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The interaction of two wave fields of different nature in a disordered medium with an arbitrary relation
between the mean value and rms fluctuatior\ of the coupling parameter is studied. A significant recon-
struction of the eigenfrequencies, damping parameters, and susceptibilities of the system occurs when the
situation changes from the model of a homogeneous medRim(0;, A =0) to the model of the disorder-
induced crossing resonancB£0, A #0). The concept of two effective media in the same material, which
was introduced for the latter model in earlier work, is extended here to thePcade
[S0163-182609)10313-9

I. INTRODUCTION for example, amorphous ferromagnets with a zero-mean
magnetostriction, or polaritons arising due to the coupling
The term “crossing resonance” describes a wide class obetween electromagnetic waves and vibrations that would be
phenomena occurring when the dispersion curves of twalipole inactive in the absence of the disorder.
wave fields of different physical nature intersect each other. The physical nature of the interacting wave fields as well
An interaction between these fields removes the degeneracgs the nature of the coupling parameters are different in dif-
giving rise to a new compound excitation. Such crossingerent media. Despite these differences, however, the main
resonances as magnetoelastic reson&Acgolaritons®  effects caused by inhomogeneities of the coupling parameter
electron-nuclear magnetic resonafi@nd others play an im- have quite a general nature, which is independent of a par-
portant role in solid-state physics, and have been studied iticular realization of the resonance situation. In order to em-
detail in ordered materials. phasize the general features of the phenomenon, it was con-
Recently, interest in these resonance interactions betweesidered in Refs. 8, 13, and 14 in the most general form,
wave fields in disordered materials has arisen. The influencehich would be valid for the crossing resonance of any na-
of inhomogeneities of parameters of one of the interactingure. In Ref. 8 the reconstruction of dispersion laws as well
fields has been considered in a number of pagses, for as the accompanying decay of the average waves caused by
example, Refs. 5-7 for polaritons in a medium where elecfluctuations of the coupling parameter were investigated. A
tromagnetic parameters are randorhis leads to a more considerable qualitative difference between DICR and cross-
complicated dispersion law and some other interesting efing resonances in homogeneous media was found. Both
fects in the vicinity of the crossing resonance. But the mostoupled wave fields in a homogeneous medium are coherent
significant changes occur in the physics of the crossing res@and have a joint dispersion law that consists of two branches;
nances if it is not the parameters of each of the interactinglepending on the value of the damping in the system, the gap
fields that are considered as random quantities but the colpetween these branches at the resonance point can be opened
pling between them. Beginning with Ref. 8, the crossingup or closed. In contrast to this, the mixed excitations in the
resonance of two wave fields in a medium with an inhomo-DICR model consist of the coherent part of one of the wave
geneous coupling parameter between the fields was invesfields and scattered waves of the other field. In this case each
gated in several papets'* All of these studies were con- averaged wave field is characterized by its own dispersion
ducted within the framework of the disorder-inducedlaw. The situation is possible, for instance, when the disper-
crossing resonana@®ICR) model, which was introduced in sion law of the one averaged wave field has a gap at the
Ref. 8. Within this model the coupling parameter betweerresonance point, whereas the dispersion curve of the other
the wave fields was assumed to be a random zero-mean funfield is continuous. In Ref. 13 the energy dynamics of the
tion of coordinates, so that the interaction occurs only due t@ompound states which arise in a system of two wave fields
spatial fluctuations of this parameter. The model is a speciatoupled by a random interaction have been studied. Random-
case of the more general situation where both the mean valueess of the interaction causes energy flow from the coherent
and fluctuations of the coupling parameter exist in a materialwave to scattered states of the second participating wave
It is a convenient model that describes the influence of thdield. If disorder-induced crossing resonance occurs, it has
disorder on crossing resonances in the most prominent waypeen found that there is also a current from the scattered
and is also related to some real situations. One can mentiomaves to the coherent component. In Ref. 14 a susceptibility
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matrix in the vicinity of DICR has been studied. The diago-whereM is the magnetization, is the elastic displacement
nal components of the susceptibility matrix demonstratq,ector,uij=1/2(aui/axj+auj/axi) is the elastic strain ten-
resonance features caused by the interaction of the averagegy, g is the gyromagnetic ratio, and is the density of the
wave of one nature with fluctuation waves of another naturegmedium.

while the off-diagonal components are equal to zero. It has \ve assume that our system is an elastically isotropic fer-
been shown that the average properties of the system can Rgmagnet with a single magnetic symmetry axis, so that the

can be introduced in the same real material in order to degyrm

scribe properties of the fields. These two media have differ-
ent characteristics and are independent in the sense that each 1 1 1
of the averaged wave fields propagates through its own ef- H= Ea(VM)Z—E,B(Mn)Z— HM + Edluﬁ
fective medium without any interactions.
In addition to these properties, which are general for any 1 1
disorder-induced crossing resonance, there are properties and +§d2(uij Ujj + Uj; uji)+§B(x)MiMjuij . 2
phenomena that are specific for particular systems. The spe-

cific features of the disorder-induced magnetoelastic resqyqara , is the exchange parametes,andn are the magni-
nance in ferrqmagnets W|th.zero—_mea.n magneto;tn@ﬂﬂ)h, tude and direction of the magnetic anisotropy axis, respec-
and disorder-induced polaritons in disordered dielecffics, tively, d, and d, are the elastic LameonstantsH is the

ha_ve been examined. .lt was shown thgt Fhe main Ch‘”‘r"’mtelrﬁagnetic field, andB(x) is the magnetoelastic parameter.
istics of the stochastic magnetoelastic interaction can be In the general case the parame®rcoupling the sub-

measured by experimental studies of either the modified diss'ystems can be represented as the sum of a nonrandom and a
persion law of acoustic wavesr the elastic analogs of the random component

Faraday and Cotton-Moutton effedfs.Polaritons were '
showrt? to be good candidates for the experimental observa-
tion of effects of the inhomogeneity of the coupling param-
eter in a medium with dipole inactive phonons by optical
methods.

All of these studie$ **were carried out in the framework

B(X)=Bo+ABp(x), )

whereB, is the mean value aniB is the rms fluctuation of
the magnetoelastic parameter, apdx) is a centered
[{p(x))=0] and normalized{ p?(x)) = 1] random function.

of the DICR mode_l. The mean value of the couphng Pa&- " The stochastic properties @f(x) are characterized by the
rameter was considered to be equal to zero, and it was aSormalized correlation function

sumed that the interaction between wave fields occurs only
due to fluctuations of this parameter. The parameter, which
characterizes the strength of the interaction in this case, is the
rms fluctuation of the coupling parametar, In real disor- L , )
dered media the average value of the coupling parameter js Lgt an external dc magnetlc field andl the anisotropy axis
not, in most cases, equal to zero, and it may be in any kind of® c_j!repted "’_"0”9 the axis of the c_oordmate system. Th_e

relationship with its rms valua. The main objective of the equilibrium direction of the magnetization, then, also coin-

present paper is to consider this general situation. Our maigi_des with thez axis. We consider the excitation of the me-

goal is to study how dispersion laws of the coupled excita-, lum by buIK forcest, andfy,, with the first of them affept-
tions change in going from the case of the pure DICR modelnd the elastic subsystem and the second one influencing the

(P=01#0) to the case of a homogeneous medium ( magnetic subsystem. We assume that these forces are per-

#0,A=0). For the sake of definiteness we consider the magpendmulﬁr to thez axis. TTeref(I)_r_e, on_ly theg( andy co_rr;]—
netoelastic crossing resonance, but the main results obtain@@NeNts have nonzero values. Linearizing the systomit

hold qualitatively for crossing resonances of any nature. respect.to t.he small qlewatloms(x,t) from thg eq.umbrlum
magnetizationMy, using the scalar approximation for the

elastic wavesd;=v,=v, wherev, andv, are the speeds of
Il. EQUATIONS OF THE COUPLED AVERAGED WAVES the transverse and longitudinal elastic waves, respecjively
We shall analyze the crossing resonance of two wavé?‘”d neglecting the terms describing both the nonresonant

fields for the example of magnetoelastic resonance in inhghteraction between the elastic and the left-polarized spin

mogeneous ferromagnets. waves and the terms describing the interaction between the
Excitations in a magnetoelastic medium are governed byPIn waves and the longitudinal elastic waves)( we ob-

the system of Landau-Lifshitz equations for the magnetizatin the foIIow[ng integral equations for Fhe Fourier trans-

tion and the equations for the elastic displacements, forms of the circular componentsi=m,+imy and u=uy

K(r)={p(x)p(x+T1)). 4

+iuy:
M=—g|lMX —ﬂ+ii) , , iMk,
M 9x d(IMIIx) [(w—|I‘u)2—wﬁ(k)]u(k)+ﬂ[Bom(k)
(o
0 IH +ABJ m(kl)P(k_kl)dkl}:QEfka
M U; P

X auy” (5
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ioyM we obtain the following system of equations:

[o—wy(k)=ilsIm(k) ——

Bokou(k)

1 ik
—iT )%= w2(k) (k) + 5 P y(k
+ABJ ke (Kp)p(K—ky)dKy | = oyhy . 20, (07T ell0J00F 7 PR v
ik
In these equations, and wg are the initial dispersion +§)\ k—Zj (k) p(k—kp)dk;=Q Dy,
laws of the elastic and spin waves, respectively, r
w,=vK, ws=wotawyk? (6) ©)
wherewy=g(H+ SM) andwy =gM; we added the param- ik,
etersI", andI' in order to model the initial dampings of the [0=ws(k)=iTs]g(k) = 5 Pr=¢(k)
corresponding waves. r
We shall examine these equations in the vicinity of the iA
crossing resonance poinb(,k;), wherew, andk, are de- _Xf kiz¢(k1)p(K—ky)dk;= oy Wy.
termined by the equations '
w,y(k)=wsk)=w,=vk,. (7) The mean valué® and the rms fluctuation of the cou-

_ ) ) ) pling parameter are determined by the expressions
Introducing the dimensionless variablésand s and the

dimensionless force® and¥ by

om 1/2 oy 1/2
P=Bo< ) MK, , )\=AB( ) MK, .

Uk my 2Uuw 2uw
— 1/2_K __k M@y M,
b= Cporon) o Sy (10)
8 . .
1 Both of them have the dimensions of frequency.
P, — MW aO.f v :@ In order to deduce the averaged Green function of Eqs.
K\ 20, utke K“™m (9), it is convenient to introduce matrix notations:
1 Pk
N2 2 i 2
_ 5o L(o=iTP—wi] e
° Pk, -
=i 2K, w—wyk)—ilg
0 e [ k=K dk
T2k, p(k—ky)- - -dky
R: ’
i
o | Kupk—k)-ak, 0
r

f:(¢k) F:(Quq)k)
i)’ oWy’

Here G, is the matrix Green function, which describes only the usual scalar equation. Specifically, in the approximation
a uniform coupling betweeg, and ¢, ; R is the matrix of that is analogous to the Bourret approximation for the usual
integral operators which takes into account the nonuniformequation we obtain
coupling; andf and F are the vectors of the variables and
forces of the system under consideration, respectively.

Using these notations we can rewrite the system of Egs.
(9) in the form of a matrix equation (fy=(G)F=

Gy '-A3%(RGyR) - (12

G, Mf=ARf+F. (11)

The averaged Green matrix of this equation can be found The system of equations for the averaged variabigs
by any of the standard methods that have been developed fand () in this approximation has the form
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1 . iPye(k) NMw ky2S(k—k;)dk
[(0—iT 2= wi(k) 1= Qu(K) [ {$) + (¥ =K 1z vt
20, " v 2 ° 2k2J<w—iFu>2—wﬁ<k1>

=Q,P,,
vk Let us choose the standard exponential form of the corre-

(13 lation function to characterize the inhomogeneities:
iPe(k)
2 <¢> = 0‘)M‘;["k ’

{w_irs_ ws(k)_Qs(k)}<'7[f>_

C

T

K(r)y=e™", S(k)

where
Herek, is the correlation wave numbek((mrc‘l, wherer
)\ﬁ (w—iFu)z—wﬁ(kl) is the correlation radius of the inhomogeneitieBhe inte-
Qu(k)= ZJ 2w Ay S(k—kq)dky, grals (17) with the spectral density given by E¢L8) have
T been calculated in Ref. 9. They have cumbersome fdass
) ) ) pecially for Qg), but we use here their simplified forms
Q (k)=i klz[w_'rs_ws(kl)]s(k_k )dk which have been obtained in Ref. 14 for small values of
s 2k2 Ay, YRR Iy, T's, anduvk, in comparison withw, :
2

N2 [ kg2 QoY

et [ Eskkdk, (19 T
z 1 (19)

P2

2
RY 1

A= 5o LTy @2 Lo Ty wg(lo] - o, N
' 4 w—wy(k)—il*’

Qs

k k
Pe=r-P, Ag=i-\. The effective relaxation parametdrd andI'} are sums

Kr Kr of the initial damping constants and the relaxations due to

Here S(k) is the spectral density of the random function Scattering
p(X). It is the Fourier transform of the correlation function

K(r). F:%FS_'—ZkCVawM(w_wO)%rs_*'UskCa

In what follows we consider waves propagating in the (20)
direction of the equilibrium magnetizatiokl,, assuming .
k,=k. We also consideP and\ as small quantities of the Ii~Ty+oke,

same order of magnitude, and neglect their product of the . . .
third orderPA? and, accordingly, the ter®?/4 in the de- wherevs=2awyk, is the velocity of the spin waves at the
nominators of the integrands. The first term in the curly
brackets in the first of Eq9.13) can be simplified in the
vicinity of the crossing resonance by the use of the approxi
mation

crossing resonance point. The expression for the addition to
I'5 is valid only for > w,. Both additions are the products
of k. and the velocity of the corresponding wave. Therefore,
the addition tal", is significantly larger than the addition to
rs.
w—iT,+ w (k) ~20, . (15) The system of equatior{d6) with the mass operato@,
andQq in the forms given by Eq(19) is analyzed in the next
Using all of these approximations we obtain a simplerseéction of this paper. It is worth emphasizing that in the
form of Egs.(13): approximations chosen, the system of equations for a cross-
ing resonance of any nature in a medium with an inhomoge-
_ iPy neous coupling parameter has a form analogous to &6g5s.
[w_wu(k)_|ru_Qu]<¢>+ 7<‘/f>:9uq)ky
I1l. EIGENFREQUENCIES OF THE AVERAGED WAVES

(16)
ip The general equationd 6) describe the averaged waves
_ " . o . oY
— oK) —iT.— —— X BV =y P, in the vicinity of the crossing resonance ="V ,=0. The
Lo~ sk s~ Qsl) 2 (9)=oul complex dispersion law of the waves is determined by the

whereQ, and Qs play the role of the mass operators of the equation

averaged Green matrix; within the approximations made they

are determined by the following expressions: D(w.k)=0, (D)

A2 k—Kk.dk whereD is the determinant of the systefh6). Herew is the
Q :_kf _S(k=ky)dky complex frequency
Y 4] w—wyk)—iTy’

(17 w=w+iE, (22)
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wherew and ¢ are the eigenfrequency and damping param-

eter of the averaged waves, respectively. @+ Oy — Qg
Using Egs.(19) for the mass operators, we obtain the Opy——— O ———
complex dispersion law in the form o, | ____ o, ____ [ I
1. s . 05— Oy
D= w—wu—lFu—;_ws_iF: w—ws— il ®_ Qpyr—— o J—r

\2i4 P2

S S Y 23 a b c
w—o,—il'} 4

FIG. 1. Spectrum at the crossing resonance point for both the
It is a fourth-order equation for the complex frequengy  homogeneous mediuf@ and for the DICR modefb) and (0).

This equation has been studied earlier in two limiting cases:

A=0,P#0 andP=0\ #0. Here we recall briefly the results ably different for the elastic and spin waves. In particular, the
of these investigations. In an ordered mediun=0, P  conditions for a gap between the different branches to appear
#0), Eq.(23) becomes a quadratic equation, and the behavat the crossing point have the following forms for the elastic
ior of the resulting two branches at the crossing resonancand spin waves:

point depends on the relation between the paramé&drs,
andlg. If P>T'=|I",— T4, a gapA w between the branches N>(TE=Ty?%  N>(T=TH)3 (29)
appears at the crossing resonance pffig. 1(@], and the  yespectively. If both of these inequalities are satisfied, we
damping parameters for both branches of the spectrum paye for the elastic waves at the crossing point

become equal to each other:

1 1
wiu:wriEAwU1 fiu:_(ru"'r:)a (30)

1 1
wr=w*sAw, gizi(ru+rs)y (24) 2

2
where

_ 2_ * _ 2
Aw=\P?—T2. (25) aEURALIR Gy

and for the spin waves
In the opposite casP<T" the branches cross each other

where

at the resonance point, while the damping parameters differ: 1 1
wrmotsA0, Ea=5(TE+Ty, (32
w.=o, ft=;<ru+rsm§>, 20 where
where Awg= 2= (Ts—T%)2. (33
Aé=\I?-P2 (27 One can see that the gap in the spin wave spectkug

and the gap in the elastic wave spectrim,, are not equal
tend to their initial valued’, andT;. to each other in the general case. If the initial damping pa-

In a medium with an inhomogeneous coupling parametef@meterd’, andI’s are equal to zero, dr, =TI, the differ-
in the case wher®=0 (the model of DICR, Eq. (23) splits ence between .the gaps is determined by the difference be-
into two different quadratic equations: tween the addition\I' ,=vk, and AI's=vk.. Therefore

Aw,>Awg in such casefFig. 1(b)]. If there is a difference

When the ratiol'/P increases, the damping parametérs

_ _ )\ﬁ between the initial damping constants, the relation between
D=(0—w,—iT)(0—ws—iTF)- 20 A wg andA wg can be more complex. For the cddg>T", we
have A ws>Aw, [Fig. 1(c)] for small values ok, until the
(28) inequality
- - A\
DSE(w—wS—iI‘S)(w—wu—il"j)—ZKZO. AT <2T'+AT (39)

- . _ is satisfied, and w ;<A w,, for larger values ok (Fig. 2).
This difference is caused by the fact tiizf and D, c*ontam If the sign of %Sne oar)uthe othger of the ineaLEaIiEtJi@)g)
different pairs of the relaxation parameteds,,I's and  changes, the corresponding branch becomes continuous at

I's,I'}, respectively. The first of these equations describeshe resonance point. For example, we have for the spin
the averaged elastic waves, the second one the averaged sgjves in this case

waves. The dispersion law for the averaged elastic waves is

modified by the interaction with the scattered spin waves, 1

and the dispersion law for the averaged spin waves is modi- W= 0, §:s=§(rﬁ +IsEAEy), (35
fied by the scattered elastic waves. The shape of the disper-

sion curves following from Eq9.28) can also be consider- where
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FIG. 2. Dependences of the gafys; andA w, in the spectrum /
on k; for the DICR model. The solid curves correspond Ito o, . . —
=0.5\, the dashed ones correspondite 0. A\C
(0]
-1
_ T *\2_2 ; ;
Aé=\(T—T7)2-\2 CON. o —

It has been shown in Ref. 14 that the average properties of FIG. 3. The dependence anof the reconstruction of both the

a system of two wave _fields of different nature coupled by Bsigenfrequenciess; and damping parametes at the crossing
coupling parameter with a zero mean value can be considggonance poink=k, for [=0 (T',/w,=T/w,=0.01) for the

ered within the concept of two effective media that should be.ases.=0 (a) andk, /k, =0.15 (b).
introduced in the same material. These two media have dif-
ferent relaxation characteristic§'{ andI'} for one of the

1 r,+T
media and’;; andT's for the othe), and are independent in wﬂ:w,i—w/,ug—l“zﬂ a S,
the sense that each of the averaged wave fields propagates 2
through its own effective medium without interacting with
the partner wave field. where
Let us study the changes in both the spectrum and damp-
ing determined by Eq.23) at the point of the crossing reso- 1 B
nancek=k, asP and\ change subject to the condition Ml,zzg( VPZ+4N2%P) (39
P2+\2=C?, (37

or, if the condition(37) is satisfied,
whereC is a constant with the dimensions of frequen€y (
<w,;). When\ decreases frort to zero, the four frequen- 1

cies of the independent magnetic and elastic oscillations Ml,z:E(\/C2+3)\21 JC2-\2). (40)
[Figs. 1b) or 1(c)] must transform into the two frequencies
of the coupled magnetoelastic oscillatiopgig. 1(a)]. It
might be assumed that this transformation proceeds as foE

lows. The frequencies . s andw., of the independent mag- a\_/ri(_l::‘)edeen gr?;?eirqsgé of the spectrum)orare different for
netic and elastic oscillations merge together into the fre- P P

guencyw, of the coupled magnetoelastic oscillations and,the cases where the initial damping constdiysndI', are

correspondingly, the frequencies_¢ and w_,, merge into ;?: alletro s:ggrotiw?r ‘3”19 WF f}g;&{‘[i«' Ileé u[?:ib Zglr;{gltgrt]ze
the frequencyw_ at A=0. But the real picture is not so b S uT 0 E T s S U gs.
simple. 3(b)]. These figures show the reconstruction of both the

The inhomogeneities of the coupling parameter are Char§pectrum and damping fée,=0 [Fig. Xa)] andk.+0 [Fig.

acterized by two main quantitied: andk.. To distinguish 3(b)]. From the latter pic_:ture one can see _that with the de-

effects due to each of them we investigate E2p) for sev- crease ob the frequenciess., ande_, which belong(at

eral values ok, . Fork,=0 (i.e.,I'* =T, I* =T.) a simple A=C) to the magnetic oscillations merge together at some
(O C R V| urts S.

: ) . . critical pointA =\, while the frequencies ., andw _, of
analytic solution of Eq(23) can be obtained. In reality the }he elastigat A = C) oscillations continuously transform into

casek.= 0 has no physical meaning because the condition o he frequenciess, and w_ of the magnetoelastic oscilla-

ergodicity is not satisfied for the random functipx) in tions atA=0. The critical pointh\ =\, for the oscillations
this case. But it can be considered as a zero approximation

for the case of long-wavelength inhomogeneities. In this cas\évIth the frequenciess.., is als_o the critical pplnt for their
Eq. (23) has four complex solutions amping parameter§.,. But if the frequenciesv,,; and

w_, became equal to each other forxx\ ., their damping
1 r.+T, parameters, ; and¢_; are equal foin>\.. The damping

W= wrt—w/,uf—l“2+i , parameters .., of the oscillations with the frequencies. »
2 2 change only slightly over the entire rangeofvalues. The

(39)  critical point A shifts to smaller values of whenk; de-

or the cases where.# 0, numerical solutions of Eq23)
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(b) @, 0 ' T & A () - 0 ' T A

FIG. 4. The dependence anof the reconstruction of both the eigenfrequenciegnd damping parameteés at the crossing resonance
pointk=k, for 's>T', (I's/w,=0.2]',/w,=0.05) for the casek,/k,=0 (a), k. /k,=0.133(b), k. /k,=0.233(c), andk./k,=0.4 (d).

creases, and.=0 whenk.=0 [Fig. 3@)]. The difference IV. SUSCEPTIBILITIES OF THE SYSTEM
EeiméeenAwl andAw; at the pointh =C also disappears at The system response to an external excitation can be de-
C_ .

Let us now consider the more general ciise-T, [Figs. scribed by the components of the susceptibility magrix

4(a)—4(d)]. The analytic solution23) corresponding td,

=0 are shown in Fig. @). The critical point\. is deter- P=XuPF xuss = xSV xsu®- (43)
mined from the condition for closing the gap between therne diagonal componentg, s of the matrix describe the
solutionsw..; andw_, (i.e., u=T): direct excitation of oscillations by their own forces, while the
off-diagonal componentg,s and y, are responsible for the
)\ng(FJr P) (41) indirect excitation of an oscillation by a force applied to its
partner. The diagonal and off-diagonal susceptibilities are
or, if the conditionP?+\2=C? is satisfied: found to be
(¢) Q \Zl4
1 XUE_:_“’_“’E 'Fs TR
>\§=Er(r+ \V4C2-3T2). (42) ¢ D w—owy—iT}
2
In contrast to Fig. &), A is not equal to zero &.=0 now, Xs= @: “m o—wg—il,— )\k/4. . (49
becausd #0. v D w—wy—il?
The critical point\; shifts to smaller values of whenk
increase$Fig. 4(b)], until A, reaches the zero point. Thag (¢) iProy () IPQ
begins to increase with the increase kof [Fig. 4(c)]. For Xus=7p ~ Top ¢ AsuT g T oD ¢

values ofA that are close t€ the frequencie® ., andw. »
interact with each othdiFig. 4(b)] or cross each othdFig.  whereD is defined by Eq(23). The imaginary parts of the
4(c)], and the gapAw, is larger than the gajhw, at A susceptibilities which determine the energy absorbed by the
=C. With the further increase df; the gapAw, becomes corresponding wave field have been studied.
smaller than the gap\w, for all values of\ [Fig. 4(d)]. Let us consider the simplest situation whdre=0 and
Remarkable changes occur also in the damping of the corrde.=0, which corresponds to the spectrum depicted in Fig.
sponding oscillations. A finite correlation radius of the inho-4(a). Both the elasticy;,(»,\) and magneticys(w,\) Sus-
mogeneities K.#0) destroys the symmetry in the damping ceptibilities have the same form in this ca$eg. 5) if they
dependences. For large enouigththe damping parameters are normalized to their maximum values )at0. One can
&1 become larger thaé.., for the entire region ok values. see that the largest amplitudes of the excitations correspond
The study of the amplitudes of the induced oscillationsto the frequenciesv., for the entire region ofx values.
that will be carried out below helps us to answer the follow-However, there are two additional maxima at the frequencies
ing question: to what type of oscillations—magnetic or w., which appear at intermediate values)ofFig. 6) even
elastic—do these four frequencies belong in the differenin the case of total symmetry between the magnetic and elas-
cases? tic systems.
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FIG. 5. The magnetig: and elasticy,, susceptibilities as func-

tions of bothw and\ at the crossing resonance point for the case
I'=0k.=0. Both susceptibilities are identical if we use the normal-

izations yz(,\)/ xema{@,0) andx((®,\)/ X ma{®.0).

WhenT or k. is not equal to zero the symmetry between

X, and x. disappears. In Figs.(@ and 7b), the elastic(a)
and magneticb) susceptibilities(normalized to their maxi-
mum values at =0) are shown folk,=0 butI'#0. This
corresponds to the spectrum in Figay# One can see that

intense elastic excitations appear not only at the frequencies

-+, but also at the frequencies. ;. The amplitudes of the
latter excitations grow whei increases, while the ampli-
tudes of the excitations at the frequencies, decrease. The
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magnetic susceptibility has a quite different dependence on

\: its maxima correspond to the frequencies, in the en-
tire region of\ values.

In Figs. §a) and 8b), the elastic(a) and magnetiab)
susceptibilities are shown fér=0 butk.# 0. This picture is

the opposite in some ways to that in Fig. 7. Now the ampli-

tudes of the magnetic excitations at the frequenaies in-
crease with the increase nf The largest amplitudes of the
elastic excitations correspond to the frequeneies in the
entire region of\ values.

FIG. 6. The cross section of Fig. 5 at=0.4C.

FIG. 7. The elastida) and magnetidb) susceptibilities forl"
#0Kk.=0. The normalization is as in Fig. 5.

V. CONCLUSION

In this paper we have studied the spectrum of two coupled
waves with a random coupling parameter. The primary goal
of the study was to examine how the general characteristics
of the spectrum evolve from the case of a completely random
coupling, with the mean valuB of the coupling parameter
being equal to zero, to the ordered situation where the rms
deviation of the coupling parametar is equal to zero. In
order to keep the total strength of the coupling unchanged,
we subjected the characteristics of the coupling to the con-
straint P2+ \?=C2, whereC was kept constant. As a par-
ticular example, we considered the magnetoelastic resonance
in ferromagnets, but the main results of the paper remain
valid for any type of crossing resonance.

It is well known that in a homogeneous medium (
=0,P=C), coupled magnetoelastic oscillations at the point
of the crossing resonance are characterized by two eigenfre-
guenciesw. separated by the gapw=w, —w_, which is
proportional toP. In the opposite limit of the DICR model
(A=C,P=0), averaged spin and elastic waves are not
coupled. The splitting of the dispersion curves of each of the
averaged waves, however, appears due to the interaction of
the averaged wave of one nature with fluctuation waves of
the other nature. The averaged magnetic and elastic oscilla-
tions are characterized by the frequencies; andw-., cor-
respondingly, and the values of the gaps =

Wis™ W_g
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FIG. 8. The elastida) and magnetiqb) susceptibilities forl"

=0k, #0. The normalization is as in Fig. 5.

andAw,=w,,— w_, are, in this case, different.

One would expect that the transition from these four fre-
guencies in the DICR model to the two frequencies in
homogeneous medium will be going as follows. The fre-
guencies of magnetic oscillations, ; and elastic oscillations
w ., approach each other with the increa®eand merge
together ah =0 (P=C) into the frequencyw , of coupled
magnetoelastic oscillations; simultaneously, the frequenci
w_gandw_, also approach each other merging\at 0 into
the frequencyw _ of coupled magnetoelastic oscillations.

In reality, however, a nontrivial reconstruction of the
spectrum takes place. The frequencies that correspofd at
=0 to the oscillations of one physical natuie our case to

with the main contribution from one or the other of the par-
ticipating wave fields.

The properties of crossing resonances in random materials
can be understood in terms of the concept of two effective
media in the same material introduced in Ref. 14 for the
DICR model P=0\+#0). In the general case d?#0\

#0, the concept of two effective media can be developed as
follows. “Initial” averaged spin waves propagate in the ef-
fective magnetic medium whose properties are modified by
the interaction with scattered elastic waves. The properties of
the averaged spin waves depend on the paramEterd™} ,
and\. The “initial” averaged elastic waves propagate in the
effective elastic medium whose properties are modified by
the interaction with scattered spin waves. The properties of
the averaged elastic waves depend on the parameters
I'y, T, and\. In the general case there is a homogeneous
coupling P between the effective magnetic and effective
elastic media. The coupled averaged magnetoelastic waves
propagate in these coupled effective media. In the dase
=0\ #0 (DICR mode), the effective magnetic and elastic
media become independent. In the opposite case, wkhen
—0,P#0, these coupled effective media transform into the
regular magnetoelastic medium.

Possibilities for experimental observation of the disorder-
induced crossing resonance were considered in Ref. 9 for the
magnetoelastic resonance and in Ref. 12 for polaritons. It
was found that special ferromagnet alloys with particularly
long-wave inhomogeneities must be created for such experi-
ments. At the same time the estimates for polaritons turned
out to be more optimistic owing to much stronger interaction
between electromagnetic waves and phonons in ionic crys-
tals. Allowing for a nonzero mean value of the interaction
relaxes the conditions for the observation of the crossing
resonances in disordered materials. The attenuation of waves

increases with the increase »f Because of this it is most

a

difficult to satisfy the conditions of the observation of the
open gap in the spectrum and two maxima in the high-
frequency susceptibility in the case=0, corresponding to

the DICR model. If these conditions are satisfied for this case
the observation of the changes of the frequencies and suscep-

Sfibilities that have been obtained in this paper is possible for

all relations between andP.

The results presented in this paper were obtained with the
use of the Bourret approximatidi® This approximation
gives reliable results when the effects due to disorder are
small enough, and when the functip(x) is close enough to

the elastic oscillations..,,)) continuously transform into the ha dichotomic random process. The first condition can be

frequencies of the coupled magnetoelastic oscillatians

easily evaluated in any concrete situation. At the same time,

when P increases and decreases. At the same time the o study of the permissible departures (i) from the
frequencies that correspondRt=0 to the magnetic oscilla-  yichotomic random function, which do not change signifi-

tions w..s approach each other and merge together at somgyntly the results of the present paper, is an independent

critical valuex=X\.. The value of\. is determined by the
parameters of the magnetic and elastic dampings.
When\#0 andP#0 the four eigenfrequencies can be
found in the systentfor A<\, two of them coincide with
each other The distribution of amplitudes of the averaged

research problem, which is outside the scope of this paper.
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