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Crossing resonance of two wave fields in disordered media
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The interaction of two wave fields of different nature in a disordered medium with an arbitrary relation
between the mean valueP and rms fluctuationl of the coupling parameter is studied. A significant recon-
struction of the eigenfrequencies, damping parameters, and susceptibilities of the system occurs when the
situation changes from the model of a homogeneous medium (PÞ0, l50) to the model of the disorder-
induced crossing resonance (P50, lÞ0). The concept of two effective media in the same material, which
was introduced for the latter model in earlier work, is extended here to the casePÞ0.
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I. INTRODUCTION

The term ‘‘crossing resonance’’ describes a wide class
phenomena occurring when the dispersion curves of
wave fields of different physical nature intersect each oth
An interaction between these fields removes the degener
giving rise to a new compound excitation. Such cross
resonances as magnetoelastic resonance,1,2 polaritons,3

electron-nuclear magnetic resonance,4 and others play an im
portant role in solid-state physics, and have been studie
detail in ordered materials.

Recently, interest in these resonance interactions betw
wave fields in disordered materials has arisen. The influe
of inhomogeneities of parameters of one of the interact
fields has been considered in a number of papers~see, for
example, Refs. 5–7 for polaritons in a medium where el
tromagnetic parameters are random!. This leads to a more
complicated dispersion law and some other interesting
fects in the vicinity of the crossing resonance. But the m
significant changes occur in the physics of the crossing re
nances if it is not the parameters of each of the interac
fields that are considered as random quantities but the
pling between them. Beginning with Ref. 8, the crossi
resonance of two wave fields in a medium with an inhom
geneous coupling parameter between the fields was inv
gated in several papers.9–14 All of these studies were con
ducted within the framework of the disorder-induc
crossing resonance~DICR! model, which was introduced in
Ref. 8. Within this model the coupling parameter betwe
the wave fields was assumed to be a random zero-mean
tion of coordinates, so that the interaction occurs only due
spatial fluctuations of this parameter. The model is a spe
case of the more general situation where both the mean v
and fluctuations of the coupling parameter exist in a mate
It is a convenient model that describes the influence of
disorder on crossing resonances in the most prominent w
and is also related to some real situations. One can men
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for example, amorphous ferromagnets with a zero-m
magnetostriction, or polaritons arising due to the coupl
between electromagnetic waves and vibrations that would
dipole inactive in the absence of the disorder.

The physical nature of the interacting wave fields as w
as the nature of the coupling parameters are different in
ferent media. Despite these differences, however, the m
effects caused by inhomogeneities of the coupling param
have quite a general nature, which is independent of a
ticular realization of the resonance situation. In order to e
phasize the general features of the phenomenon, it was
sidered in Refs. 8, 13, and 14 in the most general fo
which would be valid for the crossing resonance of any
ture. In Ref. 8 the reconstruction of dispersion laws as w
as the accompanying decay of the average waves cause
fluctuations of the coupling parameter were investigated
considerable qualitative difference between DICR and cro
ing resonances in homogeneous media was found. B
coupled wave fields in a homogeneous medium are cohe
and have a joint dispersion law that consists of two branch
depending on the value of the damping in the system, the
between these branches at the resonance point can be op
up or closed. In contrast to this, the mixed excitations in
DICR model consist of the coherent part of one of the wa
fields and scattered waves of the other field. In this case e
averaged wave field is characterized by its own dispers
law. The situation is possible, for instance, when the disp
sion law of the one averaged wave field has a gap at
resonance point, whereas the dispersion curve of the o
field is continuous. In Ref. 13 the energy dynamics of t
compound states which arise in a system of two wave fie
coupled by a random interaction have been studied. Rand
ness of the interaction causes energy flow from the cohe
wave to scattered states of the second participating w
field. If disorder-induced crossing resonance occurs, it
been found that there is also a current from the scatte
waves to the coherent component. In Ref. 14 a susceptib
9185 ©1999 The American Physical Society
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9186 PRB 59IGNATCHENKO, EREMENTCHOUK, MARADUDIN, AND DEYCH
matrix in the vicinity of DICR has been studied. The diag
nal components of the susceptibility matrix demonstr
resonance features caused by the interaction of the aver
wave of one nature with fluctuation waves of another natu
while the off-diagonal components are equal to zero. It
been shown that the average properties of the system ca
considered within the concept of two effective media th
can be introduced in the same real material in order to
scribe properties of the fields. These two media have dif
ent characteristics and are independent in the sense that
of the averaged wave fields propagates through its own
fective medium without any interactions.

In addition to these properties, which are general for a
disorder-induced crossing resonance, there are propertie
phenomena that are specific for particular systems. The
cific features of the disorder-induced magnetoelastic re
nance in ferromagnets with zero-mean magnetostriction,9–11

and disorder-induced polaritons in disordered dielectric12

have been examined. It was shown that the main chara
istics of the stochastic magnetoelastic interaction can
measured by experimental studies of either the modified
persion law of acoustic waves9 or the elastic analogs of th
Faraday and Cotton-Moutton effects.10 Polaritons were
shown12 to be good candidates for the experimental obser
tion of effects of the inhomogeneity of the coupling para
eter in a medium with dipole inactive phonons by optic
methods.

All of these studies8–14 were carried out in the framewor
of the DICR model. The mean valueP of the coupling pa-
rameter was considered to be equal to zero, and it was
sumed that the interaction between wave fields occurs o
due to fluctuations of this parameter. The parameter, wh
characterizes the strength of the interaction in this case, is
rms fluctuation of the coupling parameter,l. In real disor-
dered media the average value of the coupling paramet
not, in most cases, equal to zero, and it may be in any kin
relationship with its rms valuel. The main objective of the
present paper is to consider this general situation. Our m
goal is to study how dispersion laws of the coupled exc
tions change in going from the case of the pure DICR mo
(P50,lÞ0) to the case of a homogeneous mediumP
Þ0,l50). For the sake of definiteness we consider the m
netoelastic crossing resonance, but the main results obta
hold qualitatively for crossing resonances of any nature.

II. EQUATIONS OF THE COUPLED AVERAGED WAVES

We shall analyze the crossing resonance of two w
fields for the example of magnetoelastic resonance in in
mogeneous ferromagnets.

Excitations in a magnetoelastic medium are governed
the system of Landau-Lifshitz equations for the magneti
tion and the equations for the elastic displacements,

Ṁ52gFM3S 2
]H
]M

1
]

]x

]H
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~1!

müi5
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whereM is the magnetization,uW is the elastic displacemen
vector,ui j 51/2(]ui /]xj1]uj /]xi) is the elastic strain ten
sor, g is the gyromagnetic ratio, andm is the density of the
medium.

We assume that our system is an elastically isotropic
romagnet with a single magnetic symmetry axis, so that
corresponding magnetoelastic potential energyH takes the
form

H5
1

2
a~¹M !22

1

2
b~Mn !22HM 1

1

2
d1uii

2

1
1

2
d2~ui j ui j 1ui j uji !1

1

2
B~x!MiM jui j . ~2!

Here a is the exchange parameter,b and n are the magni-
tude and direction of the magnetic anisotropy axis, resp
tively, d1 and d2 are the elastic Lame´ constants,H is the
magnetic field, andB(x) is the magnetoelastic parameter.

In the general case the parameterB coupling the sub-
systems can be represented as the sum of a nonrandom
random component,

B~x!5B01DBr~x!, ~3!

whereB0 is the mean value andDB is the rms fluctuation of
the magnetoelastic parameter, andr(x) is a centered
@^r(x)&50# and normalized@^r2(x)&51# random function.
The stochastic properties ofr(x) are characterized by th
normalized correlation function

K~r !5^r~x!r~x1r !&. ~4!

Let an external dc magnetic field and the anisotropy a
be directed along thez axis of the coordinate system. Th
equilibrium direction of the magnetization, then, also co
cides with thez axis. We consider the excitation of the m
dium by bulk forcesf a and f b , with the first of them affect-
ing the elastic subsystem and the second one influencing
magnetic subsystem. We assume that these forces are
pendicular to thez axis. Therefore, only theirx andy com-
ponents have nonzero values. Linearizing the system~1! with
respect to the small deviationsm(x,t) from the equilibrium
magnetizationM0 , using the scalar approximation for th
elastic waves (v t5v l5v, wherev t andv l are the speeds o
the transverse and longitudinal elastic waves, respective!,
and neglecting the terms describing both the nonreson
interaction between the elastic and the left-polarized s
waves and the terms describing the interaction between
spin waves and the longitudinal elastic waves (uz), we ob-
tain the following integral equations for the Fourier tran
forms of the circular componentsm5mx1 imy and u5ux
1 iuy :

@~v2 iGu!22vu
2~k!#u~k!1

iMkz

2m FB0m~k!

1DBE m~k1!r~k2k1!dk1G5Vu
2 f k ,

~5!
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@v2vs~k!2 iGs#m~k!2
ivMM

2 FB0kzu~k!

1DBE k1zu~k1!r~k2k1!dk1G5vMhk .

In these equationsvu and vs are the initial dispersion
laws of the elastic and spin waves, respectively,

vu5vk, vs5v01avMk2, ~6!

wherev05g(H1bM ) andvM5gM; we added the param
etersGu andGs in order to model the initial dampings of th
corresponding waves.

We shall examine these equations in the vicinity of t
crossing resonance point (v r ,kr), wherev r and kr are de-
termined by the equations

vu~kr !5vs~kr !5v r[vkr . ~7!

Introducing the dimensionless variablesf andc and the
dimensionless forcesF andC by

fk5~2mv rvM !1/2
uk

M
, ck5

mk

M
,

~8!

Fk5S mvM

2v r
D 1/2

Vuf k , Ck5
hk

M
,

ly

rm
d

q

un
d

we obtain the following system of equations:

1

2v r
@~v2 iGu!22vu

2~k!#f~k!1
i

2
P

kz

kr
c~k!

1
i

2
l

kz

kr
E c~k1!r~k2k1!dk15VuFk ,

~9!

@v2vs~k!2 iGs#c~k!2
i

2
P

kz

kr
f~k!

2
il

2kr
E k1zf~k1!r~k2k1!dk15vMCk .

The mean valueP and the rms fluctuationl of the cou-
pling parameter are determined by the expressions

P5B0S vM

2mv r
D 1/2

Mkr , l5DBS vM

2mv r
D 1/2

Mkr .

~10!

Both of them have the dimensions of frequency.
In order to deduce the averaged Green function of E

~9!, it is convenient to introduce matrix notations:
G0
215S 1

2v r
@~v2 iGu!22vu

2~k!# i
Pkz

2kr

2 i
Pkz

2kr
v2vs~k!2 iGs

D ,

R5S 0 2
ikz

2kr
E r~k2k1!•••dk1

i

2kr
E k1zr~k2k1!•••dk1 0

D ,

f 5S fk

ck
D , F5S VuFk

vMCk
D .
ion
ual
HereG0 is the matrix Green function, which describes on
a uniform coupling betweenfk andck ; R is the matrix of
integral operators which takes into account the nonunifo
coupling; andf and F are the vectors of the variables an
forces of the system under consideration, respectively.

Using these notations we can rewrite the system of E
~9! in the form of a matrix equation

G0
21f 5lR f1F. ~11!

The averaged Green matrix of this equation can be fo
by any of the standard methods that have been develope
s.

d
for

the usual scalar equation. Specifically, in the approximat
that is analogous to the Bourret approximation for the us
equation we obtain

^ f &5^G&F5
1

G0
212l2^RG0R&

F. ~12!

The system of equations for the averaged variables^f&
and ^c& in this approximation has the form
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H 1

2v r
@~v2 iGu!22vu

2~k!#2Qu~k!J ^f&1
iPke~k!

2
^c&

5VuFk ,

~13!

$v2 iGs2vs~k!2Qs~k!%^c&2
iPke~k!

2
^f&5vMCk ,

where

Qu~k!5
lk

2

4 E ~v2 iGu!22vu
2~k1!

2v rDk1

S~k2k1!dk1 ,

Qs~k!5
lk

2

2kz
2E k1z

2@v2 iGs2vs~k1!#

Dk1

S~k2k1!dk1 ,

e~k!511
lk

2

4kz
2E k1z

2

Dk1

S~k2k1!dk1 , ~14!

Dk5
1

2v r
@~v2 iGu!22vu

2~k!#@v2 iGs2vs~k!#2
P2

4
,

Pk5
kz

kr
P, lk5

kz

kr
l.

Here S(k) is the spectral density of the random functio
r(x). It is the Fourier transform of the correlation functio
K(r ).

In what follows we consider waves propagating in t
direction of the equilibrium magnetizationM0 , assuming
kz5k. We also considerP andl as small quantities of the
same order of magnitude, and neglect their product of
third orderPl2 and, accordingly, the termP2/4 in the de-
nominators of the integrands. The first term in the cu
brackets in the first of Eqs.~13! can be simplified in the
vicinity of the crossing resonance by the use of the appro
mation

v2 iGu1vu~k!'2v r . ~15!

Using all of these approximations we obtain a simp
form of Eqs.~13!:

@v2vu~k!2 iGu2Qu#^f&1
iPk

2
^c&5VuFk ,

~16!

@v2vs~k!2 iGs2Qs#^c&2
iPk

2
^f&5vMCk ,

whereQu andQs play the role of the mass operators of t
averaged Green matrix; within the approximations made t
are determined by the following expressions:

Qu5
lk

2

4 E S~k2k1!dk1

v2vs~k1!2 iGs
,

~17!
e

i-

r

y

Qs5
lk

2v r

2k2 E k1z
2S~k2k1!dk1

~v2 iGu!22vu
2~k1!

.

Let us choose the standard exponential form of the co
lation function to characterize the inhomogeneities:

K~r !5e2kcr , S~k!5
1

p2

kc

~k21kc
2!2

. ~18!

Herekc is the correlation wave number (kc'r c
21 , wherer c

is the correlation radius of the inhomogeneities!. The inte-
grals ~17! with the spectral density given by Eq.~18! have
been calculated in Ref. 9. They have cumbersome forms~es-
pecially for Qs), but we use here their simplified form
which have been obtained in Ref. 14 for small values
Gu , Gs , andvkc in comparison withv r :

Qu5
lk

2

4

1

v2vs~k!2 iGs*
,

~19!

Qs5
lk

2

4

1

v2vu~k!2 iGu*
.

The effective relaxation parametersGs* andGu* are sums
of the initial damping constants and the relaxations due
scattering

Gs* 'Gs12kcAavM~v2v0!'Gs1vskc ,

~20!

Gu* 'Gu1vkc ,

wherevs52avMkr is the velocity of the spin waves at th
crossing resonance point. The expression for the additio
Gs is valid only for v.v0 . Both additions are the product
of kc and the velocity of the corresponding wave. Therefo
the addition toGu is significantly larger than the addition t
Gs .

The system of equations~16! with the mass operatorsQu
andQs in the forms given by Eq.~19! is analyzed in the nex
section of this paper. It is worth emphasizing that in t
approximations chosen, the system of equations for a cr
ing resonance of any nature in a medium with an inhomo
neous coupling parameter has a form analogous to Eqs.~16!.

III. EIGENFREQUENCIES OF THE AVERAGED WAVES

The general equations~16! describe the averaged wave
in the vicinity of the crossing resonance forFk5Ck50. The
complex dispersion law of the waves is determined by
equation

D~ṽ,k!50, ~21!

whereD is the determinant of the system~16!. Hereṽ is the
complex frequency

ṽ5v1 i j, ~22!
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wherev andj are the eigenfrequency and damping para
eter of the averaged waves, respectively.

Using Eqs.~19! for the mass operators, we obtain th
complex dispersion law in the form

D[F ṽ2vu2 iGu2
lk

2/4

ṽ2vs2 iGs*
GF ṽ2vs2 iGs

2
lk

2/4

ṽ2vu2 iGu*
G2

Pk
2

4
50. ~23!

It is a fourth-order equation for the complex frequencyṽ.
This equation has been studied earlier in two limiting cas
l50,PÞ0 andP50,lÞ0. Here we recall briefly the result
of these investigations. In an ordered medium (l50, P
Þ0), Eq.~23! becomes a quadratic equation, and the beh
ior of the resulting two branches at the crossing resona
point depends on the relation between the parametersP, Gu ,
andGs . If P.G[uGu2Gsu, a gapDv between the branche
appears at the crossing resonance point@Fig. 1~a!#, and the
damping parameters for both branchesv6 of the spectrum
become equal to each other:

v65v r6
1

2
Dv, j65

1

2
~Gu1Gs!, ~24!

where

Dv5AP22G2. ~25!

In the opposite caseP,G the branches cross each oth
at the resonance point, while the damping parameters di

v65v r , j65
1

2
~Gu1Gs6Dj!, ~26!

where

Dj5AG22P2. ~27!

When the ratioG/P increases, the damping parametersj6

tend to their initial valuesGu andGs .
In a medium with an inhomogeneous coupling parame

in the case whereP50 ~the model of DICR!, Eq. ~23! splits
into two different quadratic equations:

Du[~ṽ2vu2 iGu!~ṽ2vs2 iGs* !2
lk

2

4
50,

~28!

Ds[~ṽ2vs2 iGs!~ṽ2vu2 iGu* !2
lk

2

4
50.

This difference is caused by the fact thatDu andDs contain
different pairs of the relaxation parameters,Gu ,Gs* and
Gs ,Gu* , respectively. The first of these equations descri
the averaged elastic waves, the second one the averaged
waves. The dispersion law for the averaged elastic wave
modified by the interaction with the scattered spin wav
and the dispersion law for the averaged spin waves is m
fied by the scattered elastic waves. The shape of the dis
sion curves following from Eqs.~28! can also be consider
-

s:

v-
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r

s
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ably different for the elastic and spin waves. In particular,
conditions for a gap between the different branches to app
at the crossing point have the following forms for the elas
and spin waves:

l2.~Gs* 2Gu!2, l2.~Gs2Gu* !2, ~29!

respectively. If both of these inequalities are satisfied,
have for the elastic waves at the crossing point

v6u5v r6
1

2
Dvu , j6u5

1

2
~Gu1Gs* !, ~30!

where

Dvu5Al22~Gs* 2Gu!2, ~31!

and for the spin waves

v6s5v r6
1

2
Dvs , j6s5

1

2
~Gu* 1Gs!, ~32!

where

Dvs5Al22~Gs2Gu* !2. ~33!

One can see that the gap in the spin wave spectrumDvs
and the gap in the elastic wave spectrumDvu are not equal
to each other in the general case. If the initial damping
rametersGu andGs are equal to zero, orGu5Gs , the differ-
ence between the gaps is determined by the difference
tween the additionsDGu5vkc and DGs5vskc . Therefore
Dvu.Dvs in such cases@Fig. 1~b!#. If there is a difference
between the initial damping constants, the relation betw
Dvs andDvs can be more complex. For the caseGs.Gu we
haveDvs.Dvu @Fig. 1~c!# for small values ofkc until the
inequality

DGu,2G1DGs ~34!

is satisfied, andDvs,Dvu for larger values ofkc ~Fig. 2!.
If the sign of one or the other of the inequalities~29!

changes, the corresponding branch becomes continuou
the resonance point. For example, we have for the s
waves in this case

v6s5v r , j6s5
1

2
~Gu* 1Gs6Djs!, ~35!

where

FIG. 1. Spectrum at the crossing resonance point for both
homogeneous medium~a! and for the DICR model~b! and ~c!.
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Djs5A~Gs2Gu* !22l2. ~36!

It has been shown in Ref. 14 that the average propertie
a system of two wave fields of different nature coupled b
coupling parameter with a zero mean value can be con
ered within the concept of two effective media that should
introduced in the same material. These two media have
ferent relaxation characteristics (Gu and Gs* for one of the
media andGu* andGs for the other!, and are independent i
the sense that each of the averaged wave fields propa
through its own effective medium without interacting wi
the partner wave field.

Let us study the changes in both the spectrum and da
ing determined by Eq.~23! at the point of the crossing reso
nancek5kr asP andl change subject to the condition

P21l25C2, ~37!

whereC is a constant with the dimensions of frequencyC
!v r). Whenl decreases fromC to zero, the four frequen
cies of the independent magnetic and elastic oscillati
@Figs. 1~b! or 1~c!# must transform into the two frequencie
of the coupled magnetoelastic oscillations@Fig. 1~a!#. It
might be assumed that this transformation proceeds as
lows. The frequenciesv1s andv1u of the independent mag
netic and elastic oscillations merge together into the
quencyv1 of the coupled magnetoelastic oscillations an
correspondingly, the frequenciesv2s and v2u merge into
the frequencyv2 at l50. But the real picture is not so
simple.

The inhomogeneities of the coupling parameter are ch
acterized by two main quantities:l and kc . To distinguish
effects due to each of them we investigate Eq.~23! for sev-
eral values ofkc . Forkc50 ~i.e.,Gu* 5Gu ,Gs* 5Gs) a simple
analytic solution of Eq.~23! can be obtained. In reality th
casekc50 has no physical meaning because the condition
ergodicity is not satisfied for the random functionr(x) in
this case. But it can be considered as a zero approxima
for the case of long-wavelength inhomogeneities. In this c
Eq. ~23! has four complex solutions,

v615v r6
1

2
Am1

22G21 i
Ga1Gs

2
,

~38!

FIG. 2. Dependences of the gapsDv1 andDv2 in the spectrum
on kc for the DICR model. The solid curves correspond toG
50.5l, the dashed ones correspond toG50.
of
a
d-
e
if-

tes

p-

s

l-

-
,

r-

f

on
e

v625v r6
1

2
Am2

22G21 i
Ga1Gs

2
,

where

m1,25
1

2
~AP214l27P! ~39!

or, if the condition~37! is satisfied,

m1,25
1

2
~AC213l27AC22l2!. ~40!

For the cases wherekcÞ0, numerical solutions of Eq.~23!
have been obtained.

The dependences of the spectrum onl are different for
the cases where the initial damping constantsGs andGu are
equal to each other and whenGsÞGu . Let us begin with the
simpler caseGs5Gu5G0 ,G5Gs2Gu50 @Figs. 3~a! and
3~b!#. These figures show the reconstruction of both
spectrum and damping forkc50 @Fig. 3~a!# andkcÞ0 @Fig.
3~b!#. From the latter picture one can see that with the
crease ofl the frequenciesv11 andv21 which belong~at
l5C) to the magnetic oscillations merge together at so
critical point l5lc , while the frequenciesv12 andv22 of
the elastic~at l5C) oscillations continuously transform int
the frequenciesv1 and v2 of the magnetoelastic oscilla
tions atl50. The critical pointl5lc for the oscillations
with the frequenciesv61 is also the critical point for their
damping parametersj61 . But if the frequenciesv11 and
v21 became equal to each other forl,lc , their damping
parametersj11 andj21 are equal forl.lc . The damping
parametersj62 of the oscillations with the frequenciesv62
change only slightly over the entire range ofl values. The
critical point lc shifts to smaller values ofl when kc de-

FIG. 3. The dependence onl of the reconstruction of both the
eigenfrequenciesv i and damping parametersj i at the crossing
resonance pointk5kr for G50 (Gu /v r5Gs /v r50.01) for the
caseskc50 ~a! andkc /kr50.15 ~b!.
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FIG. 4. The dependence onl of the reconstruction of both the eigenfrequenciesv i and damping parametersj i at the crossing resonanc
point k5kr for Gs.Gu (Gs /v r50.2,Gu /v r50.05) for the caseskc /kr50 ~a!, kc /kr50.133~b!, kc /kr50.233~c!, andkc /kr50.4 ~d!.
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las-
creases, andlc50 whenkc50 @Fig. 3~a!#. The difference
betweenDv1 andDv2 at the pointl5C also disappears a
kc50.

Let us now consider the more general caseGs.Gu @Figs.
4~a!–4~d!#. The analytic solutions~23! corresponding tokc
50 are shown in Fig. 4~a!. The critical pointlc is deter-
mined from the condition for closing the gap between
solutionsv11 andv21 ~i.e., m15G):

lc
25G~G1P! ~41!

or, if the conditionP21l25C2 is satisfied:

lc
25

1

2
G~G1A4C223G2!. ~42!

In contrast to Fig. 3~a!, lc is not equal to zero atkc50 now,
becauseGÞ0.

The critical pointlc shifts to smaller values ofl whenkc
increases@Fig. 4~b!#, until lc reaches the zero point. Thenlc
begins to increase with the increase ofkc @Fig. 4~c!#. For
values ofl that are close toC the frequenciesv61 andv62
interact with each other@Fig. 4~b!# or cross each other@Fig.
4~c!#, and the gapDv1 is larger than the gapDv2 at l
5C. With the further increase ofkc the gapDv1 becomes
smaller than the gapDv2 for all values ofl @Fig. 4~d!#.
Remarkable changes occur also in the damping of the co
sponding oscillations. A finite correlation radius of the inh
mogeneities (kcÞ0) destroys the symmetry in the dampin
dependences. For large enoughkc the damping parameter
j61 become larger thanj62 for the entire region ofl values.

The study of the amplitudes of the induced oscillatio
that will be carried out below helps us to answer the follo
ing question: to what type of oscillations—magnetic
elastic—do these four frequencies belong in the differ
cases?
e

e-
-

s
-

t

IV. SUSCEPTIBILITIES OF THE SYSTEM

The system response to an external excitation can be
scribed by the components of the susceptibility matrixx̂:

f5xuF1xusC, c5xsC1xsuF. ~43!

The diagonal componentsxu,s of the matrix describe the
direct excitation of oscillations by their own forces, while th
off-diagonal componentsxus andxsu are responsible for the
indirect excitation of an oscillation by a force applied to
partner. The diagonal and off-diagonal susceptibilities
found to be

xu[
^f&
F

5
V

DFv2vk
s2 iGs2

lk
2/4

v2vk
u2 iGu*

G ,

xs[
^c&
C

5
vM

D Fv2vk
u2 iGu2

lk
2/4

v2vk
s2 iGs*

G , ~44!

xus[
^f&
C

5
iPkvM

2D
, xsu[

^c&
F

5
iPkV

2D
,

whereD is defined by Eq.~23!. The imaginary parts of the
susceptibilities which determine the energy absorbed by
corresponding wave field have been studied.

Let us consider the simplest situation whereG50 and
kc50, which corresponds to the spectrum depicted in F
4~a!. Both the elasticxu9(v,l) and magneticxs9(v,l) sus-
ceptibilities have the same form in this case~Fig. 5! if they
are normalized to their maximum values atl50. One can
see that the largest amplitudes of the excitations corresp
to the frequenciesv62 for the entire region ofl values.
However, there are two additional maxima at the frequenc
v61 which appear at intermediate values ofl ~Fig. 6! even
in the case of total symmetry between the magnetic and e
tic systems.
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WhenG or kc is not equal to zero the symmetry betwe
xu9 andxs9 disappears. In Figs. 7~a! and 7~b!, the elastic~a!
and magnetic~b! susceptibilities~normalized to their maxi-
mum values atl50) are shown forkc50 but GÞ0. This
corresponds to the spectrum in Fig. 4~a!. One can see tha
intense elastic excitations appear not only at the frequen
v62 but also at the frequenciesv61 . The amplitudes of the
latter excitations grow whenl increases, while the ampli
tudes of the excitations at the frequenciesv62 decrease. The
magnetic susceptibility has a quite different dependence
l: its maxima correspond to the frequenciesv62 in the en-
tire region ofl values.

In Figs. 8~a! and 8~b!, the elastic~a! and magnetic~b!
susceptibilities are shown forG50 butkcÞ0. This picture is
the opposite in some ways to that in Fig. 7. Now the am
tudes of the magnetic excitations at the frequenciesv61 in-
crease with the increase ofl. The largest amplitudes of th
elastic excitations correspond to the frequenciesv62 in the
entire region ofl values.

FIG. 5. The magneticxs9 and elasticxu9 susceptibilities as func-
tions of bothv andl at the crossing resonance point for the ca
G50,kc50. Both susceptibilities are identical if we use the norm
izationsxs9(v,l)/xs9max(v,0) andxu9(v,l)/xu9max(v,0).

FIG. 6. The cross section of Fig. 5 atl50.4C.
es

n

-
V. CONCLUSION

In this paper we have studied the spectrum of two coup
waves with a random coupling parameter. The primary g
of the study was to examine how the general characteris
of the spectrum evolve from the case of a completely rand
coupling, with the mean valueP of the coupling paramete
being equal to zero, to the ordered situation where the
deviation of the coupling parameterl is equal to zero. In
order to keep the total strength of the coupling unchang
we subjected the characteristics of the coupling to the c
straint P21l25C2, whereC was kept constant. As a par
ticular example, we considered the magnetoelastic reson
in ferromagnets, but the main results of the paper rem
valid for any type of crossing resonance.

It is well known that in a homogeneous medium (l
50,P5C), coupled magnetoelastic oscillations at the po
of the crossing resonance are characterized by two eigen
quenciesv6 separated by the gapDv5v12v2 , which is
proportional toP. In the opposite limit of the DICR mode
(l5C,P50), averaged spin and elastic waves are
coupled. The splitting of the dispersion curves of each of
averaged waves, however, appears due to the interactio
the averaged wave of one nature with fluctuation waves
the other nature. The averaged magnetic and elastic osc
tions are characterized by the frequenciesv6s andv6u cor-
respondingly, and the values of the gapsDvs5v1s2v2s

e
-

FIG. 7. The elastic~a! and magnetic~b! susceptibilities forG
Þ0,kc50. The normalization is as in Fig. 5.
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andDvu5v1u2v2u are, in this case, different.
One would expect that the transition from these four f

quencies in the DICR model to the two frequencies in
homogeneous medium will be going as follows. The f
quencies of magnetic oscillationsv1s and elastic oscillations
v1u approach each other with the increaseP, and merge
together atl50 (P5C) into the frequencyv1 of coupled
magnetoelastic oscillations; simultaneously, the frequen
v2s andv2u also approach each other merging atl50 into
the frequencyv2 of coupled magnetoelastic oscillations.

In reality, however, a nontrivial reconstruction of th
spectrum takes place. The frequencies that correspondP
50 to the oscillations of one physical nature~in our case to
the elastic oscillationsv6u) continuously transform into the
frequencies of the coupled magnetoelastic oscillationsv6

when P increases andl decreases. At the same time th
frequencies that correspond atP50 to the magnetic oscilla
tions v6s approach each other and merge together at s
critical valuel5lc . The value oflc is determined by the
parameters of the magnetic and elastic dampings.

When lÞ0 and PÞ0 the four eigenfrequencies can b
found in the system~for l,lc two of them coincide with
each other!. The distribution of amplitudes of the average
magnetic and elastic oscillations between these frequen
changes in a complicated manner when the relation betw
l and P changes. The study of the susceptibilities of t
system shows that, depending on the value of the ratiol/P,
each of these frequencies can correspond to the oscilla

FIG. 8. The elastic~a! and magnetic~b! susceptibilities forG
50,kcÞ0. The normalization is as in Fig. 5.
-
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es

e
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with the main contribution from one or the other of the pa
ticipating wave fields.

The properties of crossing resonances in random mate
can be understood in terms of the concept of two effect
media in the same material introduced in Ref. 14 for t
DICR model (P50,lÞ0). In the general case ofPÞ0,l
Þ0, the concept of two effective media can be developed
follows. ‘‘Initial’’ averaged spin waves propagate in the e
fective magnetic medium whose properties are modified
the interaction with scattered elastic waves. The propertie
the averaged spin waves depend on the parametersGs , Gu* ,
andl. The ‘‘initial’’ averaged elastic waves propagate in th
effective elastic medium whose properties are modified
the interaction with scattered spin waves. The properties
the averaged elastic waves depend on the parame
Gu , Gs* , andl. In the general case there is a homogene
coupling P between the effective magnetic and effecti
elastic media. The coupled averaged magnetoelastic w
propagate in these coupled effective media. In the casP
50,lÞ0 ~DICR model!, the effective magnetic and elast
media become independent. In the opposite case, whel
→0,PÞ0, these coupled effective media transform into t
regular magnetoelastic medium.

Possibilities for experimental observation of the disord
induced crossing resonance were considered in Ref. 9 for
magnetoelastic resonance and in Ref. 12 for polaritons
was found that special ferromagnet alloys with particula
long-wave inhomogeneities must be created for such exp
ments. At the same time the estimates for polaritons tur
out to be more optimistic owing to much stronger interacti
between electromagnetic waves and phonons in ionic c
tals. Allowing for a nonzero mean value of the interacti
relaxes the conditions for the observation of the cross
resonances in disordered materials. The attenuation of w
increases with the increase ofl. Because of this it is mos
difficult to satisfy the conditions of the observation of th
open gap in the spectrum and two maxima in the hig
frequency susceptibility in the caseP50, corresponding to
the DICR model. If these conditions are satisfied for this c
the observation of the changes of the frequencies and sus
tibilities that have been obtained in this paper is possible
all relations betweenl andP.

The results presented in this paper were obtained with
use of the Bourret approximation.15,16 This approximation
gives reliable results when the effects due to disorder
small enough, and when the functionr(x) is close enough to
the dichotomic random process. The first condition can
easily evaluated in any concrete situation. At the same ti
the study of the permissible departures ofr(x) from the
dichotomic random function, which do not change sign
cantly the results of the present paper, is an independ
research problem, which is outside the scope of this pap
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