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Transverse acoustic waves in piezoelectric and ferroelectric antiphase superlattices
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The diffraction of a shear horizontally polarized acoustic wave is analyzed at an oblique incidence upon the
superlattice, which describes a system of 180° ferroelectric domains or a stack of antiparallel piezoelectric
layers. The formalism of 4 4 propagator-matrix formalism, which takes into account the electromechanical
coupling, is pursued. The developed algebraic procedure provides a comprehensive analytical description of
the reflection and transmission rates in an explicit and concise form. This allows direct examination of the
resonant features of the reflection and transmission spectra at an unrestricted variation of the involved param-
eters. In the case of nonequidistant superlattices, the modulation of the Bragg peaks is characterized and the
extinction rule deducedS0163-182@09)08113-§

[. INTRODUCTION the parameter of electromechanical coupling. The analytical
method, which has been worked out in Ref. 17, assumes a
Elastodynamics of multilayered media has been attractingemi-infinite periodic structure and a normal incidence in the
steady interest in recent years with respect to both théase of solid layers. The reflection coefficiémwas obtained
acoustic-phonon properties of nanometer superlattices aritl @ somewhat implicit form, via the root of a matrix equa-
the elastic-wave diffraction phenomehd® A large number  tion.
of materials utilized for fabricating nanometer superlattices This paper is concerned with the oblique propagation of
have piezoelectric properties. In parallel, a “natural” dif- the SHwave in a regular structure of 180° ferroelectric do-
fraction grate is provided by regular structures of 180° ferro-mains, which are characterized by the same elastic properties
electric domains, which are created by means of a certaignd pairwise differ in the sign of their piezoelectric coeffi-
crystal-growth treatment or by applying the electric bias ofcients. This antiphase superlattice may also describe a sys-
alternating sign to a monocrystal in the process of the ferrotem of piezoelectric layers of the same material, which are
electric phase transition. The manufacturing technique fotacked in such a way that the orientations of the principal
various ferroelectric crystals delivers good-quality periodicSymmetry axes in neighboring layers are antiparallebr
structures with a single-domain width in the rangedefiniteness, we will thereafter refer to the case of ferroelec-
5-300um (thickness of domain walls is typically of the or- tric domains) Due to electromechanical coupling at elastic-
der 10 1-10"2 um). The acoustic and optical properties of wave propagation, alternation of signs of the piezoelectric

such ferroelectric superlattices have been the object of mar@OGfﬁCientS stipulate the excitation of the interface modes of
experimental and theoretical studie.g., see Refs. the electric field and the reflection of ttf&H wave at the

6,8,9,11,13,15 interfaces. Invoking the formalism of a propagator matrix,
One of the most effective theoretical tools for the exactwhich herein is of the X4 dimension, we pursue the alge-

analytical study of various wave phenomena in periodicallybraic procedure and obtain the explicit expressions, that

stratified media is the method of the propagator matrix basegomprehensively characterize the spectral dependence of the

on the Bloch formalism. However, the direct analytical cal-reflection rate. The only approximation used is based on the

culations become very cumbersome once the dimension @ttrong inequality exp-27(d/\) sin §]<1, whered is the do-

the propagator matrix is higher thanx2 due to the main width,\ is the wavelengti{#=0 corresponds to the

coupled-mode effect. It occurs, for instance, at a mixing ofmormal incidence, at which th€H mode uncouples from

the sagittal acoustic modes in a symmetry plane of purelglectric field and becomes nonpiezoactivExponential ac-

elastic stratified media®***or at theSHwaves propaga- curacy of this approximation ensures its virtual exactness for

tion in the presence of electromechanical coupfing®%1®  describing the Bragg-resonance features of diffraction.

As a result, theoretical treatment in those cases is largely

numerical. The explicit analytical results have been mainly Il. BACKGROUND

confined to obtaining the Bloch dispersion relatitime char- . . ) ) )

acteristic equation for the propagator makriwhereas the ~ Propagation of plane acoustic waves in a medium with

direct analytical calculation of the reflection rate itself hasPi€Zo€lectric properties is governed by the equations

been discussed under certain fairly restrictive approxima-

tions and assumptions. In particular, in Refs. 12 and 16 the

propagator matrix has been effectively reduced to the22

dimension thanks to the screening properties of metallized

interfaces separating piezoelectric layers. The calculation ovhere the comma in the subscripts and superposed dot imply

the reflection coefficient was then carried out under the conspatial and time derivatives, respectivelyjs the density,

dition g? tan#<1, whered is the angle of incidence anyf is gjk is the tensor of mechanical stress,is the vector of

oij j=pli, D;;=0;

T =CijuUi 1+ &ije x, Di=—sjjo el (D)
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FIG. 1. An antiphase superlattice.

elastic displacemenb) is the vector of electric inductiony
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Hence, both types of domains are characterized by the same
even-rank tensors of elastic modali,, and dielectric per-
mittivity &;;, while components of the odd-rank tensor of
piezoelectricitye;; have opposite signs in neighboring do-
mains constituting a unit cell. Its widtb=d;+d, is the
period of the superlattic€D =2d in the case of an equidis-
tant structurg The system of R—1 domains is supposed to
be bounded from both sides by the monodom@&iomoge-
neous substrates of the same ferroelectric crystal. Taking the
piezoelectric coefficients;;, of the substrates as reference
ones assigns the valuese;; andg;j to, respectively, the
first and the second domain of each unit dglbmains of
“—"and “ +" types).

Suppose that th&H wave, propagating in the plangY
and polarized along the ax&(Fig. 1), falls upon the domain
superlattice at the angle of incidenéd 6+ 0). According to

is the electric potential. We consider the periodic structure oEgs. (1), this mode is uncoupled from the two other elastic

180° domains in a ferroelectric crystal of thendn symmetry
class(BaTiO; or PbTiO, are typical examples The vector

modes, but at the same time it couples with quasistatic elec-
tric field. Due to opposite signs of piezoelectric coefficients

of spontaneous polarization is directed along the principain neighboring domains, a singl8H acoustoelectric wave
symmetry axis and has antiparallel orientations in the neighdoes not fulfill the continuity of the displacememy, trac-

boring domains. It lies in the plane of domain walls which tion f,=
coincides with a symmetry plane. Let the aXi®e orthogo-

—ikyo3, potentiale, and the normal component of
electric inductiorDy. This results in reflection at interfaces,

nal to the interfaces, and the ad$e parallel to the fourfold which is specular for symmetry reasons, and in excitation of
axis (Fig. 1). The mutual orientation of symmetry elements two interface modes. On appealing to E(fs, the aforemen-

in adjoined 180° domains are related by the center of invertioned wave parameters in a given domaimtf cell may be
sion, which pertained to the paraelectric phase of the crystapresented in the form

ufy) \ ™ 1 1
_ f’l(y) _ (T +/el5/811 e—iky(y+nD) | p(n.F) +e,15/811 oiky(y+nD)
ik, “f,(y) ' CyCoto r —Cyycotl
ik, 'Dy(y) 0 0
0 0
_ - 1
n,¥) —ky(y+nD) (n,+) k. (y+nD)
+b{ ey e K +b., Tiegs e 2
ieqy —leg

(the common factor eXj{k,x—wt)] is suppressad In Eq. (2), the notations used am,,=c,,+ (e25e11), ky=ksin, Ky

=k cosé, k= (u(C44/p) Y2 the upper and lower signs correspond to the domains of, respectivelyahd “ + types; and

the subscripts,r,s,s’ are a55|gned to the partial amplitudes of, respectively, the incident, reflected, and two interface modes.
Invoking the boundary conditions of continuity at interfages— (n—1)D andy=—(n—1)D —d; (Fig. 1), then eliminating

the four-component vectds(™ ™) of partial amplitudesbi(”'_), bﬁ“'_), bg”'_), b(s'?‘_) in the standard fashion, yields the
relation

b =wp(™ ), 3
Here the 4<4 propagator matrixV, transferring the column of partial amplitudes through a unit cell, has the form

i . i . . ; . . epgtand ) . egtand )
e ikyD _ 2|Qge ikydp sinh(k,d;) — 2|qgelkyd2 sinh(k,d,) —j 15 e~ kxD(l— ekxdl"kydl) i 15 ekxD(l— e’kxdl"kyd1)
Cas (7
. i . i Lo . ejstand . e;stand )
2iq2e~ ™% sinh(k,d,) e'yP + 2ig2eyd2 sinh(k,d;) i 15C— ek (1 — ghudlatikyd) —i 15c— €0 (1 — g~ kuda+ikydy)
44 44
w= e e
L gikyD( — g kudrtikydy) 12 gikyD (1 — g kud1ikydn) e P+ 2q3e " sin(k,d,) —2q5e% sin(k,d,)
€11 €11
e . .
215 ik yP(1— ghedatikydry eikyD (1 — ghxda-ikydry 2qf,e"kxd2 sin(k,d;) ekxD_zqgekxdz sin(k,d;)
811 811

4
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in which 1
PL=trW,  pp=35[tr(W?)—(trW)?],
2
€15
g2=qg’tand, @’=——-, (5)
Casf11 1 1
2 . . p3=7tr(W3)— = (trW?)(tr W)+ (tr W)3, p,s=—detw,
g° is the parameter of electromechanical coupling. There- 3 2
upon, the partial amplitudes of the wave fields at the entrance (11)
and at the exit of the superlattice are related as follows: tr denotes the trace of a matrixis the 4x 4 identity matrix.
b\ (e by \ (& Using Eq.(9), one may cast Eq10) into the form
Er —wN 8 ' ©6) detW—AD =N = (N Ao+ Nz A )A3+H[(N 1+ Ny)
0 by X (Ag+Ag)+2]IN2= (A g+ Ng+ Ag+ AN +1,

where b(®, b{" are the amplitudes of, respectively, the (12

incident and reflecte®&H waves at the front face of the su- so that
perlattice;b(®=b, is the amplitude of th&SH wave trans-
mitted through the superlatticb®™ andb(®” are the ampli-  P1=P3~
tudes of the evanescent interfacial waves decreasing away
from the entrance and exit interfaces, respectively. EliminatEquation(12) reveals that, thanks to E(), the fourth-order
ing the amplitudes, referred to the exit, delivers the reflectiortharacteristic equation d#f{—\1)=0 is a reciprocal one
coefficientR=b{*"/b(®" in terms of the propagator matrix: (i.e., py=ps). Therefore, it may be reduced to a quadratic
equation (without actually calculating the matrixw
(WN) 51 (WN) 15— (WN) L (WN) 41 +W™!, as implemented in Ref.)2Introducing

= W) 12WN) g (W) (W) @)

The Nth power of the matriXW with the nondegenerate
eigenvalues\, (a=1,...,4) may bedefined by the

A +)\2+)\ +)\4, pzz_()\1+)\2)()\3+)\4)_2
(13

1 1
H1=Nt N M3:K3+)\_3- (14

relation® and appealing to Eq%9), (11), (13) readily yields

. g =trW L rw)—trw2—41. (15

Ny NO . 1 N M T =W,  wgpuz=| (T —uUrWe—4j[.
(W )|k Zl )\aQIa(Q )ak deﬂQ” 2 A Q Qakv 2
(8) Hence, by the Bezout theorem, one arrives at the character-

where || Q||=Q;, (i,a=1,...,4) is thematrix constituted istic equation in the form
by the components of the eigenvectéls of W [note that 1
they may figure in Eq(8) bearing arbitrary normalizatign w?—(trW)u+ E[(trW)Z—trW2—4]=0. (16

andQ ., are components of the adjugate matjix||.
which is equivalent to the presentations given in Refs. 5,2.
1. ALGEBRAIC FORMALISM Once Eq.(16) is solved, the eigenvalues, (a=1,...,4)
. , , may be found from the quadratic equations furnished by Eq.
A. General relations for the elgenvalugs and eigenvectors (14).
of the propagator matrix Next, we calculate the eigenvectors of the propagator ma-
In accordance with the general theory of the Blochtrix W. Provided that the eigenvalues\of are nondegener-
formalism?° the propagator matritV (4) is unimodular ate, the componen®,;, of its eigenvector€2, are given by
(detW=1) due to the symmetry of the considered problem the relation
and its eigenvalues, may be presented in the form
Qi ,=(W=XNyliq, 1,a=123/4, (17)

N,=eKeP  @=1234, . :
where the numbeq of the column of the adjugate matrix

Ni=1M,, A3z=1/g, (9) W—)\a! may be chosen arbitra}rily, and cgrrespondingly'the
normalization for the vector®, is not specified. The matrix
where K, (K;=—K;,Kz=—K,) are termed the Bloch w—)\| satisfies the identify
wave humbers. The characteristic polynomial of>a4 ma-
trix W ist® W= =N+ A2WD A W@+ W), (18)
4

detW - =TT (\g=N)=N*=pA3~pA>—psh—py,

w (10 WE=W=pyl, WE=W2=p,W-p,l,

where W =W3—p,W2—p,W—psl, (19

in which
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where the coefficientp,, p,, p; are defined by Eq(11)
and obey relation13). On multiplyingW® by W, compar-
ing the result with the characteristic polynomidl0), and
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Hence follow the eigenvalues; ,=exp(*iK;D) and A4
=exp(iK3D). The indicesa=1,2 are assigned to those
Bloch eigenmodes, which stem from the incident and re-

then making use of the Cayley-Hamilton theorem, we findflected bulkSHwaves, and the indices= 3,4 are associated

that W®W=p,=—detW, hence

W =—w. (20
Inserting Eqs(18)—(20) into Eq. (17) and invoking Eq.(9)

delivers the following representation for the components of

the eigenvector€}, of W:

Qia:()\a+)\y+)\5)5iq_(l+)\a)\y_l—)\a)\ﬁ)wiq

+ N o(W2)iq—Wig, (21
where d;, is the Kronecker symbol;=1,...,4;q is any fixed
column’s numberg=1, .. .,4, and thether indicess, vy,

are supposed to match the orderigh ;=1, A A ;=1.
We note that knowledge of eigenvecto®, («
=1,...,4) ofW readily yields the Bloch eigenmodéH},,

with the interface waves. Relating=3 and a«=4 to the
decreasing and increasing waves, respectively, we obtain

Ag=e kb, (26)
N 4=eXP —2q7 e sin(k,dy) + e sin(kyd) ]
+4q3[ sink,D — g3 sin(k,d;)sin(k,d)]. (27)

It is seen that, in view of Eq22), the eigenvaluek , satisfy
the exponentially strong inequalities
N3<<|hql,

INo| <Ny, (28

which are essential for the foregoing derivation of the reflec-
tion coefficientR. [Note that the next-order terms, retained

[U is the 4x 4 matrix constituted by components of the vec-1" Ed- (27), will play an essential role in the forthcoming

tors featured in the right-hand side of E8)], which are the
eigenvectors of the similar propagator matdx¥vU ~ ! trans-
ferring the wave field Eq(2) through a unit cell.

B. Derivation of the reflection coefficient

At this stage we set the assumption

e ki<l (i=1,2). (22)
Another strong inequality
aze “disink,dj)<1 (i,j=1,2), (23

also underlying the foregoing derivations, is virtually encap-
sulated in Eq.(22) for commensurable domain widths and
any angle of incidence, including a nearly grazing ore (

—r/2), for which Eq.(23) implies g%e *%kd,<1 [see Eq.
(5); recall also that typical valueg?® are of the order
10 °-101].

Inserting Eq.(4) into the quadratic equatiofi6), we may
write its rootsu; 3= Ccos; sD) in the leading approximation
(in neglect of terms~e~%%) as

cogK;D)=cogk,D)—2qg3 sin(k,D)
—q5 sink,d; sink,dy], (29
1 k,D 2r akydo i kydq of

cogK3D)= i — gyl e™“2sin(k,d;) + et sin(k,d,)]
+2q3[ sink,D — g5 sin(k,dy)sin(k,d,)]. (25)

derivations]

The above-mentioned provisions enable us to find the re-
flection coefficien{7) with the aid of Eq(8) confining to the
leading term©O(A M)+ O(A Y \}). It appears that the terms,
proportional to)\le~e2kad, exactly compensate each other
in both the numerator and the denominator of the right-hand
side of Eq.(7). [This is certainly not an incidental occasion,
since otherwise it would mean that the reflection rate in the
leading order of the short-wavelength approximatigg) is
totally determined by the inhomogeneous interface modes
and is not affected by incident and diffracted bulk modes
which is senselessAs a result, the principal part of the
reflection coefficient may be cast into the form

_ NT'p2P+ 13" p2y
A PP +AS Pro’

(29

where

In order to calculatep;,, we insert the component3;, of
eigenvectord},, from Eq. (21) and then invoke the explicit
form (4) of the propagator matrixV and its eigenvalue ,
Eq. (27). Adhering to the leading order igl*%12 by virtue of
Egs.(22), (28), we find

Pia= — Na{N [ Wia(W?) 44— Wiaa( W2) 4]+ (W2) 1}

= FC{1-\ [e"™P—2q3(sin(k,D) +e* M1 sin(k,dy) + 2g3 sin(k,d; ) sin(k,d,)) 1},

jaa:1121

(31)

wherej = 1,2 correspond to the upper and lower signs, respectively, and the commonCaatoich stems from the definition
(21) of unnormalized eigenvectors, is indeed arbitrary. Deriihig more tedious but straightforward. A component of
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the adjugate matrifQ| may be presented in the form of the mixed vector produgt=(— 1)(““)[950),97(]),Qg(j)] of
three-dimensional vectors, obtained by crossing ouf theeomponents fron€);, €., Q. This observation allows us to
cancel those terms, in which any two of the multiplied vectors are parallel. Also, retaining only principal terms in accordance
with Egs.(22), (28) substantially facilitates the derivation. As a result, it yields the relation

Ao[Aa(Mp—ANgmy) =AM
b _ A Na(my—Ngmy) — Ny 1], (32
N[ Ag(Mg—Ngmy) —Nomy |

wherem; = (W?) ,,W34— (W?) 3,Wa4, My=W,,W3,—W3,W,,. Invoking Egs.(4) and (27), we obtain

(€ — N\, —2q7 sin(k,D) + ey sin(k,d,) — 2q3 sin(k,d;) sin(k,d,) 1}
A o{€MP—N,—2g7[sin(k,D) + e I sin(k,d,) — 202 sin(k,dy)sin(k,d,) ]}

(33

Eventually, on inserting Eq$31), (33) into Eq. (29), we arrive at the desired relation for the reflection coefficient
2iqieiky(dz—dp[cos(kydl)—qgsin(kydl)]sirxNKlo)

R= e 'kyd2(1-2iq2) + 2iq?[ sin(k,d,) — eyt sin(k,(d,—d;)]}sinNK,;D —e'*yd1 sif (N— 1)K, D]’
0 6 Yy y

(34

[the next-order tern® (e~ ) is neglectedl Using Eqs(34)  gives the transmission spectrufi(k, D)|2. Comparing the
and(24), the absolute value of the reflection rate squared isspectrum|R|2, which is obtained from Eq(39), with the
) exact numerical calculation, based on the definition[i.e.,
Q (35) with no appeal to Eq(22)], shows satisfactory conformity
Q?+sir(K,D)/si/(NK;D)’ already for the first Bragg peak and perfect confluence in the
higher-frequency part of the spectruiinset in Fig. 2. In-
spection of Eq(39) in conjunction with Eq.(38) allows for
Q2:4q§[cos(k dl)—q,Z; sin(k, d)1, (36) analytical description of the features of the spectral depen-
dence of|R(k,D)|2.
and the dispersion dependerite (k,) is determined by Eq. By Eq. (39), the SH wave travels through the domain

(24). Correspondingly, the transmission raf*=1—|R|*>  superlattice without reflectiotR=0, | T|=1) at
may be written as

R|?=

where

n
1 (KiD)"=—- (40)

N 1
1+ Q?sir’(NK,D)/sir?(K,D) " 37)
h i t divisible by 2. At
Note that the ratio sit{;D)/sin(NK,D) may be presented as wheren is not divisible by
finite power series in sfK;D). Hence, by appeal to Eq.

(24), the reflection coefficienR Eq. (34) for any givenN (KlD)gm_ZN (1+2n), (42
may, in principle, be cast into the form of algebraic rational

function of cosk,d, ) and sinkd; ), with complex-valued the value of the reflection-coefficient amplitude attains sec-

|TI1?=

coefficients including parameteN;andqg ondary maximums
IV. ANALYSIS OF THE DIFFRACTION SPECTRUM |R 2 q‘; (42)
= )
A. Equidistant superlattice "t sinf{ r(1+2n)/4N]

First, we consider the superlattice constituted by domainSubstituting Eqs(40) and (41) into Eqg. (38) reveals the lo-
of the same widthd, so that the period i®=2d. Accord- cation of the reflection zeros and secondary maximums in the
ingly, the dispersion relatiof24) simplifies to the form spectrum. There areN’— 1 reflection zeros alternating with
) . ) 2N—2 secondary maximums between each two neighboring
cogK;D)=2[cogk,d)—qjsin(k,d)]*~1, (38  principal peaks in the spectrufR(k,D)|%.
The Bragg-type resonances, associated with the synchro-
therefore,Q2=4q‘; cos(:K,D), and nism of ref?eg:ti)(/)%s from the neighboring interfaces%eﬂ?i

a and —/+ types, occur in the spectral ranges termed stop
IR|2= 9 ) (399  bands. According to Eq39), they are bounded by the con-
-+ sir?(3 K,D)/sir?(NK,D) dition
The spectrum of the reflection-rate amplity&gk,D)|?, de- K,D=2m (1=12,...). (43)

scribed by Eq(39), consists of periodically repeated princi-
pal Bragg peaks and racks of secondary maximums alternabence, by virtue of Eq(38), the edges of théth stop band
ing with zeros of reflectioniFig. 2). Its appropriate inversion are determined as
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10k Dix

FIG. 2. Reflection rat¢d¥(k),D)|2 for an equidistant superlatti@=2d (N=4, §=30°, the valug;?=0.31 is taken for BaTi@from Ref.
22). Inset shows the comparison with the exact calculatiofRpt (dashed lingvia the definition(7).

(k,D)y =27l —4 arctariq3), (k,D),=2ml, (44)
so that its width in unitk,D is
Apand=4 arctariq?). (45)
Using Egs.(35), (43), at the edges of the stop bands,

IRIZ=1- (46)

1+ 16q5N?’

Inside the stop bands, the Bloch wave numietakes com-
plex valuesK,=2=l/D+iK;. At the center of théth stop
band

(k,D).=2l -2 arctariq}) (47

the value K;D reaches its maximumK(;D) =6 and

the spectral distancén units k,D) between two zeros bor-
dering the peak, we infer from Eq&10), (38) that

1 T
Apa=4 arccoé \/qu cosm) . (50

It is seen that once the number of domains in the superlattice
is large enough to fquiIIw/2N<q§, the width of principal
peaks tends to the width of stop bands;,~Apang-

Typical valuesq?<0.1 provide the strong inequaliuy%
=g?tan6#<1 for a fairly wide range of values of the inci-
dence anglé. By Eq. (49), the valued=(K;D)nax may be
approximated at2<1 asd~2q3, so that the height of the
principal maximums igR|2~tantf(2g°N). In view of Eq.
(50), its width at 77/2N>q§ is Anmac=2mN, while at /2N
<Q3 the width A . tends t0Ap.=4q5. Relation(38) at

hence the amplitude of the reflection coefficient attains itsq%«l and |kyD—27-rI|>4q§ (i.e., remotely from stop

principal maximum value,
|R|2,=tant?(NJ§). (48)
Inserting Eq.(47) andK;D =2l +i ¢ into Eq. (38) yields
coshé=1+2q%. (49)

Note that, by Eqs(38), (49), the extremal values of the ei-
genvalues\ ; ,=exp(*iK,D), taken in the center of a stop
band, arex, ,=1+2q3.\1+q3+qj. Hence, they satisfy the
inequality (28), which implies exp§d)~exp(l tan6)

>g?tanéd. Defining the widthA ,, of the principal peaks as

bands reduces to the forrk,D~K;D —2q3. It shows, with
due regard for Eqsi4l), (42), (36), that the magnitude of
secondary maximumkR|sny is of the order ofg?, and their
width tends to half of the width of main peaks;,~ 7/N. It
is seen that a small value of the paramq@provides sharp
selectivity of the spectrum.

Consider the case of incidence close to a grazing one
(cos#<1), which sets the inverse limiting inequaligf> 1.
By virtue of Egs.(45) and (50), Apand=27—40,2% Amax
~27-r—4qucos(w/2N), i.e., the principal peaks broaden and
tend to the steplike shape, whereas the secondary maximums
contract and steeply increase in heightR|2~1
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FIG. 3. Evolution of the reflection spectrum at the angle of

incidence becoming close to a grazing ofiz=2d, N=4, g2
=0.31). (a) #=70°; (b) 6=80°; (c) H=85°.

—q, *sirf[#(1+2n)/4N] (Fig. 3. Simultaneously, the at-
tainable range of the variablgD is shrinking. The exact
grazing incidence under conditid@2) entails the Maerfeld-
Tournois evanescent wakteat the front interface.

B. Nonequidistant superlattice

In case of the nonequidistant superlattiach #d,), the
stop bands of theSHwave reflection spectrurfR(k,D)|?
Eq. (35) are defined by the relation
(51

K,D=ml (1=1,2,...).

This is different from conditior(43) for the equidistant su-
perlattice, in which cas& ;D= #(21+1) equal to the odd

number of#’s brings abouR=0 due to the antisynchronism
of reflections from neighboring interfaces. Another basic fea-
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IRY

1

c) ° 2 4 6 8 1k Dix

FIG. 4. Patterns of the reflection spectrum for different relations
between widthgd;, d, of domains in a unit cel(N=6, 6=30°,
g°=0.31). (a) d,/D=1/2 (equidistant superlattize (b) d,/D
=2/5 (the period of modulation of the Bragg peaksTis-5), (c)
d,/D=1/4 [the Bragg peaks of the orders=2+4m (m
=0,1, ...)satisfy the extinction rule

ture, characterizing the nonequidistant superlattice, is that the
Bragg maximums in the reflection and transmission spectra
exhibit a certain modulatiofsee Refs. 4, 7, 11, 12, 18This
modulation, which may be observed at passing from Fig.
4(a) to Figs. 4b) and 4c), is governed by the relation be-
tween the widthsl,,d, of domains constituting a unit cell.

Inserting Eq.(51) into Eq. (24) and assumingy3<1
yields concise relations for the spectral positions of the edges
of thelth stop band:

(kyD); =l —203(1+|cog =l (d; /D)])),

(kyD); =l —205(1~|cog «l(d1/D)])).  (52)
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Taking the center of théth stop bandk,D = 7l —2q§, gives
K;D=al+id,, in which § turns out to be the stop-band
halfwidth (in unitsk,D):
&
COSs 7 E .

Under the conditiomg<1, the reflection-rate amplitude at
the edges of théth stop band is

(53

1 2
5I:§Aband: 2qy

1
 1+16N2g% cod[ #l(d,/D)]’

IRIz=1 (54)

and its principal maximum value at the stop-band center fo

lows in the form
| &
COoS§ T 5 .

Manipulating Eq.(24) gives the width between two zeros
bordering the principal maximum ad,~27/N at 4
<7T/N, andAmaX%Abandat (S|>’7T/N

Equations(52)—(55) reveal that the modulation of the
Bragg peaks ofR is periodical, provided that the ratio df
andD=d;+d, is a rational fractiond,/D=s/T (s, T are
integers andr is not divisible bys). Then, eachth peak is
repeated by thel(-mT)th ones (n=1,2,...), seeFig.
4(b). Moreover, if the numeratos is odd and the denomina-

2
max

|R|2=tant?| 292N (55)
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V. SUMMARY

The Bragg-diffraction phenomenon arising at an oblique
propagation ofSH wave has been studied in the antiphase
superlattice, which describes a system of 180° ferroelectric
domains or a stack of piezoelectric layers with antiparallel
orientation. The electromechanical coupling stipulates exci-
tation of interface modes, so that the diffraction involves
four modes in total and is described by th& 4 propagator
matrix W. Given that the wavelength is markedly less than
the width of domains, which is the condition underlying dif-
fraction resonances, the two interface modes are character-

lized by large coefficients of exponential decrease/increase.

This feature leads to the exponentially strong inequalities
between corresponding eigenvaluesWf Taking note of
them and utilizing appropriate matrix algebra has provided
the explicit analytical description of the reflection and trans-
mission spectra. In turn, it allowed for direct inspection of
the resonant features of diffraction, controllable by the pa-
rameter of electromechanical coupling, frequency, angle of
incidence, number of domains, and the pairwise ordering of
widths of domains in a unit cell.

It is noteworthy that the developed algebraic method,
which essentially employs the presence of interface modes,
may also be applied to the study of reflection transmission of
a sagittal wave in elastic multilayers at such angles of inci-

tor T is even, then the Bragg peaks with the numbers, satidence, when the other sagittal-wave branch yields interface

fying the extinction rule

2

are suppresselFig. 4(c)]. This is similar to the results, ob-

+mT (m=0,1,2...), (56)

modes.
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