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Nuclear resonant forward scattering of x rays: Time and space picture

Yuri V. Shvyd’ko
II. Institut für Experimentalphysik, Universita¨t Hamburg, D-22761 Hamburg, Germany

~Received 8 May 1998!

The problem of forward resonant scattering of x rays by an ensemble of nuclei is being solved directly in
time and space. The wave equation describing the propagation of the radiation through the nuclear ensemble is

derived. It is a first-order integrodifferential equation. Its kernel is a double time functionK(t, t̃ ) that represents

a coherent single scattering response of the nuclear system at timet to excitation att̃ . The explicit form of the
kernel is defined by the character of interactions, the nuclei experience with the environment and by the
character of their spatial motion. A general procedure of the solution of the wave equation is introduced that is
independent of the type of the kernel. Examples for various kernels are presented and discussed for some
particular cases: collective or diffusive motion of nuclei in space, thermal lattice vibrations, time-independent
hyperfine interactions, and time-dependent hyperfine interactions due to atomic spin fluctuations or external
magnetic-field switching.@S0163-1829~99!09113-4#
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I. INTRODUCTION

Time spectroscopy of nuclear forward scattering~NFS! of
synchrotron radiation is an experimental technique com
mentary to Mo¨ssbauer absorption spectroscopy in the ene
domain providing similar, additional or even unique info
mation~for a review see, e.g., Refs. 1 and 2!. Its uniqueness
arises from the fact that NFS is spatially coherent. Interf
ence effects in scattering play a significant role and enabl
reveal information inaccessible to absorption spectrosco

The first theory of the time dependence of NFS of sy
chrotron radiation was developed by Kagan, Afanas’ev,
Kohn.3 Fourier transformation of the frequency dependen
of the transmission amplitude through a single resonance
sorber was used to calculate the time spectrum of NFS.
portant features that arise in thick samples—speed-up of
nuclear decay and dynamic beat—were considered. Tr
mell and Hannon4 pointed to a simple but important effec
that arises in time spectra from samples possessing mul
nuclear resonances—quantum beat. Numerous subseq
theoretical papers5–8 have used Fourier transformation fro
the frequency to the time domain to consider more com
cated cases of interactions of nuclei with their environme
Fourier transformation techniques can be used provided
frequency spectrum of transmission through the giv
sample is known.

An approach, which does not require the initial know
edge of the transmission frequency spectrum, is based on
solution of the scattering problem directly in time and spa
This approach was used to handle NFS in particular case
both time-independent9 and time-dependent10–14interactions.

In the present paper this approach is generalized to a
trary type of interactions, the nuclei experience with th
environment, and arbitrary character of their spatial moti
A wave equation is derived for the propagation of x ra
directly in time and space through the nuclear resonant
dium, Secs. II and IV. The equation is a first-order integro
ifferential wave equation. Its kernel is the double tim
nuclear self-correlation functionK(t, t̃ ) defined by the type
PRB 590163-1829/99/59~14!/9132~12!/$15.00
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of interactions the nuclei experience with the environm
and their spatial motion, Sec. III.K(t, t̃ ) describes a coheren
single scattering response in the forward direction of
nuclear system at timet to excitation att̃ . A general proce-
dure is introduced of solving the wave equation independ
of the type of the kernel, Sec. IV B. Examples of calculatio
are given of the nuclear self-correlation functions and ti
spectra of NFS in single scattering approximation for t
following particular cases: collective motion of the nucle
ensemble in space, Sec. V A 1; diffusive nuclear motio
Sec. V A 2; thermal lattice vibrations, Sec. V A 3; time
independent hyperfine interactions, Sec. V B; tim
dependent hyperfine interactions due to atomic spin fluc
tions, Sec. V C; or due to external magnetic field switchin
Sec. V D.

II. FORMULATION OF THE PROBLEM

We will evaluate the time dependence of coherent scat
ing of x rays from an ensemble of resonant nuclei in t
direction of the incident beam—nuclear forward scatterin
The nuclei are supposed to be moving in space, or~and!
located in an environment with hyperfine interactions whic
generally speaking, are time dependent. The motion in sp
may be a result of an external force, or thermal lattice vib
tions, or diffusion. Nuclear spin relaxation in a fluctuatin
environment or time-dependent external perturbations of
perfine fields can be mentioned as examples of tim
dependent hyperfine interactions. The purpose of the pap
to derive directly in time and space the wave equation
propagation of radiation in such media and to develop a g
eral procedure of its solution.

The electric componente(r,t) of the radiation field propa-
gating in the resonant medium we calculate by using M
well’s wave equation

¹2e2graddive2
1

c2

]2

]t2
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i ~1!
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with i(r,t) being the macroscopic current density induced
the radiation in the system of resonant nuclei. The samp
assumed to be a plate of thicknessL. The reference system i
attached to its entrance surface with thez axis directed per-
pendicular and inwards to the plate. The incident radiatio
represented as a plane wave modulated in time,

ein~r,t !5E~ t ! ei ~ k̃r2ṽt !, ~2!

with carrier frequencyṽ and wave vectork̃ ( k̃5ṽ/c). The
carrier frequency is assumed to be close to the nuclear r
nance frequencyE0 /\.

The solution of Eq.~1! for the field propagating in the
sample in the primary beam direction is sought in the for

e~r,t !5E~z,t !ei ~ k̃r2ṽt ! ~3!

with E(z,t) being an envelope that is varying slowly in tim
and space compared to the exponent. The envelope con
only the spatial coordinatez, since refraction and absorptio
in the sample occur along the normal to the sample surf
i.e., alongz. The induced current density is sought in t
same form

i~r,t !5I ~z,t !ei ~ k̃r2ṽt !. ~4!

The presentation by Eqs.~3! and~4! is known as the slowly
varying envelope approximation. In this case the seco
order Maxwell’s wave equation reduces to the first-order d
ferential equation for the envelopesE(z,t) and I (z,t):

sinQ
]

]z
E~z,t !52

2p

c
I ~z,t ! ~5!

with Q being the angle of incidence (sinQ5k̃z/k̃). By using
Eq. ~2! the boundary conditions for Eq.~5! read as follows:

E~0,t !5E~ t !. ~6!

Wave equations for the slowly varying envelopes of the
diation field and induced current density were first intr
duced in optics~see, e.g., Ref. 15! and in x-ray diffraction in
crystals.16 Recently it was also used for the analysis
nuclear resonance scattering problems.10–12

The time spectrum of nuclear forward scattering is
time dependence of the radiation intensity emerging from
sample in the primary beam direction:

S~ t !}uE~L,t !u25(
s

uEs~L,t !u2. ~7!

Here the superscripts corresponds to any of two orthogon
polarization components of the radiation, given by the po
ization vectorses.

III. NUCLEAR CURRENTS AND SELF-CORRELATION
FUNCTION

A. Current density of the nuclear ensemble

In each particular case the right-hand side of Eq.~5!, i.e.,
the current density induced by the radiation in the ensem
of resonant nuclei, should be specified. The current den
of the ensemble is the sum of the current densi
ia„r2ra (t),t… of individual nuclei numbered here bya. The
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position vectorra(t)5Ra1ua(t) of the nucleusa is pre-
sented as a sum of its equilibrium positionRa and its dis-
placementua(t) from the equilibrium due to either therma
lattice vibrations, or~and! diffusion, or ~and! vibrations in-
duced by an external force, etc. For convenience of furt
calculations the presentation of the nuclear current densit
terms of momentumk is used:ia(k,t). The coherent curren
density of the nuclear ensemble is then given by

i~r,t !5(
a

E dk

~2p!3
^ ia~k,t ! eik~r2ra!&. ~8!

^•••& means statistical average over the initial state of
crystal, assuming its thermal equilibrium, and also averag
over all other stochastic degrees of freedom. The cohe
part of the current density of an individual nucleusa is cal-
culated by using its density matrix:

ia~k,t !5Tr$ ĵ~k! r̂a~ t !%. ~9!

Here r̂a(t) is the density matrix operator of the nucleu
which is defined by the Liouville–von Neumann equation

i\
]r̂a~ t !

]t
5@Ĥa~ t !1Ĥa

g~ t ! , r̂a~ t !#. ~10!

Ĥa(t) in Eq. ~10! is the Hamiltonian of a nucleusa with the
following components:

Ĥa~ t !5El2 i
G0

2
dl,e1Ĥal

hf~ t !. ~11!

El is the energy in the ground (l5g) or in the excited (l
5e) state defined by internal nuclear interactions. Ea
nucleus is also characterized by the energyE05Ee2Eg of
the nuclear transitione⇒g, by the full natural energy width
G0 of the nuclear excited state, by its spinJl , magnetic
momentml , quadrupole momentQ, etc. TheĤal

hf(t) repre-

sents hyperfine interactions which are generally speak
time dependent. Its actual type will be specified later.

TheĤa
g(t) in Eq. ~10! is the Hamiltonian representing th

interaction of the nucleus with the radiation field. It is give
by the standard expression Ĥa

g(t)52c21*dr ĵ (r
2ra) A(r,t) ~Ref. 17! with A(r,t) being the vector potentia
and with ĵ(r2ra) here andĵ(k) in Eq. ~9! being the Schro¨-
dinger picture nuclear current-density operator in the real
reciprocal space, respectively. By using the Coulomb ga
with zero scalar potential, the representation of the fi
e(r,t) by Eq. ~3! and applying the slowly varying envelop
approximation we obtain for the interaction Hamiltonian10,11

Ĥa
g~ t !5 i ṽ21 ĵ~2 k̃! E~za ,t ! ei ~ k̃ra2ṽt !. ~12!

We assume that the interaction~12! of the nuclei with the
radiation field is weak compared to the other interactio
given by Eq.~11!. This allows us to use perturbation theo
and to obtain in its second order~resonant scattering is
second-order scattering process! the following expression for
the current density,18
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ia~k,t !5
1

i\
TrH ǰa~k,t !E

2`

t

@Ȟa
g~ t̃ !,řa~2`!# d t̃J .

~13!

Here the symbols with the inverted caretˇ denote interaction
picture operators defined according to the rule

Ľa~ t !5Ûa
21~ t,2`! L̂a~ t ! Ûa~ t,2`!, ~14!

with

Ûa~ t2 ,t1!5T̂ expH 2
i

\Et1

t2
Ĥa~ t ! dtJ ~15!

being the evolution operator of a nucleusa in the absence o
the radiation field, andT̂ being the time-ordering operator.

The trace in Eq.~13! is calculated by using a full set o
nuclear state vectorsual& that in the present paper are ch
sen as eigenstate vectors of the nuclear Hamiltonian~11! at
t52`:Ĥa(2`). It is assumed that initially att52` all
the sublevels in the ground state are populated equally,

^agur̂a(2`)uag&51/(2I g11), while those in the excited
state are not populated at all, i.e.,^aeur̂a(2`)uae&50. It is
also taken into account that only matrix elements of the
erator ĵ between the ground and excited nuclear states h
significant values. After transformations we obtain the f
lowing general expression for thes-polarization componen
of the current density of an individual nucleus

i a
s ~k,t !5

1

\ṽ~2I g11!
(

ag ,ae ,s̃

j agae

s ~k,t !

3E
2`

t

j aeag

s̃ ~2 k̃, t̃ ! Es̃~za , t̃ !ei ~ k̃ra2ṽ t̃ ! d t̃.

~16!

The two matrix elementsj agae

s (k,t) and j aeag

s̃ (2 k̃, t̃ ) in Eq.

~16! represent two stages of the nuclear resonant scatte
process via one of the possible nuclear transitio

^agu⇔uae&. The matrix elementj aeag

s̃ (2 k̃, t̃ ) describes ex-

citation of the nucleus at time instantt̃ with absorption of the
radiation field in the polarization states̃ and with the wave
vector k̃, while j agae

s (k,t) describes deexcitation of th

nucleus at time instantt with the emission of the radiation in
the polarization states and with wave vectork. The matrix

elementsj agae

s (k,t) and j aeag

s̃ (2 k̃, t̃ ) are calculated accord

ing to Eqs.~14! and ~15!, in particular:

j agae

s ~k,t !5 (
ãgãe

Uagãg

21
~ t,2`! j ãgãe

s
~k! U ãeae

~ t,2`!.

~17!

For the calculation of the nuclear current-density matrix
ementsj agae

s (k) we refer to textbooks17,19 and papers.20–22,5

Inserting Eq.~16! into Eq. ~8! we obtain the following
expression for thes component of the coherent curren
density induced in the nuclear ensemble:
e.,

-
ve
-

ng
s

-

i s~r,t !5E dk

~2p!3
ei ~kr2ṽt !(

a,s̃

ei ~ k̃2k!Ra

3E
2`

t

Fa
ss̃~k,k̃,t, t̃ !Es̃~za , t̃ !d t̃, ~18!

whereFa
ss̃(k,k̃,t, t̃ ) is defined as

Fa
ss̃~k,k̃,t, t̃ !5

1

\ṽ~2I g11!

3^e2 ikua~ t !ei k̃ua~ t̃ !&ei ṽ~ t2 t̃ !

3 (
ag ,ae

^ j agae

s ~k,t ! j aeag

s̃ ~2 k̃, t̃ !&. ~19!

It is clear from Eq.~18! as well as from Eqs.~13! and ~16!

that t̃<t, which has the evident meaning that the time
excitation t̃ always precedes the time of deexcitationt.

B. Self-correlation function

Let us combine into groups the terms in the sum(a of

Eq. ~18! with the same values ofFa
ss̃(k,k̃,t, t̃ ). These groups

we will tag by indexb. Physically this procedure means th
we combine into groups resonant nucleia with the same
interactions with the environment and the same spatial m
tion. Groups of nuclei in equivalent sites of the crystal u
cell, or nuclei experiencing the same type of fluctuations
their atomic spins, or the same type of diffusion in a crys
lattice, etc., are examples of such groups. Thus in the s
over the whole nuclear ensemble in Eq.~18! we single out
the sums(a8 over all nuclei within each groupb. We assume
that the number of nuclei within each group is macrosco
and make use of the relation

(
a

8 exp@ i ~ k̃2k!Ra#5~2p!3N0wbd~ k̃2k!, ~20!

whereN0 is the number of all resonant nuclei per unit vo
ume andwb is the relative weight of the groupb. We also
assume that the sample is homogeneous in the (x,y) plane so
that no effects of nuclear resonant small-angle scatte
occur.23 As a result we finally obtain the expression for th
coherent part of the macroscopic nuclear current density
has the form of Eq.~4! with thes component of the envelop
of the macroscopic nuclear current density given by

I s~z,t !5
c

2pH sR N0 G0

4\ J E
2`

t

(
s̃

Kss̃~ t, t̃ !Es̃~z, t̃ !d t̃.

~21!

The double-time functionKss̃(t, t̃ ) is the self-correlation
function of the nuclear ensemble, which is defined as

Kss̃~ t, t̃ !5(
b

Lb
ss̃~ t, t̃ !Mb~ t, t̃ !, ~22!
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Lb
ss̃~ t, t̃ !5ei ṽ~ t2 t̃ ! Xb (

bg ,be

^ j bgbe

s ~ k̃,t ! j bebg

s̃ ~2 k̃, t̃ !&,

~23!

Mb~ t, t̃ !5^e2 i k̃ub~ t !ei k̃ub~ t̃ !&, ~24!

Xb5
4k̃

4c2~2I e11!Gg

wb . ~25!

The factor

sR5
4p

k̃2

2I e11

2~2I g11!

Gg

G0
~26!

in Eq. ~21! is the cross section of the nuclear resonant
sorption. Gg in Eq. ~25! is the full radiative width of the
nuclear transitione⇒g.

The functionLb
ss̃(t, t̃ ) in Eq. ~23! can be presented in a

alternative way:

Lb
ss̃~ t, t̃ !5ei ṽ~ t2 t̃ !Xb

3 (
bgbe

^@Ub
21~ t, t̃ ! j s~ k̃!Ub~ t, t̃ !#bgbe

& j bebg

s̃ ~2 k̃!.

~27!

For this we have used Eqs.~17! and the composition law
Û(t3 ,t1)5Û(t3 ,t2)Û(t2 ,t1) valid for the evolution
operators.24

The self-correlation functionKss̃(t, t̃ ) has the property

Kss̃~ t,t !5dss̃, ~28!

which can be easily verified by taking into account that
cording to Eq.~24! Mb(t,t)51 independent of how the nu
clei are moving, that according to Eq.~15! Ub(t,t)51 inde-
pendent of the type of hyperfine interactions, and by
relation

(
bg ,be

j bgbe

s ~ k̃! j bebg

s̃ ~2 k̃!5dss̃
Gg ~2I e11!c2

4k̃
. ~29!

The latter can be proved by using the optical theorem.
The function Mb(t, t̃ ) in Eqs. ~22! and ~24! represents

spatial motion of the nuclei belonging to a groupb, while

Lb
ss̃(t, t̃ ) in Eqs.~22! and~23! represents nuclear spin motio

and other internal nuclear degrees of freedom.
The functionMb(t, t̃ ) is a kind of a self-correlation func

tion introduced by Van Hove25 in connection with neutron
scattering. It was later used by Singwi and Sjo¨lander26 to
build the theory of resonance absorption of nuclearg rays
for an arbitrary system of interacting particles.

The function Lb
ss̃(t, t̃ ) is similar to the self-correlation

function used by Afanas’ev and Kagan27 and Blume and
Tjon28 to evaluate the Mo¨ssbauer line shape in the presen
of time-dependent hyperfine fields.

The self-correlation functions typically used have
(t2 t̃ ) dependence. The function defined by Eqs.~22!–~24!
contains both time variables separated. As shown in S
-

-

e

c.

IV F the self-correlation functionsK(t, t̃ ) that are reduced to
K1(t2 t̃ ) describe coherentelasticscattering, while the self-
correlation functionK(t, t̃ ) with separated time variables de
scribes coherentinelasticscattering.

The coherent elastic scattering arises under condition
time-independent hyperfine interactions, as discussed in
V B. It may also arise under conditions of time-depende
hyperfine interactions or spatial motion. However, this ha
pens only, if these variations in time are stochastic, i.e., in
way correlate with the instant of photon absorptiont̃ or
emissiont. Averaging over these stochastic variations resu
in the (t2 t̃ ) dependence of the self-correlation functio
Atomic spin fluctuations discussed in Sec. V C and diffus
motion of nuclei in space~Sec. V A! are such examples.

Nonstochastic variations in time usually cause the coh
ent inelastic scattering. It arises if, e.g., collective synch
nized motion of nuclei in space takes place, Sec. V A 1,
synchronized time-dependent hyperfine interactions, S
V D, are induced.

IV. WAVE EQUATION AND ITS SOLUTION

A. Nuclear forward scattering wave equation

By using Eqs.~5! and ~21! we obtain the wave equatio
for propagation of x rays in the nuclear resonant medium

]Es~j,t!

]j
52E

2`

t

(
s̃

Kss̃~t,t̃ !Es̃~j,t̃ ! dt̃. ~30!

Here dimensionless space and time variables

j5
1

4
sRN0

z

sinQ
, t5

tG0

\
~31!

are used. The dimensionless space variablej scales with the
so-called effective resonant thicknessTR5sRN0L. The
boundary condition for the wave equation~30! is given by
Eq. ~6!.

The wave equation~30! can be represented also in sho
as follows:

]E~j,t!

]j
52D̂~t,t̃ !E~j,t̃ !, ~32!

D̂~t,t̃ !5E
2`

t

K̂~t,t̃ !dt̃. ~33!

Equation~32! formally is similar to the Schro¨dinger equa-
tion. For this one has to imagine thatj plays the role of the
time variable in the Schro¨dinger equation and2 iD̂ plays the
role of the ‘‘time’’-, i.e., j-independent Hamiltonian. Differ-
ent techniques of solving the Schro¨dinger equation exist. To
solve Eq.~32! we use a method similar to that of quantum
mechanical perturbation theory.

B. General solution

The general solution of the wave equation~30! can be
given as a power series ofj:
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E~j,t!5 (
p50

`
~2j!p

p!
E~p!~t !. ~34!

The first termE(0)(t) is taken to be independent of the spa
variablej and defined by the boundary condition:

E~0!~t !5E~t!. ~35!

The other terms,E(p)(t), can be obtained after substitutio
of Eq. ~34! into Eq. ~32!. This results in the recursion rela
tion

E~p!~t !5D̂~t,t̃ ! E~p21!~ t̃ ! ~36!

with the help of which and of Eqs.~33! and ~35! all the
amplitudes E(p)(t) in Eq. ~34! can be calculated. The
E(p)(t) will be referred to as multiple scattering amplitud
of the orderp.

By using Eqs.~34!–~36! the solution of the wave equatio
can be also represented in the following compact form:

E~j,t!5exp@2jD̂~t,t̃ !#E~ t̃ !. ~37!

It is remarkable that the solution of the wave equation, giv
by Eqs.~34!–~36!, is general and is independent of the e
plicit form of the nuclear interactions which are hidden in t
kernel Kss̃(t,t̃). Equations~34!–~36! may be used conve
niently for numerical calculations of the NFS time spect
The kernelKss̃(t,t̃) is calculated once by using Eqs.~22!–
~27!. Then to calculate the time response given by Eq.~34!
one applies the general procedure based on the recu
relations ~36!. Such a procedure was implemented in t
codeMOTIF.29

In a few particular cases one can obtain analytical so
tions.

C. Single scattering approximation

One of such cases is the single scattering approximat
which is valid for thin samples or for short time interval
Even though the solution in this approximation may not
exact for a real sample, nevertheless it gives a good basi
the analysis of physical problems.

The single scattering approximation is obtained by reta
ing only the zeroth and first terms (p50,1) in the general
solution ~34!. By using Eqs.~33!–~36! the radiation field in
this approximation reads

Es~j,t!5E s~t!2jE
2`

t

(
s̃

Kss̃~t,t̃ !E s̃~ t̃ !dt̃. ~38!

If the incident radiation pulse is very short and can be
proximated by

E~t!5e0Ed~t!, ~39!

which corresponds to the conditions of experiments w
pulsed synchrotron radiation, then Eq.~38! simplifies to

Es~j,t!5d~t!ds02jKs0~t,0!. ~40!
n
-

.

ion

-

n,

e
for

-

-

h

Here d(t) is the d function, ds0 is the Kronecker symbol,
ande0 is the polarization vector of the incident radiation. W
assume in Eq.~40! and everywhere in the following tha
E51.

The nuclear response is given by the second term of
~40!. The single scattering solution~40! provides a clear
physical interpretation of the kernelKss̃(t,t̃). The kernel
gives the coherent single scattering response in the forw
direction of the nuclear system at timet to the excitation at
t̃. The superscriptss̃ ands represent the states of polariz
tion of the incoming and scattered radiation.

D. Immediate response

At the time instantt501 ~i.e., immediately after the ex
citation! the solution~40! in the single scattering approxima
tion is exactly valid. It is valid exactly for a nuclear en
semble experiencing any spatial motion and any hyper
interactions. It is also valid for samples of any thickness. I
valid exactly, since no multiple scattering is possible with
such a short time.

By using Eqs.~40!,~28!, and ~31! we obtain for the re-
sponse in the forward direction immediately after excitatio

Es~L,01 !52
sRN0 L

4 sinQ
ds0. ~41!

The immediate response of the nuclear system to insta
neous excitation given by Eq.~41! is independent of the
character of nuclear motions and hyperfine interactions.
also independent of whether the nuclei belong to atoms
solid, or in a liquid, or in a gas. This fact has importa
consequences for the possibility of studying thermal exc
tious which are discussed in Sec. V A 3 in more details.

E. Single resonance

An exact analytical solution is also obtainable in the ca
of a single nuclear resonance. A single resonance occ
e.g., in the absence of hyperfine interactions:Ĥbl

hf50. In this

case the evolution operator~15! is a c value: Ub(t, t̃ )
5exp$2(i/\)@El2i(G0/2)dl,e#(t2 t̃ )%, independent of the
group numberb. For simplicity we assume that the motion
part Mb(t, t̃ )51. By using these facts together with Eq
~22!–~27! we obtain that the single resonance correlat

function is elastic:Kss̃(t,t̃)5K1
ss̃(t2 t̃), and is given by

K1
ss̃~t!5dss̃c~t!, ~42!

where

c~t!5expF i S \ṽ2E0

G0
1

i

2
D tGu~t!, ~43!

andu(t) is the unit step function, nonzero ift>0.
There is no polarization mixing and polarization depe

dence under these conditions. Therefore we omit the po
ization index. We assume again that the incident radiat
pulse is very short and can be represented by Eq.~39!. As a
result by using Eqs.~33!–~36! and the self-correlation func
tion ~42! all multiple scattering amplitudes can be calculate
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E(p)(j,t)5c(t)jptp21/(p21)! and the analytical solution
for the nuclear response to the prompt excitation is rea
obtained:

E~j,t!5d~t!2c~t!j (
p51

`
~2jt!p21

~p21!! p!
~44!

5d~t!2c~t!j
J1~2Ajt!

Ajt
. ~45!

The solution~45! is in agreement with the result obtaine
earlier in Ref. 3 by using Fourier transformation of the tran
mission frequency amplitude through the single resona
absorber. It is also in agreement with the solution obtain
for the problem of the radiation pulse propagation in a sin
resonance optical medium.30,31

The terms in the sum of Eq.~44! are the multiple scatter
ing amplitudes of the orderp. If the conditionjt!1 is ful-
filled ~i.e., the sample is thin enough and the time of obs
vation t is not too far away from the excitation timet50)
the solution~44! can be restricted to the term withp51. This
actually represents the single scattering approximation
cussed in Sec. IV C. Under these conditions the time
sponse is simply proportional tojc(t) and has the usual d
excitation factor exp(2G0t/2) characteristic for the natura
decay of an isolated nucleus.

If the sample is not thin (j@1) or the instant of observa
tion t is far away fromt50, then other terms in the sum o
Eq. ~44!, which represent multiple scattering, start to play
significant role. As a result, according to Eq.~45!, the re-
sponse acquires the modulationJ1(2Ajt)/Ajt, which alters
the natural decay by additional damping and oscillatio
The latter is often referred to as dynamical beat and w
observed both in the experiments with radioact
sources32,33,11 and with synchrotron radiation.34 The faster
damping is often referred to as coherent speed up of
decay in NFS.3,35,36

How many scattering events in a sample with thickn
parameterj experiences a photon arriving in the detector
time t? In other words, how many terms in the sum of E
~44! are significant for the given values ofj andt? To esti-
mate this value, which we denote aspjt , let us assume tha
pjt@1 and use Stirling’s formulap! 5A2p pp10.5e2p for
factorials in the denominator of Eq.~44!. Under these as
sumptions the term with the numberp in the sum of Eq.~44!
can be approximated by (jte2/p2)p21/A2p. Thus the re-
quired number of scattering events can be estimated to
pjt>eAjt.

By using the solution~45! and the wave equation~5! one
can obtain also the following expression for the coher
nuclear current density induced in the sample by the ins
taneous radiation pulse:

I ~j,t!5
c

8p
N0sRJ0~2Ajt!c~t!. ~46!

It shows that directly after the excitation att50 there exists
a homogeneous distribution of the nuclear currents over
whole sample:I (j,01)5 const. Later the nuclear curren
acquire an inhomogeneous spatial distribution which va
with time. According to Eq.~5! the nuclear ensemble rad
ly

-
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ates in forward direction the field E(L,t)5
2(2p/c sinQ)*0

LI(z,t)dz. At those instants, when the net co
herent current density*0

LI (z,t)dz50, i.e., when the currents
interfere destructively, the nuclei do not radiate coherently
forward direction. These instants correspond to the mini
of the dynamical beat.

F. Particular solutions in the frequency domain

An alternative procedure of the solution to that given
Eqs. ~34!–~36! is to transform the wave equation~32! into
the frequency domain, to solve it there, and then to Four
transform the solution back into the time domain. The tra
formation of the wave equation into the frequency dom
results in

]E~j,«!

]j
52E

2`

1` d«̃

2p
K̂~«,«̃ !E~j,«̃ !, ~47!

where

K̂~«,«̃ !5E E ei«te2 i «̃ t̃ K̂~t,t̃ !dt dt̃. ~48!

The set of equations~47! describes, generally speaking, th
inelastic coherent forward scattering with the matrix opera
K̂(«,«̃) representing the scattering of the radiation from t
state with frequencyṽ1 «̃ G0 /\ to another state with fre-
quencyṽ1« G0 /\. Only for some special types of kerne
K̂(«,«̃) it is possible to obtain the solution of Eq.~47! ~see,
e.g., Ref. 10, where the coherent inelastic scattering fr
vibrated nuclei was considered! but not in the general case
There is, however, a rather large subset of problems
which one can obtain a general solution, namely, for
elasticnuclear forward scattering when

K̂~«,«̃ !5K̂1~«!2pd~«2 «̃ !. ~49!

In the time domain this corresponds to the relation

K̂~t,t̃ !5K̂1~t2 t̃ !, ~50!

which is verified by substitution of Eq.~50! into Eq.~48!. In
this case the integral in Eq.~47! vanishes and the integro
differential equation reduces to the linear differential equ
tion

]E~j,«!

]j
52K̂1~«!E~j,«!, ~51!

the solution of which can be obtained in general form~see,
e.g., Ref. 37!:

E~j,«!5exp@2jK̂1~«!#E~«!, ~52!

with E(«) being the frequency spectrum of the incident r
diation. The time dependence of NFS is obtained by reve
Fourier transformation.3,5–8

V. KERNELS IN PARTICULAR CASES

In each particular case the nuclear self-correlation fu
tion ~22!–~27!—the kernel of the wave equation~30!—
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should be calculated. For the rest the evaluation procedu
the time spectrum of NFS is standard and given by E
~34!–~36!, and~7!.

The explicit form of the kernel is determined by the tr
jectory of motionub(t) that enters Eq.~24!, and the evolu-
tion operatorÛb(t, t̃) that enters Eq.~27!. The evolution op-
erator~15! in turn is specified by the HamiltonianĤb(t) ~11!
and essentially by the type of the hyperfine interactio
Ĥbl

hf(t).

In the present section we calculate the kernels for diff
ent particular cases of nuclear motion and hyperfine inte
tions and use them for calculating analytically the time sp
tra of NFS in the single scattering approximation. W
consider first the influence of nuclear motion in space
NFS time spectra, Sec. V A. As a next step we consi
time-independent hyperfine interactions, Sec. V B; tim
dependent hyperfine interactions, in particular, stocha
fluctuations of the magnetic hyperfine field, Sec. V C; a
switching of the magnetic hyperfine field direction synch
nized with the nuclear excitation, Sec. V D.

A. Motion in space

In this section we discuss the effect of spatial motion o
and therefore do not specify the part of the self-correlat

functionLb
ss̃(t, t̃ ) representing other degrees of freedom. A

cording to the definition~22!–~24! the effect of resonant nu
clei in motion on NFS is totally defined by their positio
ub( t̃ ) at the momentt̃ of excitation and their positionub(t)
at the momentt of deexcitation. These positions are enteri
the phase factors exp@2ik̃ub(t)#exp@1ik̃ub( t̃ )# in the mo-
tional partMb(t, t̃ ) of the self-correlation function~24!.

1. Collective motion

Let us first consider a simple case where the nuclei m
as a rigid ensemble with a single displacement vectorub(t)
5u(t). The self-correlation function~22!–~24! becomes

Kss̃~ t, t̃ !5e2 i k̃u~ t !e1 i k̃u~ t̃ !(
b

Lb
ss̃~ t, t̃ !. ~53!

No statistical averaging of the motional part is required
this case. The same nuclear ensemble but at restu(t)
5const is characterized by the self-correlation funct

K0
ss̃(t, t̃ )5(bLb

ss̃(t, t̃ ). Let us assume thatE0(j,t) is the so-
lution of the wave equation~30! with such a kernel. Then the
solution of the wave equation for the moving system with
self-correlation function~53! is given by

E~j,t !5E0~j,t !e2 i k̃u~ t !. ~54!

This is verified by substituting Eqs.~53! and ~54! into Eq.
~30!. Thus, according to Eq.~54!, the collective motion of all
nuclei produces a phase modulation of the reemitted ra
tion. If, e.g., the sample is moving with constant velocityv,
so thatu(t)5vt, then the phase factor in Eq.~54! is given
by exp(2iVDt), where VD5 k̃v is simply a Doppler fre-
quency shift. For more complicated motions the phase mo
lation is more sophisticated.
of
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To reveal the phase modulation~54! due to collective mo-
tion one has to use a phase-sensitive detector. The time s
trum recorded with a usual non-phase-sensitive detecto
given by Eq. ~7!. Since it is proportional to the modulo
square of the nuclear response~54! the phase information is
lost. Thus customarily the time spectrum of NFS is not s
sitive to the collective motion of nuclei. Experimentally th
insensitivity of the time spectra to the collective motion
nuclei was first proved in Ref. 38. It was shown theoretica
in Ref. 12 that this conclusion is also true in a more gene
case of multiple Bragg diffraction. To observe the pha
modulation another nuclear resonance scatterer should
used, playing the role of the phase-sensitive detector.38,39

2. Diffusive motion

A large set of problems that can be studied by us
nuclear resonant scattering concerns diffusion of atoms
solids and liquids.26 These problems are treated by speci
ing again the motional part of the self-correlation functio
Diffusion is a stochastic process. Therefore one has to
form statistical averaging of the motional part~24! of the
self-correlation function. Depending on the diffusion mod
Mb(t, t̃ ) takes different forms. Despite these differenc
there is a general feature: due to the fact that the time ins
of excitation and emission is in no way correlated with t
diffusion, the motional part of the self-correlation functio
should acquire in this case a (t2 t̃ ) time dependence:

^e2 i k̃ub~ t !ei k̃ub~ t̃ !&5Mb~ t2 t̃ !, ~55!

which describes elastic nuclear forward scattering.
In the particular case of free diffusion discussed in R

26, the motional part of the self-correlation is given by

Mb~ t2 t̃ !5e2Dbk̃2~ t2 t̃ !, ~56!

whereDb is the diffusion coefficient of atoms belonging t
the groupb. Different diffusion models were reviewed re
cently in Ref. 6 in connection with NFS. The first expe
mental studies of diffusion by using NFS were performed
Ref. 40.

3. Thermal lattice vibrations

Atoms bound in a crystal experience thermal vibratio
According to the theory of lattice dynamics in the harmon
approximation the displacement vectorub(t) from the equi-
librium position is given by a sum of displacements in the
called normal modes~see, e.g., Ref. 41!. Each normal mode
or each phonon in the quantum mechanical language, is c
acterized by the momentumq, branch numbern, dispersion
law vn(q) and the state of polarizationeqn(b). The phonon
occupation numbersn̄qn at a given temperature characteri
the intensity of thermal vibrations. The effect of the therm
lattice vibrations on the time dependence of NFS exhib
itself via the motional part of self-correlation function~24!.
We consider only elastic scattering here when the pho
state before and after scattering is the same, although in
intermediate state when the nuclear ensemble is excite
may be different. That means we have to perform the ther
average of Eq.~24! over the phonon occupation number



ing

-
d

Ac

ula

.e
-

e

es

n

s is

In

ye
es

en

e-
i-

c-

ic

the

t of

al in

n-
d it
ues.
r-

orm
q-
be

into
ntly

l-
ples
le
ort
le

e
eir

er-

PRB 59 9139NUCLEAR RESONANT FORWARD SCATTERING OF X . . .
The result is well known~see, e.g. Refs. 42 and 41!. We
reproduce it here without derivation:

Mb~ t2 t̃ !5^e2 i k̃ub~ t !e1 i k̃ub~ t̃ !&

5exp$2^~ k̃ub!2&1^@ k̃ub~ t !#@ k̃ub~ t̃ !#&%,

~57!

^@ k̃ub~ t !#@ k̃ub~ t̃ !#&

5
\

2nmb
(
qn

uk̃eqn~b!u2

vn~q!

3@~ n̄qn11!e2 ivn~q!~ t2 t̃ !1n̄qn eivn~q!~ t2 t̃ !#. ~58!

Here mb is the mass of the atom in groupb and n is the
number of the unit cells in the sample.

It is clear that independent of how the nuclei are mov
Mb(t2 t̃ )51 at t5 t̃ . If ( t2 t̃ )@vph

21 , wherevph is a typi-
cal phonon frequency, then the term~58! vanishes and the
self-correlation function becomes

Mb~ t2 t̃ !5exp$2^@kub#2&%5 f b~ k̃!, ~59!

where f b( k̃) is the Lamb-Mo¨ssbauer factor giving the prob
ability of elastic resonance absorption or emission in the
rection of the photon wave vectork̃. The factorf b( k̃) can be
calculated by using Eq.~58! taken att5 t̃ .

An important question is, what happens in between?
cording to Eqs.~57! and ~58! the self-correlation function
should decay from 1 tof b( k̃) with a law defined by the
phonon spectravn(q).

Let us derive as an example the decay law in a partic
case of a cubic crystal with one atom (b51) in its unit cell.
In this case the thermal vibrations are anisotropic, i

^ui(t)ul( t̃ )&5d i l ^u(t)u( t̃ )&, wherei ,l 51,2,3 denote Carte
sian components of the displacement vectoru. As a result
the self-correlation function~57! takes the form

M ~ t !5exp$2 k̃ 2 @^u2&2^u~ t !u~0!&#%, ~60!

where

^u~ t !u~0!&5
\

2nm(
qn

1

vn~q!
@~ n̄qn11!e2 ivn~q!t

1n̄qneivn~q!t#. ~61!

Here we have putt̃ 50. Following the usual procedure w
replace the summation overq by integration over phonon
frequenciesv and introduce the phonon density of stat
D(v). Equation~61! may be then transformed to

^u~ t !u~0!&5
\

mE
0

`dvD~v!

v F ~ n̄~v!1 1
2 !cosvt2

i

2
sinvt G .

~62!

If the crystal temperatureT is high, the phonon occupatio
numbersn(v).kT/\v@1 and Eq.~62! reduces to
i-

-

r

.,

^u~ t !u~0!&5
kT

m E
0

`

dvD~v!v22 cosvt. ~63!

In the Debye approximation the phonon density of state
given by D(v)53v2/vD

3 , with vD being the Debye
frequency—the cutoff frequency of the density function.
this approximation the integration in Eq.~63! is performed in
the limits @0,vD# and we obtain:

^u~ t !u~0!&5^u2&
sinvDt

vDt
, ^u2&5

3kT

mvD
2

. ~64!

The self-correlation function~57! in a cubic crystal, in the
high-temperature limit, and under assumption of the Deb
approximation for the phonon density of states finally tak
the form

M ~ t !5expH 2 k̃2^u2&F12
sinvDt

vDt G J . ~65!

The Debye frequency is typicallyvD.1013 s21. Therefore
the self-correlation function decays from 1 to the level giv
by the Lamb-Mossbauer factor exp(2k̃2^u2&) within a few
10213 s.

This time interval is usually much shorter than the lif
times of the low-lying nuclear transitions, which are typ
cally t05\/G0.10212 s. Therefore in this time interval the
single scattering approximation is valid, Sec. IV C, and a
cording to Eqs.~7! and ~40! the NFS time spectrum

S~ t !}j2uM ~ t !u2

with M (t) given by Eq.~57! in the general case of harmon
vibrations, or by Eqs.~60!,~61!, and~65! in particular cases.
The NFS spectra in this time range bear information on
time dependence of atomic vibrations via^u(t)u(0)&, as
well as on the phonon spectravn(q). It is noteworthy, that
the spectra in this time range are nonzero independen
how small the value of the Lamb-Mo¨ssbauer factor is. Even
in liquids and gases, where the value of the Lamb-Mo¨ssbauer
factor tends to zero, one can observe a strong NFS sign
this time range.

The time interval is very short, where the time depe
dence caused by thermal vibrations shows up in NFS, an
is beyond the reach of present-day experimental techniq
However, in future one may hope it will be possible to pe
form measurements of NFS in this range and thus to perf
studies of atomic motions and not only in solids, but in li
uids, gases, etc. as well. The problem to our mind could
solved by mapping time dependence of photon emission
angular dependence of photon emission. Due to the rece
demonstrated light-house effect43 such mapping can be rea
ized with the help of fast spinning nuclear resonance sam
irradiated with synchrotron radiation. Presently availab
spinning rates beyond 30 kHz could allow an extremely sh
time interval of 10213 s to be transformed into a measurab
angular change in photon emission of 0.02mrad. The nuclear
transitions with lifetimes slightly more thanvD

21 would be
preferable in such experiments.

In the following analysis the influence of the hyperfin
interactions on the NFS time spectra will be discussed. Th
influence is far beyond the time region of influence of th
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mal vibrations, discussed in the present section. There
the motional part of the self-correlation function will be a
sumed further to be time independent and to be represe
in accordance with Eq.~59! with the help of the Lamb-
Mössbauer factorf b( k̃).

B. Time-independent hyperfine interactions

Let ubl& be eigenvectors andebl
eigenenergies of the

time-independent hyperfine interaction HamiltonianĤbl

hf . If

ubl& andebl
are known, the matrix elements of the evolutio

operator can be readily evaluated by Eq.~15!:

Ublb̃l
~ t2 ,t1!5dblb̃l

3expF2
i

\S El2 i
G0

2
dl,e1ebl

D ~ t22t1!G .
~66!

Hereafter the notationÛ is reserved for the evolution opera
tor under the condition of time-independent hyperfine int
actions. Inserting Eq.~66! into Eq. ~27! and by using Eq.
~59! for the motional part we obtain the result that the co
plete self-correlation function~22! is purely elastic, i.e.,

Kss̃(t, t̃ )5K1
ss̃(t2 t̃ ), and is given by

K1
ss̃~ t !5h~ t ! (

l[$b,bg ,be%
A l

ss̃e2 iV l t, ~67!

h~ t !5expF i

\
~\ṽ2E01 iG0/2!t Gu~ t !, ~68!

A l
ss̃5Xb f b~ k̃! j bgbe

s ~ k̃! j bebg

s̃ ~2 k̃! ~69!

with \V l5ebe
2ebg

being the corrections to the transitio

energiesE0 arising due to the hyperfine interaction. Unle
this causes ambiguities we use for brevity a joint indel
[$^bgu⇔ube&,b% to denote both the transition between t
ground and excited nuclear states and the group numberb.44

From Eqs.~40! and ~67! we obtain in single scattering
approximation for thes-polarization component of the emi
ted radiation:

Es~j,t !}2jh~ t !(
l
A l

s0e2 iV l t. ~70!

The nuclear response given by Eq.~70! is a sum of mono-
chromatic components with the frequenciesV l . The ampli-
tudeA l

s0 of each emitted frequency component is prop

tional to the product of the absorptionj bebg

0 (2 k̃) and the

emission j bgbe

s ( k̃) matrix elements. The interference of th

different monochromatic components results in a time sp
trum with periodic modulation called quantum beat.4,45 The
quantum beat pattern is defined both by the transition
quencies and by the matrix elements of the nuclear trans
currents and thus bears the information on the hyperfine
teractions experienced by the nuclei.

Examples of evaluations of the NFS time spectra un
conditions of time-independent hyperfine interactions by
re

ed
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ing the procedure described in the present paper and fit
experimental spectra are presented in Refs. 9 and 29.

C. Fluctuating magnetic hyperfine field

In this and in the next section we present examples
calculations of the nuclear self-correlation functions for tw
particular cases of time-dependent hyperfine interactions
both cases the direction of the magnetic hyperfine field
assumed to change in time. In the case, considered in
present section, the direction of the hyperfine field stocha
cally changes at each nucleus. In the second case, consid
in the next section, the direction of the hyperfine field
supposed to change at all nuclei simultaneously at a defi
time.

The Hamiltonian for magnetic hyperfine field changing
time reads

Ĥbl

hf~ t !52ml

ĴlB~b!~ t !

Jl
. ~71!

First we calculate the time spectrum of NFS in the prese
of a fluctuating magnetic hyperfine field that jumps random
between the valuesB(b) and2B(b) alongn0

(b) :

B~b!~ t !5B0
~b!n0

~b! f ~ t !. ~72!

Here f (t) is a random function of time taking only the value
61. Such a stochastic model was used in Ref. 28 to calcu
the Mössbauer resonance line shape of a nucleus in an e
ronment with fluctuating atomic spin direction.

For simplicity we assume here pure magnetic hyperfi
interactions~for a more general cases see Ref. 28!. The
eigenvectorsubl& of the HamiltonianĤbl

hf(2`) are equal in

this case to the eigenvectorsuml& of the nuclear spin-
projection operator, with the projection on the magnetic h
perfine field directionn0

(b) . Hereml is the magnetic quan
tum number. In this particular case the eigenenergies
given byebl

52mlmlB(b)/Jl . Under these conditions an
by using Eqs.~15!,~71!, and~72! we obtain for the evolution
operator

Ublb̃l
~ t2 ,t1!5dblb̃l

expH 2
i

\F S El2 i
G0

2
dl,eD ~ t22t1!

1ebl
E

t1

t2
f ~ t !dtG J . ~73!

The self-correlation function~22!–~27! can then be readily
evaluated,

Kss̃~ t, t̃ !5h~ t2 t̃ !(
l
A l

ss̃expH 2 iV lE
t̃

t

f ~T!dTJ .

~74!

HereA l
ss̃ is given by Eq.~69! andV l in this particular case

of pure magnetic interactions by

\V l5~mgmg /Jg2meme /Je!B
~b!. ~75!

One still has to perform the stochastic average of the ph
factors exp$2iVl* t̃

t
f(T) dT% in Eq. ~74!. As long as the hy-
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perfine field fluctuations in no way correlate with the tim
instants of absorptiont̃ and emissiont the result of averaging
should depend on the difference (t2 t̃ ) only. This means tha

the self-correlation function reduces toKss̃(t, t̃ )5K1
ss̃(t

2 t̃), i.e., to the function for pure elastic coherent scatteri
The actual result of averaging depends on the details of
stochastic model. In the simplest case, where the fluctuat
of the hyperfine field direction are described by a single
rameterW—the mean frequency of fluctuations—the avera
ing results in~see Ref. 28 for details!:

K expH 2 iV lE
0

t

f ~T!dTJ L
5Fcos~xlWt!1

1

xl
sin~xlWt!Ge2Wt ~76!

with xl5(V l
2/W221)1/2. The self-correlation function in the

presence of the fluctuating magnetic hyperfine field beco

K1
ss̃~ t !5h~ t !(

l
A l

ss̃Fcos~xlWt!1
1

xl
sin~xlWt!Ge2Wt.

~77!

Let us consider two limiting cases. If the mean frequen
of the fluctuations is very low (W!V l), the so called slow
relaxation limit, we obtainxlW.V l and xl@1. Then the
self-correlation function reduces to

K1
ss̃~ t !5h~ t !(

l
A l

ss̃cos~V l t ! e2Wt. ~78!

Since cos(Vlt)5@exp(iVlt)1exp(2iVlt)#/2 the function~78!
can be interpreted as a superposition of two unpertur
nuclear self-correlation functions~67! with constant mag-
netic hyperfine fieldsB(b) and2B(b), respectively. Besides
the natural decay factor exp(2G0t/2) of h(t) here appears an
additional deexcitation factor exp(2Wt), which causes the
faster nuclear coherent response. This corresponds to
broadening of the nuclear resonances in the frequency s
trum.

In the other limiting case of very fast relaxatio
(W@V l) we obtainxl. i and as a result the self-correlatio
function becomes

K1
ss̃~ t !5h~ t !(

l
A l

ss̃. ~79!

The dependence on the magnetic field disappears, sinc
fluctuations of the magnetic hyperfine field are so rapid, t
the nuclei see its average value to be zero.

First experimental studies and evaluations of NFS ti
spectra in paramagnetic environments with fluctuat
atomic spins were reported recently in Refs. 46 and 47.
perimental evidence of superparamagnetic fluctuations s
by NFS were given in Ref. 47.

D. Switching of the magnetic hyperfine fields

A very different picture arises if the magnetic hyperfi
fields are ‘‘fluctuating’’ regularly in time and in space. I
other words, the directions of the hyperfine fields a
.
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switched~rotated! from n0
(b) to n0

(b8) instantaneously and si
multaneously at each nucleus within each groupb at a defi-
nite time instantt8:

B~b!~ t !5B0
~b!@n0

~b!u~ t82t !1n0
~b8!u~ t2t8!#. ~80!

The rotation is specified by the three Eulerian angl
$x18 ,x28 ,x38%5x8.

Before switching (t,t8) the direction and the value of th
magnetic hyperfine field are constant. Therefore the corr
tion function in this time interval is equal to the unperturb
correlation function~67!–~69! derived in Sec. V B.

After switching (t.t8) the hyperfine field~80! and the
Hamiltonian~71! are again time independent; however, d
ferent from the initial ones. Eigenvectorsubl8& of the Hamil-
tonian associated with the new direction of the hyperfi
fields are related to the eigenvectorsubl& of the Hamiltonian
before switching through the transformation

ubl&5(
bl8

ubl8&D b
l8bl

~x8!, ^blu5(
bl8
D blb

l8
21

~x8!^bl8 u.

~81!

HereD b
l8bl

(x8) is a unitary matrix. In the particular case

when the eigenvectorsubl& andubl8& are the eigenvectors o
the nuclear spin-projection operator, it coincides with t

matrix of finite rotationsD
m

l8ml

(Jl)
(x8).48,19

The unknown values, which still have to be defined
order to calculate the correlation function after switching, a
the matrix elements of the evolution operator. To do this
make use of the composition law Û(t2 ,t1)
5Û(t2 ,t8) Û(t8,t1), of the fact that the Hamiltonian~71! is
time independent although different in the time interva
(t2 ,t8) and (t8,t1), see Eq.~80!, of the definition~15!, and of
the relation~81!. The matrix elements of the evolution op
erator then become

Ub
l8bl

~ t2 ,t1!5U b
l8b

l8
~ t2 ,t8! D b

l8bl
Ublbl

~ t8,t1!, ~82!

Ublb
l8

21
~ t2 ,t1!5U blbl

21 ~ t8,t1! D blb
l8

21 U b
l8b

l8
21

~ t2 ,t8!. ~83!

It was taken into account that only the diagonal matrix e
mentsUblbl

of the unperturbed evolution operator~66! have
nonzero values. Combining Eqs.~82! and~83! with Eq. ~27!
we obtain the following expressions for the correlation fun
tion after switching (t.t8. t̃ ):

Kss̃~ t, t̃ !5h~ t2 t̃ ! (
l 8[$b,bg8 ,be8%

A l 8
ss̃

~x8,t82 t̃ !e2 iV l 8~ t2t8!,

~84!

A l 8
ss̃

~x8,t82 t̃ !5Xb f b~ k̃! j l 8
s

~ k̃! (
bg ,be

Sl 8 l
8 ~x8,t82 t̃ ! j l

s̃~2 k̃!,

~85!

Sl 8 l
8 ~x8,t82 t̃ !5D b

g8bg
~x8!D b

e8be
~x8! e2 iV l ~ t82 t̃ !.

~86!
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The correlation function~84! has a structure similar to that o
the unperturbed correlation function~67!.49 However this
similarity is only formal. First, the time variablest and t̃ are
entering Eqs.~84!–~86! independently. Thus unlike the un
perturbed correlation function, given by Eq.~67!, the corre-
lation function of Eq.~84! describesinelasticcoherent scat-

tering. Second, the amplitudesA l 8
ss̃(x8,t82 t̃ ) of the

monochromatic componentsV l 8 are different. They are buil
up by the interference of all the initially excited transitionsl.
The interference shows up in Eq.~85! as the sum of the

current density matrix elementsj l
s̃(2 k̃) with amplitudes

given by Sl 8 l
8 (x8,) in Eq. ~86!. By varying the anglex8 of

switching and the switching timet8 one can change the am
plitudesSl 8 l

8 and thus can control the interference pattern a
the coherently emitted intensity. The switching may resul
the emission of new frequency and polarization compone
as well as in the suppression of already excited ones11,13,50–52

or in the time reversal of the time spectrum.53 For example,
one can make the interference totally destructive and t
suppress the coherent reemission.13 However, this implies by
no means that the nuclear excitation is destroyed. By the
switching at proper time and with proper angle one can
store constructive interference and see again coherently e
ted intensity.13

This second switching is described similarly to the pro
dure outlined above. For example, if at timet9 the magnetic

hyperfine field is now switched ton0
(b9) , the eigenvectors

ubl9& of the Hamiltonian associated with this new direction
the hyperfine field are related to the previous eigenvec
ubl8& through Eq.~81! with the substitutionsbl→bl8 and
bl8→bl9 . Further it can be shown that the nuclear se
correlation function is described by the same Eqs.~84! and
~85!; however, with the replacementl 8→ l 9, and
Sl 8 l
8 (x8,t82 t̃ )→Sl 9 l

9 (x9,t92 t̃ ), whereSl 9 l
9 (x9,t92 t̃ ) is now

defined as

Sl 9 l
9 ~x9,t92 t̃ !5 (

be8 ,bg8
Sl 9 l 8
8 ~x9,t92t8!Sl 8 l

8 ~x8,t82 t̃ !.

~87!

Examples of transformations occurring after the seco
switching were presented in Refs. 50 and 13. Any sub
quent switching is described similarly.

Some additional details of the theory of nuclear reson
scattering for the case of switching the magnetic hyper
t-
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ts

s

xt
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it-

-

f
rs

-

d
e-

t
e

fields can be found in Refs. 11,13,50, and 53. Examples
evaluations of the NFS time spectra under conditions
switching of the magnetic hyperfine fields by using the p
cedure described in the present paper and fits of experime
spectra are presented in Ref. 13.

VI. CONCLUSIONS

A general approach is presented of solving nuclear re
nant forward scattering problems directly in time and
space. It is based on the solution of the first-order integ
differential equation with a kernel that is a double tim
nuclear self-correlation functionK(t, t̃ ). The kernel repre-
sents a coherent single scattering response in forward d
tion of their spatial system at timet to the excitation att̃ .
The form of the kernel is defined by the type of interactio
the nuclei experience with their environment and by t
character of their spatial motion. A general procedure is
troduced for the solution of the wave equation. It is indepe
dent of the type of the kernel. The kernels for some particu
cases of hyperfine interactions and nuclear motion in sp
were presented. Examples of the NFS time spectra un
conditions of time-independent as well as time-depend
hyperfine interactions obtained by the direct calculations
time and space can be found, e.g., in Refs. 9,13, and 29

The solution procedure directly in time and space can a
be applied to other scattering problems, such as nuc
Bragg diffraction, nuclear resonant small angle scatteri
etc. For these cases the wave equation~30! should be
changed to describe along with the forward scattered am
tude also the radiation components scattered at non
angles. In Ref. 12 an appropriate wave equation for multi
Bragg diffraction was introduced. In such problems t
double time self-correlation function should acquire ad
tionally a double momentum dependenceKss̃(t, t̃ ,k,k̃), since
the wave vectork of the scattered andk̃ of the incident
photons are now different.
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