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A phenomenological model is proposed which describes the static and dynamical properties observed in
connection with the martensitic transformations in lithium and sodium. The martensite structure is shown to
result from a coupling between the mechanisms associated with the bcc-9R, bcc-hcp, and bcc-fcc transforma-
tions. These mechanisms are expressed in terms of primary displacive order parameters, involving definite
critical shifts, and of additional spontaneous symmetry breaking strains. The theoretical phase diagrams in
which the bcc and martensite phases are inserted are worked out. They contain regions of stability for inter-
mediate phases. The existence or absence of softening of theS4 phonon branch with temperature, as a
precursor effect to the transformation, is shown to depend on the distance of the experimental thermodynamic
path to the corresponding intermediate phase. The nonlocalized character of the softening region on theS4

branch reflects the coupling of the different structural mechanisms involved in the transformation. The irratio-
nal values found for the wave vectors at the phonon dips are interpreted by an implicitly incommensurate
character of the transformation, which originates from the distinct coherency stresses between the potentially
stable close-packed structures and the bcc matrix. It results in the creation of strain fields acting inhomoge-
neously on the effective transformation order parameter, and explains the observed incubation times and
response of the crystals to elastic and plastic deformations. These properties are shown to be consistent with a
nucleation process on elastic defects which is activated only close to the transformation.
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I. INTRODUCTION

Martensitic transformations1 constitute a very heteroge
neous family of first-order structural transitions. This fam
includes several classes of transitions exhibiting disti
properties and mechanisms ranging from the slightly disc
tinuous transitions found in theA15 compounds2 to the most
strongly reconstructive~group-subgroup unrelated! transi-
tions which take place in several elemental crystals.3

The essential features currently assumed for recogni
martensitic transformations are~1! the displacive~diffusion-
less! character of their atomistic mechanism,~2! the impor-
tant role played by shear strains for obtaining the martens
phase,~3! the specific transformation kinetics which involve
precursor effects~e.g., typical nucleation processes, phon
anomalies, etc.! incubation times, and large regions of coe
istence between the phases above and below the trans
However, some of these properties are often absent am
transformations traditionally classified as martensitic. On
other hand many non-martensitic transitions possess som
the preceding features, e.g., first-order ferroelastic transit
in insulators.4

The fact that after more than a century of experimen
investigations of martensitic transformations a unifying th
PRB 590163-1829/99/59~14!/9095~18!/$15.00
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oretical picture could not emerge reflects the variety a
complexity of the situations found among these transform
tions. But it also reflects the fact that the nature and symm
try of the transformation order parameters have not been
understood and related organically to the proper critical v
ables and thermodynamic functions. This is the case, in
ticular, for the martensitic transformations in lithium and s
dium to which the present article is devoted. We will sho
that a coherent theoretical description of most of the exp
mental features of the transformations in Li and Na can
deduced from the specific nature of the correspond
symmetry-breaking mechanisms.

A number of neutron scattering investigations of lithiu
and sodium by Smith and co-workers5–10 and Blaschko and
co-workers11–15 have recently added decisive finishin
touches to the controversial picture of the transformatio
which occur at about 35 K in Na and 77 K in Li. One of th
essential points which has been under discussion is the s
ture of the low-temperature~martensite! phases. Based on
the evaluation of x-ray powder data these were initia
described16,17 to consist of faulted hcp structures coexistin
with a large amount of untransformed bcc matrix. A neutr
diffraction experiment on Li by McCarthyet al.18 showed
that powder data could not be well indexed by the doub
9095 ©1999 The American Physical Society
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layered hcp stacking. Overhauser19 proposed that a nine
layered rhombohedral (9R) polytype structure would pro
vide a better account of the preceding data. Subseq
elastic neutron scattering studies of Li single crystals8,13 con-
firmed a faulted 9R structure but further diffuse neutron sca
tering experiments14,15 revealed that the structure could b
described as a complex arrangement of close-packed at
planes exhibiting simultaneously various ordered stack
sequences. This disordered polytype structure coexists
cooling with the 9R and bcc structure whereas on heati
above 80 K a fcc structure appears remaining as the o
close-packed structure beside the bcc phase between 12
about 180 K. The existence of a perfect fcc structure
heating that had been also obtained by Barrett after c
working of Li17 was independently confirmed in high
resolution experiments9 within the same temperature rang
both at 6.5 kbar and atmospheric pressure.

Although Na was initially regarded as equivalent to L17

successive studies showed that its low-temperature p
was different in some respects. Thus, on the one ha
Schwarzet al.12 found no short-range ordered polytype s
quences but the coexistence of long-range ordered cl
packed hcp, 9R, and bcc sequences whose relative volu
fractions depend on temperature and specimen charac
tics. On the other hand, Berlineret al.6 interpreted the crys-
tallography of the low-temperature phase of Na as a comp
mixture of almost hexagonal, rhombohedral polytypes w
short and long periods forming a ladder of structures c
nected to one another by stacking faults. In both studies6,12

no fcc structure was reported.
Another important point of controversy concerns the l

tice instabilities revealed by inelastic neutron scattering m
surements on theS4 phonon branch above the transition
Although Smithet al.6,8,10claimed that no evidence of trans
formation precursors could be observed in Na and
Schwarzet al.15 reported in Li a partial softening of th
acoustic@110# phonon branch polarized along@11̄0# extend-
ing from k50.1@110# to the surface of the Brillouin zone
~the N point!: from 200 to 100 K the softening increase
towards the zone boundary whereas between 100 and 80
is accentuated near13@110#. In Na, Blaschko and Krexner11

found the same phonon branch to soften close to and ab
k50.4@110#.

In the following sections we give a unified phenomen
logical description of the static~Sec. II! and dynamical~Sec.
III ! properties which characterize the martensitic transform
tions in sodium and lithium. In these sections we first clar
on a general basis the specific properties of the critical
placements, spontaneous strains~Sec. II! and phonon spectra
~Sec. III! associated with martensitic ‘‘reconstructive’’ tran
formations. In Sec. IV we summarize our results, differen
ating the properties which are specific to Na and Li from
properties which hold more generally for any reconstruct
transformation.

II. SYMMETRY AND THERMODYNAMIC ASPECTS
OF THE PHASE TRANSFORMATIONS IN LITHIUM

AND SODIUM

In this section we first show that the displacive mech
nisms involved in the bcc-hcp, bcc-fcc, and bcc-9R transfor-
nt
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mations correspond to fixed critical atomic shifts~Sec. II A!
which give to the hcp, fcc, and 9R phases a character o
‘‘limit’’ states. We then infer the properties of the spontan
ous strains which are necessary to obtain the hcp, fcc,
9R structures to be symmetry-breaking quantities despite
fact that they are ‘‘secondary’’ order parameters~Sec. II B!.
In Sec. II C we stress that the three preceding structures
also be obtained as the result of an ordering-type mechan
from a disordered hexagonal polytype parent structu
These properties are used to describe the structural and
modynamic features reported for Na and Li on cooling a
heating across their martensitic transformations~Sec. II D!.
We finally underline the specific nature of reconstructi
martensitic transformations which appear to realize an in
mediate situation between displacive-type and reorder
type mechanisms~Sec. II E!. In all sections we use the labe
ing of Kovalev’s tables20 for the bcc Brillouin zone~BZ!
wave vectors and for the irreducible representations~IR’s! of
the Oh

9 space group.

A. Limit martensitic phases

1. The bcc-hcp transformation

The bcc-hcp Burgers mechanism21 can be formulated3,22

in terms of a primary order parameter which consists in
antiparallel shifting of the atoms lying in the (110)bcc planes
along the6@11̄0# directions. As shown in Fig. 1~a! it leads
to a doubling of the bcc unit cell with the following relation
ships between the hexagonal and cubic unit cell translatio

ah5ac1bc1cc , bh52cc , ch5ac2bc . ~1!

The translational symmetry breaking expressed by Eq.~1!
corresponds to one of the six branchesk9

(2)5(p/a,
2p/a,0) of the star of the wave vectork9 which ends at the
N-point of the bcc BZ boundary. On the other hand the a
tiparallel displacement field represented in Fig. 1~a! trans-
forms as the basic function

w~x,y!5~x1y!~D12D22D31D41D52D61D72D8!,
~2!

where theD i ’s are the shifts associated with the atoms nu
bered 1 to 8 in Fig. 1~a!. w(x,y) has the symmetry of a
one-dimensional IR(t̂4) of the little groupD2h

xy of k9 from
which one can derive the six-dimensional IR, denotedt̂4(k9)
which accounts for the full sets of displacements from theOh

9

space group at theN point. The equilibrium values of the
corresponding six-component order parameter (h i) ( i 51,6)
describing the displacement field of Fig. 1~a! are

h25hÞ0, h15h35h45h55h650. ~3!

They correspond3 to a phase of orthorhombic symmetr
D2h

17 (z52). The additional requirements for transformin
the orthorhombic structure into the hcp structure (D6h

4 , z
52) are the following.

~1! A specific critical magnitude for the antiparallel shif
j along @110# given by

jc5
a&

12
. ~4!
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PRB 59 9097THEORY OF THE MARTENSITIC PHASE . . .
~2! A compression of the cubic unit cell along one of t
fourfold axes~e.g.,@001#! and a simultaneous decompressi
along the two other~@100# and @010#! axes, which corre-
spond to the combination of strain-tensor components

e35
1

A6
~exx1eyy22ezz!. ~5!

When the two preceding conditions are fulfilled theD2h
17

symmetry enlarges toD6h
4 . This increase in the structura

symmetry is illustrated in Fig. 1~b! which shows that the
angle between the threefold axis in the (110̄) bcc planes

which is arccos13570°328 in the cubic cell becomes 60° i
the hexagonal cell.

Two additional ‘‘physical’’ constraints underlie the rea
ization of the actual close-packed hexagonal structure.

~3! The interlayer distanced between the~110! cubic
planes must be preserved in the hcp structure where
become the~001! hexagonal planes. This is a general pro

FIG. 1. ~a! Average shifting of the atoms from the bcc to the h
structures. The small cube~thick lines! is the bcc unit cell. The
dotted parallelepiped is the unit cell of the orthorhombicD2h

17 struc-

ture. ~b! bcc-hcp displacive mechanism in projection on the (110̄)
cubic plane. After the shifts the angle between the diagonals of
rectangle becomes 60°. Solid and open circles are atoms locat
two adjacent layers.~c! Creation of a geometrical barrier due to th
contacts between atoms, which results in a reduction of the per
icity for the critical atomic displacements.~d! Projection of the
bcc-hcp displacive mechanism on the~110! bcc plane. The shifting
of atoms from their bcc positions~large circles! to their hcp posi-
tions ~small dots! is a&/12. The open and solid stars correspond
virtual positions at which the symmetry of the crystal would i
crease toOh

9 andD6h
4 , respectively. Solid and open large circles a

atoms located in adjacent~0 and 1
2! layers. ~e! Periodicity of the

order parameterh~j! at the bcc-hcp transformation, following Eq
~7!.
ey
-

erty of all elemental crystals undergoing a high-temperat
bcc to low-temperature hcp transformation3 ~i.e., in Ti, Zr,
Hf, Be, Tl, 4He, Gd, Tb, Dy, Yb, Y! where the variation ofd
is found to be smaller than 1%. It implies the existence o
shear strain

e65exy ~6!

which decreases the interlayer distance in the@110# bcc di-
rections~see Sec. II B!.

~4! The size of the atoms has to be taken into accoun
the displacement field mechanism: one must exclude
shifts of the atoms after they have entered into contact. O
can distinguish two types of contacts:~i! those which occur
in the direction of the displacements such as between
pairs ~3,4!, ~5,6!, or ~1,8! in Fig. 1~b! and ~ii ! those which
take place in the perpendicular direction as between the p
~4,8!, ~1,3! or ~6,7! in Fig. 1~b!. The role of the contacts
between the atomic spheres is illustrated in Fig. 1~c!. They
create a geometrical barrier acting as a mirror plane perp
dicular to the direction of the shifts.

Figure 1~d! represents, within the~110! bcc plane, the
atomic shifting from the initial bcc positions to the final hc
positions. A striking property which can be foreseen fro
this figure is the periodic connection existing between
overall crystal symmetries undertaken by the structure
the virtual displacementsj of the atoms along the@110# di-
rection. Thus, for general arbitrary displacements the str
ture exhibits the orthorhombic symmetryD2h

17 while for the
critical displacementsjc5a&/12,7a&/12,13a&/12, . . . ,
the structure acquires theD6h

4 symmetry. For jc

50,a&/6,a&/3, . . . , onegets the bcc structure. This prop
erty has been justified within a more general framework
Ref. 23 and was shown to reflect the periodic dependenc
the order parameter as a function of the critical displa
ments at reconstructive~group-subgroup unrelated! phase
transitions. Assuming as usually that in the parent bcc str
tureh50 and thathÞ0 for the orthorhombic and hcp struc
tures one can express the functional dependence ofh on j as

h~j!5h0 sinS 6p

a&
j D . ~7!

h~j! is represented in Fig. 1~e!. One can verify that, in agree
ment with our crystallographic description of the bcc-h
mechanism, the intersection of the sinusoid with thej axis
(h50) yields periodically the bcc symmetry forj

50,1
2 ,1, . . . ~in units of a&/3) whereas the hcp symmetr

coincides with the extrema ofh~j! for j5 1
4 , 3

4 , 5
4 , . . . . The

other values of the order parameterh, associated with arbi-
trary shifts, correspond to the orthorhombic symmetryD2h

17 .
Using the transformation properties of the order para

eter components (h i) by the matrices of the IRt4(k9) and
taking into account the equilibrium values of theh i given by
Eq. ~3! one obtains3,4 the effective form of the order param
eter expansion associated with the bcc-hcp transformatio

F1@h~j!#5F01~P,T!1a1h~j!21a2h~j!41a3h~j!6,
~8!

whereh~j! is expressed by Eq.~7!. F1 is expanded up to the
sixth degree inh~j! in order to account for a region of sta
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bility including a direct first-order bcc-hcp transition line
The phenomenological coefficients in Eq.~8! are assumed to
obey the usual conditionsa15a10(T2Tc) (a10.0) anda3
.0. The minimization ofF1 has to be performed with re
spect to the actual variational parameterj.23 Therefore, the
equation of state is

2h
]h

]j
~a112a2h213a3h4!50 ~9!

yielding three possible stable phases for, respectively,h50
~the bcc phase!, ]h/]j50 ~the hcp phase!, and h25
2@2a21(4a2

2212a1a3)1/2#/6a3 for the ‘‘Landau’’ D2h
17

phase corresponding to a standard minimization ofF1 with
respect toh. It thus confirms that the critical shifts associat
with the bcc and hcp symmetries in the sinusoidal curve
Fig. 1~e! correspond to stable states.

Figure 2 represents the phase diagram resulting from
minimization of F1@h(j)# in the interval 0<j<a&/12 in
the plane of the phenomenological ratios (a1 /a3 ,a2 /a3).
The bcc-hcp transition is always first order, consistent w
the absence of a group-subgroup relationship between
two phases. By contrast, the bcc-D2h

17 transition can be eithe
first or second order in agreement with the fact that
phases are group-subgroup related. The three phases m
the triple pointN. Note that the critical displacementsj are
fixed in the hcp (jc

15a&/12) and bcc (jc
250) phases

whereas they vary between the extreme valuesjc
2 andjc

1 in
the orthorhombic phase. In other words with respect to
critical displacementsj the hcp and bcc phases appear
limit states.

2. The bcc-fcc transformation

Analogous properties as for the hcp phase can be fo
for the fcc phase at the bcc-fcc transformation mechani
One can visualize the way a bcc lattice transforms into a
lattice via a deformation which stretches the bcc unit c
along one of the fourfold axes and compresses it to the s
extent along the other fourfold axes. Such a macrosco
deformation which is shown in Fig. 3~a! is called the Bain
deformation.24 Figure 3~b! indicates the connection betwee
the bcc and fcc (Oh

5, z51) unit cells. It corresponds to th
following orientational relationships between the fac
centered and body-centered unit cell basic vectors:

a1
Fiac , a2

Fi~ac1bc1cc!, a3
Fi~ac1cc!. ~10!

FIG. 2. Phase diagram associated with the order paramete
pansion defined by Eq.~8!. Full, dashed, and dash-dotted lines a
respectively, first-order, second-order, and limit of stability linesN
is a three-phase point.OTR is a tricritical point.
f
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This translational relationship is associated with a wa
vector located at the center~G point! of the bcc BZ. The
corresponding two-component order parameter3 coincides
with the two combinations of the strain tensor componen

z15e3 , z25
1

&
~exx2eyy!. ~11!

The Bain deformation is realized for the equilibrium va
ues z1Þ0, z250. Hence, the same combination of stra
tensor componentse3 , given by Eq.~5!, which is an induced
deformation in Burgers’ mechanism plays here the role
the symmetry-breaking quantity. For an arbitrary nonze
value ofe3 the bcc symmetry is lowered toD4h

17 which is also
the symmetry of the ‘‘martensite’’ in carbon-steel alloys1

When the specific ratioc/a5& is realized, wherea and c
are the tetragonal lattice parameters, the preceding s
group transforms into the face-centered cubic space gr
Oh

5. The ratio& corresponds to a multiplication of the con
ventional bcc lattice parameters by)/2 along thex and y
axes and byA3/2 alongz. Therefore, the numerical values o
the spontaneous strain components which result in the B
deformation areexx5eyy5)/221 andezz5A3/221 which
yieldse350.293. Besides, in order to keep the atoms in co
tact at the transformation one needs to consider, as an a
tional secondary order parameter, the rigidity

e15
1

)
~exx1eyy1ezz! ~12!

which measures the decrease in volume at the transition.
finds e1.20.025.

According to the preceding description the fcc phase
pears to display, as the hcp phase, a character of limit ph
only for a fixed critical value of the order-parametere3 the
fcc phase is obtained. We will now show that the bcc-f
transformation has also, as the bcc-hcp mechanism, a
odic character. With that goal we will analyze the atomis
process which underlies the Bain deformation.

In the shearing deformation mechanism,25 which is usu-
ally proposed as equivalent to the Bain deformation,
structural stability of the bcc structure is lowered with r
spect to an homogeneous shear strain of the~011! planes in
the 6@01̄1# directions giving rise to the fcc structure. A
experimental support for this alternative description of t
bcc-fcc transformation is the decrease of the shear mod
c11–c12 observed in a number of bcc metals upon approa
ing the fcc phase.1,25 At the atomistic level the shearin
mechanism can be decomposed into three successive
which are shown in Figs. 3~c! and 3~d!. ~i! The layer con-
taining the atoms numbered 7–12 in Fig. 3~c! is shifted by
a&/6 in the @011# bcc direction, the atom in position 0
reaching the center of a triangle formed by the atoms
noted 8, 9, and 11.~ii ! The next layer formed by the atom
1–6 is subsequently shifted bya&/3. This shifts the atom
initially in 0 position to the center of the triangle of th
following layer. ~iii ! At last, a shifting of the third layer by
a&/2 forces the atoms located in the layer to occupy equi
lent positions, i.e., the corner atoms~0,0! lie on a straight
line passing by the center of the triangles~8,9,11! and~2,4,5!

x-
,
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and orthogonal to the three successive layers. As a co
quence, the layers containing the atoms labeled 0 in Fig.~c!
become equivalent crystallographically. Thus, the result
structure consists of a three-layered close-packed fcc s
ture represented in Fig. 3~d!.

The preceding description of the Bain deformation at
atomistic level is very analogous to the description given
the Burgers mechanism since both mechanisms preserv
interlayer distance at the transformation. The essential dif
ence is that in the Burgers mechanism two successive la
are shifted in opposite directions (kÞ0) whereas in the Bain
deformation two successive layers are sheared in the s
direction (k50).

The periodicity of the atomic displacements correspo
ing to the bcc-fcc transformation is represented in Fig. 3~e!.
The mechanism can be depicted in terms of antiparallel
placements of the (11̄0) bcc atomic planes in the6@110#
directions. In this view a zero shift is chosen at the middle
the distance between two arbitrary planes, successive pl
corresponding to increasing shiftsjn5c/4(2n11)tana for
the nth plane.a is the angle between thez axis and the
direction formed by the shifted atoms@Fig. 3~e!#. The peri-
odic relationship between the order parametere3 and the
displacementsj in the 6@110# directions can be expressed3

as

e35e3
0 sinS 3p

a&
j D . ~13!

FIG. 3. ~a! and ~b!: Macroscopic deformation representing th
Bain deformation.~a! Corresponding atomic displacements.~b!
Connection between the bcc and fcc unit cells.~c! and ~d!: Unit
cells of the bcc~c! and fcc ~d! structures. The numbering of th
atoms is used in the description of the bcc-fcc transition mechan
given in the text.~e! Periodicity of the antiparallel shifting mecha
nism at the Bain deformation, withjn5(c/4)(2n11)tana. ~f! Pe-
riodic dependence of the order parameter following Eq.~13!.
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The dependence ofe3 on j is shown in Fig. 3~f!. One can
verify that the bcc phase corresponds to the intersection
the sinusoidal curve with thej axis for the critical shiftsjc
50,2,4, . . . ~in units ofa&/6) while the fcc structure coin-
cides with the extrema of the curve forjc51,3,5, . . . . All
other values ofj ande3 give rise to the tetragonalD4h

17 phase.
Using the transformation properties of the two-compon

order parameter (z1 ,z2) given by Eq.~11!, the equilibrium
condition (z1Þ0, z250) and the form ofz15e3 given by
Eq. ~13! one obtains the effective order parameter expans
associated with the bcc-fcc transformation

F2@h3~j!#5F02~T,P!1b1e3~j!21b2e3~j!31b3e3~j!4

~14!

which can be restricted to the fourth degree ine3(j) since it
contains a cubic invariant. The corresponding phase diag
is shown in Fig. 4 in the (b1 ,b2) plane. The phase diagram
symmetric with respect to theb1 axis and, therefore, contain
two possible regions of stability~for b2.0 andb2,0) for
the fcc and intermediate tetragonal phases which are s
rated by a first-order isostructural transition line. Note th
the full sequence of bcc→D4h

17→fcc transformations is real
ized in plutonium and protactinium26–28 and that a fcc-fcc
isostructural transformation occurs in cerium.29

3. The bcc-9R transformation

The preceding unifying scheme also applies to the bcc-R
transformation. The current mechanism for this transform
tion was proposed by Wilson and de Podesta.30 It consists in
a shifting of unequal amounts in the@110# bcc direction of
the atoms pertaining to nine successive bcc layers@Fig. 5~a!#.
However, when taking into account the displacement ass
ated with the tensile straine3 one can again describe th
bcc-9R mechanism as a displacement field with antipara
displacements of equal magnitudea&/6, each third bcc
layer remaining unshifted. For such critical shifts the mon
clinic structure of symmetryC2h

3 (z53) which is obtained

for general arbitrary displacements along@11̄0# becomes the
rhombohedral 9R structure. Note that the correspondin
space groupD3d

5 (z53) is not a subgroup ofOh
9 since its

threefold axis is parallel to the@110# direction and does no
coincide with the threefold axis of the bcc structure. In t

m

FIG. 4. Phase diagram associated with the order paramete
pansion defined by Eq.~14!. Full, dashed, and dash-dotted line
have the same meaning as in Fig. 2.N and N8 are three-phase
points. The two symmetric fcc regions correspond to antiisostr
tural phases.
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preceding description the symmetry-breaking mechanism
associated with a twelve-dimensional IR of theOh

9 space
group denoted20 t3(k4) with k45(p/a,p/a,0). The corre-
sponding twelve-component order parameter (z i) ( i
51 . . . 12) takes in the 9R phase the equilibrium values

z15z25zÞ0, z i50 for i 53 – 12. ~15!

The dependence ofz on the critical displacementsj along

@11̄0# has the same periodicity ase3(j):

z~j!5z0 sinS 3p

a&
j D . ~16!

Figure 5~b! represents thez~j! periodicity with the succes
sive onset of bcc, monoclinic and 9R sequences of phase
Using the transformation properties of thez i ( i 51 – 12) by
the IR t3(k4) and the equilibrium conditions~15! one can
construct the order parameter expansion

F3@z~j!#5F03~T,P!1c1z~j!21c2z~j!41c3z~j!6.
~17!

F3(z) is formally identical toF1(h). Accordingly the same
topology as shown in Fig. 2 will hold for the phase diagra
resulting from the minimization ofF3@z(j)# with respect to
j, the 9R and monoclinicC2h

3 phases replacing, respectivel
the hcp andD2h

17 phases in Fig. 2.

B. Improper symmetry breaking strains

In our description of the bcc-hcp transformation mech
nism we have shown that beyond the primary displac
mechanism additional spontaneous strains have to be t
into account in order to obtain the actual hcp structure. Th
strains couple to the order parameter and the correspon
coupling terms have to be added to the expansionF1@h(j)#
given by Eq.~8!. In the case of the bcc-hcp transformatio
for example, identification of the relevant strains is obtain4

by decomposing the symmetrized second power of the
@t4(k9)#2>A1g1Eg1F2g , where A1g , Eg , and F2g are,
respectively, one-, two-, and three-dimensional IR’s ofOh in
the standard Landau notation.31 These IR’s are spanned b
the following combinations of the strain tensor componen

~i! A1g corresponds to the rigiditye1 @Eq. ~12!# expressing
a possible change in volume at the transition.

~ii ! Eg transforms as the tensile strains (z1 ,z2) @Eq. ~11!#
associated with the Bain deformation of the bcc unit c

FIG. 5. ~a! bcc-9R transformation mechanism following the de
scription of Wilson and de Podesta~Ref. 30!. ~b! Dependence of the
order parameter as a function of the critical displacements at
bcc-9R transformation, following Eq.~16!.
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~z15e3Þ0, z250). Figure 6~a! illustrates the effect ofe3
which is to restore the close packing both inside the lay
(ezz) and between layers (exx1eyy).

~iii ! F2g has the symmetry of the triplet (eyz ,exz ,exy)
describing a modification of the interlayer distance. In t
hcp phaseeyz5exz50, exy5e6Þ0. Figures 6~b! and 6~c!
show thate6 provides no contact between the atoms in t
@001# bcc direction but decreases the interlayer distance
the@110# direction. Therefore, the full thermodynamic pote
tial describing the bcc-hcp transformation takes the effec
form

F1@h~j!,ei #5F1@h~j!#1h~j!2~d1e31d2e61d3e1!.
~18!

At this point it has to be emphasized that in the stand
approach to structural transitions4 a coupling term of the
form h2ei reflects the ‘‘improper’’ nonsymmetry-breakin
character of the spontaneous strainei . In our description of
the bcc-hcp mechanism it has been actually shown thae3

results in anincrease~to D6h
4 ) of the orthorhombic symme

try D2h
17 . Thus, in contrast to the property of secondary ord

parameters to be non-symmetry-breaking quantities, the
ondary strains at the bcc-hcp transformation take part in
breaking of the symmetry. More precisely, they induce
‘‘increase’’ of the structural symmetry and play the role of
distinct order parameter though they are induced by the
mary order parameters. This apparent contradiction is
solved when noting that the coupling terms in Eq.~18! es-
tablish a connection between the macroscopic strains and
critical atomic shiftsjc . The large values ofjc occurring at
the transformation give rise to large spontaneous strains.
example, assuming a pure bcc-hcp mechanism in Na wo
give the following numbers:e3520.29015,e6520.1518,
e150.08625, which is more than one order of magnitu
larger than the numbers usually found in ferroelas
transitions.4 The same order of magnitude is found for th
‘‘improper’’ strains involved in the bcc-hcp transformatio
in all the elemental crystals,3 e.g., the compressionezz is
larger than 10% in Ti, Zr, or Yb and reaches values abo
20% in Ba or3He.

The property of improper strains to become symmet
breaking quantities holds for all martensitic transformatio
of the reconstructive type,3 i.e., in which a group-subgroup
relationship between the initial and final structures is lost.
the bcc-fcc transformation where the tensile straine3 is the
primary order parameter analogous considerations yield

e

FIG. 6. Effect of the macroscopic strainse3 ~a! ande6 @~b! and
~c!# on the bcc unit cell.~a!, ~b!, and ~c! show projections on the

(1̄10), ~001!, and (1̄10) bcc planes, respectively. Dashed lines re
resent deformed states with respect to undeformed bcc structu
solid lines.
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F2~e3 ,e1 ,e2!5F2@e3~j!#1m1e3
2e11m2e3e6

2 ~19!

in which the specific form of them2 coupling reveals tha
shear strains (e6) are not induced by spontaneous values
e3 . For the bcc-9R transformation one finds

F3@z,ei #5F3@z~j!#1z2~n1e11n3e6!1n2z3e3 . ~20!

The same coupling invariants have been considered
Goodinget al.32 in their model of the bcc-to-9R transforma-
tion. However, these authors overlooked the symme
breaking character of the spontaneous strains and did
assume a dependence of the primary order parameterz on the
critical displacements.

C. Disordered polytypes and transformations
between closed-packed structures

The primary order parameter associated with the trans
mations from the bcc to the hcp, fcc, and 9R structures es-
tablish hexagonal ratios between the lattice parameter
~110! bcc layers and new translational symmetries in
@110# bcc directions. The corresponding wave vectors
located on theG52S42N4 line of the bcc BZ. Figure 7
shows that along this line which coincides with the bisec
(kx ,kx,0) of the~x,y! plane in reciprocal space, the fcc, 9R,
and hcp structures are, respectively, obtained forkx50, kx
5 1

3 , and kx5 1
2 . Note that for the valueskx5 1

4 and kx5 1
6

one may also get double and triple hcp structures which
found in several lanthanide elements.3 However, the fcc, 9R,
and hcp hexagonal polytypes can also be obtained sta
from a disordered hexagonal polytype structure.33 We briefly
describe this alternative possibility which will be used in o
interpretation of the transformation mechanism in lithium

Although a close packing of atoms represented by h
spheres may be realized in several ways,34 in real crystals
close packing always corresponds to a layered configura
which gives the possibility of isolating planes of atom
packed in the closest manner. In each layer any sphere
contact with six nearest neighbors@position A in Fig. 8~a!#.
In the centers of the triangles formed by neighbor ato
exist geometrically equivalent sitesB and C. A spatially
close packing is realized when each of the successive la
occupies the free spacings left by the preceding layers rel
to positions of theB or C type. The stacking order of th
layers determines the close-packed structure. For sta
layers there exist geometrical conditions which reflect

close packing in three dimensions, namely,ch5ahA8
3 for a

two-layer stacking~hcp structure!, ch5ahA6 for a three-
layer ~fcc! stacking, etc.

The hcp and fcc structures which represent the simp
close packing configurations are represented in Figs.~b!
and 8~c!. Their unit cells are formed by two and three he

FIG. 7. Length of thekx component of the wave vectors ass
ciated with the transformations from a bcc phase to a fcc~0!,

hcp~1
2!, 9R( 1

3 ), Dhcp(1
4 ), or Thcp(1

6 ) structure, on theS4 line
(kx ,kx,0) of the bcc Brillouin zone.
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agonal layers, each layer shifted with respect to the adja
layers byah) in the @120# hcp direction whereah is the
basic vector of the rhombohedral fcc unit cell in hexago
coordinates. From Figs. 8~b! and 8~c! one can foresee tha
the maximal substructure, common to the hcp and fcc str
tures, is composed by a monolayer hexagonal structure.
substructure denotedL hereafter corresponds to the hexag
nal space groupD6h

1 with a unit cell volumeVL5Vh/6
5Vc/3, whereVh andVc are the volumes of the hcp and fc
unit cells. TheL unit cell which is shown within the hcp an
fcc structures in Figs. 8~d! and 8~e! is filled by 1

3 atom. It
therefore corresponds to an occupancyz5 1

3 . This fractional
number must be understood as follows: in a givenL mono-
layer the atoms occupy the positions 1~a!. Only one among
the threeA, B, andC positions in Fig. 8~a! is occupied in the
monolayer. In the adjacent layers the atoms cannot be a
in positionA but only in positionB or C, let us sayB. In the
following layers they occupy the positionA or C and so
forth. In other words theL-layer stacking realizes a statist
cally disordered polytype structure in which theA, B, andC
sites are equivalent: the 1~a! positions are occupied with
equal probabilities by atoms and vacancies.

Let us take theL-disordered polytype as the initial struc
ture for describing the hcp and fcc structures. The relati
ship between the basic vectors of the hcp and fcc unit c
and the basic vectors (aL ,bL ,cL) of the L structure are

ah52aL2bL , bh5aL12bL , ch52cL ~21!

ac5aL1bL1cL , bc52aL1cL , cc52bL1cL .
~22!

From Eqs.~21! and~22! one can deduce the wave vecto
expressing the breaking of the translational symmetry at
tual L-hcp andL-fcc transformations. One finds,20 respec-
tively, k155

1
3 (aL* 1bL* )1 1

2 cL* and k105
1
3 (aL* 1bL* 1cL* ),

whereaL* , bL* , andcL* are the reciprocal lattice vectors o
the L-hexagonal BZ.

k15 coincides with theH point of the hexagonal BZ
boundary. Since the hcp symmetry (D6h

4 , z52) is a sub-
group of theL symmetry (D6h

1 , z5 1
3 ) one can find using a

standard Landau approach3,35 that theL-hcp transition is as-

FIG. 8. ~a! Projection of a close-packed layer of equiradii ha
spheres on the~001! plane.A, B, andC represent atomic position
within the layer~A! and in the nearest adjacent layers~B andC!. ~b!
and ~c!: unit cell of the disordered polytype structure, represen
by dashed lines, within the hcp~b! and fcc~c! structures. Atoms are
symbolized by large circles. The black and white small dots co
spond, respectively, to atoms which are in equivalent position
the polytype structure, and in inequivalent positions in the hcp
fcc structures.
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sociated with a two-component order parameter. The co
sponding crystallographic mechanism involves a splitting
the initial @2~a!# onefold site into a threefold position 2~b!,
2~c!, and 2~d!. After the transition, since the occupancy
the L structure is1

3, one of the preceding positions has to

occupied by two (13 36) atoms in the ordered hcp structur
As a result of close packing the hard sphere system of at
can occupy either position 2~c! or 2~d! which are crystallo-
graphically equivalent. Therefore, the ordered crystal ha
two-layered hexagonal close-packed structure with the s

dard ratio for the unit cell parametersch /ah5A8
3 .

The wave vectork10 associated with theL-fcc transla-
tional relationship~22! is located on the edge of the hexag
nal BZ of the L structure along theK-H line. Symmetry
analysis3,35 shows that it gives rise to a threefold multiplic
tion of theL unit cell corresponding to a rhombohedral stru
ture of symmetryD3d

5 (z51). This structure coincides with
the fcc symmetrywhen the ratiocL /aL5&, expressing a
close-packed structure is realized, which implies an angl
60° between theac , bc , andcc vectors.

According to the preceding description the hcp and
structures can be described as resulting from the transfo
tions of a disordered polytype structure. Figure 9 shows
the k15 and k10 wave vectors used in these transformatio
lie on the sameP line of the hexagonal BZ with coordinate
(4p/3,2p/3,kz). For kz5

1
3 andkz5

1
2 the fcc and hcp struc

tures are realized, respectively. It is immediate to show
the 9R structure coincides withkz5

1
9 whereaskz5

1
6 and

kz5
1
4 correspond to the triple and double hcp structures.

D. The phase diagrams of sodium and lithium

The results obtained in Secs. II A–II C can be used a
basis for describing the phase diagrams of sodium6,12 and
lithium.8,10,14 Let us first consider the experimental data
ported by Schwarzet al.12 for Na. The sequences of phas

FIG. 9. Length of thekz component of the wave vectors ass
ciated with the transformation from a disordered polytype~DP!

phase to a 9R( 1
9 ), hcp~1

2!, fcc~ 1
3!, Dhcp(1

4 ), or Thcp(1
6 ) structure,

on theP line (4p/3,2p/3,kz) of the hexagonal Brillouin zone.
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observed by these authors on cooling and heating involve
bcc, 9R, and hcp phases. Using the effective forms of t
thermodynamic potentials associated with the bcc-hcp@Eq.
~18!# and bcc-9R @Eq. ~20!# transformations one can writ
the total effective thermodynamic potential as

F1@h~j1!,z~j2!,ei #5F1@h~j1!,ei #1F3@z~j2!,ei #

1g1h2~j1!z2~j2!, ~23!

wherej1 andj2 denote the respective displacements occ
ring at the bcc-hcp and bcc-9R transformation mechanisms
Theg1 term is the lowest degree coupling invariant betwe
the h andz order parameters.

The general features of the phase diagrams obtained
minimizing F1 with respect toj1 andj2 are shown in Figs.
10~a! and 10~b! within the plane (c1 ,a1) of the phenomeno-
logical coefficients of the quadratic invariants inF1 andF3 .
Since these coefficients depend linearly on temperature
pressure the topology of the transition lines and phase
Figs. 10 are preserved in the corresponding temperat
pressure phase diagrams. Note that a negative value has
assumed for the coefficientsa2 and c2 . It implies that the
intermediate Landau state in Fig. 2 is unstable. Figure 10~a!
corresponds to a strong coupling betweenh and z (D
54a2c22g1

2,0) whereas Fig. 10~b! assumes a weak cou
pling (D.0) between the two order parameters. The t
figures reveal that beside the 9R(h50,zÞ0) and hcp(h
Þ0, z50) phases an additional phase corresponding to
18-layer polytype structure (18R) can be stabilized forh
Þ0, zÞ0. This phase can be reached from the bcc ph
either via the 9R or hcp phases@Fig. 10~a!# or directly across
a first-order transition line@Fig. 10~b!# limited by two triple
pointsT1 andT2 . The hatched areas in the figures repres
regions of coexistence of two phases adjacent to first-o
transition lines. Cross-hatched areas are regions of coe
ence of three phases close to the triple pointsT1 andT2 .

Figure 11~a! focuses on the region of the phase diagra
represented in Fig. 10~a! surrounding the triple pointT1 . The
phase sequences indicated by the thick arrows 1 and 2 c
cide with the thermodynamic paths followed by Schwa
et al.12 in their diffuse neutron scattering investigatio
which are schematically reproduced in Fig. 11~b!. Thus, on
cooling one goes from bcc to (bcc19R1hcp) whereas on
heating one gets successively the phase sequence (bcc19R
1hcp)→~hcp1bcc!→bcc. The difference in the phase s
the
by
s

re,

e-
FIG. 10. Phase diagrams associated with
coupled order parameter expansion defined
Eq. ~23!. The description of the phase diagram
are in the text. Full and dash-dotted lines a
respectively, first-order and limit of stability
lines. ~a! corresponds to a strong coupling b
tween the order parametersh andz, whereas~b!
assumes a weak coupling.
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PRB 59 9103THEORY OF THE MARTENSITIC PHASE . . .
quences on cooling and heating corresponds to a stan
hysteretic behavior usually expected at first-order trans
mations. A less usual behavior which relates to the spec
transformation kinetics in Na and Li~see Sec. III! is ob-
served in a second cooling cycle during which Schw
et al.12 find a reduction in the amount of the hcp phase w
an almost pure 9R phase coexisting with the bcc matrix
Therefore, cycling across the transition shifts the thermo
namic paths towards the pure 9R region as shown by the
arrows 3 and 4 in Fig. 11~a!. Such a tendency is consiste
with the neutron powder diffraction study on Na by Berlin
et al.10 who found a small fraction of hcp phase coexisti
with large amounts of 9R and bcc phases.

In a further neutron diffraction study on single crysta
Berlineret al.6 observed a more complex structure for the
martensite that was interpreted either in terms of a tw
component 9R127R polytype mixture or in terms of a
three-component 9R115R145R mixture. Let us show tha
the first of these interpretations can be simply justified in
framework of our approach by considering the ubiquito
role played by the tensile straine3 in the transformation
mechanisms. The full effective thermodynamic potential
sociated with the coupled bcc-9R and bcc-fcc transforma
tions can be written

F2@z~j2!,e3~j3!,ei #5F3@z~j2!,ei #1F2@e3~j3!,ei #

1g2z3~j2!e3~j3!1g3z2e3
2 ,

~24!

wherej2 andj3 are the displacements, respectively, asso
ated with the bcc-9R and bcc-fcc transformation mecha

FIG. 11. ~a! Region of the phase diagram of Fig. 10~a! surround-
ing the triple pointT1 . The arrows denoted 1 and 2 indicate t
sequences of phases found in sodium~Ref. 12! which are repre-
sented in~b!. The arrows denoted 3 and 4 show the evolution of
thermodynamic paths when cycling across the transformation.
ard
r-
c

z

-

-

e
s

-

i-

nisms. Theg2 andg3 terms are the lowest degree couplin
which have to be taken into account to insert the bcc, 9R,
and fcc phases within the same phase diagram. The form
F3 andF2 are given by Eqs.~14!, ~17!, ~19!, and~20!. Mini-
mizing F2 with respect toj2 and j3 yield the following
equations of state:

]F2

]j2
52z

]z

]j2
S c112c2z213c3z41

3

2
g2ze31g3e3

2D50,

]F2

]j3
5e3

]e3

]j3
~2b113b2e314b3e3

212g3z2!1g2z350.

~25!

Assuming unstable intermediate Landau phases~of sym-
metriesD4h

17 andC2h
3 ), i.e., ub2u.b2

0 in Fig. 4 andc2,0 one
obtains the phase diagram represented in Fig. 12 in
(b1 ,c1) plane. In addition to the parent bcc phase (h5z
50) three phases possess a domain of stability.~1! The fcc
phase which corresponds toz50 and]e3 /]j350. It is re-
alized for the fixed straine1

S(j3
c) wherej3

c5a&/6 ~see Sec.
II A 2 !. ~2! The 9R phase corresponding toz(j2

c)Þ0 and
]z/]j250. It is also realized for a fixed straine2

S(j2
c)Þ0

~see Sec. II A 3!. ~3! A 27R polytype structure obtained fo
z(j2)Þ0, e3(j3)Þ0 which is the minimal common super
structure for the fcc and 9R structures. It involves tensile
strainse3 varying betweene1

S ande2
S .

In other words the stabilization of the 9R structure re-
quires the existence of an improper~symmetry breaking! sec-
ondary straine3 due to the specific form of the nonlinea
coupling termg2 . Sincee3 is also the primary order param
eter giving rise to a fcc phase an intermediate 27R polytype
structure may likewise possess a region of stability adjac
to the 9R phase. Figure 12 shows that the 9R and 27R poly-
types coexist around the 9R-to-27R first-order transition
line. The arrows on the figure symbolize the thermodynam
paths corresponding to the experimental observations of B
liner et al.6 The alternative interpretation of these authors
the structure of sodium martensite in terms of a thr
component 9R115R145R mixture can also be in principle

e

FIG. 12. Phase diagram associated with the coupled order
rameter expansion defined by Eq.~24!. The description of the phas
diagram is given in the text. The same convention as in Fig. 1
used for the transition and limit of stability lines. The arrows ind
cate the experimental path possibly followed by Berlineret al. ~Ref.
6!.
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obtained by analogous considerations. Since an impro
coupling of the formg4h2e3 exists between theh and e3

order parameters it may lead to the stabilization of a six-la
(6H) intermediate phase between the hcp and fcc regio
Therefore, the 15R and 45R polytypes should correspond t
the regions of coexistence surrounding the 9R-6H and
27R-18R transition lines. However, such an interpretati
would require the coupling between the three bcc-h
bcc-9R, and bcc-fcc order parameters and is physically l
probable.

In summary, the structure of the Na martensite disclo
by Schwarzet al.12 and Berlineret al.6 has been describe
by thermodynamic considerations involving the coupling b
tween the mechanisms~order parameters! assumed in our
approach for the bcc-hcp, bcc-9R, and bcc-fcc transforma
tions. The description stresses the important role played
the tensile straine3 in these transformations which acts as
primary order parameter or as a secondary symmetry br
ing quantity. It remains to understand why the thermod
namic paths partly differ in the two experimental studie
The most consistent explanation relates to the intrinsic
faulted nature of the considered close-packed struct
which has been stressed by Schwarzet al.12 and serves as a
basis for the structural analysis of the Na martensite by B
liner et al.6 The amount of stacking faults increases on c
cling across the martensitic transformation, i.e., from virg
to deteriorated samples. At given temperature and pressu
shifts the phase fractions towards a larger amount of lon
polytype sequences, e.g., from hcp to 9R as observed by
Schwarzet al.12 Besides, the concentration of stacking fau
preexisting in virgin samples differs from one sample to a
other depending on sample preparation.

Let us briefly describe the type of intrinsic~symmetry
induced! stacking faults expected at the bcc-hcp and bcc-R
transformations. Such type of stacking faults results from
existence of antiphase domains which transform into one
other by the translations lost at the transformation from
bcc structure. At the bcc-hcp transition~Sec. II A 1! the criti-
cal wave vector isk95 1

2 cc* wherecc* is the bcc reciproca
lattice vector. Hence two types of antiphase domains oc
in the hcp structure transforming into one another by the
translationcc . The ABABABAB̄ stacking will therefore
be changed intoACACACAC̄ . The domain texture re
sulting from the existence of these two antiphase doma
being compatible with a close-packed structure contains
sequencesABABACAC̄ and ABABCACAC̄ . They
correspond, in Jagodzinski notation,36 to the deformation
stacking faultshhhhchhh̄ and hhhcchhh̄ . Note that
the first type of stacking fault is energetically more proba
since only one irregular cubic layer is inserted.

The bcc-9R transformation is associated with the wa
vector k45 1

3 cc* ~see Sec. II A 3! which gives rise to three
types of antiphase domains transforming by the lost tran
tions cc and 2cc : ABCBCACAB̄ CABABCBCĀ and
BCACABABC̄ corresponding tohchhchhch̄ . The
easier conjugation isABCBCACAB.CABABCBCĀ
which can be writtenhchhchhcccchhchhch̄ . It coin-
cides with theH∧H stacking fault considered by Berline
and Werner.37 A contact betweenABCBCACAB̄ and
er
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BCACABABC̄ is energetically unlikely since it would
contain aBB sequence and at least one layer stacking sho
be missed.

The preceding analysis considers exclusively the stack
faults which can be predicted from the conjugation betwe
symmetry induced antiphase domains composed by hc
9R unit cells. It does not take into account the stacking fau
~growth faults! which may result from conjugation of partia
stacking sequences that would give rise to more arbitr
polytype structures as discussed by Berlineret al.6 The main
conclusion is that the hcp and 9R phases are intrinsically
faulted as it has been emphasized in all the experime
observations of the Na martensite.6,12,37Note in this respect
that no symmetry induced stacking faults should be produ
at the bcc-fcc transformation since the corresponding mec
nism occurs atk50, i.e., no bcc translation is lost.

In addition to antiphase domains the bcc-hcp and bcc-R
transformation mechanisms give rise to specific distributio
of orientational domains. The number and orientation
these domains does not follow the standard scheme3 since it
is determined by the lowering of the bcc point group sy
metry occurring in the intermediate Landau structures~ortho-
rhombic or monoclinic! assumed in the transformatio
mechanisms. Thus the bcc-hcp transformation should g
rise tosix orientational domains since the point group (D2h
of the intermediate state~Sec. II A 1! allows six orthorhom-
bic variants which transform into one another by the fourfo
rotations lost at the transformation. Each variant transfor
into an hcp domain under the effect of the tensile straine3 .
At the bcc-9R transformation the lowering of the bcc sym
metry to C2h

3 producestwelveorientational monoclinic do-
mains along the@110# and equivalent cubic directions. Du
to the asymmetry of the coupling (z3e3) with the order pa-
rameterz the tensile straine3 , which restores the 9R close
packed structure, splits each of the preceding domains
pair of unequivalent domains symmetrically located with
spect to the~110! and equivalent cubic planes. Accordingl
the 9R phase should display 24 orientational domains. T
coincides with the 24 rhombohedral variants found ab
each of the bcc~110! planes by Berlineret al.6 The numbers
found by these authors i.e., (1.018,0.92,60.06) provide a
rough estimate of the magnitude of thee3 strain involved in
the bcc-9R transformation.

The phase diagram of lithium differs in a number of a
pects from the sodium phase diagram. The neutron diffr
tion studies of Smithet al.7,8,10 and Blaschkoet al.13,14 ana-
lyze the Li martensite in terms of 9R structure coexisting
with the bcc matrix. The two groups also find a long-ran
fcc structure which appears only on heating both at atm
spheric pressure and at 6.5 kbar.8,14 The diffuse scattering
analysis of a wider region of reciprocal space by Schw
and Blaschko14 reveals that the long-range 9R phase coexists
at low temperature with a disordered polytype structu
where short-range ordering tendencies of hcp, fcc, andR
phases are simultaneously present.

Let us emphasize that the observation of a fcc phase
clusively on heating above the region of stability of a diso
dered polytype phase strongly suggests that the mecha
described in Sec. II C applies, i.e., the existence of a dis
dered polytype structure is here a preliminary requisite
the formation of the fcc phase and plays the role of its par
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phase. Reference to the considerations developed for
structing the phase diagram of Fig. 12 shows that a lo
range fcc structure adjacent to a long-range 9R structure and
induced from the bcc phase cannot occur since the two st
tures require for their stabilization different fixed values
the tensile straine3 . A long-range 9R structure induces a
disintegration of the fcc structure which may only survi
under the form of short-range sequences leading ultima
to a fully disintegrated long-range disordered polytype str
ture. In contrast, the fcc structure formed on heatingfrom the
disordered polytype does not require specific values ofe3 for
its stabilization and, therefore, may coexist with the 9R
structure.

Figure 13~a! represents the region surrounding theT1 ,T2
line in Fig. 12. The arrows 1 and 2 reflect the phase
quences reported by Schwarz and Blaschko@Fig. 13~b!# on
cooling and heating, respectively. On cooling one gets
bcc→(bcc19R1disordered polytype) sequence whereas
heating the (disordered polytype1bcc19R1fcc)
→~bcc1fcc!→bcc sequences are obtained.

E. Intermediate nature of the mechanism in martensitic
reconstructive transformations

The transition mechanisms described in Sec. II A ha
been expressed in terms of atomic displacements in ag
ment with the displacive character usually assumed for m
tensitic transformations.1 However, reconstructive martens
tic transformations realize in some respectsan intermediate
situation between displacive and ordering processes. In or-
der to make this point more clear we will first recall th
current schemes assumed for ordering and displacive me
nisms.

A system undergoing a purely ordering-type transiti
can be considered as a set of positions, fixed in space,
filled by heterogeneous objects: atoms and vacancies, o

FIG. 13. ~a! Region of the phase diagram of Fig. 12 surroundi
the first-order transition line joining the triple pointsT1 and T2 .
The arrows 1 and 2 show the phase sequences reported by Sc
and Blaschko~Ref. 14! on cooling and heating, as represented
~b!.
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oms and ions of different elements, etc. The ordering proc
causes a change in the distribution of objects among
positions but does not displace the positions. Strictly spe
ing the symmetry of the probability distribution function o
the objects is the result of averaging of the real atomic d
tribution as it is obtained from experiment. The coinciden
between the distribution functions of the different types
particles and the actual distribution is realized in the fu
ordered state. In systems undergoing a purely displac
transformation the crystallographic positions are fully occ
pied by identical particles which are shifted in the transf
mation process. This process induces a crystallographic
equivalence among atomic sites that were initially equival
and no diffusion leading to an exchange of atoms ta
place. There is also an important difference in the dynam
of ordering and displacive mechanisms: the diffusional m
tion of atoms in ordering processes is uncorrelated while
atomic shifts represent a collective process for displac
mechanisms.

Reconstructive martensitic transformations as descri
in Sec. II A correspond to an intermediate mechanism.
the one hand a displacive reconstructive transformation fr
the initial phase to a limit phase~e.g., bcc-hcp, bcc-9R, bcc-
fcc, etc.! transfers atoms from one fixed site to another s
without any intermediate position but the correspond
atomic shifts occur collectively. The intermediate nature
the mechanism clearly appears in transformations betw
close-packed structures. In a reordering mechanism betw
such types of structures~e.g., hcp↔fcc) the change in the
position of an individual atom from the layer positionA to
the positionB requires the creation of high-energy defec
connected with the absence of vacant interstices. It is t
energetically more advantageous to shift simultaneou
~collectively! all the atoms pertaining to the layerA. Further-
more, a relative displacement of layers appears as unco
lated but has indeed correlations: if the original stacking
layers is random, e.g.,ABCBĀ , and the second layer ha
to be shifted from positionB to positionC it causes a dis-
placement of the successive layer which cannot occupy thC
position in the new structure due to geometrical constrai
For example, in the fcc-hcp mechanism the reordering of
layers between the two structures has a clear correlation
three-layered fcc periodic stackingABCABC̄ has to be
replaced by the two-layeredABABAB̄ stacking. This can
be realized by periodically repeated shifts of each unshif
AB pair: CA moves in the directionC→A @Fig. 8~a!# and
becomesAB while BC is displaced fromB to A and also
becomesAB. The nextAB pair is unshifted, etc. Hence th
reordering fcc-hcp process is periodically correlated.

In summary, reconstructive martensitic transformatio
allow a continuous crossover from ordering to displac
mechanisms. This is made possible by the invariability of
order parameter values in the two mechanisms: it is cons
and maximal when going from a fully ordered state to a lim
displacive state as defined in Sec. II A.

III. PRECURSOR EFFECTS

Before analyzing the experimental results reported for
lattice instabilities in Na and Li, as revealed by inelas
neutron scattering experiments6,7,9,11,13,15,45,38,39~Sec. III B!,
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we describe the general dynamical properties which cha
terize reconstructive martensitic transformations in
framework of our approach~Sec. III A!. The possible con-
nections between the precursor instabilities and the trans
mation mechanism are discussed in Sec. III C. In Sec. III
nucleation mechanism on elastic defects, adapted to the
of Li and Na, is formalized.

A. Phonons and martensitic reconstructive transformations

Let us first analyze the influence of the secondary stra
on the height of the energy barrier at a reconstructive tra
formation using as an illustrative example the bcc-hcp tra
formation. The form of the energy barriers in each relev
region of the phase diagram of Fig. 2 is shown in Fig. 14~a!.
Figure 14~b! represents the energy barrier along the bcc-
transition line. This line is given by the equation]h/]j
50, which yieldsh5h0 from Eq.~7!, and by the equality of
the effective potentialsF1(h50)5F1(h5h0) whereF1(h)
is defined by Eq.~8!. Therefore, the equation of the bcc-hc
transition line is

a1

a3
52

a2

a3
h0

22h0
4 ~26!

which corresponds to a straight line in the (a1 /a3 ,a2 /a3)
plane. The coordinates of the minima of the energy barrie
Fig. 14~b!, associated with nonzero values of the order
rameter, are

hmin56h0 , ~27!

whereas the coordinates of the closest maxima are

hmax56
1

)
h0 . ~28!

From Eqs.~27! and~28! we can deduce the heighth of the
barrier

h5F1~hmax!2F1~hmin!52
2

9
h0

4S a21
4

3
a3h0

2D . ~29!

which is a positive quantity sincea2,22a3h0
2 in the region

of stability of the hcp phase. In order to evaluate the infl
ence of the secondary strainse3 , e6 , ande1 on h one has to

FIG. 14. ~a! Form of the energy barrier in each relevant regi
of the phase diagram of Fig. 2.~b! Energy barrier along the bcc-hc
reconstructive transition line.h is the height of the barrier.~c!
Depthd of the potential well in the hcp phase.
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use the full effective form ofF1@h(j),ei # given by Eq.~18!
to which must be added the elastic energy associated
the strainse3 , e6 , ande1 :

F1
el~ei !5

1

2
~c112c12!e3

21
1

2
c44e6

21
1

2
~c1112c12!e1

2,

~30!

where theci j ( i 51 – 6, j 51 – 6) are elastic constants. Min
mization of F1@h(j),ei #1F1

el(ei) with respect to theei

yields the equilibrium values of the spontaneous second
strains as functions of the effective order parameterh:

e3
e52

d1h2

c112c12
, e6

e52
d2h2

c44
, e1

e52
d3h2

c1112c12
.

~31!

Introducing the preceding expressions of theei in
F1(h,ei) yields the renormalized order parameter expansi
F1@h(j)#5a1h21ã2h41a3h6, where ã25a22d1

2/(c11

2c22)2d2
2/c442d3

2/(c1112c12) is smaller thana2 . Accord-
ingly the renormalized height of the energy barrier is

h~ei !52
2

9
h0

4S ã21
4

3
a3h0

2D ~32!

which is lower thanh. Hence,the secondary strains favor th
transformation from thebcc to the hcp phase. This conclu-
sion holds more generally for phase transformations of
reconstructive type and is consistent with the result obtai
by Goodinget al.40 in their model of the bcc-9R transforma-
tion.

At variance with a presupposed view that strongly fir
order transitions imply strong anharmonicity of the lattic
let us now show thatmartensitic reconstructive transforma
tions may correspond to a jump between two harmonic
tential wells. In a phenomenological Landau-type approa
an anharmonic behavior can be related to two main differ
situations.

~i! A single order parameter is associated with the tran
tion. The anharmonicity is here expressed by the influenc
the order parameter invariants of degrees higher than 2 in
thermodynamic potential and is reflected in the potential w
by the existence of nonequidistant energy levels~frequen-
cies! corresponding to transitions to different possibly sta
states. A second-order transition is induced by a continu
variation of the potential profile through the flat bottom r
gime corresponding to a soft mode frequencyvsm50. The
anharmonicity is weak in this case since it is essentially g
erned by the quadratic term in the potential. A first-ord
transition corresponds to a jump between two wells and
description of the changes in the potential profile requi
anharmonic equations. However, this does not necess
imply that the critical phonon displays anharmonicity as o
has also to compare the soft mode frequencyvsm and the
height h of the energy barrier. Ifvsm!h the crystal will
remain in the fully harmonic regime across the transition
vsm is of the order ofh an anharmonic regime should b
observed for the critical phonon. Note that the phonon f
quency should be more sensitive to temperature in this la
case.
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~ii ! More than one order parameter is required for
transition mechanism. The anharmonicity is then reflec
also by the coupling invariants between the order parame
The situation is more complex since the energy levels in
potential well possess nonzero widths and the soft modes
be associated with different wave vectors. However, sim
conclusions can be drawn as in the single-order-param
case taking into account the relative magnitude of the
mode frequencies and of the height of the energy barrie

Let us illustrate the preceding considerations by so
numbers extracted from concrete examples of reconstruc
bcc-hcp transformations. In Ba the value found for the ju
in entropy41 which is expressed in our model byDS5
2(]a1 /]T)h2(T1) whereT1 is the bcc-hcp transition tem
perature gives a1521.084 cal mol21 K21 and a25
20.084 cal mol21 K21. Assuming the normalizing value
h051 anda351 one gets an estimate of the barrier heig
h.5 meV/atom. Since the order parameter keeps a cons
valueh5h051 in the hcp phase the depth of the potent
well @Fig. 14~c!# is d5F1(1)5a11a21a3 . Its minimal
value is reached on the second order transition line wh
separates in Fig. 14~a! the hcp and intermediate orthorhom
bic phases. The equation of this line isa1522a223a3
which gives dmin52a222a3.225 meV/atom. Note tha
these estimates are in good agreement with the num
found by Chenet al.42 from first principles total energy cal
culations (h.4 meV/atom,dmin.27.2 meV/atom) confirm-
ing the consistency of our approach.

Comparingh and dmin shows that the potential depth
about five times larger than the potential barrier. This ra
and the experimental value found for the frequency of
T1(N) phonon mode42 in Ba which is 3.1 meV suggest tha
the atoms are in a reasonably harmonic situation at the
hcp transformation. In Zr,41 DS521.37 cal mol21 K21 from
which one can deduce by analogous estimatesh
.14.5 meV/atom anddmin;269 meV/atom which is of the
same order as the valuedmin;245 meV/atom obtained
by pseudopotential calculations.43 The depth of the well
is again about five times larger than the barrier height
reflects a strong harmonic regime when compared to the
mode frequency43 which is 4.17 meV. A similar conclusion
can be drawn44 for Ti in which the entropy jump45 at the
bcc-hcp transformation is:DS520.866 cal mol21 K21 cor-
responding toh553.5 meV/atom while the frequency of th
soft mode43 is ;5 meV.

Coming back to the phase diagram of Fig. 14~a! we will
now discuss in more detail the soft mode behavior wh
approaching the hcp phase from the bcc phase assuming
the transformation corresponds to a jump between two
monic wells. In the following discussion the bcc, hcp, a
intermediate orthorhombic phases are, respectively, den
nated I, II, and III, anda1 is assumed to symbolize the tem
perature axis.

For a2.0 the second-order I-III transition takes place f
a1;vsm

2 50. The zero frequency linea150 prolongates, for
22a3,a2,0, onto the limit of stability between phase
and phase III. In this region the I-III phase transition b
comes first order and the hardening of the soft mode refl
the increasing magnitude of the structural distorsion of ph
I in phase III. The maximum distortion is reached on t
second-order transition line between phase III and phas
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Since phase II corresponds to a constant distorsion~shifts! of
phase I the soft mode frequencyvsm reaches its maximum a
the three-phase pointN and then keeps a saturated val
vmax across the reconstructive I-II transition. A rough es
mate of the softening of the phonon mode when approach
phases II and III from phase I is the ratiod/dmax.(Dv/v)2

whered anddmax represent the projections on thea1 axis of
the thermodynamic paths shown in Fig. 15, i.e.,d is the
projection of the path between the limit of stability lines I-
and II-III, while dmax is the maximum value ofd reached for
a250. Using the equations of the limit of stability lines an
the difference of their coordinates along thea1 axis ~Fig. 15!
one finds

d

dmax
5

3

4
1

3a3~2a213a3!

4~a213a3!2 . ~33!

which varies from zero at the pointL (a15a3 , a2522a3),
where the stability lines I-II and II-III merge, to 1 at th
origin (a15a250). In other words, no softening should tak
place beyond theL point (Dv/v50) whereas a maximum
softening (Dv/v51) should occur at the origin. Howeve
such behavior corresponds to an ideal limit situation~e.g.,
full harmonic regime, single order parameter with no co
pling to secondary variables!. For real reconstructive transi
tions it has to be interpreted in an extended and recipro
way, namely, aslight softeningof the phonon mode should
be observed at a martensitic reconstructive transforma
for thermodynamic paths close to the region of stability
the intermediate phase~III ! whereas far from this region~for
large negative values ofa2 in Fig. 15! no softening should be
observed.

B. The phonon spectra of sodium and lithium

Let us describe the experimental results reported for
temperature dependence of theS4(qq0) phonon branch in
sodium6,11,45,38,39and lithium.7,9,13,15In Na where the trans-
formation occurs at about 34 K Blaschko and Krexner11 find
a softening of a portion of the phonon branch extending fr
230 to about 40 K. The deepest softening~;4%! is disclosed
aroundq50.42 but it exists fromq50.35~;2%! to the zone
boundaryN point ~;3%!. For smaller values ofq no soften-

FIG. 15. Soft mode frequenciesvsm along the transition lines
separating the bcc phase from the hcp and intermediate phase.d and
dmax are used for an estimate of the partial softening@Eq. ~33!#.
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ing is detected and even a hardening belowq;0.2 is ob-
served. The measurements of Abeet al.45 essentially confirm
the preceding results although the numbers found by th
authors differ in the location of the deepest softening reg
which is found aroundq;0.33– 0.37. Berlineret al.6,39 con-
firm a softening of a few percent from 200 to 30 K.

In lithium (TM574 K) the experimental situation appea
to be more contrasting. In their initial study Ernstet al.13

disclose a softening of almost the entire phonon bran
more pronounced aroundq50.4 ~;13%! and theN point
~;10%! and weaker aroundq50.3 ~;3%! and q50.2
~;2%!. In a further study Schwarzet al.15 observe different
softening regimes depending on the distance to the mar
sitic transformation. After cooling from 200 to 100 K th
softening extends fromq>0.1 toq50.5 ~;6%! with an al-
most linear increase toward the zone boundary@Fig. 2~a! of
Ref. 15#. Upon cooling from 200 to 80 K the softening ex
tends toq50.1 and two distinct dips appear aroundq50.3
~;7%! andq50.4 ~;8%! @Fig. 2~b! of Ref. 15#. When cool-
ing from 100 to 80 K no softening is found belowq50.2 and
a single flat dip~;3%! remains, centered aroundq50.33
and extending fromq50.22 to q50.42 @Fig. 2~c! of Ref.
15#. Smith7 finds at 100 K a softening of theS4 branch
betweenq50.3 andq50.5 ~curve 3 in Ref. 7! which is more
pronounced~;8%! at q50.5. No dip is seen by this autho
at q50.4. No evidence of even a slight dip atq50.33 is
found by Smithet al.9

Let us note in a general way that theexistenceof a soft-
ening of theS4 mode in the bcc phase above the martens
transformations in Na and Li is a confirmation of the disp
cive character assumed for these transformations and o
possible contributions of secondary strains which are par
the full displacive mechanisms. As underlined in Sec. III A
also suggests that the region of stability of the marten
phases are not too far from the region of stability of t
intermediate ‘‘Landau’’ phases assumed in the theoret
phase diagrams described in Sec. II. However, in the pre
case theweaknessof the observed softening which is small
than 4% in Na and smaller than about 10% in Li has ob
ously an additional source, i.e., the incomplete transform
tion of the bcc phase at low temperature. Thenonlocalized
~extended! character of the softening region on theS4
branch reflects, on the one hand, the coexistence of diffe
structures below the transformation which are associa
with differentq vectors and the strong coupling between t
corresponding displacive mechanisms as assumed in ou
proach. It also denotes the possible existence of additio
underlying transformation mechanisms~e.g., bcc-fcc! which
do not necessarily give rise to the stabilization of a lon
range order in the martensite phase.

In a more precise way theq interval of softening in Na
extends approximately between the critical values associ
with the 9R(q5 1

3 ) and hcp(q5 1
2 ) structures in agreemen

with the observation of these structures below the transi
as reported by Schwarzet al.12 By contrast, the stabilization
of longer polytype structures (27R,15R,45R) proposed by
Berlineret al.6 would require smallerq values~e.g.,q5 1

9 for
a 27R polytype! corresponding to that part of the phono
branch which was experimentally observed to harden.
fact that longer polytypes are not reflected in the phon
spectrum can be explained by the fact that they require
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their formation a disordering mechanism which is trigger
within the martensite without precursor indications in the b
phase. This argument also holds for the disorder polyt
structure evidenced in the lithium martensite which ori
nates as described in Sec. II D from the disintegration o
fcc structure in contact with the 9R phase. Indication for the
potential stabilization of a fcc structure below the bcc pha
in Li is supported by the observation of Schwarzet al.15 of
an extension of theq interval of softening belowq50.1, i.e.,
close to the BZ center, when cooling from 200 to 80 K. T
fact that the softq interval becomes narrower and center
on q50.33 when cooling from 100 to 80 K shows that th
tendency for the stabilization of the 9R structure becomes
predominant in this region. An indirect confirmation that
dip at q5 1

3 connects with the formation of a 9R martensite
are the phonon measurements of Maieret al.46 in Li-10 at. %
Mg. In this system the close-packed low-temperature ph
which appears about 90 K has a 9R structure over its entire
range of stability at variance with the situation found in pu
lithium. The relative phonon frequency shifts between 3
and 130 K clearly reveal a distinct dip of about 4% nearq
50.3. At last let us stress that the absence of even a s
dip aroundq5 1

3 found by Smithet al.9 in Li may be ex-
plained by the abrupt first-order character reported by th
authors for the bcc-9R transformation while it is found to be
moderately discontinuous in Refs. 11–15. This indicates
the transformation in Smith’s experiment possibly followed
thermodynamic path which is far from the region of coexi
ence with the intermediate Landau phase.

C. Precursor effects and the transformation mechanism

The most striking features of the soft-mode instabiliti
found in Na and Li are the extension of the softening reg
in q space and the fact that theq values corresponding to th
observed dips are never located at the expected fracti
values~e.g., 1

3 for 9R, 1
2 for hcp! but are irrational numbers

closeto the preceding values. Furthermore, the locations
the dips show an evolution which seems to depend on
distance to the martensitic transformation and which is
exactly reproducible but depends on the history of
sample and on the thermodynamic paths. These facts w
are reminiscent of the situation found in incommensur
structural transitions3 reflect a tendency to the formation o
inhomogeneous structures. The strictly periodic~homoge-
neous! character of the structures appearing below the m
tensitic transformations in Na and Li can be attributed to
first-order nature of these transformations which realize
abrupt jump across the inhomogeneous region, squeezin
eventual structural modulation as it has been observed
number of lock-in transitions3,4 between commensurat
phases.

The question, however, arises to what extent the dis
cive ~commensurate! mechanisms which have been depict
in Sec. II can be influenced by the potentially incommen
rate character of the precursor instabilities, namely, if t
character contributes to the complex nature of structures
served below the transformations and also explains the s
discrepancies found in the different studies. Another cruc
question concerns the possible origin of the incommens
bility. Answers to these questions can be partly found in
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recent studies of Maieret al.46,48,49 which show the impor-
tance of coherency stresses related to the coexistence o
parent bcc structure with the ‘‘product’’ phases. A simil
explanation was proposed for the stabilization of theR
structure in NiAl described as an adaptive martens
phase.50

The bcc matrix which in most cases has transformed
about 50% never disappears at low temperatures. On
other hand, as shown in Sec. II, each of the low-tempera
close-packed polytype structures, although they resem
each other and their energies are nearly degenerate,51 require
for their formation secondary strains with different mag
tudes. This leads to different coherency stresses with the
matrix which may result in the creation of strain fields wi
strain fluctuations acting inhomogeneously on the displac
transition order parameters. Phenomenologically, this is
pressed by couplings between the space derivatives of
order parameter components and the strain compon
ei j (]hk /]xl) along the line of the model introduced for th
description of the incommensurate structure which ta
place between thea- and b-quartz structures.52,53 In the
present case these couplings will only play a role for
dynamical behavior above the transformation and influe
the transformation kinetics.

The importance of coherency stresses on the transfor
tion kinetics is clearly demonstrated in the experiments
Maier et al.46,48,49 on lithium. In a first series of
experiments46 a @001# uniaxial stress was applied inducing
lattice expansion along@110# and changing the condition
defining coherency between the phases in the sense of a
ering of the coherency stresses. At 74 and 64 K the imm
ate response of the system to the applied stress is the fo
tion of the low-temperature phase. In addition, at 64 K
amount of low-temperature phase formed increases rou
linearly with the applied deformation. Hence, a lowering
the coherency stresses promotes the phase transformati
a significant way. In another experiment49 the response to the
applied stress at 100 K is a softening of a few percent of
whole S4 phonon branch, i.e., when the coherency stres
are released the whole set of close-packed structures be
potentially stable.

When a stress is applied at 82 K, about eight degr
above the normal martensite temperature, to a virgin Li cr
tal the phase transformation takes place within a few minu
after about 5 h of incubation time.46 The observation of in-
cubation times, that was also reported45 for Na at 38 K and in
a deteriorated Li crystal9 at 65 K, as well as the precedingl
mentioned data provide an insight into the specificity of
mechanism which connects the strain fluctuations to
nucleation process yielding the martensite formation. T
strain fluctuations promoting the transition should be spec
~e.g., of the@110# shear type! in order to favor the formation
of a nucleus of the low symmetry phase. Once this nucleu
formed it induces a similar symmetry breaking deformat
of the bcc matrix which likewise promotes the phase tra
formation in a self-amplification process of the transform
tion product due to its own strain field. This means that
transformation—once started—does not stop in an em
onic state but runs through the bcc matrix until it is arres
by the elastic energy of the two-phase boundary region.
the
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When random strains~nonspecific! are present as in dete
riorated crystals after one or several transformation cyc
then, on the contrary, the nucleation is inhibited and con
quently starts at lower temperatures. This is corroborated
example by the increase of the transformation hysteresi
experimentally observed by Maieret al.49 in Li-10 at. % Mg.

The preceding scheme is also confirmed by the effect
plastic deformation on Li along@001# measured in Ref. 48
Below the phase transition temperature~74 K! plastic defor-
mation favors the phase transformation but 30° above
transition temperature it inhibits the phase transformat
even down to low temperatures. It can be conjectured
particles of the low-temperature phase persisting on hea
do not act as centers of easy nucleation when the syste
cooled down again, i.e., they are inactivated by the effec
the plastic deformation of the bcc matrix around the partic
which reduces the specific elastic strain field needed for m
tensitic nucleation. As a consequence a significant densit
embryos of the low-temperature phase should be pre
only close to the transformation in agreement with the obs
vation of the diffuse scattering intensity delocalized in rec
rocal space in the vicinity of the martensitic transformatio
in Li and Na.54

It has to be stressed that the final structure of the mar
site in Li and Na is not determined by the coherency stres
but corresponds to an actual thermodynamic equilibri
state. This is illustrated for example by the results of Ma
et al.49 showing that in Li the deformation induced structu
is similar to the structure obtained by a temperature chan
Therefore, the general topology of the theoretical phase
grams worked out in Sec. II is independent from the coh
ency stresses, which affect only the dynamical features of
transition. In contrast, the martensite structure is unsta
with respect to plastic deformation. This is demonstrated
Maier et al.49 who show that under severe plastic deform
tion the martensite is no longer 9R but a disordered polytype
structure. Hence, the stacking order of the martensite that
been shown~Sec. III B! to partially disintegrate when the 9R
and fcc structures coexist, becomes fully disintegrated un
plastic deformation.

D. The nucleation process

The formation of martensitic embryos above the transf
mations in Li and Na does not necessarily require the e
tence of defects, i.e., the embryos may correspond to kin
cally frozen-in Frenkel-type nuclei, due to therm
fluctuations.55 In fact there are no direct observations sho
ing the presence of defects in the two crystals above t
transformations. Only indirect measurements in Li,54 such as
intensity streaks along the@110# direction and Huang scatter
ing close to the transformation, suggest the presence ofsmall
defects. Although this interpretation needs further confirm
tion, let us show that the formation of embryos on elas
defects is consistent with the nucleation scheme describe
the preceding section.

Assuming for simplicity a pure 9R structure for the mar-
tensite in Li and Na the nucleation process on elastic def
can be formalized using a Landau-Ginzburg free energy
the form56
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F̃~z,ei !5E
V
FF~z,ei !1Fel~ei !1l~¹z!2

1F inS z,
]z

]xk
,ei D GdV, ~34!

whereF(z,ei), given by Eq.~29!, has the meaning of the
free-energydensityassociated with the bcc-9R transforma-
tion. Fel(ei) is the elastic energy density expressed by E
~30!. The l term is the Ginzburg invariant which accoun
for the order parameter fluctuations.F in corresponds to the
coupling between the space derivatives of the order par
eter and the strain field reflecting the strain fluctuatio
which originate in the coherency stresses of the nuclei w
the bcc matrix.

For the purpose of our demonstration we can restrict o
selves to consider a low degree coupling of the form

F inS z,
]z

]xk
,ei D5 f ~z!gS ]z

]xk
D ~m1e11m2e61m3e3!,

~35!

whereg(]z/]xk) is a linear function of the space derivative
]z/]xk and f is a function of the order parameterz. The
Euler-Lagrange equation minimizingF̃ can be written in this
case

lDz1
1

2 (
i 51,3,6

m i¹@ f ~z!ei #

5c1z12c2z313c3z51
1

2
g¹ f (

i 51,3,6
m iei

1z~n1e11n3e6!1
3

2
z2e3 ~36!

and

]s ik

]xk
50, ~37!

where thes ik are the components of the internal stress ten
which are here

s i i ~ i 51,2!53c12eii 1n1z22n2z31m1f g,

s335~3c1122c12!e3312~n1z21n2z3!1 f g~m112m3!,

s125c44e121n3z21m2f g,

s135s2350,

where theei j are the components of the strain tensor. T
system of Eqs.~36! and ~37! has two types of solutions.

~1! z50 and ei5ei
0(r ), whereei

0(r ) is the strain field
associated with a defect above the onset of a nucleus, in
bcc phase.

~2! z5z(r )Þ0, ei5ei
0(r )1O(z2). This corresponds to a

state with a nucleus on the defect in the bcc phase, below
nucleation temperatureTn .

The preceding solutions coincide with different positi
values of the coefficientc15c(T2Tm), where Tm is the
martensitic transformation temperature. In order to determ
.

-
s
h

r-

r

e

he

he

e

the critical valueC1
n at which the nucleus arises in the bc

phase, which corresponds to the bifurcation between the
lutions ~1! and ~2!, one has to linearize Eqs.~36! and ~37!
aroundz50 andei

0(r ) following the method developed in
Ref. 57. Assuming thatf (z) can be approximated to th
lowest order by a linear termf (z);Az, the linearization
results in the equation

lDcn1
A

2 (
i 51,3,6

m i¹@ei
0~r !cn#

5@C1
n1n1e1

0~r !1n3e6
0~r !#cn , ~38!

wherecn is the eigenfunction corresponding to the first e
genvalueC1

n5C(Tn2Tm), Tn being the nucleation tempera
ture. Following Ref. 57, the main term of the branched
solution of Eq.~38! can be written

h5jcn~r !1O~j3!. ~39!

and

ei~r !5ei
0~r !1

Kij
2

~2p!3 E Gik~k!kikkQ~k!exp~ ikr !d3k,

~40!

where j represents a normalizing amplitude. The Four
transform in Eq.~40! expresses the contribution of the stra
ei inducedby thenucleus. Gik(k) is the elastic Green func
tion andQ(k)5*cn

2 exp(2ikr )d3r . The asymptotic solution
of Eqs.~39! and ~40! is

h;j expS 2r

r n
D . ~41!

The radiusr n of the nucleus is given by

r n5
l

c
~Tn2Tm!21/21K, ~42!

whereK is a constant. Equation~42! shows that for a nucleus
arising far from the martensitic transformation, i.e., for lar
values ofTn2Tm , the l term is small, and the radiusr n is
almost constant. In contrast, when the nucleus appears c
to the martensitic transformation, i.e., for small values
Tn2Tm , thel term in Eq.~42! predominates, the size of th
nucleus increasing upon approachingTm . This picture is
consistent with the qualitative interpretation given in Se
III C for the experiments of Maieret al.47–49Far fromTm the
nuclei are inhibited and do not trigger the transformati
mechanism, whereas close toTm the nucleation process pro
motes the transformation. Note that the considerations le
ing to Eq. ~42! are independent of the nature of the defe
on which depend the particular form ofcn and the value of
C1

n .

IV. SUMMARY AND CONCLUSION

In the theoretical description proposed in this article
the martensitic transformations in sodium and lithium, tw
types of results can be distinguished.

~1! Results which are deduced from the reconstruct
character of the transformations and apply more generall
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any transformation between structures which are not gro
subgroup related.3 These results can be summarized as f
lows.

~a! The mechanisms associated with the bcc-9R, bcc-hcp,
and bcc-fcc transformations involve specific critical atom
displacements, the corresponding order parameter modul
ing periodic functions of the critical displacements.

~b! The transformation mechanisms require additio
spontaneous strains (e3 ,e6 ,e1) which, for specific magni-
tudes, are also symmetry-breaking quantities although t
can be treated, in the framework of a Landau-type appro
as secondary order parameters.

According to these results, the 9R, hcp, and fcc phase
appear aslimit phases which are realized for definite valu
of the critical shifts and strains. This essential feature ent
other properties of reconstructive transformations.

~c! The theoretical phase diagrams associated with
transformations involve intermediate phases having
maximal substructure common to the initial~bcc! and final
~9R, hcp, or fcc! structures. These phases are obtained
general~nonspecific! displacements in the direction of th
critical shifts and do not require, for their stability, addition
secondary strains.

~d! The existence of a softening of theS4 phonon branch
as a precursor to the transformation depends on the vic
to the preceding intermediate phase, on the thermodyna
path followed in the experiment. If the path is close to
region of stability, a partial softening should be observ
whereas far from this region no softening should occur.
the other hand, reconstructive transitions are not necess
associated with a strong anharmonicity of the lattice and m
correspond to a jump between harmonic potential wells. T
jump is favored by the secondary strains.

~2! A second series of results are proper to the situa
found in Na and Li.

~a! The complex structures found for the martens
phases result from a coupling between two, and poss
three different mechanisms. For Na the coupling conce
the bcc-9R and bcc-hcp transformation mechanism
whereas the bcc-fcc mechanism may also be involved for
Besides, the existence of a fcc structure on heating in Li
been shown to originate in the disordered polytype struc
found below the transformation and, resulting from a dis
tegration of the fcc and hcp structures, due to the con
with the 9R structure. The interplay between displacive a
ordering processes is in the nature of reconstructive trans
mations to close-packed structures.
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~b! There is no contradiction in the results reporting t
absence of precursor mode softening, or a weak soften
since the corresponding experimental paths may be situ
at different distances from the region of stability of the i
termediate phase. The nonlocalized character of the softe
region on theS4 branch reflects the coupling between va
ous structural mechanisms. The fact that theq values corre-
spond to irrational numbers, whose values depend on
history of the sample and the experimental paths, is in
preted by a potential incommensurate character of the tr
formation. This character is attributed to different coheren
stresses between the potentially stable structures and the
matrix, which results in the creation of strain fields acti
inhomogeneously on the effective order parameter. This
fluences the other features of the transformations, nam
the incubation times and the response of the crystals to e
tic and plastic deformations. A nucleation process on ela
defects, which is activated only close to the martens
transformation, has been shown to be consistent with
preceding properties.

The phenomenological model developed in the pres
work provides a coherent framework for reconciling the a
parently contradictory observations reported by Sm
Blaschko, and their co-workers. However, it is beyond t
scope of a phenomenological approach to explainwhy, in
contrast to other reconstructive transformations in meta3

the martensitic transformations in Na and Li display su
unusual and complex features. Possibly, the answer to
question may be found in the fact that Na and Li poss
unique mechanical properties. In this respect, it was rece
pointed out by Pichl and Krystian58 that the flow-stress ver
sus temperature curves of Li and Na differ from those of
other bcc metals: The temperature range in which the fl
stress is usually controlled by thermally activated kink p
formation in screw dislocations cannot be reached in the
phase, and in spite of that, a large plastic anisotropy is
served in this phase. In simpler words, the complexity of
transformation features of Li and Na would be related to
particularsoftnessof their crystalline state which, in particu
lar, may result in the fact that the bcc phases never co
pletely transform into the martensite phase.
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