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Nuclear resonant forward scattering of x rays: Time and space picture
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The problem of forward resonant scattering of x rays by an ensemble of nuclei is being solved directly in
time and space. The wave equation describing the propagation of the radiation through the nuclear ensemble is
derived. Itis a first-order integrodifferential equation. Its kernel is a double time funi(on) that represents
a coherent single scattering response of the nuclear system attbnescitation att. The explicit form of the
kernel is defined by the character of interactions, the nuclei experience with the environment and by the
character of their spatial motion. A general procedure of the solution of the wave equation is introduced that is
independent of the type of the kernel. Examples for various kernels are presented and discussed for some
particular cases: collective or diffusive motion of nuclei in space, thermal lattice vibrations, time-independent
hyperfine interactions, and time-dependent hyperfine interactions due to atomic spin fluctuations or external
magnetic-field switching.S0163-18209)09113-4

I. INTRODUCTION of interactions the nuclei experience with the environment

and their spatial motion, Sec. IK(t,t) describes a coherent
Time spectroscopy of nuclear forward scatteriNgS) of  single scattering response in the forward direction of the
synchrotron .r_adiation is an experimental technique complepclear system at timeto excitation aft. A general proce-
mentary to Mesbauer absorption spectroscopy in the energyyre is introduced of solving the wave equation independent
domain providing similar, additional or even unique infor- of the type of the kernel, Sec. IV B. Examples of calculations
mation (for a review see, e.g., Refs. 1 anfl Bs uniqueness are given of the nuclear self-correlation functions and time
arises from the fact that NFS is spatially coherent. Interferspectra of NFS in single scattering approximation for the
ence effects in scattering play a significant role and enable tfpllowing particular cases: collective motion of the nuclear
reveal information inaccessible to absorption spectroscopy.ensemble in space, Sec. V A 1; diffusive nuclear motion,
The first theory of the time dependence of NFS of syn-Sec. V A 2; thermal lattice vibrations, Sec. V A 3; time-
chrotron radiation was developed by Kagan, Afanas’ev, anindependent hyperfine interactions, Sec. VB; time-
Kohn?2 Fourier transformation of the frequency dependenceélependent hyperfine interactions due to atomic spin fluctua-
of the transmission amplitude through a single resonance afions, Sec. V C; or due to external magnetic field switching,
sorber was used to calculate the time spectrum of NFS. ImSec. V D.
portant features that arise in thick samples—speed-up of the
nuclear decay and dynamic beat—were considered. Tram-
mell and Hannoh pointed to a simple but important effect
that arises in time spectra from samples possessing multiple We will evaluate the time dependence of coherent scatter-
nuclear resonances—quantum beat. Numerous subsequémg of x rays from an ensemble of resonant nuclei in the
theoretical papers® have used Fourier transformation from direction of the incident beam—nuclear forward scattering.
the frequency to the time domain to consider more compli-The nuclei are supposed to be moving in space(amd
cated cases of interactions of nuclei with their environmentlocated in an environment with hyperfine interactions which,
Fourier transformation techniques can be used provided thgenerally speaking, are time dependent. The motion in space
frequency spectrum of transmission through the givermay be a result of an external force, or thermal lattice vibra-
sample is known. tions, or diffusion. Nuclear spin relaxation in a fluctuating
An approach, which does not require the initial knowl- environment or time-dependent external perturbations of hy-
edge of the transmission frequency spectrum, is based on thperfine fields can be mentioned as examples of time-
solution of the scattering problem directly in time and spacedependent hyperfine interactions. The purpose of the paper is
This approach was used to handle NFS in particular cases ¢ derive directly in time and space the wave equation of
both time-independehand time-dependelft#interactions.  propagation of radiation in such media and to develop a gen-
In the present paper this approach is generalized to arberal procedure of its solution.
trary type of interactions, the nuclei experience with their The electric componer(r,t) of the radiation field propa-
environment, and arbitrary character of their spatial motiongating in the resonant medium we calculate by using Max-
A wave equation is derived for the propagation of x rayswell's wave equation
directly in time and space through the nuclear resonant me-
dium, Secs. Il and IV. The equation is a first-order integrod- 12 4m s
ifferential wave equation. Its kernel is the double time V26— graddive— o= am 7 1)

nuclear self-correlation functiok (t,t) defined by the type c?gt?  ¢? dt

II. FORMULATION OF THE PROBLEM

0163-1829/99/5@.4)/913212)/$15.00 PRB 59 9132 ©1999 The American Physical Society



PRB 59 NUCLEAR RESONANT FORWARD SCATTERING OF X ... 9133

with i(r,t) being the macroscopic current density induced byposition vectorr,(t)=R,+u,(t) of the nucleusa is pre-

the radiation in the system of resonant nuclei. The sample isented as a sum of its equilibrium positi&), and its dis-
assumed to be a plate of thicknéssThe reference systemis placementu,(t) from the equilibrium due to either thermal
attached to its entrance surface with thaxis directed per- |attice vibrations, ofand diffusion, or (and vibrations in-
pendicular and inwards to the plate. The incident radiation igluced by an external force, etc. For convenience of further

represented as a plane wave modulated in time, calculations the presentation of the nuclear current density in
i o) terms of momentunk is used:i,(k,t). The coherent current
en(r,)=£&(t) e , (2)  density of the nuclear ensemble is then given by

with carrier frequencyw and wave vectok (k=w/c). The i
carrier frequency is assumed to be close to the nuclear reso- ; _ J' ; ik(r—rg)
nance frequenc¥y/#. (. za: (277)3<'a(k’t) € )- (8)
The solution of Eq.1) for the field propagating in the
sample in the primary beam direction is sought in the form(- - -) means statistical average over the initial state of the
o crystal, assuming its thermal equilibrium, and also averaging
e(r,t)=E(z,t)e b (3)  over all other stochastic degrees of freedom. The coherent

ith E bei | hat | . lowlv in i part of the current density of an individual nuclewss cal-
with E(z,t) being an envelope that is varying slowly in time culated by using its density matrix:

and space compared to the exponent. The envelope contains
only the spatial coordinate since refraction and absorption . ot R
in the sample occur along the normal to the sample surface, (kD =Tr{j(K) pa(t)}. ©

i.e., alongz. The induced current density is sought in the Here p.(1) is the density matrix operator of the nucleus,

same form which is defined by the Liouville—von Neumann equation
i(r,t)=1(z,t)e'k—e, 4) 5 )
ap,(t . . -
The presentation by Eq3) and(4) is known as the slowly if pat =[H ) +HTH), pa(t)]. (10

varying envelope approximation. In this case the second-

order Maxwell's wave equation reduces to the first-order dif-; . : I _
ferential equation for the envelop&€z,t) and!(z.t): H,(t) in Eq. (10) is the Hamiltonian of a nucleus with the

following components:

) 1% B 2
sin® EE(z,t)——?l(z,t) (5) - E

() =Ex—i 8y e+ L (1), (1)

with ® being the angle of incidence (sh=k,k). By using _ _ _ _
Eq. (2) the boundary conditions for E@5) read as follows: Ej is the energy in the grounc\(=g) or in the excited X
=¢) state defined by internal nuclear interactions. Each
E(0t)=E&(1). (6)  nucleus is also characterized by the enefgy-E.—E, of

Wave equations for the slowly varying envelopes of the ra-the nuclear tranS|tloe:>_g, by the full natural energy W'qth
I'y of the nuclear excited state, by its spip, magnetic

diation field and induced current density were first intro- N

duced in opticgsee, e.g., Ref. 35nd in x-ray diffraction in  momentu, , quadrupole momer®, etc. The, (t) repre-
crystals'® Recently it was also used for the analysis ofsents hyperfine interactions which are generally speaking
nuclear resonance scattering problefhd? time dependent. Its actual type will be specified later.

_ The time spectrum of nuclear forward scattering is the  The7 7(t) in Eq.(10) is the Hamiltonian representing the
time dependence of the radiation intensity emerging from thénteraction of the nucleus with the radiation field. It is given

sample in the primary beam direction: by the standard expression ﬂay(t): —cflfdrjA(r
—r,) A(r,t) (Ref. 17 with A(r,t) being the vector potential
S(t)“|E(L't)|2:§S: [ES(L.DI% (M and withj(r—r,) here and(k) in Eq. (9) being the Schro
dinger picture nuclear current-density operator in the real and
Here the superscrif corresponds to any of two orthogonal reciprocal space, respectively. By using the Coulomb gauge
polarization components of the radiation, given by the polarwith zero scalar potential, the representation of the field
ization vectorse®. e(r,t) by Eqg. (3) and applying the slowly varying envelope
approximation we obtain for the interaction Hamiltorfixh
Ill. NUCLEAR CURRENTS AND SELF-CORRELATION o
FUNCTION HY()=iw ](—Kk) E(z,,t) eKa=eb, (12)
A. Current density of the nuclear ensemble We assume that the interactidh?) of the nuclei with the
In each particular case the right-hand side of &.i.e.,  radiation field is weak compared to the other interactions
the current density induced by the radiation in the ensemblgiven by Eq.(11). This allows us to use perturbation theory
of resonant nuclei, should be specified. The current densitgnd to obtain in its second ordéresonant scattering is a
of the ensemble is the sum of the current densitiesecond-order scattering procgti®e following expression for
i, (r—r,(t),t) of individual nuclei numbered here by. The  the current densit}
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S T P SO
|a<k,t>=@Tr[Ja<k.t>fw[HJ(txpa(—oo)]dt .
13

Here the symbols with the inverted caredenote interaction
picture operators defined according to the rule

A (=01, — %) A (1) Uy(t,—), (14)

with

N ~ i [t2.
Ua(tz,tl):T exp{ _g Ha(t) dt} (15)
5

being the evolution operator of a nuclewsn the absence of
the radiation field, and being the time-ordering operator.

The trace in Eq(13) is calculated by using a full set of
nuclear state vectoiig, ) that in the present paper are cho-
sen as eigenstate vectors of the nuclear Hamiltofddh at

t=—o0:H,(—). It is assumed that initially at=—o all
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ei(kr—;t)z ei(E— KR,

a,s

y dk
| (r,t)ZJQT)a

x ﬁ FikktDEYZ, DdT, (18

whereFf}(k,R,tft) is defined as

1

FSS(kk t ) =———
(2l g+1)

x <e—ikua(t)eiiua(t)>ei;(t—?)

X 3 (15 0 kDifa (D). (29

ag,ag

It is clear from Eq.(18) as well as from Eqs(13) and (16)
that t<t, which has the evident meaning that the time of

the sublevels in the ground state are populated equally, i.eexcitationt always precedes the time of deexcitation

(ag|;3a(—00)|ag>=1/(2lg+ 1), while those in the excited
state are not populated at all, i.éae|p,(—*)|ae)=0. It is

B. Self-correlation function

also taken into account that only matrix elements of the op- | et us combine into groups the terms in the siim of
eratorf between the ground and excited nuclear states havK. (18) with the same values Gfsg(kﬁ t,7). These groups

significant values. After transformations we obtain the fol-

lowing general expression for thepolarization component
of the current density of an individual nucleus

:S

i (k,t)

> ik

(20t D)oy ans
t
J|

The two matrix elementf;, ,, (,t) andjieag(—ﬁf) in Eq.

(k.t)

g%

~k 1) Bz, D'k g,

1S
Jagay

(16)

(16) represent two stages of the nuclear resonant scattering
process via one of the possible nuclear transitions

(agle|ag). The matrix elementzeag(—F,T) describes ex-
citation of the nucleus at time instantvith absorption of the
radiation field in the polarization stateand with the wave
vector k, while jjgae(k,t) describes deexcitation of the

nucleus at time instaritwith the emission of the radiation in
the polarization state and with wave vectok. The matrix

elementsjzgae(k,t) andjieag(—Rff) are calculated accord-
ing to Eqgs.(14) and(15), in particular:

iS . (kt)=> U
g-e g

agae

(t,=2) 2, () Uz, (t,=22).
(17

g

we will tag by indexB. Physically this procedure means that
we combine into groups resonant nucteiwith the same
interactions with the environment and the same spatial mo-
tion. Groups of nuclei in equivalent sites of the crystal unit
cell, or nuclei experiencing the same type of fluctuations of
their atomic spins, or the same type of diffusion in a crystal
lattice, etc., are examples of such groups. Thus in the sum
over the whole nuclear ensemble in E§8) we single out
the sums=, over all nuclei within each groug. We assume
that the number of nuclei within each group is macroscopic
and make use of the relation

> exfi(k—k)R,]=(2m)Nowgs(k—k), (20

whereN, is the number of all resonant nuclei per unit vol-
ume andwy is the relative weight of the groug. We also
assume that the sample is homogeneous inxhg (plane so
that no effects of nuclear resonant small-angle scattering
occur?® As a result we finally obtain the expression for the
coherent part of the macroscopic nuclear current density. It
has the form of Eq(4) with thes component of the envelope
of the macroscopic nuclear current density given by

Ny o) [t B
TRT0ZON TS ksytT)ES(2T) .
44 —w g

(21)

c
|S(Z,t): Z[

For the calculation of the nuclear current-density matrix el-1"€ double-time functiorK*t,t) is the self-correlation

ementsj igae(k) we refer to textbookg''® and paperg®-22°

Inserting Eq.(16) into Eg. (8) we obtain the following
expression for thes component of the coherent current-
density induced in the nuclear ensemble:

function of the nuclear ensemble, which is defined as

KS(t,H = L DML, (22)
B
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Lzs(ﬁ):emu—t)xﬁﬁzﬁ <jsﬁgﬁe(i,t)j;eﬁg(—ift’)>,
g'Pe

(23
Mﬁ(t,'f):<e—iiuﬁ(t)eiiuﬁ(~t)>, (24)
X oK (25
4c?(2l+1)T,
The factor
40 2l.+1 T
oR= : ! (26)

K2 2(214+1) Ty

in Eq. (21) is the cross section of the nuclear resonant ab
sorption.T",, in Eq. (25 is the full radiative width of the
nuclear transitiore=g.

The functionLZs(t,T) in Eq. (23) can be presented in an
alternative way:

ng(t})zei;(t—"f)xﬁ
x%ge (U DU D 1g)05,5,(K).

(27)
For this we have used Eq§l7) and the composition law
U(ts,t))=U(ts,t,)U(t,,t;) valid for the evolution
operators* )
The self-correlation functioist,t) has the property

KSS(t,t) = 6%, (28)

which can be easily verified by taking into account that ac-

cording to Eq.(24) M4(t,t)=1 independent of how the nu-
clei are moving, that according to EQ.5) U4(t,t)=1 inde-
pendent of the type of hyperfine interactions, and by th
relation

-, (2l+1)c?

= 558

>

By Be

5,6, 156, (—T0 (29

The latter can be proved by using the optical theorem.

The functionM 4(t,1) in Egs. (22) and (24) represents
spatial motion of the nuclei belonging to a grogp while
Lzs(t,'f) in Egs.(22) and(23) represents nuclear spin motion
and other internal nuclear degrees of freedom.

The functionMB(t,T) is a kind of a self-correlation func-
tion introduced by Van Howe in connection with neutron
scattering. It was later used by Singwi and I8fwef® to
build the theory of resonance absorption of nuclgarays
for an arbitrary system of interacting particles.

The function Lff(t,?) is similar to the self-correlation
function used by Afanas’ev and Kagdnand Blume and
Tjon?® to evaluate the Mssbauer line shape in the presence
of time-dependent hyperfine fields.

The self-correlation functions typically used have a

(t—1) dependence. The function defined by E@2)—(24)
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IV F the self-correlation functionk (t,t) that are reduced to
K,(t—1) describe cohererglasticscattering, while the self-

correlation functiork (t,t) with separated time variables de-
scribes cohererihelastic scattering.

The coherent elastic scattering arises under conditions of
time-independent hyperfine interactions, as discussed in Sec.
V B. It may also arise under conditions of time-dependent
hyperfine interactions or spatial motion. However, this hap-
pens only, if these variations in time are stochastic, i.e., in no

way correlate with the instant of photon absorptibror
emissiont. Averaging over these stochastic variations results
in the (t—t) dependence of the self-correlation function.
Atomic spin fluctuations discussed in Sec. V C and diffusive
motion of nuclei in spacéSec. V A are such examples.

~ Nonstochastic variations in time usually cause the coher-
ent inelastic scattering. It arises if, e.g., collective synchro-
nized motion of nuclei in space takes place, Sec. VA1, or
synchronized time-dependent hyperfine interactions, Sec.
V D, are induced.

IV. WAVE EQUATION AND ITS SOLUTION
A. Nuclear forward scattering wave equation
By using Egs.(5) and(21) we obtain the wave equation

for propagation of x rays in the nuclear resonant medium:
IE(E,7) T R e
——=— X KrDE¢TdT. (30)

&g —o g
Here dimensionless space and time variables

1
fIZURNo

z
sin®’

tT,

=7 (31

are used. The dimensionless space varigldeales with the
so-called effective resonant thickne§%=ogrNoL. The

E‘Doundary condition for the wave equatig¢d0) is given by

Eq. (6).
The wave equatioi30) can be represented also in short
as follows:

JE(E, A~ ~
S B (32
B(r7)= f " R(r7d (33

Equation(32) formally is similar to the Schidinger equa-
tion. For this one has to imagine thatplays the role of the
time variable in the Schinger equation ane-iD plays the
role of the “time”-, i.e., é-independent Hamiltonian. Differ-
ent techniques of solving the Schlinger equation exist. To
solve EQ.(32) we use a method similar to that of quantum-
mechanical perturbation theory.

B. General solution

The general solution of the wave equati®0) can be

contains both time variables separated. As shown in Segiven as a power series gf
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E(¢&,7)= 2,
p=0

(— &P Here 8(7) is the & function, 6% is the Kronecker symbol,
| EP(7). (39 ande’ is the polarization vector of the incident radiation. We
p: assume in Eq(40) and everywhere in the following that

The first termE(%)(7) is taken to be independent of the space

variable£ and defined by the boundary condition: The nuclear response is given by the second term of Eq.

(40). The single scattering solutio(#0) provides a clear
EQ(7)=£&(7) (35) physical interpretation of the kern&®¥(r,7). The kernel
' gives the coherent single scattering response in the forward
The other termsE(P(7), can be obtained after substitution direction of the nuclear system at timeto the excitation at
of Eq. (34) into Eq. (32). This results in the recursion rela- 7. The superscripts and's represent the states of polariza-
tion tion of the incoming and scattered radiation.

EP(7)=D(r,7) EPY(7) (36) D. Immediate response

At the time instant=0+ (i.e., immediately after the ex-
citation) the solution(40) in the single scattering approxima-
tion is exactly valid. It is valid exactly for a nuclear en-
semble experiencing any spatial motion and any hyperfine
interactions. It is also valid for samples of any thickness. It is
valid exactly, since no multiple scattering is possible within
such a short time.

By using Eqgs.(40),(28), and (31) we obtain for the re-

with the help of which and of Eq933) and (35) all the
amplitudes E?P(7) in Eq. (34) can be calculated. The
E®(7) will be referred to as multiple scattering amplitudes
of the orderp.

By using Eqs(34)—(36) the solution of the wave equation
can be also represented in the following compact form:

E(¢,7)=exd —D(7,7)]E(7). (37)  sponse in the forward direction immediately after excitation:
It is remarkable that the solution of the wave equation, given orNg L
by Egs.(34)—(36), is general and is independent of the ex- ES(L,0+)=— mﬁso- (41)

plicit form of the nuclear interactions which are hidden in the

kernel K5~5(7-,~7-). Equations(34)—(36) may be used conve- The immediate response of the nuclear system to instanta-
niently for numerical calculations of the NFS time spectra.neous excitation given by Ed4l) is independent of the
The kernelKsYr,7) is calculated once by using Eq22)— Chara_lcter of nuclear motions and hype_rfme interactions. I_t is
(27). Then to calculate the time response given by &4) als_o mdepende_nt _of whe_ther the nuclt_el belong to atoms in a
one applies the general procedure based on the recursigQ!id: Or in @ liquid, or in a gas. This fact has important

relations (36). Such a procedure was implemented in theconsequences fo_r the possjbility of studying thermal .excita—
codeMOTIF. 2 tious which are discussed in Sec. V A3 in more details.

In a few particular cases one can obtain analytical solu-
tions. E. Single resonance

An exact analytical solution is also obtainable in the case
C. Single scattering approximation of a single nuclear resonance. A single resonance occurs,

One of such cases is the single scattering approximatiorf-g- in the absence of hyperfine '”tera‘?t'mﬁzo- In this
which is valid for thin samples or for short time intervals. case the evolution operatdil5) is a c value: UB(t,"f)
Even though the solution in this approximation may not be_ exp(— (IH)[E—i(Ty/2) 8y e](t—T)}, independent of the
exact for a real sample, nevertheless it gives a good basis f%rroup numbeg. For simplyicity we assume that the motional

the analysis of physical problems. ~ . .
The sinal ; R ; part Mg(t,t)=1. By using thes_e facts together with Eqs.
e single scattering approximation is obtained by retaln(22)—(27) we obta|n~ that the single resonance correlation

ing only the zeroth and first term$€0,1) in the general ~ -
solution (34). By using Eqs(33)—(36) the radiation field in ~ function is elasticK®Y(r,7) =Ki¥(7—7), and is given by
this approximation reads - -
KiX(r)=8y(7), (42)

ES(¢,7)=E%(r)— ¢ J S Krnendr. 3y where

how—Ey i
If the incident radiation pulse is very short and can be ap- t//(T)=eXF{i< T O+§ T} 0(7), (43
proximated by 0
and 6( ) is the unit step function, nonzero #=0.
E(1)=€°E8(7), (39 There is no polarization mixing and polarization depen-
dence under these conditions. Therefore we omit the polar-
which corresponds to the conditions of experiments withization index. We assume again that the incident radiation
pulsed synchrotron radiation, then Eg8) simplifies to pulse is very short and can be represented by(89). As a
result by using Eqs(33)—(36) and the self-correlation func-
ES(¢,7)=8(7) 8% — £K0(7,0). (40)  tion (42 all multiple scattering amplitudes can be calculated:
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E®)(&,7)=y(7)£P7P"(p—1)! and the analytical solution ates in forward direction the field E(L,7)=
for the nuclear response to the prompt excitation is readily- (24/c sin®)[jl(z 7)dz At those instants, when the net co-

obtained: herent current densitfgl (z,7)dz=0, i.e., when the currents
x p—1 interfere destructively, the nuclei do not radiate coherently in
E(&7)=8(7)— i 7)52 (—¢7) (44) forward direction. These instants correspond to the minima
' p=1 (p—1)!p! of the dynamical beat.
S(7)— )§J1(2\/§—7) 45) F. Particular solutions in the frequency domain
= T)— T — .
Jér An alternative procedure of the solution to that given by

. - . . Egs. (34)—(36) is to transform the wave equatid32) into
e iy e EGuency domain, 1o Soe  there, and ten o Fourer-
mission freqL.Jency amplitude through the single rescmamtransfo_rm the solution back mto t_he time domain. The tran_s-
. : > . ANCH rmation of the wave equation into the frequency domain
absorber. It is also in agreement with the solution obtameorl
for the problem of the radiation pulse propagation in a single
resonance optical mediuffi! E(é.6)
The terms in the sum of E@44) are the multiple scatter- b LT
ing amplitudes of the ordegu. If the conditioné7<<1 is ful- ¢
filled (i.e., the sample is thin enough and the time of obser
vation 7 is not too far away from the excitation time=0)
the solution(44) can be restricted to the term with=1. This o i — ~
actually represents the single scattering approximation dis- K(S,S):J f e'*7e "*TK(7,7)drdr. (48
cussed in Sec. IV C. Under these conditions the time re-
sponse is simply proportional #y(7) and has the usual de The set of equation&7) describes, generally speaking, the
excitation factor exp{Iot/2) characteristic for the natural inelastic coherent forward scattering with the matrix operator

decay of an isolated nucleus. K(e,£) representing the scattering of the radiation from the
If the sample is not thing>1) or the instant of observa- state with frequencyn+z I'y/% to another state with fre-

tion 7 is far away fromr=0, then other terms in the sum of ~ :
. R , +elg/h. Only f I f k I
Eq. (44), which represent multiple scattering, start to play aguencyw & T'o/f. Only for some special types of kernels

significant role. As a result, according to E@5), the re-  K(#.€) itis possible to obtain the solution of E@7) (see,

; : : e.g., Ref. 10, where the coherent inelastic scattering from
sponse acquires the modulatid(2+é7)/Vé7, which alters ; . . ;
the natural decay by additional damping and OSCiIIationSwbrated nuclei was considergtut not in the general case.

The latter is often referred to as dynamical beat and Wag'hgre is, however, a rather large supset of problems for
observed both in the experiments with radioactiveWh'Ch one can obtain a general solution, namely, for the

source¥®33!1 and with synchrotron radiatioff. The faster elasticnuclear forward scattering when

::?a@r?g l|\ls':ggf:t3%gsreferred to as coherent speed up of the R(e.3)=R,(s)2m8(s—3). 49)
How many scattering events in a sample with thicknessn the time domain this corresponds to the relation

parameter experiences a photon arriving in the detector at

time 72 In other words, how many terms in the sum of Eq. K(r,7)=Ky(7=7), (50)
(44) are significant for the given values éfand 7? To esti-
mate this value, which we denote pg;, let us assume that
p:,>1 and use Stirling’s formulg! = 27 pP**% P for
factorials in the denominator of Eq44). Under these as-

esults in
+ode .~ -
—f_mﬁ K(e,e)E(&,¢), (47)

where

which is verified by substitution of E450) into Eq.(48). In
this case the integral in Eq47) vanishes and the integro-
differential equation reduces to the linear differential equa-

sumptions the term with the numbgin the sum of Eq(44) tion
can be approximated byé¢e?/p?)P~1/\2ar. Thus the re- JE(£.8) A
quired number of scattering events can be estimated to be = —K,(e)E(¢,¢), (52

pgTBe\/E—T' af
By using the solutior{45) and the wave equatiof®) one  the solution of which can be obtained in general fdisee,

can obtain also the following expression for the coherenk.g., Ref. 3V:

nuclear current density induced in the sample by the instan-

taneous radiation pulse: E(¢,e)=exd — &K (e)]E(e), (52

C with €(&) being the frequency spectrum of the incident ra-
1(§,7)= ENOURJO(Z\/E) (7). (46)  giation. The time dependence of NFS is obtained by reverse

. o . Fourier transformatioft®>~8
It shows that directly after the excitation &0 there exists

a homogeneous distribution of the nuclear currents over the V. KERNELS IN PARTICULAR CASES

whole samplei(£,0+)= const. Later the nuclear currents

acquire an inhomogeneous spatial distribution which varies In each particular case the nuclear self-correlation func-
with time. According to Eq(5) the nuclear ensemble radi- tion (22)—(27)—the kernel of the wave equatio(80)—
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should be calculated. For the rest the evaluation procedure of To reveal the phase modulati¢s¥) due to collective mo-

the time spectrum of NFS is standard and given by Egstion one has to use a phase-sensitive detector. The time spec-

(34)—(36), and(7). trum recorded with a usual non-phase-sensitive detector is
The explicit form of the kernel is determined by the tra- given by Eq. (7). Since it is proportional to the modulo

jectory of motionug(t) that enters Eq(24), and the evolu-  square of the nuclear respon&s) the phase information is

tion operato@B(I,Nt) that enters Eq(27). The evolution op-  lost. Thus customarily the time spectrum of NFS is not sen-

erator(15) in turn is specified by the Hamiltoniaﬁﬁ(t) (11) sitive to the collective motion of nuclei. Experimentally the

and essentially by the type of the hyperfine interralctioné;ns‘en.‘Q‘iti\’ity.Of the timg spectra to the collective motiqn of
y by P yp nuclei was first proved in Ref. 38. It was shown theoretically

in Ref. 12 that this conclusion is also true in a more general
In the present section we calculate the kernels for differcase of multiple Bragg diffraction. To observe the phase
ent particular cases of nuclear motion and hyperfine interaanodulation another nuclear resonance scatterer should be

tions and use them for calculating analytically the time specused, playing the role of the phase-sensitive detéétdr.
tra of NFS in the single scattering approximation. We

consider first the influence of nuclear motion in space on 2. Diffusive motion
NFS time spectra, Sec. VA. As a next step we consider . .
time-independent hyperfine interactions, Sec. v B; timer, 0, 2100 5% I FERNS SO0 o Tl Sl Y
dependent hyperfine interactions, in particular, stochastic iquid<s 9 .
fluctuations of the magnetic hyperfine field, Sec. V C; an inO“C;S :i%dt::gurlgot.ioI\gTsearﬁrg?ltirgSsglrf?cg?rztlggo?nyfjﬁgtﬁg_
switching of the magnetic hyperfine field direction synchro- g again P '
nized with the nuclear excitation. Sec. V D Diffusion is a stochastl_c process. Thgrefore one has to per-
' ' ' form statistical averaging of the motional pd&4) of the
self-correlation function. Depending on the diffusion model
M B(t,T) takes different forms. Despite these differences
In this section we discuss the effect of spatial motion onlythere is a general feature: due to the fact that the time instant
and therefore do not specify the part of the self-correlatiorof excitation and emission is in no way correlated with the
function Lzs(t:t‘) representing other degrees of freedom. Ac_diffusion, the motional pal’t ij.he self-correlation function
cording to the definitior{22)—(24) the effect of resonant nu- should acquire in this case &(t) time dependence:
clei in motion on NFS is totally defined by their position _ o
ug(t) at the moment of excitation and their position (t) (e huplgkusy = M 4(t-1), (55)
at the moment of deexcitation. These positions are entering . . . )
the phase factors ekpiku (t)Jexd +iKug(T)] in the mo- which describes elastic nuclear forward scattering.
P PIkUg B In the particular case of free diffusion discussed in Ref.

tional partM 4(t,t) of the self-correlation functiofi24). 26, the motional part of the self-correlation is given by

A. Motion in space

1. Collective motion Mﬁ(t—’f) e DBNkZ(t:t)’ (56)
Let us first consider a simple case where the nuclei move
as a rigid ensemble with a single displacement veujt) whereD is the diffusion coefficient of atoms belonging to
=u(t). The self-correlation functiot22)—(24) becomes the groupB. Different diffusion models were reviewed re-
cently in Ref. 6 in connection with NFS. The first experi-
mental studies of diffusion by using NFS were performed in

KSS(t,t>=e“k““)e“k““)% LE(t). (53 Ref. 40.
No statistical averaging of the motional part is required in 3. Thermal lattice vibrations
this case. The same nuclear ensemble but at west Atoms bound in a crystal experience thermal vibrations.

=const is characterized by the self-correlation functionaccording to the theory of lattice dynamics in the harmonic
Kgs(t,Nt)=25LZS(t,T). Let us assume thdiy(£,t) is the so-  approximation the displacement vectoy(t) from the equi-
lution of the wave equatio(80) with such a kernel. Then the librium position is given by a sum of displacements in the so
solution of the wave equation for the moving system with thecalled normal modesee, e.g., Ref. 41Each normal mode,

self-correlation functior(53) is given by or each phonon in the quantum mechanical language, is char-
~ acterized by the momentum branch numbep, dispersion
E(&,t)=Eq(£,t)e . (54) law w,(q) and the state of polarizatiog,(8). The phonon

o -~ o _ occupation numbers,, at a given temperature characterize
This is verified by substituting Eq$53) and (54) into Eq.  the intensity of thermal vibrations. The effect of the thermal
(30). Thus, according to Ed54), the collective motion of all |attice vibrations on the time dependence of NFS exhibits
nuclei produces a phase modulation of the reemitted radigself via the motional part of self-correlation functig24).
tion. If, e.g., the sample is moving with constant veloaity  \we consider only elastic scattering here when the phonon
so thatu(t) =vt, then the phase factor in E(p4) is given  state before and after scattering is the same, although in the
by expiQpt), where Qp=kv is simply a Doppler fre- intermediate state when the nuclear ensemble is excited, it
quency shift. For more complicated motions the phase modumay be different. That means we have to perform the thermal
lation is more sophisticated. average of Eq(24) over the phonon occupation numbers.
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The result is well known(see, e.g. Refs. 42 and #IWe KT [
reproduce it here without derivation: (u(t)u(0))= FJO dwD(w)w 2 coswt. (63
Mﬂ(t_T):<e—iiuﬁ(t)e+iiuﬁ(r)> In the Debye approximation the phonon density of states is
B B o given by D(w)=3w? w3, with wp being the Debye
=exp{ —((kug)?) +([kug(t) I[kug(t) 1)}, frequency—the cutoff frequency of the density function. In

(57) this approximation the integration in E@3) is performed in
the limits[0,wp] and we obtain:

([kug(t)I[kug(t)]) . Sinwpt o 3KT
~ ) (UOU)=(u)——=, (u)=—7. (64
h ke, (B)] D mw?
2nmg e ©,(0) The self-correlation functiort57) in a cubic crystal, in the
— oD o aiwADA=T) high-temperature limit, and under assumption of the Debye
X[(ng,+1)e V"V 4y, el dEH], (58)  approximation for the phonon density of states finally takes
Here mg is the mass of the atom in groyp andn is the the form
number of the unit cells in the sample. _ sinwpt
It is clear that independent of how the nuclei are moving M(t)=exp: —k%(u?)|1- — ] (65)
D

Mg(t=1)=1 att=T. If (t-1)>w,, , wherewy, is a typi- o s
cal phonon frequency, then the ter@®8) vanishes and the The Debye frequency is typicalpp=10"* s™*. Therefore

self-correlation function becomes the self-correlation function decays from 1 to the level given
by the Lamb-Mossbauer factor expf%(U?)) within a few
Mg(t-T)=exp{—([kug)}=fok), (59 10 °s.

This time interval is usually much shorter than the life-
wheref 4(k) is the Lamb-Massbauer factor giving the prob- times of the |0W'|¥'?29 nuclear transitions, which are typi-
ability of elastic resonance absorption or emission in the dically To=%2/I'q>10""% s. Therefore in this time interval the

. = 0 single scattering approximation is valid, Sec. IV C, and ac-
rection of the phgton wave vectlr The~factorf s(K) can be cording to Eqs(7) and (40) the NFS time spectrum
calculated by using E(58) taken att=t.

An important question is, what happens in between? Ac- S(t)= £2|M(1)]?
cording to Egs.(57) and (58) the self-correlation function

should decay from 1 to‘B(F) with a law defined by the with M(t) given by Eq.(57) in the general case of harmonic

phonon spectra (q). vibrations, or by Eqs(60),(61), and(65) in particular cases.

Let us derive as an example the decay law in a particula ir?]ee l\(ljZSeSnpdeeCr:rCa; w(n)fth;otrlnr?ce \r/?bnrg(teioaia:/(:gz?)r um(a(t)t;(;n 22 the
case of a cubic crystal with one ato8€1) in its unit cell. I P the oh : It i i ' that
In this case the thermal vibrations are anisotropic, i.e. Vel as on he pnonon sSpec t@,(0). Itis no eworthy, tha

i P | ~ ) the spectra in this time range are nonzero independent of
(U'(tyu'(t))=2"(u(t)u(t)), wherei,|=1,2,3 denote Carte- 4y small the value of the Lamb-sbauer factor is. Even
sian components of the_displacement veatorAs a result liquids and gases, where the value of the Lambstmuer
the self-correlation functiof7) takes the form factor tends to zero, one can observe a strong NFS signal in
- this time range.
M (t)=exp{—k *[(u®) = (u(t)u(0))]}, (60) The time interval is very short, where the time depen-

dence caused by thermal vibrations shows up in NFS, and it

where is beyond the reach of present-day experimental techniques.
However, in future one may hope it will be possible to per-
(u(t)u(0))= h 1 [(F +1)ei@dat form measurements of NFS in this range and thus to perform
qv

2nm'g w,(Q) studies of atomic motions and not only in solids, but in lig-
_ uids, gases, etc. as well. The problem to our mind could be
+ng,e' 9. (61  solved by mapping time dependence of photon emission into
_ angular dependence of photon emission. Due to the recently
Here we have put=0. Following the usual procedure we demonstrated light-house effétsuch mapping can be real-
replace the summation over by integration over phonon ized with the help of fast spinning nuclear resonance samples
frequenciesw and introduce the phonon density of statesirradiated with synchrotron radiation. Presently available
D(w). Equation(61) may be then transformed to spinning rates beyond 30 kHz could allow an extremely short
time interval of 10 13 s to be transformed into a measurable
f (»doD(w)| — . i angular change in photon emission of 0&2d. The nuclear
(u(t)u(0))= Efo | (@) *+z)coswt—37sinwt|.  yansitions with lifetimes slightly more thaag® would be
(62 preferable in such experiments.
In the following analysis the influence of the hyperfine
If the crystal temperatur@& is high, the phonon occupation interactions on the NFS time spectra will be discussed. Their
numbersn(w)=kT/Aw>1 and Eq.(62) reduces to influence is far beyond the time region of influence of ther-
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mal vibrations, discussed in the present section. Thereforimg the procedure described in the present paper and fits of
the motional part of the self-correlation function will be as- experimental spectra are presented in Refs. 9 and 29.
sumed further to be time independent and to be represented

in accordance with Eq(59) with the help of the Lamb- C. Fluctuating magnetic hyperfine field

Mossbauer factof (k). In this and in the next section we present examples of

calculations of the nuclear self-correlation functions for two
B. Time-independent hyperfine interactions particular cases of time-dependent hyperfine interactions. In
Let |8,) be eigenvectors and; eigenenergies of the both cases the direction of the magnetic hyperfine fields is
L L . L assumed to change in time. In the case, considered in the
time-independent hyperfine interaction Hamlltoni?ag; M present section, the direction of the hyperfine field stochasti-

|B) andeg, are known, the matrix elements of the evolution cally changes at each nucleus. In the second case, considered

operator can be readily evaluated by Etf): in the next section, the direction of the hyperfine field is
supposed to change at all nuclei simultaneously at a definite

Z/{B)\Z})\(tz 'tl) = 5B)\Zg)\ t|me

. r The Hamiltonian for magnetic hyperfine field changing in

| . 0 t

O R T
. J,BP)(t)
(66) Hg' ()=~ s 5 (71

Hereafter the notatiof¥ is reserved for the evolution opera- _ ) )
tor under the condition of time-independent hyperfine inter-First we calculate the time spectrum of NFS in the presence
actions. Inserting Eq(66) into Eq. (27) and by using Eq. of a fluctuating magnetic hyperfine field that jumps randomly
(59) for the motional part we obtain the result that the com-between the valueB® and —B'#) along n(()B)3

plete self-correlation functior(22) is purely elastic, i.e.,

~ o~ ~ B)(t)=RWBINWB
KS(t,t)=KiXt—t), and is given by BE(=B¢"ng1 (D). (72)

Heref(t) is a random function of time taking only the values

K'fs(t)= 2(t) 2 Als”se—in.t, (67) *1. Such a stochastic mod_el was used in Ref. 28 to calculat(_-:-
1={8.Bq .Be} the Massbauer resonance line shape of a nucleus in an envi-
ronment with fluctuating atomic spin direction.
i~ ] For simplicity we assume here pure magnetic hyperfine
n(t):ex;{g(ﬁw—Eoﬂr‘o/Z)t o(t), (68) interactions(for a more general cases see Ref).ZBhe
) ) eigenvector$, ) of the Hamiltoniar#{"( ) are equal in
APS=Xg fﬁ(F)jzgﬁe(E)jzeﬁg(—F) (69) this case to the eigenvectotsn,) of the nuclear spin-

. _ _ ~ projection operator, with the projection on the magnetic hy-
with 10 =€p — €s, being the corrections to the transition perfine field directiom{® . Herem, is the magnetic quan-
energiesE, arising due to the hyperfine interaction. Unlesstum number. In this particular case the eigenenergies are
this causes ambiguities we use for brevity a joint index given by g = — u,mB®)1J, . Under these conditions and

={(Bgl=1Be). B} to denote both the transition between thepy ysing Eqs(15),(71), and(72) we obtain for the evolution
ground and excited nuclear states and the group nugiér operator

From Egs.(40) and (67) we obtain in single scattering
approximation for thes-polarization component of the emit- i T
ted radiation: Up,5,(t2,11) = 85,3, €XP — 71 | Ex—i 5\ e (t—ty)

ES(§.t)°<—§77(t)E| Affeior, (70) +ep f tzf(t)dtH. (73)
t

The nuclear response given by E@0O) is a sum of mono-
chromatic components with the frequencies The ampli-
tude AFO of each emitted frequency component is propor-

tional to the product of the absorptiq'@eﬁg(—i) and the

The self-correlation functiori22)—(27) can then be readily
evaluated,

- - ~ t

_ KSS(t, )= n(t—1)>, ,zlfsexpl'—iﬂlf~ f(T)dT}.
g . .
emlssmnjﬁgﬁe(k) matrix elements. The interference of the [ t
different monochromatic components results in a time spec-
trum with periodic modulation called quantum bé&&t.The Here A% is given by Eq.(69) and(, in this particular case
quantum beat pattern is _deflned both by the transition _fr_ebf pure magnetic interactions by
guencies and by the matrix elements of the nuclear transition
currents and thus bears the information on the hyperfine in- A= (jgMy/Ig— feMe/Je)BP). (75)
teractions experienced by the nuclei. _ _

Examples of evaluations of the NFS time spectra undefne still has to perform the stochastic average of the phase
conditions of time-independent hyperfine interactions by usfactors ex;{)—iQJltf('D dT} in Eq. (74). As long as the hy-

(74)
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perfine field fluctuations in no way correlate with the time switched(rotated from ng’” to ngﬁ’) instantaneously and si-
instants of absorptioh and emission the result of averaging multaneously at each nucleus within each grgupt a defi-
should depend on the difference-(t) only. This means that nite time instant”:

the self-correlation function reduces t§S¥t,t)=KSt )

—1), i.e., to the function for pure elastic coherent scattering. B (t)=B¢’'[ng” ot —t) +no(t—t")].  (80)
The actual result of averaging depends on the details of thxlahe rotation is specified by the three Eulerian angles:
stochastic model. In the simplest case, where the fluctuations ,” ,” 7,7 | ’
of the hyperfine field direction are described by a single palX1:X2:X3} =X -

rametenV—the mean frequency of fluctuations—the averag- Bef"tfe ﬁWltcr;!ng E"<Itd) the dlre(t:tlotn $r;]d thfe valtl;]e of thel
ing results in(see Ref. 28 for details magnetic hyperfine field are constant. Therefore the correla-

tion function in this time interval is equal to the unperturbed
t correlation function67)—(69) derived in Sec. V B.
<GXP[ —iQJ f(T)dT]> After switching t>t') the hyperfine field80) and the
0 Hamiltonian(71) are again time independent; however, dif-
ferent from the initial ones. Eigenvectdi8, ) of the Hamil-
e (76)  tonian associated with the new direction of the hyperfine
fields are related to the eigenvectdgy ) of the Hamiltonian
with x,= (Q2/W?—1)*2 The self-correlation function in the before switching through the transformation
presence of the fluctuating magnetic hyperfine field becomes

1
cogxWt)+ X sin(x;Wt)
|

. BU=2 1BID g (X)), (B=Z Dy (X B
e Wt By By »
(81

(77)
) o Here D g5 (x') is @ unitary matrix. In the particular case,
Let us consider two limiting cases. If the mean frequency hen th AT ; dlg’ the ei f
of the fluctuations is very lowW<(,), the so called slow WNenN the eigenvec oi,) and|B;) are the eigenvectors o

relaxation limit, we obtaingW=(), and x;>1. Then the the nuclear Spln-pI‘OJeCtl%‘] operator, it coincides with the

~ ~ 1 )
KI%t)= 77(t)2I AP®| cogxWt) + % sin(x,Wt)

. . . - . )
self-correlation function reduces to matrix of finite FO'Ec’zltIOFISDm,hmx()(’)-48‘19
N
~ B The unknown values, which still have to be defined in
K$S(t)= n(t)zl APScogQt) e Wt (79) order to calculate the correlation function after switching, are

the matrix elements of the evolution operator. To do this we

Since cosQt)=[exp(t)+exp(iNt)}2 the function(78) make use of the composition law U(t;,t;)
can be interpreted as a superposition of two unperturbeel:i{(tz,t’)z:{(t’,tl), of the fact that the Hamiltoniafv1) is
nuclear self-correlation function7) with constant mag- time independent although different in the time intervals
netic hyperfine field8(#) and —B(#), respectively. Besides (t,,t') and (’,t,), see Eq(80), of the definition(15), and of
the natural decay factor exp{’ot/2) of 7(t) here appears an the relation(81). The matrix elements of the evolution op-
additional deexcitation factor exp{Vf), which causes the erator then become
faster nuclear coherent response. This corresponds to the
t:)roadening of the nuclear resonances in the frequency spec- Uﬂ;ﬁk(tz,tl)=u[3;ﬁ;(t2,t’) Dgrp, Up,p (1',11), (82
rum.

In the other limiting case of very fast relaxation
(W=(),) we obtainx;=i and as a result the self-correlation
function becomes

-1 _ /-1 ’ -1 -1 ’
Uyt ta) =Upg s (V1) Dy Uy (ta.1'). (83)

It was taken into account that only the diagonal matrix ele-
o o mentsl{p g of the unperturbed evolution operat@6) have
Ki(t)= 77(02 A (79 nhonzero values. Combining Eq&2) and(83) with Eq. (27)
o _ _ we obtain the following expressions for the correlation func-
The dependence on the magnetlc_fleld_ disappears, since then after switching (>t’>T):
fluctuations of the magnetic hyperfine field are so rapid, that
the nuclei see its average value to be zero. - _ ~ o ,
First experimental studies and evaluations of NFS time KSt,D)=7n(t-1) X  AJX t'—T)e "t
spectra in paramagnetic environments with fluctuating I"={B.By Be}
atomic spins were reported recently in Refs. 46 and 47. Ex- (84)
perimental evidence of superparamagnetic fluctuations seen
by NFS were given in Ref. 47.

A,S?(x’,t'—"f)=xﬁfﬁ('k)ji(?)ﬁZﬁ S, (XU =Dis-K),
D. Switching of the magnetic hyperfine fields o (85

A very different picture arises if the magnetic hyperfine L~ ) N syt =)
fields are “fluctuating” regularly in time and in space. In Sx’t _t):DBéBg(X )Dﬁgﬁe(X ye '
other words, the directions of the hyperfine fields are (86)
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The correlation functiori84) has a structure similar to that of
the unperturbed correlation functioi$7).*® However this
similarity is only formal. First, the time variabl¢sandt are
entering Eqs(84)—(86) independently. Thus unlike the un-
perturbed correlation function, given by E®7), the corre-
lation function of Eq.(84) describesnelasticcoherent scat-
tering. Second, the amplitudesd; (x',t'—1) of the
monochromatic componen€y;, are different. They are built
up by the interference of all the initially excited transitidns
The interference shows up in E(B5) as the sum of the
current density matrix elementjf(—F) with amplitudes
given by S/,,(x’,) in Eqg. (86). By varying the angley’ of
switching and the switching timg one can change the am-

plitudesS],; and thus can control the interference pattern an
the coherently emitted intensity. The switching may result in
the emission of new frequency and polarization component

as well as in the suppression of already excited brigs°->2

or in the time reversal of the time spectrdiFor example,

one can make the interference totally destructive and thull

suppress the coherent reemisstdriowever, this implies by

YURI V. SHVYD’KO
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fields can be found in Refs. 11,13,50, and 53. Examples of
evaluations of the NFS time spectra under conditions of
switching of the magnetic hyperfine fields by using the pro-
cedure described in the present paper and fits of experimental
spectra are presented in Ref. 13.

VI. CONCLUSIONS

A general approach is presented of solving nuclear reso-
nant forward scattering problems directly in time and in
space. It is based on the solution of the first-order integro-
differential equation with a kernel that is a double time

nuclear self-correlation functiok(t,t). The kernel repre-
O1sents a coherent single scattering response in forward direc-

tion of their spatial system at timeto the excitation at.

he form of the kernel is defined by the type of interactions
the nuclei experience with their environment and by the
character of their spatial motion. A general procedure is in-
oduced for the solution of the wave equation. It is indepen-
dent of the type of the kernel. The kernels for some particular

no means that the nuclear excitation is destroyed. By the neg@S€S of hyperfine interactions and nuclear motion in space

switching at proper time and with proper angle one can re-
store constructive interference and see again coherently emit-

ted intensity>

This second switching is described similarly to the proce

dure outlined above. For example, if at tirfethe magnetic
hyperfine field is now switched ta§’"

were presented. Examples of the NFS time spectra under
onditions of time-independent as well as time-dependent
yperfine interactions obtained by the direct calculations in
time and space can be found, e.g., in Refs. 9,13, and 29.
The solution procedure directly in time and space can also
be applied to other scattering problems, such as nuclear

, the eigenvectors  graqq" diffraction, nuclear resonant small angle scattering,

|BY) of the Hamiltonian associated with this new direction Of etc. For these cases the wave equati@d) should be
the hyperfine field are related to the previous eigenvectorghanged to describe along with the forward scattered ampli-

|Bx) through Eq.(81) with the substitutionsg,— 85 and

tude also the radiation components scattered at nonzero

Br— By - Further it can be shown that the nuclear self-angles. In Ref. 12 an appropriate wave equation for multiple

correlation function is described by the same E@g4) and
(85); however, with the replacementl’—1", and

S, (x' .t —1)—S,(x".t"—1), whereS, (x",t"— 1) is now
defined as

SWX == 2 8l (=) st =),
Be By
(87)

Bragg diffraction was introduced. In such problems the
double time self-correlation function should acquire addi-

tionally a double momentum dependerc¥(t,t,k k), since

the wave vectok of the scattered ané of the incident
photons are now different.
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