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The Kolmogorov-Johnson-Mehl-Avrami~KJMA! theory for the time evolution of the order parameter in
systems undergoing first-order phase transformations has been extended by Sekimoto to the level of two-point
correlation functions. Here, this extended KJMA theory is applied to a kinetic Ising lattice-gas model, in which
the elementary kinetic processes act on microscopic length and time scales. The theoretical framework is used
to analyze data from extensive Monte Carlo simulations. The theory is inherently a mesoscopic continuum
picture, and in principle it requires a large separation between the microscopic scales and the mesoscopic scales
characteristic of the evolving two-phase structure. Nevertheless, we find excellent quantitative agreement with
the simulations in a large parameter regime, extending remarkably far towards strong fields~large supersatu-
rations! and correspondingly small nucleation barriers. The original KJMA theory permits direct measurement
of the order parameter in the metastable phase, and using the extension to correlation functions one can also
perform separate measurements of the nucleation rate and the average velocity of the convoluted interface
between the metastable and stable phase regions. The values obtained for all three quantities are verified by
other theoretical and computational methods. As these quantities are often difficult to measure directly during
a process of phase transformation, data analysis using the extended KJMA theory may provide a useful
experimental alternative.@S0163-1829~99!06913-1#
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I. INTRODUCTION
The phase-transformation kinetics in systems undergo

first-order phase transitions are important in many scien
and technological disciplines. Around 1940, Kolmogoro1

Johnson and Mehl,2 and Avrami3 ~KJMA! introduced a
simple theory describing the decay of a metastable sys
towards a unique equilibrium phase. This theory applies
systems with a nonconserved order parameter, in which
decay is driven by a difference between the free-energy d
sities of the metastable and equilibrium phases. Origin
conceived for metallurgical applications, it was later form
ized and generalized by Evans,4 who also pointed out its
applicability in surface science.

The basic assumptions of the KJMA theory are simp
negligibly small ‘‘droplets’’ of the equilibrium phase nucle
ate from the uniform metastable phase and subseque
grow without substantial deformation. The growing drople
are assumed to be randomly placed and overlap freely,
the result that the remaining volume fraction occupied by
metastable phase decays exponentially with a power of ti

wms~ t !5 exp~2Cta!. ~1.1!
PRB 590163-1829/99/59~14!/9053~17!/$15.00
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Both the coefficientC and the ‘‘Avrami exponent’’a depend
on the spatial dimensiond and on details of the nucleatio
and growth processes. In general,a.1; thus Eq.~1.1! does
not represent a stretched exponential.

The KJMA picture has been extensively applied in d
verse fields of research.5 A small selection of examples in
clude transitions between different liquid-crystal phase6

crystallization kinetics in lipids,7 sugars,8 polymers,9 and eu-
tectic mixtures;10,11 solid-state phase transformations;12–16

domain switching in ferroelectrics17–25 and ferro-
magnets;26–32 adsorption and surface growth kinetics
electrochemical33–42 or gas/vacuum environments;43 rock
formation;10,44 and slow combustion.45

During the first 40 years after its inception, the KJM
theory appears to have been appreciated mostly by exp
mentalists. It attracted little sustained theoretical interest
til the 1980s, when Sekimoto derived exact expressions
the two-point phase correlation function within the KJM
picture.46 Knowledge of correlation functions makes it po
sible to predict and interpret the results of small-angle sc
tering experiments. In this paper we demonstrate how it
also be utilized to obtain independent estimates of the dro
nucleation rate and growth velocity. Sekimoto’s results ha
9053 ©1999 The American Physical Society
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been generalized to systems with infinitely degenerate e
librium phases13 and to the case of finite degeneracy.47 We
shall refer collectively to the theories that extend the KJM
picture to include correlation functions as the ‘‘extend
KJMA theory.’’ Among recent applications of the extende
KJMA theory are theoretical studies of domain switching
ferroelectrics,18–25predictions of magnetic-force-microscop
observables for nanoscale ferromagnets,27–30 and studies of
hysteresis in spatially extended systems.22,23,48,49Relations
between two-point correlation functions and droplet size d
tributions have also been discussed recently.50

There are many simplifying assumptions inherent in
extended KJMA theory. These include a constant nuclea
rate, a constant interfacial propagation velocity, and the
glect of surface-tension effects that one would expect to
come important when growing droplets meet and coale
In view of this, it is remarkable that the theory appears
perform as well as it does for such a wide variety of syste
Computer studies have previously been performed for m
els in which droplets of a fixed shape nucleate, either de
ministically or randomly, and thereafter gro
deterministically.15,16,51,52However, we are only aware of
single previous study53 in which the kinetic processes act o
length and time scales that aremicroscopiccompared to the
growing droplets, as one would expect for real physical a
chemical systems. Such studies are desirable, as they p
direct verification of the regimes of validity for the ind
vidual assumptions as well as the consequences of partic
assumptions not being exactly fulfilled. In the present pa
we further address this need, with particular emphasis on
information which can be obtained by combining results
the volume fraction and the two-point correlation function
Our purpose is twofold, as discussed below.

Our first aim is to perform a detailed test of the validity
the extended KJMA theory in a particular model system w
microscopic kinetics. We consider a two-dimensional kine
Ising model of ferromagnetic or ferroelectric switching. Th
is equivalent to a simple lattice-gas model of submonola
chemisorption onto a single-crystal surface in the limit th
lateral diffusion can be ignored.39 For this model we test the
KJMA predictions for time-dependent quantities that d
scribe the mesoscopic two-phase structure during the ev
tion towards equilibrium. These quantities include the v
ume fraction, the two-point correlation function, and
Fourier transform, the structure factor. We find excelle
quantitative agreement between the theoretical predict
and the simulation results for a considerable range of app
fields and times.

Our second aim springs from the significant regime
agreement that we establish between the KJMA predicti
and the simulation results for the model studied. This ena
us to use the KJMA prediction for the volume fraction
subtract those regions of the system which have already
cayed to the stable phase at a particular time, and thus m
sure extended time and volume averages of the quasiequ
rium order parameter in the metastable phase. This appr
represents a new method to measure ‘‘thermodynam
quantities in a constrained metastable ensemble.54 Further-
more, the extended KJMA predictions for the two-point co
relation functions enable us to measure separately the nu
ation rate and the average propagation velocity of
i-
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convoluted, moving interface between the metastable
stable phase regions. We show that the measured quan
agree well with theoretical predictions obtained by differe
methods. These methods are numerical transfer-matrix
culations for the metastable order parameter,55–59 a field-
theoretical result for the nucleation rate,60,61 and a nonlinear
response theory for the interface velocity.62 The close agree-
ment between the KJMA and independent estimates confi
that the KJMA theory does not merely produce good fits
the simulation data, but that the fitting parameters meas
nonequilibrium physical quantities that can be difficult
measure by other methods.

The remainder of this paper is organized as follows.
Sec. II we introduce the model and the numerical meth
used in this work. In Sec. III we summarize those results
the nucleation theory of metastable decay and the exten
KJMA theory that are relevant to our study. We give most
the theoretical results for general spatial dimensiond. In Sec.
IV our two-dimensional simulation results are presented a
explained in the framework of the theory. The regimes
agreement between theory and simulations are identified,
the simulation data are used to measure the metastable
parameter~Sec. IV A!, as well as the average interface v
locity and the nucleation rate~Sec. IV B!, all as functions of
the applied field. Correlation functions~Sec. IV C! and struc-
ture factors~Sec. IV D! are also measured. The measur
quantities are compared with independent theoretical e
mates. In Sec. V we summarize our results and give
conclusions and some suggestions for further study.

II. MODEL AND METHODS

A. Model Hamiltonian

The discrete model studied here is defined by the stand
Ising Hamiltonian~the transformation to lattice-gas langua
is given below!

H52J (
^ i , j &

si~ t !sj~ t !2H(
i

si~ t !, ~2.1!

wheresi(t)561 is the ‘‘spin’’ at lattice siterW i at time t, J
.0 is the ferromagnetic coupling constant, andH is the
external field. The sums(^ i , j & and ( i run over all nearest-
neighbor pairs and over all sites on ad-dimensional hyper-
cubic lattice of linear sizeL, respectively. The lattice con
stant defines our unit of length. While our theoretic
discussion is for generald, all the simulations presented ar
for d52. Three-dimensional systems will be considered i
forthcoming paper.63 In order to avoid complications due t
boundaries, we use periodic boundary conditions through
~For recent discussions of boundary effects in metastable
cay, see Refs. 29,64.!

The magnetization per unit cell is

m~ t !5
1

Ld (
i

si~ t !. ~2.2!

Under equilibrium conditionsm is the order parameter con
jugate toH. For H50 and temperatures below a finite crit
cal temperatureTc , the model has two degenerate equili
rium phases in which the magnetization has a cons
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spontaneous magnitudemsp(T)5ms(T,H50). In the pres-
ence of a nonzero field the phase degeneracy is lifted, and
stable equilibrium magnetizationms(T,H) has the same sign
asH.

Although it is not absolutely essential for our study th
Tc and msp(T) are exactly known for the two-dimension
square-lattice Ising model,65,66 these and other exact resul
~see Sec. III A! enable us to quantitatively compare the va
ous parameter estimates obtained from our numerical si
lations with independent theoretical estimates.

The Ising formulation is conveniently symmetric und
simultaneous reversal ofH andsi(t), and it can be directly
applied as a simple model for highly anisotropic ferroma
netic and ferroelectric systems. A less explicitly symmet
formulation is particularly convenient for discussing cryst
lization and adsorption phenomena. It is the equivalent tw
state, attractive lattice-gas model.67,68 In terms of the time-
dependent, local occupation variablesci(t)P$0,1%, Eq. ~2.1!
takes the form

H52F(
^ i , j &

ci~ t ! cj~ t !2m(
i

ci~ t !1
Ld

2 S m2
1

2
m0D .

~2.3!

The quantities appearing in the equivalent formulations
the Hamiltonian, Eqs.~2.1! and~2.3!, are linked by the trans
formations

ci~ t !5
1

2
@11si~ t !#, ~2.4a!

F54J, ~2.4b!

m52H1m0 . ~2.4c!

HereF is the attractive lattice-gas interaction energy, andm
is the chemical or electrochemical potential, whose value
coexistence~i.e., for H50) is m0522zJ52zF/2, wherez
is the coordination number (z52d for hypercubic lattices!.
The chemical potential is related to the~osmotic! pressurep
asm2m05kBT ln(p/p0), wherep0 is the pressure at coexis
ence,T is the temperature, andkB is Boltzmann’s constant
The order parameter conjugate tom is the density~for d
52: the coverage!,

u~ t !5
1

Ld (
i

ci~ t !5
1

2
@11m~ t !#. ~2.5!

B. Stochastic dynamics

The Ising lattice-gas Hamiltonian does not impose a p
ticular dynamic on the system. To study the approach
equilibrium under the influence of thermal fluctuations, w
use the stochastic Glauber dynamic.69 This dynamic is de-
fined by the acceptance probability for a proposed flip ofsi ,

W@si→2si #5
exp~2bDE!

11 exp~2bDE!
, ~2.6!

where DE is the energy change associated with the
tempted spin flip, andb51/kBT. The dynamic was imple-
mented by the standard algorithm used for kinetic studie70
he

t

u-

-
c
-
-

f
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a series of steps in which sites are chosen at random
flipped with probability given by Eq.~2.6!.

The Glauber-Ising model described above~or the same
Hamiltonian with the closely related Metropolis dynamic71!
has previously been used to study a large number of ph
ordering phenomena in condensed-matter physics and o
fields. The two-dimensional version corresponding to
model for which we present numerical results, has been
plied to thermally activated switching in uniaxia
ferroelectric17–25 and ferromagnetic27–32 thin films. The
equivalent lattice-gas model should give a reasonable re
sentation of the kinetics of submonolayer adsorption
chemical33–42 and physical43 systems in which lateral adsor
bate diffusion can be ignored. Electrochemical underpot
tial deposition,34 in which second-layer formation is heavil
suppressed, might be approximated by this model,39 although
more detailed agreement with experimental studies of
namical phenomena34 requires the inclusion of latera
diffusion.40,72,73

C. Quantities characterizing the decay

We study the decay of a metastable phase by first pre
ing the system in an initial state of magnetizationm(0)
511. We then apply a constant magnetic fieldH,0 and let
the system evolve in time. The decay of the metastable ph
is characterized by the behavior of the relaxation function74

which is defined in terms ofm(t) as

f~ t !5
m~ t !2ms

m~0!2ms
, ~2.7!

wherems(T,H) is the field-dependent equilibrium magne
zation. Forms521, f(t) simply equals the time-depende
densityu(t) defined in Eq.~2.5!. The lifetimet of the meta-
stable phase is defined as the average first-passage tim
m50. In the parameter regime described by the KJM
theory, this is equivalent to the requirement that the
semble averagêm(t)&50. ~For a discussion of the effect
of using different cutoff values ofm to definet, see Ref. 75.!

During the decay process, we also compute the circula
averaged time-dependent structure factorS(q,t) and correla-
tion function G(r ,t). The time-dependent structure fact
S(qW ,t) is defined in terms of the Fourier transform ofsi(t),

ŝqW~ t !5
1

ALd (
i 51

Ld

si~ t ! e2 iqW •rW i, ~2.8!

as

S~qW ,t !5^ŝqW~ t ! ŝ2qW~ t !&2^m~ t !&2dqW ,0W . ~2.9!

The components of the reciprocal-lattice vectorsqW are
qj a52p j /L @ j 50,61,62, . . . ,6(L/221),L/2; a5x,y,
. . . ], anddqW ,0W is the Kronecker delta function. The bracke
^ & imply an ensemble average over independent simula
runs.

The time-dependent two-point correlation functionG(rW,t)
is defined by

G~rW,t !5^si~ t !sj~ t !&2^m~ t !&2, ~2.10!
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whererW5rW i2rW j . It is circularly symmetric and was obtaine
as the inverse Fourier transform of Eq.~2.9!. All Fourier
transforms were computed with the fast-Fourier transfo
subroutine FOURN.76 With the normalizations used here
S(qW 50, t)5Ld Var@m(t)#, which is independent ofL if
G(rW,t) is of finite range. Here, Var@m(t)# is the time-
dependent variance of the system magnetization, evalu
over an ensemble of independent runs. The quantitiesS(qW ,t)
and G(rW,t) were circularly averaged to obtainS(q,t) and
G(r ,t), respectively.

In order to find a time-dependent characteristic len
scale, the first moment ofG(r ,t) was computed using th
definition

^r ~ t !&5

(
r

r G~r ,t !

(
r

G~r ,t !

. ~2.11!

The temperature in all our simulations was fixed atT
50.8Tc , which is sufficiently far belowTc that the thermal
correlation lengths in both the stable and metastable ph
are microscopic and the main contributions to the correla
function come from the random two-phase structure. Ot
details about the simulations are given at the beginning
Sec. IV.

III. THEORETICAL BACKGROUND

A. Nucleation theory of metastable decay

In order to obtain the characteristic times and lengths
are important to our analysis, we here give a brief summ
of those aspects of the droplet theory of nucleation that
necessary to analyze our numerical results. More comp
discussions can be found in Refs. 54,75,77.

Thermal fluctuations in the uniform metastable phase c
ate droplets of the stable phase. In terms of the droplet ra
R, the free-energy difference between a uniform metasta
system and one that contains a single such droplet is

DF~R!5dVd
~d21!/dRd21s02VdRduHu•ums2mmsu,

~3.1!

whereVdRd is the volume of a droplet of radiusR, s0 is the
surface tension along a primitive lattice vector, andmms is
the magnetization of the uniform metastable phase. The c
cal radius

Rc5
~d21!s0

uHu•ums2mmsu
'

~d21!s0

2uHumsp
~3.2!

corresponds to the maximum ofDF(R). Droplets with R
,Rc almost always decay, whereas droplets withR.Rc al-
most always continue to grow. In this work we only consid
sufficiently strong fields thatRc!L. ~The regimes of very
weak fields, where this does not hold, are discussed in R
27–29,54,75,78.! The nucleation rate per unit volume fo
growing regions of the equilibrium phase is determined
the free-energy cost of a critical droplet,DF(Rc), through a
ed
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van’t Hoff-Arrhenius relation. The final form is shown b
field-theoretical arguments54,60,61to be

I ~T,uHu!'B~T!uHuK expS 2
J~T!1O~H2!

uHud21 D ,

~3.3a!

where

J~T!5
Vds0

d

kBT S d21

ums2mmsu
D d21

'
Vds0

d

kBT S d21

2msp
D d21

.

~3.3b!

In Eq. ~3.3a!, B(T) is a nonuniversal prefactor. There
strong analytical60,61and numerical58,59,75,79evidence that the
exponentK is 3 for the two-dimensional Ising model, and
is believed to be21/3 for the three-dimensional Isin
model.61 The approximate form ofJ(T) in Eq. ~3.3b! is
completely defined by quantities that for the tw
dimensional Ising model are either known exactly (s0 and
msp),

65,66or can be obtained through a Wulff construction
numerical integration of exactly known quantitie
(Vd).58,59,80,81The O(H2) corrections in Eq.~3.3a! are rela-
tively minor27 and will be ignored.

The above calculations are based on the continuum
sumption that 2Rc@1. From Eq.~3.2! one sees that this re
quires that

H!~d21!s0~T!/msp~T!5HMFSP~T!. ~3.4!

This crossover field has been calledthe mean-field spinoda
~MFSP!, and the regime of stronger fields is called t
strong-fieldregime.75,82 Note thatHMFSP depends onT, but
not onL.

B. Continuum KJMA theory

1. One-point averages

The KJMA theory of metastable decay describes the p
cess of nucleation and growth in a large continuum sys
with a nonconserved order parameter and a nondegen
equilibrium phase.~The precise meaning of ‘‘large’’ will be
elucidated below.! It is assumed that the system is initially i
a uniform metastable phase, in which critical droplets of
stable phase nucleate with rateI (t) per unit volume and
grow with radial growth velocityv(t) without substantially
altering their shapes. The two-phase structure of the sys
is represented by a phase field or indicator function,

u~rW,t !5H 1, if rW is in the metastable phase att

0, otherwise.
~3.5!

The simplest statistical quantity describing the structure
the system is the volume fraction of metastable pha
wms(t), which is defined in terms ofu(rW,t) by

wms~ t !5^u~ t !&5
1

LdE ^u~rW,t !& ddr . ~3.6!

Assuming that droplets of stable phase nucleate with c
stant nucleation rateI ~the case discussed in Sec. III A! and
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grow from an initial volume of zero (Rc!L) without inter-
acting and with constant radial growth velocityv(t)5v, the
ensemble average ofwms(t) is given by

wms~ t !5 expF2IVdvdE
0

t

~ t2s!ddsG
5 expF2

VdIvdtd11

d11 G , ~3.7!

an expression often referred to as ‘‘Avrami’s law.’’1–3 The
argument of the exponential~which grows without bound
with time! is the ‘‘extended volume’’ of stable phase, o
tained by adding the volume fractions of all droplets witho
correcting for overlaps. The exponential dependence on
extended volume is a special case of a general result
randomly placed, polydisperse objects.83 In the approxima-
tion considered here the distribution of droplet radii is u
form betweenRc'0 and vt. In response to claims that
does not represent a correct solution for the stochastic
cess defined in Refs. 1–3, Eq.~3.7! was recently rederived
without reference to the the extended volume.84 In Sec.
III B 3 Eq. ~3.7! will be used to provide explicit forms of the
parameters in Eq.~1.1!. Generalizations of Eq.~3.7!, which
consider complications such as finite-size effects, homo
neous and heterogeneous nucleation, anisotropic growth
diffusion, are discussed in Refs. 14,24,25,36,85,86. Effe
of nonstationary nucleation rates and growth velocities t
depend on the droplet size are discussed in Refs. 53,86

Equation~3.7! defines the time scalet05A(Ivd)21/(d11),
in which A5@(d11)ln 2/Vd#

1/(d11) depends weakly onT
throughVd . This time approximately equals the metasta
lifetime t defined after Eq.~2.7!. An important length scale
is obtained fromt0 and the growth velocityv:

R05vt05Av~ Ivd!21/~d11!'vt. ~3.8!

This characteristic length describes the mesoscopic struc
of the decaying system. It gives the average diameter
droplet att't and can be seen as the average distance
tween independent droplets. The average number of drop
that contribute to the decay is proportional to (L/R0)d. For
Eq. ~3.7! to describe the time evolution correctly, the syste
must contain a large number of independently nucleating
growing droplets, i.e., (L/R0)d@1. This is the sense in which
the system must be large. Because of the large numbe
droplets that contribute to the growth, the regime in wh
KJMA theory is expected to be valid is called themultidrop-
let ~MD! regime.75,82 Under these conditions the system
self-averaging88 and behaves approximately deterministica
according to Eq.~3.7!.

In terms of the four characteristic lengths—the micr
scopic lattice constant~unity!, the critical droplet radiusRc ,
the average droplet distanceR0 , and the system sizeL—the
domain of validity of the KJMA approximation can be sum
marized as

1!Rc!R0!L. ~3.9!

SettingR0'L, one obtains the crossover field that limi
the MD regime in the weak-field/small-system directio
called thedynamic spinodal~DSP!:75,82
t
he
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HDSP~T,L !;S 1

d11

J~T!

lnL D 1/~d21!

. ~3.10!

Its exceedingly slow asymptotic convergence withL results
from Eqs.~3.3a! and~3.8!. However, relatively large system
(L*1032104 for d52) are required for the contribution
described by Eq.~3.10! to be larger than the various corre
tion terms~see Fig. 11 of Ref. 78!.

This discussion reveals three restrictions that pertain
the applicability of the KJMA picture to real systems, as w
as to the Ising lattice-gas model:

~1! It applies only in the MD regime27,54,75,82 of large
systems and/or intermediate fields. In this regime the de
proceeds through a large number of droplets which nucle
independently at random times and positions and sub
quently grow to fill the system.

~2! It describes nucleation and growth in a coarse-grain
sense. This means that the results of the theory should a
with those of the Ising model at length scales much lar
than the critical droplet radiusRc and should disagree a
length scales on the order ofRc and shorter.

~3! It does not take into account interfacial effects, exce
insofar as they determine the nucleation rate. When the
ume fraction of stable phase is large, the dynamics are do
nated by droplet coalescence, which is accelerated by
interface tension. We therefore expect the theory to disag
with the simulation results in this late-time regime.

2. Two-point correlations

The connected two-point correlation function for th
metastable phase,G(rW,t), was obtained in closed form b
Sekimoto under the assumption that the droplets
d-dimensional spheres (V25p, V354p/3):46

G~rW,t ![^u~xW ,t !u~xW1rW,t !&2^u~xW ,t !&2

5H ^u~ t !&2$exp@ Ivdtd11Cd~r /2vt !#21%, for r ,2vt

0, for r .2vt

~3.11!

wherer 5urWu and

C2~y!5
2

3Farccosy22yA12y21y3 lnS 11A12y2

y D G ,
~3.12a!

C3~y!5
p

3
~12y!3~11y!. ~3.12b!

The first moment ofG(r ,t) is defined by

^r ~ t !&5

E rG~r ,t !dr

E G~r ,t !dr

, ~3.13!

consistent with Eq.~2.11!. This is a time-dependent chara
teristic length which describes the structure of the syste
One would expect its value att5t to be proportional toR0 ,
which is confirmed by our simulations.
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3. Relations between KJMA and Ising quantities

Theoretical approximate expressions for the relaxat
function f(t) and the correlation functionG(r ,t) of the
Ising model can be derived from the corresponding qua
ties in the KJMA theory. The main assumption is that f
sufficiently late times, when the mean size of the droplets
stable phase is much larger thanRc , the mesoscopic struc
ture of the Ising model resembles the KJMA picture. Th
assumption is also expected to break down at late tim
when droplet coalescence becomes important.

The time-dependent magnetization of the Ising mod
m(t), is approximately given in terms of the volume fractio
in the KJMA theory as

m~ t !'@mms2ms# wms~ t !1ms, ~3.14!

wheremms andms are the magnetizations of the domains
metastable and stable phase, respectively. From the de
tion of the relaxation functionf(t), Eq. ~2.7!, one also has

m~ t !5@m~0!2ms# f~ t !1ms ~3.15!

for the Ising model. Equations~3.14! and ~3.15! together
yield

f~ t !'
mms2ms

m~0!2ms
wms~ t ! ~3.16!

for the relaxation functionf(t) of the Ising model in terms
of wms(t) in the KJMA theory. The right-hand side of Eq
~3.16! can be considered as a coarse-graining approxima
for f(t), in which the local spins have been averaged ove
region which is large compared toRc , but small compared to
R0 .

At this level of coarse-graining, the correlation functio
of the Ising model is given in terms of the correspondi
quantity in the KJMA theory,G(rW,t), as

G~rW,t !'@mms2ms#
2G~rW,t !1Ĝms~rW !1Ĝs~rW !. ~3.17!

Here Ĝms(rW) and Ĝs(rW) are correlation functions describin
local fluctuations that are nonzero only in the metastable
stable phase, respectively.~See Appendix A.! These correla-
tion functions are of very short range compared toG(rW,t),
and where they are different from zero they are proportio
to wms and (12wms), respectively.

Equation~3.17! enables us to obtain a KJMA approxim
tion for the variance of the Ising magnetization. The varian
is obtained from the correlation function as

Var@m~ t !#5L2d(
i 51

Ld

G~rW i ,t !. ~3.18!

Combining Eqs.~3.11!, ~3.17!, and~3.18!, we obtain27

LdVar@m~ t !#'@mms2ms#
2dVd~2vt !dwms

2 ~ t !

3FQd~ Ivdtd11!2
1

dG
1wms~ t ! kBTxT

ms1@12wms~ t !# kBTxT
s ,

~3.19!
n

i-
r
f

s,

l,

f
ni-

n
a

d

l

e

where the function

Qd~x!5E
0

1

yd21exCd~y!dy ~3.20!

is obtained by numerical integration. HerexT
s is the isother-

mal susceptibility in the equilibrium phase, andxT
ms can be

interpreted as an analogous measure of the subcritical
tuations in the metastable phase.

IV. NUMERICAL RESULTS

In this section we present our simulation results for t
two-dimensional Ising lattice-gas model and use them to
tain the parameters in the theoretical predictions of the
tended KJMA theory.1–4,46,47The relaxation function, which
is a one-point function, is discussed in Sec. IV A. Tho
quantities which also require knowledge of two-point cor
lation functions are treated in Secs. IV B–IV D. In the r
mainder of this paper we use units such thatJ5kB51 and
measure time in Monte Carlo steps per site~MCSS!.

All the results shown correspond toT50.8Tc , and most
of them are forL5256. Only for the two weakest fields
uHu50.15 and 0.12, did we useL51024 to ensure a suffi
ciently large value ofL/R0 . Results are averaged over 10
independent realizations, except foruHu50.12, for which
only 50 realizations were performed due to the long lifetim
at this weak field.

The evolution of the system geometry during the dec
process is illustrated in Fig. 1 by a series of typical simu
tion snapshots foruHu50.15.

Values at 0.8kBTc'1.815 ~Ref. 65! of quantities for the
Ising model, that are needed to compare the simulations w
the KJMA predictions are as follows. The surface tens
s0'0.745 ~Ref. 65! and the zero-field magnetizationmsp
'0.954.66 The corresponding values ofVd and J(T) are
V2'3.153'p andJ'0.506.59 This value ofV2 gives the
constant in the definitions oft0 andR0 asA'0.870, and it
implies that the average deviations of the droplets of sta
phase from the circular shape assumed by the KJMA the
should be negligible at this temperature. Considering the
regular shapes of the individual droplets in Fig. 1, we find
quite remarkable that the extended KJMA theory nevert
less gives a very good statistical description of the de
process, as we now proceed to demonstrate.

A. Relaxation function and metastable magnetization

Monte Carlo~MC! and fitted KJMA results for the relax
ation function f(t) are shown together in Fig. 2 foruHu
50.2 and 0.4~both in the MD regime!, and 0.8~slightly
beyond the mean-field spinodal!. The results are shown on
linear scale in Fig. 2~a!, while the linear dependence o
ln f(t) on (t/t)3 predicted by Eq.~3.7! is illustrated in Fig.
2~b!. The KJMA expression forf(t) contains two param-
eters,mms and Iv2, which were determined by fitting to th
MC data as described below.

As discussed in Sec. III B, the theoretical expression
f(t) follows from the assumption that for times when th
mean size of the domains of stable phase is much larger
the critical droplet sizeRc(H,T), the mesoscopic structure o
the Ising model resembles the coarse-grained KJMA pictu
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FIG. 1. Snapshots showing the time evolution of the system configuration during a typical Monte Carlo~MC! simulation for L
5250, T50.8Tc , anduHu50.15, for which the lifetimet'392 MCSS. Light gray represents the metastable spin direction and blac
stable spin direction. While supercritical droplets in one snapshot can also be identified in the next, the subcritical fluctuations a
related between snapshots. The two characteristic lengths,R0'25 andRc'2.5, are shown by the long and short bar below each snaps
respectively.~a! t580 MCSS. A few supercritical droplets are seen, but most of the black pixels represent subcritical fluctuation~b! t
5260 MCSS. Many large supercritical droplets are growing against the metastable background.~c! t5390 MCSS't. The magnetization
is close to zero, several of the supercritical droplets have coalesced, and the stable phase is close to percolating. Microscopic e
fluctuations appear as light specks inside the stable-phase regions. Figure courtesy of G. Korniss.
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This assumption leads to Eq.~3.16!, from which the follow-
ing two-parameter expression for lnf(t) results:

ln@f„t;a~ uHu!,b~ uHu!…#' ln @a~ uHu!#2b~ uHu! t3,
~4.1!

wherea(uHu) contains information about the magnetizati
of the metastable phase and is given by

a~ uHu!5
mms2ms

m~0!2ms
, ~4.2!

andb(uHu) is obtained from Eq.~3.7! as

b~ uHu!5
V2Iv2

3
. ~4.3!

The theoretical results forf(t) were obtained by per
forming unweighted linear least-squares fits of Eq.~4.1! to
the MC results for lnf(t). Since coalescence effects are e
 -

pected to make Eq.~4.1! invalid for m&0, we used only data
for t<t(uHu) in the fits. We eliminated the early-time re
gime of rapid approach to ‘‘metastable equilibrium’’@the
‘‘hooks’’ most easily seen in Fig. 2~b!# by selecting the
lower limit of the fitting interval,tmin(uHu). Two different
criteria were used.

~a! tmin(uHu) was selected to give a joint extremum fo
a(uHu) andb(uHu), yielding lower bounds formms and Iv2.
This minimizes the sensitivity of the estimates to the cuto
~b! tmin(uHu) was selected to give a minimum or a plateau
the x square per degree of freedom in the fit.

For smalluHu the difference between the estimates result
from these two criteria is much smaller than their individu
statistical errors, indicating that the KJMA parameters
well defined. ForuHu*0.3, the time scales corresponding
the fast relaxation towards the metastable quasiequilibr
and the slow decay towards equilibrium are not well se
rated. This results in the disappearance of the extrema u
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FIG. 2. MC ~points! and fitted KJMA results~lines! for the
relaxation function of the Ising model,f(t), for L5256 andT
50.8Tc . Results are shown foruHu50.2 (L and solid curve! and
0.4 (h and dot-dashed curve!, both in the MD regime, and for
uHu50.8 (s and dashed curve!, slightly beyond the mean-field
spinodal. The lifetimes aret'186 MCSS for uHu50.2, t'41
MCSS for uHu50.4, andt'12 MCSS for uHu50.8. ~a! Linear
scale vst. Derivatives of data such as these provide estimates
transient currents in ferroelectric switching~Ref. 23! and electro-
chemical potential-step experiments~Refs. 39,40!. ~b! Semiloga-
rithmic scale vs (t/t)3. For clarity, the data foruHu50.8 and 0.2
have been displaced by60.2, respectively.~c! Same as~b!, but
plotted for t/t<2 to show the expected deviations of the MC da
from the KJMA approximation for later times.
to selecttmin(uHu) and a rapid loss of precision in the defi
nition of the fitting parameters with further increase ofuHu.

We use unweighted fits because the values ofm(t) at
different t are not independent. The statistical errors in th
data in the intermediate-time regime expected to be m
compatible with Eq.~4.1! are larger than those in the early
time ‘‘hook’’ regime ~see discussion of Var@m(t)# in Sec.
IV C below!. A weighted fitting procedure produced muc
inferior agreement between the fitting function and the d
than the unweighted procedure. As seen from Figs. 2~a! and
2~b!, the agreement between the MC results and the pre
tions of the KJMA theory is excellent for intermediate time

The progressive breakdown of the validity of the KJM
prediction for f(t) at late times is illustrated in Fig. 2~c!,
which shows the same data as Fig. 2~b! up to t52t(uHu).
For uHu50.2, the KJMA approximation agrees very we
with the MC data at intermediate times, whereas for lo
times it decays more slowly than the MC results. This
expected since the KJMA approximation does not incor
rate the interface-tension effects which accelerate the de
in the late-time regime where droplet coalescence beco
important. ForuHu*0.5, the KJMA approximation forf(t)
agrees well with the MC data at intermediate times, wher
for late times it decaysfaster than the MC results, as illus
trated by the data foruHu50.8. This qualitative change in th
late-time behavior off(t) signals the breakdown of th
KJMA nucleation-and-growth picture asuHu approaches the
mean-field spinodal (HMFSP'0.75 at 0.8Tc). In the strong-
field regime beyondHMFSP the nucleation of very smal
droplets of stable phase becomes the dominant decay me
nism, rather than the growth of larger domains. The alm
perfect agreement between the Ising and KJMA results
uHu50.4 we believe to be the result of an accidental canc
lation of corrections at late times.

Monte Carlo data forf(t) in the strong-field regime, a
uHu50.8, 1.0, 2.0, and 3.0, are shown in Fig. 3. As expect
the MC data are not well approximated by the KJMA res
in this regime. The solid curve is the exact limit foruHu
→`;f(t)5 exp(2t). The data foruHu53.0 are close to this
limit.

For the two weakest fields,uHu50.15 and 0.12, we no-
ticed a slight increase in the minimumx square per degree o
freedom in the fits. This may indicate that for even weak
fields one may need to consider the ‘‘incubation time’’ f
near-critical clusters, which is discussed by Shneidman
co-workers.53,86,87Investigations for weaker fields are ther
fore desirable.

Using Eq. ~4.2! together with the fitting parameter
a(uHu), we obtained estimates for the metastable magnet
tion mms as a function ofH. The equilibrium magnetizations
ms for each value ofH, which are necessary inputs for th
calculation, were obtained by standard equilibrium M
simulation.89 They are shown in the right-hand part of Fig.

The estimates formms are shown in the left-hand part o
Fig. 4. The statistical errors for these estimates~as for most
of the other estimates of nonequilibrium quantities presen
in this paper! were calculated by dividing the set of indepe
dent runs into five equal batches. They are everywh
smaller than the symbol size and therefore not shown.
metastable magnetization is the quantity which is most s

r
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sitive to the short-time cutofftmin(uHu) used in the fitting
process. ForuHu&0.25, the two estimates agree to within t
~small! statistical error. For stronger fields, the estimates
fer, indicating thatmms(uHu) becomes increasingly ill de
fined as the field is increased. This is the main source
uncertainty in our estimates of the metastable magnetiza

The metastable magnetizations shown in Fig. 4 appro
the curve of equilibrium magnetizations in a fashion th
appears quite smooth and resembles an ana
continuation.54,58–61,79 We find this resemblance quite re
markable, since these estimates are obtained from obse
tions of the time dependence of the decay process, ef
tively using the theoretical KJMA result forf(t) to subtract
those regions of the system which have already decayed
the stable phase at any particular time. Somewhat fancifu
this might be called ‘‘analytic continuation on the fly.’’90

To check the KJMA estimates formms, we choose the
transfer-matrix~TM! method first suggested and develop

FIG. 3. MC results forf(t) in the strong-field regime atuHu
50.8 (s and dashed curve, repeated from Fig. 2 for compariso!,
1.0 (L), 2.0 (h), and 3.0 (n). The lifetimes aret'8.42 MCSS
for uHu51.0, t'2.70 MCSS foruHu52.0, andt'1.42 MCSS for
uHu53.0. The solid curves represent exponential relaxation, wh
is the exact result in the limituHu→`. ~a! Linear scale.~b! ln f(t)
vs t, emphasizing the approach towards exponential decay with
creasinguHu.
-

of
n.

ch
t
ic

va-
c-

to
y,

by Schulman and collaborators.55–57 A brief description of
the method with details of its application to the present pr
lem is given in Appendix B. The transfer-matrix estimat
for mms, based onN3` Ising systems withN55, . . . ,9, are
shown in Fig. 4 as solid black points. The agreement is gr
fying and indicates that the metastable order-parameter
mates extracted from the dynamic MC simulations using
KJMA theory are consistent with a different theoretical a
proach which is completely independent of the dynamics

B. Growth velocity and nucleation rate

On the basis of the relaxation function alone, one c
obtain the combinationIv2 of the nucleation rate and th
radial growth velocity from the fitting parameterb(uHu). To
obtain separate estimates forI andv, one needs to compar
the MC results for the variance of the magnetizatio
Var@m(t)#, with the corresponding KJMA prediction give
in Eq. ~3.19!. If we use the values ofmms and Iv2 obtained
from the fits to the relaxation function, andxT

s as obtained
from the fluctuations in the equilibrium simulations, thenv2

andxT
ms may be determined from a linear fit of Eq.~3.19! to

the MC data for Var@m(t)# at each value ofuHu. For the
same reasons discussed in the context of the fits to the re
ation function in Sec. IV A, we found that an unweighte
fitting procedure was more stable and yielded better ove
agreement than weighted fitting. For each value ofuHu, the
values of Var@m(t)# were fitted over the same time interv

h

n-

FIG. 4. Stable magnetization,ms (L), and metastable magne
tization, mms (s and h), shown vsH. The data points formms

represented ass are based on the selection criterion~a! in Sec.
IV A, and those represented ash on criterion~b!. The data are for
L5256 except forH520.15 and20.12, which correspond toL
51024. The thin solid curves are transfer-matrix~TM! results. For
H.0 the curve represents the equilibrium magnetization as
tained for anN3` system withN59, which is seen to be in com
plete agreement with the MC results. For20.2,H,0 the curve
represents the metastable magnetization corresponding to ‘‘the
lobe’’ ~see Appendix B! for N59, while the solid circles represen
the maximum of this lobe forN55, . . . ,9 from left to right. For
H,20.2 the curves and solid circles represent ‘‘the second lob
for N55, . . . ,9 from left to right.
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as the corresponding relaxation function, and error bars w
estimated in the same way as formms. An example of such a
fit is shown in Fig. 5.

In Fig. 6 we show the fitted values of the radial grow
velocity v(uHu) for uHu between 0.12 and 0.8. Since th
method is a rather indirect way to obtain the average velo
of a convoluted, driven interface, one may reasonably
whether the fittedv(uHu) is anything more than a phenom
enological parameter. In order to answer this question,
performed additional numerical and theoretical analyses
discussed in the next two paragraphs.

FIG. 5. An example ofL2Var@m(t)# as obtained from a com
parison of 100 independent MC simulations (L) and from a least-
squares fit of the KJMA theoretical expression, Eq.~3.19!, ~solid
curve!. This particular result corresponds touHu50.2. The thin ver-
tical lines mark the time interval@ tmin ,t#, over which the fitting
was performed.

FIG. 6. The average radial growth velocity of the domains
stable phase,v(T,uHu), vs uHu. The circles and squares~corre-
sponding to the same selection criteria as in Fig. 4! are the veloci-
ties obtained by fitting Eq.~3.19! to the MC results for Var@m(t)#.
The diamonds are the velocities obtained in MC simulations o
growing plane interface in which nucleation inside the single-ph
domains is suppressed—a ‘‘tame’’ interface. The thin dashed c
and the solid curve represent the analytical linear-response
nonlinear-response approximations for the ‘‘tame’’ interface velo
ties ~Ref. 62!, Eq. ~C1!.
re

ty
k

e
as

In order to further test the identification ofv(uHu) with an
average interface velocity, we performed additional M
simulations of the time evolution of plane interfaces driv
by an applied field.91 We started with 64364 systems with
all spins antiparallel to the applied field, except for one ro
of overturned spins along one of the lattice edges, and p
odic boundary conditions in the direction parallel to the
sulting interface. We then let the systems evolve in an
plied field according to the Glauber transition probabilit
Eq. ~2.6! with T50.8Tc as before, except for the following
essential modification. Nucleation in the bulk metasta
phase was suppressed by setting equal to zero the trans
probability of any spin parallel to all of its neare
neighbors.92 To distinguish them from the unconstraine
growing interfaces discussed elsewhere in this paper, we
these interfaces ‘‘tame.’’ We performed 100 independ
simulations, continuing each until the interface touched
opposite wall of the simulation box. The average interfa
position in the growth direction was calculated from t
time-dependent magnetization asy(t)5@m(t)11#Ly /2,
whereLy564 is the extent of the simulation lattice in th
growth direction. Velocity estimates, obtained from line
fits to y(t) and averaged over the 100 independent runs,
also shown in Fig. 6. They lie very close to a straight li
through the origin, of slope slightly less than that obtain
from the fits to the KJMA theory. This is a reasonable res
since the absence of subcritical fluctuations in the ‘‘chill
metastable phase’’ in front of these ‘‘tame’’ interface
should slow down their progress and make their average
locity a lower bound for the velocity of an interface growin
into a metastable phase with a thermal distribution of s
critical fluctuations.

The interface of a growing Ising cluster is in the dynam
universality class of the Kardar-Parisi-Zhang93 ~KPZ!
model.91,94The growth velocity of a planar interface is ther
fore expected to be linear inH for weak fields, as is also
predicted for large droplets by the Lifshitz-Allen-Cah
theory.77,95,96 However, neither theory explicitly gives th
proportionality constant, which should depend on the av
age orientation of the interface, as well as on the spec
microscopic dynamic. Recently, Rikvold and Kolesik62 have
developed an approximate theory for the growth velocity
‘‘tame’’ Ising interfaces, based on the solid-on-solid~SOS!
approximation for the equilibrium interface structure.98,99

This theory gives rise to the theoretical curves shown in F
6. The corresponding analytic expressions are given in
pendix C. The agreement with the MC results for t
‘‘tame’’ interfaces is excellent.

The theoretical and numerical evidence presented h
strongly supports the assertion thatv(uHu) obtained by fitting
KJMA predictions to MC simulations is indeed a reasona
estimate of the average propagation velocity for the con
luted interfaces which separate the regions of stable
metastable phase. The estimate appears satisfactory,
though the nucleation rate in the metastable phase is too
to measure the growth velocity by more direct methods.

Except at very early times, the magnitude of the te
proportional toxT

ms in Eq. ~3.19! is much smaller than the
first term. As a result, the fitted values ofv(uHu) are quite
insensitive toxT

ms, which shows large error bars and larg
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fluctuations with respect touHu. Accurate determination o
xT

ms evidently would require much larger data sets than u
in this study.

With the separate estimates forb(uHu) and v(uHu), we
can easily calculate the nucleation rateI (T,uHu) from Eq.
~4.3!. The results are shown in Fig. 7. Adjusting the u
known coefficientB(T) in the exact asymptotic relation Eq
~3.3!, such that the theoretical line goes through the d
point atuHu50.15, we find good overall agreement. The cu
vature of the theoretical result is due to the prefactor ex
nentK53.

C. Correlation functions

In Sec. IV B we used Var@m(t)#, which is proportional to
the spatial integral of the correlation functionG(rW i ,t), to
determine the radial growth velocityv(uHu). We now pro-
ceed to obtain the circularly averaged KJMA correlati
function G(r ,t) from Eqs.~3.11! and ~3.17!, using the MC
estimates fora(uHu), b(uHu), and v(uHu). Since the in-
phase correlation functions,Ĝms(r ) and Ĝs(r ), are of very
short range, we here set them equal to zero for nonzerr.
The results foruHu50.2, 0.4 and 0.8 att5t(uHu) are shown
in Fig. 8, together with the corresponding MC results. T
agreement is quite good, except forr'0. This small discrep-
ancy arises from the coarse-grained nature of the KJ
theory and is consistent with the very short range of
in-phase correlations. By comparing the theoretical and
correlation functions in Fig. 8, we infer that the ranges of
in-phase correlation functions are on the order of one lat
constant. The difference between the theoretical and si
lated correlation functions atr 50 gives an estimate o
Ĝms(0)1Ĝs(0). Monte Carlo results forG„r ,t(uHu)… in the
strong-field regime are shown in Fig. 9 for comparison. N
the very short range of the correlations in this regime.

The time evolution of the correlations and the breakdo
of the agreement between the KJMA approximation and
MC data for late times and for increasing fields are w

FIG. 7. The nucleation rateI (T,uHu), computed using Eq.~4.3!
with values ofb(uHu) and v(uHu) obtained from fits tof(t) and
Var@m(t)#, respectively. The dashed curve is a one-parameter fi
the exact asymptotic result, Eq.~3.3!.
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illustrated by the time-dependent characteristic length^r (t)&,
defined in Eqs.~2.11! and~3.13! for MC and KJMA, respec-
tively. These quantities are shown together in Fig. 10
uHu50.2, 0.4, and 0.8. For early and intermediate times,
MC and theoretical results for^r (t)& increase approximately
linearly with t until they reach a maximum at a time som
what beyondt. For late times, the MC and theoretical resu
differ considerably. This is easily understood, since the lo
time dynamical behavior of the Ising model is dominated
interface tension effects which are not included in the KJM
theory. The characteristic lengths obtained from the M
simulations are shorter than the KJMA estimates by vary
amounts, which are less than about 0.5 fort,t(uHu). We
believe this reflects the short-range, in-phase correlatio
These are ignored in the KJMA estimates, whereas they
present in the MC correlation functions, weighting the lat
slightly towards smallerr.

to

FIG. 8. MC and KJMA results for the correlation functio
G„r ,t(uHu)… for uHu50.2 (L, solid curve!, uHu50.4 (h, dot-
dashed curve!, anduHu50.8 (s, dashed curve!.

FIG. 9. MC results for the correlation functionG„r ,t(uHu)… in
the strong-field regime foruHu51.0 (L), uHu52.0 (h), and
uHu53.0 (n). The lines connecting the data points are mer
guides to the eye. Note the very short ranges of these correla
functions.
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FIG. 10. MC and KJMA results for the first moment o
G(r ,t), ^r (t)&. Note the reasonable agreement at early and in
mediate times. The rapid decrease of the MC characteristic leng
late times reflects the acceleration of the decay of the metas
phase due to interface-tension effects during the drop
coalescence regime. In each panel the thin vertical line ma
t(uHu). ~a! uHu50.2, ~b! uHu50.4, ~c! uHu50.8.
In Fig. 11 we show theH dependence of the most impo
tant lengths that characterize the system during the decay
expected, R0 and the maximum value of ^r (t)&,
r max(T,uHu), are proportional over the whole range of field
studied. The diameter of a critical droplet, 2Rc(T,H)
's0 /@msuHu#, is everywhere smaller than these mesosco
characteristic lengths.

The expression forG(r ,t), Eq. ~3.11!, can be recast in the
two-parameter scaling form,

G~r ,t !/G~0,t !

5H $exp@~r 0 /R0!3C2~r /2r 0!#21%, for r ,2r 0

0, for r .2r 0 ,

~4.4!

where r 0(t)5vt is proportional the average radius of th
growing domains of stable phase.100 This two-parameter
scaling behavior is illustrated in Fig. 12, which shows M
and KJMA correlation functions vsr /2r 0 for two different
sets ofuHu and t in the MD regime, chosen such that the
give the same value ofr 0 /R0 . The functions are normalized
such that for both sets of parameters, the KJMA correlat
function equals unity atr 50. The dependence onr 0 /R0 in
Eq. ~4.4! may explain the breakdown with increasing volum

r-
at
le

t-
s

FIG. 11. Field dependence of the characteristic lengths: the c
cal droplet diameter 2Rc ~solid curve!, the mean separation betwee
droplets of stable phaseR0 (L, n, and dashed curve! and twice
the maximum of̂ r (t)&, 2r max (s). Two sets of estimates forR0

are shown: Av/(Iv2)1/3 (L with error bars! and vt (n and
dashed curve!. The lengths that characterize the mesoscopic str
ture, R0 and r max, remain proportional over the whole range
fields studied. The two chains of solid circles relate the strip wid
N of the transfer matrices used to calculatemms ~Sec. IV A and
Appendix B! to the values ofH for which mms so calculated has a
maximum. The data points correspond to those shown by the s
symbols in Fig. 4. The chain betweenuHu50 and 0.1 represents th
first lobe, and the chain betweenuHu50.2 and 0.6 represents th
second lobe; in both casesN59, . . . , 5from left to right. Compari-
son of N to the characteristic lengths indicate that the first lo
samples only subcritical fluctuations, while the second lobe a
samples rare supercritical fluctuations in the constrained ense
represented by the TM eigenspaces.
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fraction of the one-parameter scaling in terms ofr /r 0 , re-
cently used by Huanget al.9 for the experimentally obtained
domain correlation function of polymer films undergoin
phase transformation.

D. Structure factors

The good agreement between the MC and KJMA res
for the correlation functions in the MD regime should
accompanied by similar agreement for the structure fact
This is confirmed by Fig. 13, which shows the MC a
KJMA results for the circularly averaged structure fac
S„q,t(uHu)… for uHu50.2, 0.4, and 0.8.

The extent of the agreement for smallq is best seen in
Fig. 13~a!, which shows the data on a linear scale. This is
surprising, since it is exactly at these mesoscopic len
scales that the KJMA theory is expected to describe the
tial structure.

The behavior for largeq is best seen in the log-log plots i
Fig. 13~b!. The KJMA correlation functions are linear fo
small r and therefore agree with Porod’s law,101 which states
that the structure factor for a two-phase system with in
faces of negligible thickness should behave asS(q)
;q2(d11) for large q. The small oscillations superimpose
on theq23 tails are due to the sharp cutoff inG at r 52r 0 .
For the MC data, the thermal fluctuations and the latt
cutoff at the Brillouin-zone boundary causes marked dev
tions from Porod’s law. Considerably weaker fields and c
sequently larger values ofr max would be necessary to obtai
the separation of length scales necessary to observe Po
law in a substantial range ofq for the MC data.

V. DISCUSSION

This paper reports a detailed theoretical and simulatio
study of the transient spatial structures that evolve dur
phase transformation driven by a difference in free-ene

FIG. 12. Two-parameter scaling plot of the normalized corre
tion function G„r ,t(uHu)…/GKJMA„0,t(uHu)…. The data points are
MC results and the solid curve is the scaling form of the KJM
correlation functionG(r ,t), Eq. ~4.4!. The MC results are shown
for uHu50.2 and t5185 MCSS (L), and for uHu50.25 andt
5110 MCSS (h). These fields and times are chosen such t
r 0 /R0'0.97 in both cases.
ts

s.
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th
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density between a metastable and a stable phase. This
cess is a prototype of metastable decay in a wide rang
physical and chemical systems, which are commonly a
lyzed in terms of the KJMA theory or one of its many e
tensions and generalizations. The model system used in
numerical part of our study is a two-dimensional, kine
Ising lattice-gas model. This is one of the first detailed
tempts to verify the KJMA theory and identify the limita
tions to its validity, using a model system in which the e
ementary kinetic processes act on time and length sc
much smaller than those characteristic of the mesosc
stable-phase droplets. Since the model contains no impur
or free surfaces, the decay occurs via homogeneous, pro
sive nucleation and subsequent growth of droplets of
stable phase. While homogeneous nucleation is less com
in nature than heterogeneous nucleation at impurities
surfaces, the limitations to the KJMA picture that we ide

-

t

FIG. 13. The structure factorS„q,t(uHu)…. The data points cor-
respond to MC results and the curves to theoretical results ca
lated by taking the Fourier transform of the KJMA results f
G(r ,t). Results are shown foruHu50.2 ~L, solid curve!, uHu
50.4 ~h, dot-dashed curve!, and uHu50.8 ~s, dashed curve!. ~a!
Linear scale.~b! Log-log scale. For clarity, the results foruHu
50.2 and 0.8 have been offset by6 two decades, respectively.
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tify, should be valid also for these more complicated situ
tions.

Our numerical results confirm that the KJMA theory f
the volume fractions of stable and metastable phase~i.e.,
one-point functions!, together with Sekimoto’s extension
that provide two-point correlation functions, give a rema
ably accurate description of the decay process for a w
range of system parameters. This regime extends sur
ingly far towards strong fields~large supersaturations! and
the correspondingly small nucleation barriers. The conditi
for the theory’s validity are essentially as follows.

~i! The critical droplets of stable phase must be larger t
the lattice constant, while at the same time much sma
than the system itself.

~ii ! The system must be sufficiently large that the to
number of droplets is large.

~iii ! Due to the effects of droplet coalescence, the the
breaks down for late times, when the remaining metasta
volume fraction becomes less than one half.

When these conditions are satisfied, there is a large s
ration between the microscopic time scale and the me
copic time scale characteristic of the phase separation. U
these circumstances, we find the extended KJMA theor
be sufficiently accurate that it enables us to measure n
equilibrium thermodynamic quantities, including the ord
parameter in the metastable phase, the droplet nuclea
rate, and the average propagation velocity of the convolu
interface between the two phases. We are able to verify
measured values by independent theoretical arguments.
to the relatively short lifetime of the metastable phase, th
quantities are not easy to measure directly by more tr
tional methods, and the methods developed here may th
fore be useful for experimental measurements on syst
undergoing phase transformation as well.

While we have demonstrated excellent agreement
tween the extended KJMA theory and the kinetic Isi
model in two dimensions and for moderately strong fiel
we believe it would be useful to perform similar studies f
weaker fields and in higher dimensions. A study ford53 is
in progress.63
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APPENDIX A: COARSE-GRAINED APPROXIMATION
FOR THE CORRELATION FUNCTIONS

The coarse-grained approximations forG(rW,t) and
Ld Var@m(t)#, Eqs. ~3.17! and ~3.19!, are obtained as fol-
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lows ~with the time variable suppressed for simplicity
notation!. We write the local spin variables as

si5@mms1dms~rW i !#u~rW i !1@ms1ds~rW i !#@12u~rW i !#,
~A1!

wheredms(rW i) and ds(rW i), which both average to zero, ar
local fluctuations in the metastable and the stable phase
gions, respectively. Assuming the local fluctuations in t
two phases are mutually uncorrelated and uncorrelated
the phase fieldu, Eq. ~2.10! then gives Eq.~3.17! with

Ĝms~rW !5^dms~xW !dms~xW1rW !&^u~xW !u~xW1rW !& ~A2!

and analogously forĜs(rW). Further assuming that the corre
lation lengths for the local fluctuations are much shorter th
for the phase field,

Ĝms~rW !'^dms~xW !dms~xW1rW !&^u2~xW !&

5^dms~xW !dms~xW1rW !&^u~xW !&

5^dms~xW !dms~xW1rW !&wms ~A3!

for all rW such that̂ dms(xW )dms(xW1rW)& is nonzero. As a result
the spatial sum overĜms(rW) can be considered an ‘‘isother
mal susceptibility’’ for the metastable phase, weighted by
metastable volume fraction:

(
i 51

Ld

Ĝms~rW i !5wmskBTxT
ms. ~A4!

The same reasoning is applied to the fluctuations in the e
librium phase, yielding Eq.~3.19!.

APPENDIX B: TRANSFER-MATRIX ESTIMATES
OF THE METASTABLE MAGNETIZATION

Here we summarize the transfer-matrix~TM! calculation
used to check the consistency of the KJMA estimates
mms(H) in Sec. IV A. The field-theoretical result for th
nucleation rate used in this work, Eq.~3.3!, is proportional to
the imaginary part of an analytic continuation of the equil
rium free energy into the metastable phase.60,61 Schulman
and collaborators55–57 suggested that this analytic continu
tion could be found from some of the subdominant eigenv
ues and eigenvectors of the TM commonly used to calcu
the equilibrium partition function and correlation lengths
Ising and lattice-gas systems,102 and they successfully ob
tained the metastable order parameter for the Ising ferrom
net atT'0.4Tc .56 The method has later been extended
obtain the full, complex-valued free energy.54,58,59

The dominant eigenvaluel0 of the TM for anN3` Ising
system is positive and nondegenerate by the Per
Frobenius theorem.102 It is related to the free energy per si
as F(T,H)52(T/N)lnl0, and the equilibrium magnetiza
tion is obtained asmeq(T,H)52dF(T,H)/dH5^0uMu0&,
whereM is the magnetization operator and the bra and
are the left and right eigenvectors corresponding tol0 .
When the subdominant eigenvaluesla are plotted in the
same logarithmic way used to obtain the equilibrium fr
energy froml0 , one obtains a plot like the one shown
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Fig. 14. With each branch in the figure one can associa
magnetization ma(T,H)5d@(T/N) ln ulau#/dH5^auMua&.
The metastable branch corresponds to the union of
lowest-lying eigenvalue branches in the figure, which hav
magnetization whose sign is opposite that of the equilibri
magnetization. It is marked with thick curve segments in F
14. At specific values ofH the eigenvalues in the composi
metastable branch undergo avoided crossings with o
branches, at which their eigenvectors and magnetizat
vary rapidly. The field corresponding to thenth crossing (n
50 corresponds toH050) depends onn and the strip width
N approximately asHn'2J/(N2n), with best agreemen
for low T and smalln.59 The magnetization along the branc
between the (n21)th andnth crossing is what we refer to a
the ‘‘nth lobe’’ in the caption of Fig. 4. The point on eac
lobe, where the magnetization calculated from that lobe
its extremum, is marked as a solid black circle in Fig. 1
These points correspond to the points similarly marked
Figs. 4 and 11.

For this work we numerically diagonalized the TM fo
N55, . . . ,9,using the subroutineJACOBI97 in double preci-
sion on a DEC-alphaworkstation and a Cray J90 supercom
puter. As seen in Fig. 4, we found excellent agreement

FIG. 14. The 19 largest transfer-matrix eigenvaluesla , plotted
vs H as 2(T/N)lnulau for N56. The lowest-lying branch~dot-
dashed line!, which corresponds to the dominant eigenvaluel0 , is
the equilibrium free energy per spin. The metastable branch is
resented by the heavy curve segments. The solid circles repre
the points along each segment, where the magnetizationma(T,H)
has its extremum. These points correspond to those simil
marked in Figs. 4 and 11.
P

L

/

t
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e
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tween the KJMA results and the TM estimates from the fi
lobe for very weak fields and from the second lobe for stro
ger fields. The values ofmms(H) extracted from the secon
lobe for the different values ofN agree with the KJMA es-
timates to within the uncertainty in the latter. Estimat
based on the third and higher lobes give less satisfac
agreement.

APPENDIX C: APPROXIMATE EXPRESSION
FOR THE INTERFACE VELOCITY

The analytic approximation used here for the propagat
velocity of a field-driven ‘‘tame’’ interface in a two-
dimensional, square-lattice Ising model with Glauber dyna
ics will be described in detail elsewhere.62 It uses the SOS
approximation for the equilibrium interface structure~which
remarkably gives the exact surface tension for interfaces
allel to the lattice directions and an excellent approximat
for inclined interfaces98,99! to estimate the populations in th
different spin classes used in then-fold way rejection-free
Monte Carlo algorithm.103 These class populations are us
together with the contributions to the average propaga
velocity from spins in each class, which are easily obtain
from the transition rates, to calculate the overall average
locity. For the special case of Glauber transition rates, i
tropic interactions, and an interface which is on average p
allel to one of the symmetry directions of the lattice, t
result is62

^v~T,H !&5
tanh~bH !

~11X!2 H 2X1
11X2

11@sinh~2bJ!/cosh~bH !#2

1
X2

12X2FX21
2~112X!

11@sinh~2bJ!/cosh~bH !#2G J .

~C1!

Here X5 exp(22bJ) corresponds to a linear-response-li
approximation, in which the average class populations
approximated by their equilibrium values atH50, whereas
X5 exp(22bJ)cosh(bH) yields a nonlinear-response ap
proximation which accounts for effects of the applied fie
on the nonequilibrium class populations. In Fig. 6,^v(T,H)&
from Eq. ~C1! is shown vsuHu at T50.8Tc . The agreement
of the nonlinear-response result with the directly simula
‘‘tame’’ interface velocities is excellent. Since the surfa
tension at 0.8Tc is very close to isotropic, results for incline
interfaces are not needed here.
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95I. M. Lifshitz, Zh. Éksp. Teor. Fiz.42, 1354~1962! @ Sov. Phys.

JETP15, 939 ~1962!#.
96S. M. Allen and J. W. Cahn, Acta Metall.27, 1085~1979!.
97W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Fla

nery, Numerical Recipes in Fortran, 2nd ed.~Cambridge Uni-
versity Press, Cambridge, 1992!.

98W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. S
London, Ser. A243, 299 ~1951!.

99J. E. Avron, H. van Beijeren, L. S. Schulman, and R. K. P. Zia
Phys. A15, L81 ~1982!.

100R. A. Ramos, P. A. Rikvold, and M. A. Novotny, inPhysical
Phenomena at High Magnetic Fields II, edited by Z. Fisk, L.
Gor’kov, D. Meltzer, and R. Schrieffer~World Scientific, Sin-
gapore, 1996!, p. 380.

101A. Guinier and G. Fournet,Small-Angle Scattering of X-ray
~Wiley, New York, 1955!.

102C. Domb, Adv. Phys.9, 149 ~1960!.
103A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phy

17, 10 ~1975!.


