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Transverse acoustic waves in piezoelectric and ferroelectric antiphase superlattices

A. L. Shuvalov* and A. S. Gorkunova
Institute of Crystallography, Russian Academy of Sciences, Leninsky prospect 59, Moscow 117333, Russia

~Received 5 October 1998!

The diffraction of a shear horizontally polarized acoustic wave is analyzed at an oblique incidence upon the
superlattice, which describes a system of 180° ferroelectric domains or a stack of antiparallel piezoelectric
layers. The formalism of 434 propagator-matrix formalism, which takes into account the electromechanical
coupling, is pursued. The developed algebraic procedure provides a comprehensive analytical description of
the reflection and transmission rates in an explicit and concise form. This allows direct examination of the
resonant features of the reflection and transmission spectra at an unrestricted variation of the involved param-
eters. In the case of nonequidistant superlattices, the modulation of the Bragg peaks is characterized and the
extinction rule deduced.@S0163-1829~99!08113-8#
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I. INTRODUCTION

Elastodynamics of multilayered media has been attrac
steady interest in recent years with respect to both
acoustic-phonon properties of nanometer superlattices
the elastic-wave diffraction phenomena.1–18 A large number
of materials utilized for fabricating nanometer superlattic
have piezoelectric properties. In parallel, a ‘‘natural’’ d
fraction grate is provided by regular structures of 180° fer
electric domains, which are created by means of a cer
crystal-growth treatment or by applying the electric bias
alternating sign to a monocrystal in the process of the fe
electric phase transition. The manufacturing technique
various ferroelectric crystals delivers good-quality perio
structures with a single-domain width in the ran
5–300mm ~thickness of domain walls is typically of the o
der 1021– 1022 mm!. The acoustic and optical properties
such ferroelectric superlattices have been the object of m
experimental and theoretical studies~e.g., see Refs
6,8,9,11,13,15!.

One of the most effective theoretical tools for the ex
analytical study of various wave phenomena in periodica
stratified media is the method of the propagator matrix ba
on the Bloch formalism. However, the direct analytical c
culations become very cumbersome once the dimensio
the propagator matrix is higher than 232 due to the
coupled-mode effect. It occurs, for instance, at a mixing
the sagittal acoustic modes in a symmetry plane of pu
elastic stratified media,1,2,4,14,17or at theSH waves propaga-
tion in the presence of electromechanical coupling.2,3,5,8,12,16

As a result, theoretical treatment in those cases is larg
numerical. The explicit analytical results have been mai
confined to obtaining the Bloch dispersion relation~the char-
acteristic equation for the propagator matrix!, whereas the
direct analytical calculation of the reflection rate itself h
been discussed under certain fairly restrictive approxim
tions and assumptions. In particular, in Refs. 12 and 16
propagator matrix has been effectively reduced to the 232
dimension thanks to the screening properties of metalli
interfaces separating piezoelectric layers. The calculatio
the reflection coefficient was then carried out under the c
dition q2 tanu!1, whereu is the angle of incidence andq2 is
PRB 590163-1829/99/59~14!/9070~8!/$15.00
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the parameter of electromechanical coupling. The analyt
method, which has been worked out in Ref. 17, assume
semi-infinite periodic structure and a normal incidence in
case of solid layers. The reflection coefficient17 was obtained
in a somewhat implicit form, via the root of a matrix equ
tion.

This paper is concerned with the oblique propagation
the SH wave in a regular structure of 180° ferroelectric d
mains, which are characterized by the same elastic prope
and pairwise differ in the sign of their piezoelectric coef
cients. This antiphase superlattice may also describe a
tem of piezoelectric layers of the same material, which
stacked in such a way that the orientations of the princi
symmetry axes in neighboring layers are antiparallel.~For
definiteness, we will thereafter refer to the case of ferroel
tric domains.! Due to electromechanical coupling at elast
wave propagation, alternation of signs of the piezoelec
coefficients stipulate the excitation of the interface modes
the electric field and the reflection of theSH wave at the
interfaces. Invoking the formalism of a propagator matr
which herein is of the 434 dimension, we pursue the alge
braic procedure and obtain the explicit expressions, t
comprehensively characterize the spectral dependence o
reflection rate. The only approximation used is based on
strong inequality exp@22p(d/l) sinu#!1, whered is the do-
main width, l is the wavelength~u50 corresponds to the
normal incidence, at which theSH mode uncouples from
electric field and becomes nonpiezoactive!. Exponential ac-
curacy of this approximation ensures its virtual exactness
describing the Bragg-resonance features of diffraction.

II. BACKGROUND

Propagation of plane acoustic waves in a medium w
piezoelectric properties is governed by the equations

s i j , j5rüi , Di ,i50;

s i j 5ci jkl uk,l1eki jw ,k , Di52« i j w , j1ei jkuj ,k , ~1!

where the comma in the subscripts and superposed dot im
spatial and time derivatives, respectively;r is the density,
s jk is the tensor of mechanical stress,u is the vector of
9070 ©1999 The American Physical Society
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PRB 59 9071TRANSVERSE ACOUSTIC WAVES IN PIEZOELECTRIC . . .
elastic displacement,D is the vector of electric induction,w
is the electric potential. We consider the periodic structure
180° domains in a ferroelectric crystal of the 4mmsymmetry
class~BaTiO3 or PbTiO3 are typical examples!. The vector
of spontaneous polarization is directed along the princ
symmetry axis and has antiparallel orientations in the ne
boring domains. It lies in the plane of domain walls whi
coincides with a symmetry plane. Let the axisY be orthogo-
nal to the interfaces, and the axisZ be parallel to the fourfold
axis ~Fig. 1!. The mutual orientation of symmetry elemen
in adjoined 180° domains are related by the center of inv
sion, which pertained to the paraelectric phase of the cry

FIG. 1. An antiphase superlattice.
f

al
-

r-
l.

Hence, both types of domains are characterized by the s
even-rank tensors of elastic modulici jkl and dielectric per-
mittivity « i j , while components of the odd-rank tensor
piezoelectricityei jk have opposite signs in neighboring d
mains constituting a unit cell. Its widthD5d11d2 is the
period of the superlattice~D52d in the case of an equidis
tant structure!. The system of 2N21 domains is supposed t
be bounded from both sides by the monodomain~homoge-
neous! substrates of the same ferroelectric crystal. Taking
piezoelectric coefficientsei jk of the substrates as referenc
ones assigns the values2ei jk and ei jk to, respectively, the
first and the second domain of each unit cell~domains of
‘‘ 2’’ and ‘‘ 1’’ types!.

Suppose that theSH wave, propagating in the planeXY
and polarized along the axisZ ~Fig. 1!, falls upon the domain
superlattice at the angle of incidenceu (uÞ0). According to
Eqs. ~1!, this mode is uncoupled from the two other elas
modes, but at the same time it couples with quasistatic e
tric field. Due to opposite signs of piezoelectric coefficien
in neighboring domains, a singleSH acoustoelectric wave
does not fulfill the continuity of the displacementuz , trac-
tion f z52 ikxs32, potentialw, and the normal component o
electric inductionDy . This results in reflection at interface
which is specular for symmetry reasons, and in excitation
two interface modes. On appealing to Eqs.~1!, the aforemen-
tioned wave parameters in a given domain ofnth cell may be
presented in the form
modes.

e

S uz~y!

w~y!

ikx
21f z~y!

ikx
21Dy~y!

D ~n,7 !

5bi
~n,7 !S 1

7e15/«11

c448 cotu
0

D e2 iky~y1nD!1br
~n,7 !S 1

7e15/«11

2c448 cotu
0

D eiky~y1nD!

1bs
~n,7 !S 0

1
6 ie15

i«11

D e2kx~y1nD!1bs8
~n,7 !S 0

1
7 ie15

2 i«11

D ekx~y1nD! ~2!

„the common factor exp@i(kx x2vt)# is suppressed…. In Eq. ~2!, the notations used arec448 5c441(e15
2 /«11), kx5k sinu, ky

5k cosu, k5v(c448 /r)21/2; the upper and lower signs correspond to the domains of, respectively, ‘‘2’’ and ‘‘ 1’’ types; and
the subscriptsi ,r ,s,s8 are assigned to the partial amplitudes of, respectively, the incident, reflected, and two interface
Invoking the boundary conditions of continuity at interfacesy52(n21)D andy52(n21)D2d1 ~Fig. 1!, then eliminating
the four-component vectorb(n,2) of partial amplitudesbi

(n,2) , br
(n,2) , bs

(n,2) , bs8
(n,2) in the standard fashion, yields th

relation

b~n21,1 !5Wb~n,1 !. ~3!

Here the 434 propagator matrixW, transferring the column of partial amplitudes through a unit cell, has the form

W51
e2 ikyD22iqu

2e2 ikyd2 sinh~kxd1! 22iqu
2eikyd2 sinh~kxd1! 2 i

e15 tanu

c44
e2kxD~12ekxd12 ikyd1! i

e15 tanu

c44
ekxD~12e2kxd12 ikyd1!

2iqu
2e2 ikyd2 sinh~kxd1! eikyD12iqu

2eikyd2 sinh~kxd1! i
e15 tanu

c44
e2kxD~12ekxd11 ikyd1! 2 i

e15 tanu

c44
ekxD~12e2kxd11 ikyd1!

e15

«11
e2 ikyD~12e2kxd11 ikyd1!

e15

«11
eikyD~12e2kxd12 ikyd1! e2kxD12qu

2e2kxd2 sin~kyd1! 22qu
2ekxd2 sin~kyd1!

e15

«11
e2 ikyD~12ekxd11 ikyd1!

e15

«11
eikyD~12ekxd12 ikyd1! 2qu

2e2kxd2 sin~kyd1! ekxD22qu
2ekxd2 sin~kyd1!

2 ,

~4!
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in which

qu
25q2 tanu, q25

e15
2

c448 «11
, ~5!

q2 is the parameter of electromechanical coupling. The
upon, the partial amplitudes of the wave fields at the entra
and at the exit of the superlattice are related as follows:

S bi

br

bs

0
D ~en!

5WNS bi

0
0

bs8

D ~ex!

, ~6!

where bi
(en) , br

(en) are the amplitudes of, respectively, th
incident and reflectedSH waves at the front face of the su
perlattice;bi

(ex)[bt is the amplitude of theSH wave trans-
mitted through the superlattice;bs

(en) andbs8
(en) are the ampli-

tudes of the evanescent interfacial waves decreasing a
from the entrance and exit interfaces, respectively. Elimin
ing the amplitudes, referred to the exit, delivers the reflect
coefficientR[br

(en)/bi
(en) in terms of the propagator matrix

R5
~WN!21~WN!442~WN!24~WN!41

~WN!11~WN!442~WN!14~WN!41
. ~7!

The Nth power of the matrixW with the nondegenerat
eigenvaluesla (a51, . . . ,4) may be defined by the
relation19

~WN! ik5 (
a51

4

la
NV ia~V21!ak5

1

detiVi (
a51

4

la
NV iaV̄ak ,

~8!

where iVi5V ia ( i ,a51, . . . ,4) is thematrix constituted
by the components of the eigenvectorsVa of W @note that
they may figure in Eq.~8! bearing arbitrary normalization#,
andV̄ak are components of the adjugate matrixiVi .

III. ALGEBRAIC FORMALISM

A. General relations for the eigenvalues and eigenvectors
of the propagator matrix

In accordance with the general theory of the Blo
formalism,20 the propagator matrixW ~4! is unimodular
(detW51) due to the symmetry of the considered proble
and its eigenvaluesla may be presented in the form

la5eiK aD, a51,2,3,4,

l151/l2 , l351/l4 , ~9!

where Ka (K152K2 ,K352K4) are termed the Bloch
wave numbers. The characteristic polynomial of a 434 ma-
trix W is19

det~W2lI !5 )
a51

4

~la2l!5l42p1l32p2l22p3l2p4 ,

~10!

where
-
ce

ay
t-
n

,

p15tr W, p25
1

2
@ tr~W2!2~ tr W!2#,

p35
1

3
tr~W3!2

1

2
~ tr W2!~ tr W!1~ tr W!3, p452detW,

~11!

tr denotes the trace of a matrix,I is the 434 identity matrix.
Using Eq.~9!, one may cast Eq.~10! into the form

det~W2lI !5l42~l11l21l31l4!l31@~l11l2!

3~l31l4!12#l22~l11l21l31l4!l11,

~12!

so that

p15p35l11l21l31l4 , p252~l11l2!~l31l4!22.
~13!

Equation~12! reveals that, thanks to Eq.~9!, the fourth-order
characteristic equation det(W2lI )50 is a reciprocal one
~i.e., p15p3!. Therefore, it may be reduced to a quadra
equation5 ~without actually calculating the matrixW
1W21, as implemented in Ref. 2!. Introducing

m15l11
1

l1
, m35l31

1

l3
, ~14!

and appealing to Eqs.~9!, ~11!, ~13! readily yields

m11m35tr W, m1m35
1

2
@~ tr W!22tr W224#. ~15!

Hence, by the Bezout theorem, one arrives at the chara
istic equation in the form

m22~ tr W!m1
1

2
@~ tr W!22tr W224#50. ~16!

which is equivalent to the presentations given in Refs. 5
Once Eq.~16! is solved, the eigenvaluesla (a51, . . . ,4)
may be found from the quadratic equations furnished by
~14!.

Next, we calculate the eigenvectors of the propagator m
trix W. Provided that the eigenvalues ofW are nondegener
ate, the componentsV ia of its eigenvectorsVa are given by
the relation

V ia5~W2laI ! iq , i ,a51,2,3,4, ~17!

where the numberq of the column of the adjugate matri
W2laI may be chosen arbitrarily, and correspondingly t
normalization for the vectorsVa is not specified. The matrix
W2lI satisfies the identity19

W2lI5l3I1l2W~1!1lW~2!1W~3!, ~18!

in which

W~1!5W2p1I , W~2!5W22p1W2p2I ,

W~3!5W32p1W22p2W2p3I , ~19!
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where the coefficientsp1 , p2 , p3 are defined by Eq.~11!
and obey relations~13!. On multiplyingW(3) by W, compar-
ing the result with the characteristic polynomial~10!, and
then making use of the Cayley-Hamilton theorem, we fi
that W(3)W5p452detW, hence

W~3!52W̄. ~20!

Inserting Eqs.~18!–~20! into Eq. ~17! and invoking Eq.~9!
delivers the following representation for the components
the eigenvectorsVa of W:

V ia5~la1lg1ld!d iq2~11lalg1lald!Wiq

1la~W2! iq2W̄iq , ~21!

whered iq is the Kronecker symbol;i 51,...,4;q is any fixed
column’s number;a51, . . . ,4, and theother indicesb, g, d
are supposed to match the orderinglalb51, lgld51.

We note that knowledge of eigenvectorsVa (a
51, . . . ,4) ofW readily yields the Bloch eigenmodesUVa
@U is the 434 matrix constituted by components of the ve
tors featured in the right-hand side of Eq.~2!#, which are the
eigenvectors of the similar propagator matrixUWU21 trans-
ferring the wave field Eq.~2! through a unit cell.

B. Derivation of the reflection coefficient

At this stage we set the assumption

e2kxdi!1 ~ i 51,2!. ~22!

Another strong inequality

qu
2e2kxdi sin~kydj !!1 ~ i , j 51,2!, ~23!

also underlying the foregoing derivations, is virtually enca
sulated in Eq.~22! for commensurable domain widths an
any angle of incidence, including a nearly grazing oneu
→p/2), for which Eq.~23! implies q2e2kdikdj!1 @see Eq.
~5!; recall also that typical valuesq2 are of the order
1022– 1021#.

Inserting Eq.~4! into the quadratic equation~16!, we may
write its rootsm1,35cos(K1,3D) in the leading approximation
~in neglect of terms;e2kxdi! as

cos~K1D !5cos~kyD !22qu
2@sin~kyD !

2qu
2 sinkyd1 sinkyd2#, ~24!

cos~K3D !5
1

2
ekxD2qu

2@ekxd2 sin~kyd1!1ekxd1 sin~kyd2!#

12qu
2@sinkyD2qu

2 sin~kyd1!sin~kyd2!#. ~25!
d

f

-

Hence follow the eigenvaluesl1,25exp(6iK1D) and l3,4
5exp(6iK3D). The indicesa51,2 are assigned to thos
Bloch eigenmodes, which stem from the incident and
flected bulkSHwaves, and the indicesa53,4 are associated
with the interface waves. Relatinga53 and a54 to the
decreasing and increasing waves, respectively, we obtai

l35e2kxD, ~26!

l45ekxD22qu
2@ekxd2 sin~kyd1!1ekxd1 sin~kyd2!#

14qu
2@sinkyD2qu

2 sin~kyd1!sin~kyd2!#. ~27!

It is seen that, in view of Eq.~22!, the eigenvaluesla satisfy
the exponentially strong inequalities

l3!ul1u, ul2u!l4 , ~28!

which are essential for the foregoing derivation of the refl
tion coefficientR. @Note that the next-order terms, retaine
in Eq. ~27!, will play an essential role in the forthcomin
derivations.#

The above-mentioned provisions enable us to find the
flection coefficient~7! with the aid of Eq.~8! confining to the
leading termsO(l4

2N)1O(l1,2
N l4

N). It appears that the terms
proportional tol4

2N;e2Nkxd, exactly compensate each oth
in both the numerator and the denominator of the right-ha
side of Eq.~7!. @This is certainly not an incidental occasio
since otherwise it would mean that the reflection rate in
leading order of the short-wavelength approximation~22! is
totally determined by the inhomogeneous interface mo
and is not affected by incident and diffracted bulk mod
which is senseless.# As a result, the principal part of the
reflection coefficient may be cast into the form

R5
l1

2Np21P1l2
2Np22

l1
2Np11P1l2

2Np12
, ~29!

where

pj a5V j aV442V j 4V4a ~ j ,a51,2!,

P5
V̄11V̄442V̄14V̄41

V̄21V̄442V̄24V̄41

. ~30!

In order to calculatepj a , we insert the componentsV j a of
eigenvectorsVa from Eq. ~21! and then invoke the explici
form ~4! of the propagator matrixW and its eigenvaluel4
Eq. ~27!. Adhering to the leading order inekxd1,2 by virtue of
Eqs.~22!, ~28!, we find
pj a52l4
2$la@Wj 4~W2!442W44~W2! j 4#1~W2! j 4%

57C$12la@e7 ikyD22qu
2
„sin~kyD !1e7 ikyd1 sin~kyd2!12qu

2 sin~kyd1!sin~kyd2!…#%,

j ,a51,2, ~31!

wherej 51,2 correspond to the upper and lower signs, respectively, and the common factorC, which stems from the definition
~21! of unnormalized eigenvectors, is indeed arbitrary. DerivingP is more tedious but straightforward. Ana j component of
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the adjugate matrixiVi may be presented in the form of the mixed vector productV̄a j5(21)(a1 j )@Vb( j ),Vg( j ),Vd( j )# of
three-dimensional vectors, obtained by crossing out thej th components fromVb , Vg , Vd . This observation allows us to
cancel those terms, in which any two of the multiplied vectors are parallel. Also, retaining only principal terms in acco
with Eqs.~22!, ~28! substantially facilitates the derivation. As a result, it yields the relation

P52
l2@l4~m12l4m2!2l1m1#

l1@l4~m12l4m2!2l2m1#
, ~32!

wherem15(W2)24W̄342(W2)34W̄24, m25W24W̄342W34W̄24. Invoking Eqs.~4! and ~27!, we obtain

P52
l2$e

ikyD2l122qu
2@sin~kyD !1eikyd1 sin~kyd2!22qu

2 sin~kyd1!sin~kyd2!#%

l1$e
ikyD2l222qu

2@sin~kyD !1eikyd1 sin~kyd2!22qu
2 sin~kyd1!sin~kyd2!#%

. ~33!

Eventually, on inserting Eqs.~31!, ~33! into Eq. ~29!, we arrive at the desired relation for the reflection coefficient

R5
2iqu

2eiky~d22d1!@cos~kyd1!2qu
2 sin~kyd1!#sin~NK1D !

$e2 ikyd2~122iqu
2!12iqu

4@sin~kyd2!2eikyd1 sin~ky~d22d1!#%sinNK1D2eikyd1 sin@~N21!K1D#
, ~34!
i
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@the next-order termO(e2kxd) is neglected#. Using Eqs.~34!
and ~24!, the absolute value of the reflection rate squared

uRu25
Q2

Q21sin2~K1D !/sin2~NK1D !
, ~35!

where

Q254qu
4@cos~kyd1!2qu

2 sin~kyd1!#2, ~36!

and the dispersion dependenceK1 (ky) is determined by Eq.
~24!. Correspondingly, the transmission rateuTu2512uRu2

may be written as

uTu25
1

11Q2 sin2~NK1D !/sin2~K1D !
. ~37!

Note that the ratio sin(K1D)/sin(NK1D) may be presented a
finite power series in sin2(K1D). Hence, by appeal to Eq
~24!, the reflection coefficientR Eq. ~34! for any givenN
may, in principle, be cast into the form of algebraic ration
function of cos(kyd1,2) and sin(kyd1,2), with complex-valued
coefficients including parametersN andqu

2.

IV. ANALYSIS OF THE DIFFRACTION SPECTRUM

A. Equidistant superlattice

First, we consider the superlattice constituted by doma
of the same widthd, so that the period isD52d. Accord-
ingly, the dispersion relation~24! simplifies to the form

cos~K1D !52@cos~kyd!2qu
2 sin~kyd!#221, ~38!

therefore,Q254qu
4 cos2(1

2K1D), and

uRu25
qu

4

qu
41sin2~ 1

2 K1D !/sin2~NK1D !
. ~39!

The spectrum of the reflection-rate amplitudeuR(kyD)u2, de-
scribed by Eq.~39!, consists of periodically repeated princ
pal Bragg peaks and racks of secondary maximums alter
ing with zeros of reflection~Fig. 2!. Its appropriate inversion
s

l

s

at-

gives the transmission spectrumuT(kyD)u2. Comparing the
spectrumuRu2, which is obtained from Eq.~39!, with the
exact numerical calculation, based on the definition~7! @i.e.,
with no appeal to Eq.~22!#, shows satisfactory conformity
already for the first Bragg peak and perfect confluence in
higher-frequency part of the spectrum~inset in Fig. 2!. In-
spection of Eq.~39! in conjunction with Eq.~38! allows for
analytical description of the features of the spectral dep
dence ofuR(kyD)u2.

By Eq. ~39!, the SH wave travels through the domai
superlattice without reflection~R50, uTu51! at

~K1D !0
~n!5

pn

N
, ~40!

wheren is not divisible by 2N. At

~K1D !sm
~n!5

p

2N
~112n!, ~41!

the value of the reflection-coefficient amplitude attains s
ondary maximums

uRusm
2 5

qu
4

qu
41sin2@p~112n!/4N#

. ~42!

Substituting Eqs.~40! and ~41! into Eq. ~38! reveals the lo-
cation of the reflection zeros and secondary maximums in
spectrum. There are 2N21 reflection zeros alternating with
2N22 secondary maximums between each two neighbo
principal peaks in the spectrumuR(kyD)u2.

The Bragg-type resonances, associated with the sync
nism of reflections from the neighboring interfaces of1/2
and 2/1 types, occur in the spectral ranges termed s
bands. According to Eq.~39!, they are bounded by the con
dition

K1D52p l ~ l 51,2, . . .!. ~43!

Hence, by virtue of Eq.~38!, the edges of thel th stop band
are determined as
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FIG. 2. Reflection rateuR(kyD)u2 for an equidistant superlatticeD52d ~N54, u530°, the valueq250.31 is taken for BaTiO3 from Ref.
22!. Inset shows the comparison with the exact calculation ofuRu2 ~dashed line! via the definition~7!.
it

i-
p

-

ttice

-

one

d
ums
~kyD !152p l 24 arctan~qu
2!, ~kyD !252p l , ~44!

so that its width in unitskyD is

Dband54 arctan~qu
2!. ~45!

Using Eqs.~35!, ~43!, at the edges of the stop bands,

uRued
2 512

1

1116qu
4N2 . ~46!

Inside the stop bands, the Bloch wave numberK1 takes com-
plex valuesK152p l /D1 iK 18 . At the center of thel th stop
band

~kyD !c52p l 22 arctan~qu
2! ~47!

the value K18D reaches its maximum (K18D)max[d, and
hence the amplitude of the reflection coefficient attains
principal maximum value,

uRumax
2 5tanh2~Nd!. ~48!

Inserting Eq.~47! andK1D52p l 1 id into Eq. ~38! yields

coshd5112qu
4. ~49!

Note that, by Eqs.~38!, ~49!, the extremal values of the e
genvaluesl1,25exp(6iK1D), taken in the center of a sto
band, arel1,25162qu

2A11qu
21qu

4. Hence, they satisfy the
inequality ~28!, which implies exp(kxd);exp(pl tanu)
@q2 tanu. Defining the widthDmax of the principal peaks as
s

the spectral distance~in units kyD! between two zeros bor
dering the peak, we infer from Eqs.~40!, ~38! that

Dmax54 arccosS 1

A11qu
4

cos
p

2ND . ~50!

It is seen that once the number of domains in the superla
is large enough to fulfillp/2N!qu

2, the width of principal
peaks tends to the width of stop bands:Dmax'Dband.

Typical valuesq2&0.1 provide the strong inequalityqu
2

5q2 tanu!1 for a fairly wide range of values of the inci
dence angleu. By Eq. ~49!, the valued[(K18D)max may be
approximated atqu

2!1 asd'2qu
2, so that the height of the

principal maximums isuRumax
2 'tanh2(2qu

2N). In view of Eq.
~50!, its width at p/2N@qu

2 is Dmax'2p/N, while at p/2N
!qu

2 the width Dmax tends toDband'4qu
2. Relation~38! at

qu
2!1 and ukyD22p l u@4qu

2 ~i.e., remotely from stop
bands! reduces to the formkyD'K1D22qu

2. It shows, with
due regard for Eqs.~41!, ~42!, ~36!, that the magnitude of
secondary maximumsuRusm is of the order ofqu

2, and their
width tends to half of the width of main peaks:Dsm'p/N. It
is seen that a small value of the parameterqu

2 provides sharp
selectivity of the spectrum.

Consider the case of incidence close to a grazing
(cosu!1), which sets the inverse limiting inequalityqu

2@1.
By virtue of Eqs. ~45! and ~50!, Dband'2p24qu

22, Dmax

'2p24qu
22 cos(p/2N), i.e., the principal peaks broaden an

tend to the steplike shape, whereas the secondary maxim
contract and steeply increase in height:uRusm

2 '1
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2qu
24 sin2@p(112n)/4N# ~Fig. 3!. Simultaneously, the at

tainable range of the variablekyD is shrinking. The exact
grazing incidence under condition~22! entails the Maerfeld-
Tournois evanescent wave21 at the front interface.

B. Nonequidistant superlattice

In case of the nonequidistant superlattice (d1Þd2), the
stop bands of theSH-wave reflection spectrumuR(kyD)u2
Eq. ~35! are defined by the relation

K1D5p l ~ l 51,2, . . .!. ~51!

This is different from condition~43! for the equidistant su-
perlattice, in which caseK1D5p(2l 11) equal to the odd
number ofp’s brings aboutR50 due to the antisynchronism
of reflections from neighboring interfaces. Another basic f

FIG. 3. Evolution of the reflection spectrum at the angle
incidence becoming close to a grazing one~D52d, N54, q2

50.31!. ~a! u570°; ~b! u580°; ~c! u585°.
-

ture, characterizing the nonequidistant superlattice, is that
Bragg maximums in the reflection and transmission spe
exhibit a certain modulation~see Refs. 4, 7, 11, 12, 18!. This
modulation, which may be observed at passing from F
4~a! to Figs. 4~b! and 4~c!, is governed by the relation be
tween the widthsd1 ,d2 of domains constituting a unit cell.

Inserting Eq. ~51! into Eq. ~24! and assumingqu
2!1

yields concise relations for the spectral positions of the ed
of the l th stop band:

~kyD !15p l 22qu
2
„11ucos@p l ~d1 /D !#u…,

~kyD !25p l 22qu
2
„12ucos@p l ~d1 /D !#u…. ~52!

f
FIG. 4. Patterns of the reflection spectrum for different relatio

between widthsd1 , d2 of domains in a unit cell~N56, u530°,
q250.31!. ~a! d1 /D51/2 ~equidistant superlattice!; ~b! d1 /D
52/5 ~the period of modulation of the Bragg peaks isT55!, ~c!
d1 /D51/4 @the Bragg peaks of the ordersl 5214m (m
50,1, . . . ) satisfy the extinction rule#.
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Taking the center of thel th stop bandkyD5p l 22qu
2 gives

K1D5p l 1 id l , in which d l turns out to be the stop-ban
halfwidth ~in units kyD!:

d l5
1

2
Dband52qu

2UcosS p l
d1

D D U. ~53!

Under the conditionqu
2!1, the reflection-rate amplitude a

the edges of thel th stop band is

uRued
2 512

1

1116N2qu
4 cos2@p l ~d1 /D !#

, ~54!

and its principal maximum value at the stop-band center
lows in the form

uRumax
2 5tanh2F2qu

2NUcosS p l
d1

D D UG . ~55!

Manipulating Eq.~24! gives the width between two zero
bordering the principal maximum asDmax'2p/N at d l
!p/N, andDmax'Dband at d l@p/N.

Equations~52!–~55! reveal that the modulation of th
Bragg peaks ofuRu is periodical, provided that the ratio ofd1
and D5d11d2 is a rational fraction:d1 /D5s/T ~s, T are
integers andT is not divisible bys!. Then, eachl th peak is
repeated by the (l 1mT)th ones (m51,2, . . . ), seeFig.
4~b!. Moreover, if the numerators is odd and the denomina
tor T is even, then the Bragg peaks with the numbers, sa
fying the extinction rule

l 5
T

2
1mT ~m50,1,2, . . . !, ~56!

are suppressed@Fig. 4~c!#. This is similar to the results, ob
tained for the piezocrystalline superlattice with claddi
interfaces.12,16
ro

E

c

pl

.

ya
l-

s-

V. SUMMARY

The Bragg-diffraction phenomenon arising at an obliq
propagation ofSH wave has been studied in the antipha
superlattice, which describes a system of 180° ferroelec
domains or a stack of piezoelectric layers with antiparal
orientation. The electromechanical coupling stipulates ex
tation of interface modes, so that the diffraction involve
four modes in total and is described by the 434 propagator
matrix W. Given that the wavelength is markedly less tha
the width of domains, which is the condition underlying di
fraction resonances, the two interface modes are charac
ized by large coefficients of exponential decrease/increa
This feature leads to the exponentially strong inequalit
between corresponding eigenvalues ofW. Taking note of
them and utilizing appropriate matrix algebra has provid
the explicit analytical description of the reflection and tran
mission spectra. In turn, it allowed for direct inspection
the resonant features of diffraction, controllable by the p
rameter of electromechanical coupling, frequency, angle
incidence, number of domains, and the pairwise ordering
widths of domains in a unit cell.

It is noteworthy that the developed algebraic metho
which essentially employs the presence of interface mod
may also be applied to the study of reflection transmission
a sagittal wave in elastic multilayers at such angles of in
dence, when the other sagittal-wave branch yields interf
modes.
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