essentially equivalent to the Golden rule pertur
tion theory in the interaction. At low temperatures this p
turbation theory becomes insufficient. One can also form
late an alternative approach and derive the quasiclas
Langevin equations describing electron dynamics in
weakly disordered metal at all temperatures. In doing so,
follow the same procedure as the one described in R
5,6,31.

Consider only close electron paths for which the valu
r25r12r2 andp25p12p2 are small. Then we can expan
the effective action in the exponent of Eq.~53! in powers of
r2 andp2 keeping only the quadratic terms. The action b
comes Gaussian in terms of these variables and the inte
~53! is dominated by the saddle-point trajectories:dS/dp2

50 anddS/dr250. The first equation coincides with on
without dissipation:ṙ5p/m. With the aid of this equation the
momentum can be easily excluded and we get

mr̈1¹U~r!1e2@122n~r,mṙ!#

3E
2`

t

dt8¹ rR@ t2t8,r~ t !2r~ t8!#52eE~ t,r!.

~98!

Here E(t,r) is a fluctuating electric field. Equilibrium fluc
tuations of this field are described by the correlator

^Ei~ t1 ,r1!Ej~ t2 ,r2!&

54pd i j E dvd3k

~2p!4
ImS 2coth~v/2T!

e~v,k! D
3e2 iv~ t12t2!1 ik~r12r2!. ~99!

If needed, the generalization of Eqs.~98!, ~99! to a strongly
nonequilibrium situation can be also provided. Also mo
general expressions for the kernelR(t,r1 ,r2) and for the cor-
relation function~99! for the caseur12r2u, l can be derived.
Combining these expressions with Eq.~98! one can obtain a
uli
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quasiclassical description of electron dynamics also at sc
& l . However, such details are not important for us here,
~98! is presented merely to illustrate important physical
fects.

Equation~98! obviously satisfies the requirement of ca
sality and captures all the essential features of electron
namics in a metal. E.g., it demonstrates that electrons
metal cannot infinitely decrease their energy: effective dam
ing due to the presence of the environment@described by the
last term in the left-hand side of Eq.~98!# is zero at the Fermi
energy (n51/2) and becomes negative below this ener
Thus electrons with the initial energy abovem will lose it
before they reach the Fermi level. On the contrary, ho
with the initial energy belowm will be pushed up to the
Fermi surface. This simple example demonstrates again
our analysis accounts explicitly for the Pauli principle. T
corresponding information is contained in the influence fu
tional which depends on the occupation numbers.

The damping term in Eq.~98! depends on the function
R(t,r) which is determined by the correlation functio
^V1V2& @see Eq.~88!#. The physical origin of this damping
term is quite transparent: the electron~or the hole! propagat-
ing in a metal produces the screened electric potential du
the presence of other electrons and ‘‘feels’’ this poten
itself. In this sense Eq.~98! is similar to the equation of
motion of a high-energy particle~e.g., muon! in a metal. The
important difference between these two cases, however,
in the factor 122n which is present in our case due to th
Pauli principle. Formally this factor enters due to fluctuatio
of the fieldV2 which is ‘‘sensitive’’ to the Pauli principle.
The fluctuating electric fieldE in the right-hand side of Eq
~98! is, on the contrary, not affected by the Pauli princip
because its correlation function depends only on the fi
V1.

With the aid of Eq.~98! it is also easy to understand wh
the real part of the influence functionalSR Eq. ~54! does not
contribute to the decoherence time. According to Eq.~98! the
phase difference acquired by the electron propagating a
some classical path can be split into two parts: the reg
contribution due to damping (SR) which depends only on the
electron trajectory, and irregular part due to noise (SI). Con-
sidering now the contribution from a pair of time-revers
paths, we observe that the regular contributions are the s
and cancel each other because they enter with a diffe
sign. Only irregular contributions due to noise survive a
determinetw . For each path the regular contribution ma
have a different value depending on the path and energy
even vanish~for energies at the Fermi level!. However, by no
means does this affect the noise terms and thustw , which
always remains finite.

VI. DISCUSSION

With the aid of the Keldysh technique we developed
path-integral formalism which allows us to study quantu
dynamics of electrons in a disordered metal in the prese
of interactions. Our formalism allows us to proceed beyo
the perturbation theory in the interaction and obtain nonp
turbative results for the weak localization correction to t
conductivity of a disordered metal at low temperatures. O
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treatment was carried out with no more assumptions than
usual ones in the weak localization theory: the elastic m
free path was considered large as compared to the F
wavelengthpFl @1 and interactions were assumed to be s
ficiently weak.

Our analysis consists of the two main steps.
~1! The first step is to reformulate the initial many-bod

problem with the interaction in terms of a single quantu
particle interacting with an effective quantum environme
We derived a formally exact equation of motion for th
single electron density matrixr in the presence of interactio
@Eqs.~24-25! for rV#. The matrixr is obtained after averag
ing of rV over the fluctuating fieldsV6 @Eq. ~21!# carried out
with the ~again formally exact! effective actionS@V1 ,V2#
Eq. ~10! derived by integrating out electronic degrees of fre
dom. No approximations have been made at this stage.

Although the exact expression forS@V1 ,V2# is too com-
plicated to deal with, some important observations can
made already before making approximations. Namely,
fluctuating fieldV1 enters the equations just like an extern
field whereas the fieldV2 enters in a qualitatively differen
manner. Fluctuations of the fieldV1 are essentially respon
sible for dephasing.

In order to proceed further we make the first approxim
tion: we evaluate the effective actionS@V1 ,V2# within the
RPA. As a result the actionS becomes quadratic inV6 and
contains the dielectric susceptibilitye(v,k) of the effective
environment. After that we easily integrate out the fieldsV6

and arrive at the influence functionalF for interacting elec-
trons in a disordered metal. This completes the first par
our analysis. We can add that this approach can be also
in physical situations in which approximations other th
RPA are more appropriate. In such cases the ac
S@V1 ,V2# and the influence functional should be modifi
accordingly.

~2! As a result of our derivation we arrived at the proble
of a quantum particle in a random potential in the prese
of the effective environment described by the influence fu
tional F. The Fermi statistics and the Pauli principle are e
plicitly accounted for in the expression forF. The kinetic
energy of a particleE is counted from the Fermi energym
and the states withE,0 are forbidden. The second step
our analysis is to investigate the quantum dynamics of su
particle and to calculate the conductivity of the systems.
The latter quantity is defined by Eq.~49! where the kernelJ
is expressed in terms of the path integral~53! which includes
the influence functionalF. This integral is evaluated within
the saddle-point approximation which is applicable in t
quasiclassical limitpFl @1. This procedure yields the wea
localization correction to the conductivity which saturates
the low-temperature limit due to the effect of interaction
This implies a low-temperature saturation of the parame
tw and Lw extracted from the measurements of the syst
magnetoconductance.

We would like to emphasize that saturation of the para
eterLw at T→0 at a finite value determined by the intera
tion obviously should notbe interpreted as the absence
coherent eigenmodes in the interacting system. However
presence of such modes does not yet imply that the phys
measurables should necessarily demonstrate the cohere
havior. An example is provided by a quantum particle int
he
n
mi
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acting with the Caldeira-Leggett bath of oscillators. The o
diagonal elements of the density matrix of such a parti
always decay on a finite lengthLd;1Am^E& which is set by
interaction. Hence, even atT50 the interference betwee
different Feynman paths is suppressed at a typical scale;Ld

~see, e.g., Ref. 34!. Because of the energy exchange with t
bath of oscillators the particle kinetic energy is distributed
w(E)}exp(2E/2^E&) with a nonzero expectation value^E&
which does not depend on temperature at sufficiently lowT.
The value^E& depends on the interaction strength and
bath high-frequency cutoffvc . The latter dependence ha
nothing to do with the excitation of the bath oscillators,
persists even if̂ E& is evaluated in thetrue ground stateof
the interacting system. A more detailed discussion of
relation of our results to ones obtained for the Caldei
Leggett-type of models is presented in Ref. 35.

One can also provide an example of a physical sys
where the interaction induced low-temperature saturation
the parameterŝE& andLd as well as the dependence of the
parameters on the high-frequency cutoffvc of the effective
bath can be~and have been! directly measured in experi
ments. This is the well-known problem of single electron a
Cooper pair tunneling in mesoscopic tunnel junctions in
presence of interaction with other electrons. The effect
this interaction is equivalent to that of a dissipative enviro
ment and was intensively studied in the literature.8,21–25 In-
teraction with the electronic environment destroys the qu
tum coherence, lifts the Coulomb blockade, and
responsible forincoherentelectron tunneling across the junc
tion down toT50.

Despite clear differences this problem is similar in ma
respects~both physically and formally! to the one studied
here. In both cases the conductance of a disordered me
system in the presence of the electron-electron interactio
studied and the Pauli principle should be accounted for
both cases one can map the problem to that of one elec
interacting with a fluctuating quantum fieldV(v,k) which
dynamics is determined by fluctuations of other electrons
both cases the physical quantity of interest is expresse
terms of the correlation function for this field and cannot
correctly described by means of the Golden rule perturba
theory in the interaction. Although the expressions for t
correlator̂ VV& are somewhat different in the two problem
at T→0 they both saturate to a finite value determined by
interaction and the high-frequency cutoffvc of the effective
electronic environment. In the case of single charge tunn
ing the low-temperature saturation of the parameterLd was
directly measured in various experiments, see, e.g., R
26,27. We believe the low-temperature saturation of the
coherence lengthLw detected in Ref. 1 and other exper
ments has exactly the same physical nature: it is cause
the electron-electron interaction.

Finally, we briefly discuss the agreement between our
sults and the experimental data1 ~see, also, Ref. 28!. The
comparison between theoretical and experimental values
the decoherence lengthLw5ADtw at zero temperature is
given in Table I. To calculateLw we first estimate the deco
rence time with the aid of Eq.~77!. At T50 the timetw can
be conveniently expressed in terms of measurable quanti
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TABLE I. Theoretical values of the coherence lengthLw5ADtw in comparison with the experimenta
results~Ref. 1!.

Sample w ~nm! t ~nm! L (mm) R/L (V/mm) D (1023 m2/s) Lw
exp (mm) Lw

theor (mm)

Au-1 60 25 57.9 29.14 7.8 5.54 1.8
Au-2 110 60 207 1.46 35.5 16 16.5
Au-3 100 35 155 9.31 10.5 5.2 3.6
Au-4 60 25 57.9 31.29 7.3 3.6 1.6
Au-5 190 40 18.9 191.7 0.24 0.35 0.12
Au-6 180 40 155 2.91 16.3 8 8.1
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, ~100!

whereRq5p/2e256453V is a quantum resistance,L is the
wire length andR is the total resistance. The Fermi veloci
for gold wires was taken to be36 1.393106 m/s. The diffu-
sion coefficientD was estimated with the aid of the Drud
formula s52e2N0D. The density of states for gold is cho
sen to be36 N05631012 s/m3. Note that the numerical val
ues forD are not identical to those given in Ref. 1.

The width, the thickness, and the length of the wire
denoted, respectively, byw, t, andL; R/L is the resistance
per unit length andLw

exp, Lw
theor are the experimental an

theoretical values of the decoherence length. The agreem
between both looks reasonable for all samples, especial
one takes into account an uncertainty in a numerical pre
tor in our formulas due to the cutoff procedure and poss
effects of the sample geometry. It is also important to e
phasize that our comparison involvesno fitting parameters.

Further experiments are desirable for better understan
of the electron-electron interaction effects in disordered l
dimensional systems.

Recently, we became aware of a paper by Aleiner, A
shuler, and Gershenzon.37 In it they developed a perturbativ
calculation of the weak localization correction to the cond
tivity and arrived at the result for the decoherence rate 1tw

which differs from our result at lowT. This difference is not
surprising because, as it was discussed above, the Go
rule perturbation theory37 is not sufficient and a nonpertur
bative analysis is needed to properly account for the effec
interactions. This analysis is developed in our paper. O
perturbative level all the diagrams37 are fully reproduced
from our path integral formalism. For a more detailed d
cussion we refer the reader to Ref. 38.
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APPENDIX A: DENSITY MATRIX

With the aid of Eq.~9! the time integral in the last term o
the Dyson equation~18! can be transformed as follows:
e

ent
if

c-
le
-

ng
w

t-

-

en

of
a

-

rk
aft

E
0

t

dt8Ĝ0~ t1 ,t8!eV̂~ t8!Ĝ~ t8,t2!

5Ĝ0~ t1 ,t2!2E
0

t

dt8Ĝ0~ t1 ,t8!S i
]

]t8
2Ĥ0~ t8!D

3Ĝ~ t8,t2!

5Ĝ0~ t1 ,t2!2 iĜ0~ t1 ,t !Ĝ~ t,t2!1 iĜ0~ t1,0!Ĝ~0,t2!

1E
0

t

dt8S i
]

]t8
1Ĥ0~ t8!D Ĝ0~ t1 ,t8!Ĝ~ t8,t2!

5Ĝ0~ t1 ,t2!2Ĝ~ t1 ,t2!2 iĜ0~ t1 ,t !Ĝ~ t,t2!

1 iĜ0~ t1,0!Ĝ~0,t2! . ~A1!

Here we performed the integration by parts over the timet8
and made use of the equation

S i
]

]t8
1Ĥ0~x8!D Ĝ0~ t1 ,t8!52d~ t12t8!d~x12x8!,

which defines the field-free Green-Keldysh functionĜ0.
Substituting the result~A1! into Eq. ~18! we arrive at Eq.
~22!.

Let us substitute the representation~14! into Eq. ~22!.
Then we find

Û0~ t1 ,t !@2b̂1 f̂ 0~ t !#ÛV~ t,t2!@ â1 f̂ V~ t2!#

2Û0~ t1,0!@ â1 f̂ 0~0!#ÛV~0,t2!@2b̂1 f̂ V~ t2!#50. ~A2!

It is now convenient to represent the operatorf̂ V in the form

f̂ V~ t2!5ÛV~ t2,0!ĝ~ t2!ÛV~0,t2!. ~A3!

Then for ĝ we get

@11„b̂2 f̂ 0~0!…„Û0~0,t !ÛV~ t,0!21…#ĝ~ t2!

5 f̂ 0~0!2@ b̂2 f̂ 0~0!#@Û0~0,t !ÛV~ t,0!21#â. ~A4!

Let us set t25t and introduce the scattering matrixS
5U0(0,t)UV(t,0)5s1â1s2b̂. This matrix is diagonal be-
cause bothU0 andUV are the diagonal matrices. The matr
elementss1 and s2 are defined ass1,25u0(0,t)u1,2(t,0).
Making use of the above notations and rewriting Eq.~A4! in
components we find
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F S 1 0

0 1D 1S r0 2r0

211r0 12r0
D S s121 0

0 s221D G
3S g11 g12

g21 g22
D 5S 2r0 r0

12r0 r0
D 2S r0 2r0

211r0 12r0
D

3S s121 0

0 s221D S 1 0

0 0D . ~A5!

Multiplying matrices and keeping only the part of the resu
ing matrix equation which depends ong12 andg22 we obtain

S 11r0~s121! 2r0~s221!

2s1111r0~s121! s22r0~s221!
D S g12

g22
D 5S r0

r0
D .

~A6!

Substracting the second equation from the first one we
s1g122s2g2250, or g225s2

21s1g12. Subsituting this result
into the first equation we find

@11r0~s2
21s121!#g125r0 . ~A7!

Note that theSmatrices enter the above equation only in t
combinations2

21s1 which does not contain the evolution op
eratoru0, i.e., we haves2

21s15u2(0,t)u1(t,0) and

$12r0~0!@12u2~0,t !u1~ t,0!#%g12~ t !5r0~0!. ~A8!

Rewriting Eq. ~A3! for the 1,2 component of the matri
f̂ V(t)

f 12~ t !5u1~ t,0!g12~ t !u2~0,t !,

and making use of the identityrV(t)5 f 12(t) we arrive at the
result ~37!.

APPENDIX B: EFFECTIVE ACTION AND FDT

For V1,2[0 the electron Green functionsG12 andG21 can
be expressed in the form

G125 iu0~ t1,0!r0u0~0,t2!,

G2152 iu0~ t1,0!~12r0!u0~0,t2!. ~B1!

In thermodynamic equilibrium we haveu0(t,0)r0u0(0,t)
5r0 for any timet.

Let us introduce the basis of the eigenfunctions for
single electron Hamiltonian,H0ck5jkck . Without loss of
generality we can choose these eigenfunctions to be real.
et

h

-

et

e

he

initial density matrixr0 is assumed to be diagonal in th
basisck , namelyr05(knkuck&^cku. This assumption is jus-
tified only for weakly interacting particles. Then the fun
tionsG12, G21 Eq. ~B1!, GR andGA Eq. ~29! can be written
in the form

G12~ t1 ,t2 ,r1 ,r2!5 i(
k

e2 i jk~ t12t2!nkck~r1!ck~r2!,

G21~ t1 ,t2 ,r1 ,r2!52 i(
k

e2 i jk~ t12t2!~12nk!ck~r1!ck~r2!,

GR~ t1 ,t2 ,r1 ,r2!52 iu~ t12t2!(
k

e2 i jk~ t12t2!ck~r1!ck~r2!,

GA~ t1 ,t2 ,r1 ,r2!5 iu~ t22t1!(
k

e2 i jk~ t12t2!ck~r1!ck~r2!.

~B2!

With the aid of these expressions the kernels~31!,~32! can be
represented as follows:

x~ t,r1 ,r2!52ie2u~ t !(
k,q

e2 i ~jk2jq!t~nk2nq!

3ck~r1!ck~r2!cq~r2!cq~r1!, ~B3!

h~ t,r1 ,r2!5
1

2
e2(

k,q
e2 i ~jk2jq!t@nk~12nq!

1nq~12nk!#ck~r1!ck~r2!cq~r2!cq~r1!.

~B4!

Performing the Fourier transformation in time:

x~v,r1 ,r2!522e2(
k,q

nk2nq

v2jk1jq1 i0

3ck~r1!ck~r2!cq~r2!cq~r1!, ~B5!

h~v,r1 ,r2!5pe2(
k,q

d~v2jk1jq!@nk~12nq!

1nq~12nk!#ck~r1!ck~r2!cq~r2!cq~r1!,

~B6!

and substituting the equilibrium distribution functionnk
51/(ejk /T11) one immediately arrives at Eq.~33!.
.
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