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The Kolmogorov-Johnson-Mehl-AvraniKJMA) theory for the time evolution of the order parameter in
systems undergoing first-order phase transformations has been extended by Sekimoto to the level of two-point
correlation functions. Here, this extended KIMA theory is applied to a kinetic Ising lattice-gas model, in which
the elementary kinetic processes act on microscopic length and time scales. The theoretical framework is used
to analyze data from extensive Monte Carlo simulations. The theory is inherently a mesoscopic continuum
picture, and in principle it requires a large separation between the microscopic scales and the mesoscopic scales
characteristic of the evolving two-phase structure. Nevertheless, we find excellent quantitative agreement with
the simulations in a large parameter regime, extending remarkably far towards strondléiejdssupersatu-
rationg and correspondingly small nucleation barriers. The original KIMA theory permits direct measurement
of the order parameter in the metastable phase, and using the extension to correlation functions one can also
perform separate measurements of the nucleation rate and the average velocity of the convoluted interface
between the metastable and stable phase regions. The values obtained for all three quantities are verified by
other theoretical and computational methods. As these quantities are often difficult to measure directly during
a process of phase transformation, data analysis using the extended KIJMA theory may provide a useful
experimental alternativéS0163-182€09)06913-1

I. INTRODUCTION Both the coefficienC and the “Avrami exponent'« depend

The phase-transformation kinetics in systems undergoingn the spatial dimensiod and on details of the nucleation
first-order phase transitions are important in many scientifi@nd growth processes. In general;> 1; thus Eq.(1.1) does
and technological disciplines. Around 1940, Kolmogotov, not represent a stretched exponential.

Johnson and MeHl,and Avram? (KJMA) introduced a The KJIMA picture has been extensively applied in di-
simple theory describing the decay of a metastable systewerse fields of researchA small selection of examples in-
towards a unique equilibrium phase. This theory applies telude transitions between different liquid-crystal phases;
systems with a nonconserved order parameter, in which therystallization kinetics in lipid$,sugar$ polymers® and eu-
decay is driven by a difference between the free-energy denectic mixtures:®!! solid-state phase transformatiotfs®
sities of the metastable and equilibrium phases. Originalydomain switching in ferroelectric§?® and ferro-
conceived for metallurgical applications, it was later formal-magnets®®—32 adsorption and surface growth kinetics in
ized and generalized by Evahsyho also pointed out its electrochemicdf*? or gas/vacuum environmerfts; rock
applicability in surface science. formation%#*and slow combustiof?

The basic assumptions of the KIMA theory are simple: During the first 40 years after its inception, the KIMA
negligibly small “droplets” of the equilibrium phase nucle- theory appears to have been appreciated mostly by experi-
ate from the uniform metastable phase and subsequentlyientalists. It attracted little sustained theoretical interest un-
grow without substantial deformation. The growing dropletstil the 1980s, when Sekimoto derived exact expressions for
are assumed to be randomly placed and overlap freely, witthe two-point phase correlation function within the KIMA
the result that the remaining volume fraction occupied by thepicture® Knowledge of correlation functions makes it pos-
metastable phase decays exponentially with a power of timesible to predict and interpret the results of small-angle scat-

tering experiments. In this paper we demonstrate how it can
also be utilized to obtain independent estimates of the droplet
emd 1) = exp(—Ct?). (1.9 nucleation rate and growth velocity. Sekimoto’s results have
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been generalized to systems with infinitely degenerate equconvoluted, moving interface between the metastable and
librium phase¥ and to the case of finite degenerdéywe  stable phase regions. We show that the measured quantities
shall refer collectively to the theories that extend the KIMAagree well with theoretical predictions obtained by different
picture to include correlation functions as the “extendedmethods. These methods are numerical transfer-matrix cal-
KJIMA theory.” Among recent applications of the extended culations for the metastable order paraméter; a field-
KIMA theory are theoretical studies of domain switching intheoretical result for the nucleation r&f' and a nonlinear

ferroelectrics®-25 predictions of magnetic-force-microscopy response theory for the interface velocityThe close agree-
observables for nanoscale ferromagrfét® and studies of Ment between the KIMA and independent estimates confirms

that the KIMA theory does not merely produce good fits to
the simulation data, but that the fitting parameters measure
nonequilibrium physical quantities that can be difficult to
easure by other methods.

hysteresis in spatially extended systeth&*%49Relations
between two-point correlation functions and droplet size dis
tributions have also been discussed recetftly.

There are many simplifying assumptions inherent in the™ ) . . .
extended KIJMA theory. These include a constant nucleatio The remamder of this paper is organized as follows. In
rate, a constant interfacial propagation velocity, and the ne>°%: Il we introduce the model and the numerical methods

glect of surface-tension effects that one would expect to begsed in this work. In Sec. Ill we summarize those results of

come important when growing droplets meet and coalesc he nucleation theory of metastable decay and the extended

In view of this, it is remarkable that the theory appears to JMA theory that are relevant to our study. We give most of

perform as well as it does for such a wide variety of systemsthe theoreuc_al resqlts for.gener_al spatial dimensiolm Sec.
[V our two-dimensional simulation results are presented and

Computer studies have previously been performed for mod

els in which droplets of a fixed shape nucleate, either deten‘?Xpl"’llned in the framework of the thepry. Thg regimes of
ministically or randomly, and thereafter grow agreement between theory and simulations are identified, and

deterministicalIy1.5’16'51'52However, we are only aware of a the simulation data are used to measure the metastable order

single previous study in which the kinetic processes act on par_ameter(Sec. IVA),.as well as the average mterface ve-

length and time scales that amgcroscopiccompared to the locity an_d th? nucleation _rat(é;ec. I.V B, all as functions of

growing droplets, as one would expect for real physical an he applied field. Correlation functiorgSec. IV Q and struc-

chemical systems. Such studies are desirable, as they per € fg_ctors(Sec. VD are _alsq measured. The me_zasured_

direct verification of the regimes of validity for the indi- quantities are compared with _mdependent theoretlc_al est-

vidual assumptions as well as the consequences of particulg?ates' .In Sec. V we summarizeé our results and give our

assumptions not being exactly fulfilled. In the present papeponclusmns and some suggestions for further study.

we further address this need, with particular emphasis on the

information which can be obtained by combining results for Il. MODEL AND METHODS

the volume fraction and the two-point correlation functions.

Our purpose is twofold, as discussed below. ) ) ) )
Our first aim is to perform a detailed test of the validity of ~_ The discrete model studied here is defined by the standard

the extended KIJMA theory in a particular model system with_'S'”Q Hamiltonian(the transformation to lattice-gas language

microscopic kinetics. We consider a two-dimensional kineticlS given below

Ising model of ferromagnetic or ferroelectric switching. This

is equivalent to a simple lattice-gas model of submonolayer H=—3, si(t)sj(t)—HE si(t), (2.2

chemisorption onto a single-crystal surface in the limit that {0 i

lateral diffusion can be ignored.For this model we test the ) ) ) . )

KJMA predictions for time-dependent quantities that de-Wheresi(t)==1 is the “spin” at lattice siter; at timet, J

scribe the mesoscopic two-phase structure during the evolyz 0 is the ferromagnetic coupling constant, aHdis the

tion towards equilibrium. These quantities include the vol-€xternal field. The sumX; ;, andZ; run over all nearest-

ume fraction, the two-point correlation function, and its Neighbor pairs and over all sites ondadimensional hyper-

Fourier transform, the structure factor. We find excellentcubic lattice of linear sizd., respectively. The lattice con-

quantitative agreement between the theoretical predictiong@nt defines our unit of length. While our theoretical

and the simulation results for a considerable range of appliedliscussion is for general, all the simulations presented are

fields and times. for d=2. Three-dimensional systems will be considered in a
Our Second aim Springs from the signiﬁcant regime Offorthcoming pape?B In order to avoid Complications due to

agreement that we establish between the KIMA predictiongoundaries, we use periodic boundary conditions throughout.

and the simulation results for the model studied. This enabled=0r recent discussions of boundary effects in metastable de-

us to use the KIMA prediction for the volume fraction to CaY, see Refs. 29,64. _ _

subtract those regions of the system which have already de- The magnetization per unit cell is

cayed to the stable phase at a particular time, and thus mea-

sure extended time and volume averages of the quasiequilib-

rium order parameter in the metastable phase. This approach m(t) = F Z si(). 2.2

represents a new method to measure “thermodynamic”

quantities in a constrained metastable enserfblurther-  Under equilibrium conditionsn is the order parameter con-

more, the extended KIJMA predictions for the two-point cor-jugate toH. ForH=0 and temperatures below a finite criti-

relation functions enable us to measure separately the nucleal temperaturd ., the model has two degenerate equilib-

ation rate and the average propagation velocity of theium phases in which the magnetization has a constant

A. Model Hamiltonian
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spontaneous magnitudeg{T)=mg(T,H=0). In the pres- & series of steps in which sites are chosen at random and
ence of a nonzero field the phase degeneracy is lifted, and tif#pped with probability given by Eq(2.6).
stable equilibrium magnetizatiang(T,H) has the same sign ~ The Glauber-Ising model described aboie the same
asH. Hamiltonian with the closely related Metropolis dynafjc

Although it is not absolutely essential for our study thathas previously been used to study a large number of phase-
T. and mg(T) are exactly known for the two-dimensional ordering phenomena in condensed-matter physics and other
square-lattice Ising mod&t;%® these and other exact results fields. The two-dimensional version corresponding to the
(see Sec. Ill A enable us to quantitatively compare the vari- model for which we present numerical results, has been ap-
ous parameter estimates obtained from our numerical simielied to thermally activated switching in uniaxial
lations with independent theoretical estimates. ferroelectric’~?® and ferromagnetf¢=>* thin films. The

The Ising formulation is conveniently symmetric under equivalent lattice-gas model should give a reasonable repre-
simultaneous reversal ¢f ands;(t), and it can be directly sentation of the kinetics of submonolayer adsorption in
applied as a simple model for highly anisotropic ferromag-chemicai®~*?and physicdf® systems in which lateral adsor-
netic and ferroelectric systems. A less explicitly symmetricbate diffusion can be ignored. Electrochemical underpoten-
formulation is particularly convenient for discussing crystal-tial depositior?* in which second-layer formation is heavily
lization and adsorption phenomena. It is the equivalent twosSuppressed, might be approximated by this mddialthough
state, attractive lattice-gas modéf® In terms of the time- more detailed agreement with experimental studies of dy-
dependent, local occupation variablgét) e {0,1}, Eq.(2.1) namical phenomera requires the inclusion of lateral

takes the form diffusion.*7273
LY 1 C. Quantities characterizing the decay
H==®2 ci(t) () —u )+ __Mo)- '
i J T 2 2 We study the decay of a metastable phase by first prepar-

(2.3 ing the system in an initial state of magnetizatior{0)

The quantities appearing in the equivalent formulations of= +1. We then apply a constant magnetic fiele0 and let
the Hamiltonian, Eq2.1) and(2.3), are linked by the trans- the system evolve in time. The decay of the metastable phase

formations is characterized by the behavior of the relaxation funcffon,
which is defined in terms afn(t) as
1
ci(=3[1+si(v], (2.49 m(t)—msg
D=4, (2.4b

wheremy(T,H) is the field-dependent equilibrium magneti-
pw=2H+ . (2.49 zatio_n. Fomg= - 1, _qb(t) simply equals_the time-dependent

densityd(t) defined in Eq(2.5). The lifetimer of the meta-
Here® is the attractive lattice-gas interaction energy, and stable phase is defined as the average first-passage time to
is the chemical or electrochemical potential, whose value ath=0. In the parameter regime described by the KIMA
coexistencdi.e., forH=0) is uo=—22J=—z®/2, wherez  theory, this is equivalent to the requirement that the en-
is the coordination numberz2d for hypercubic lattices  semble averagém(7))=0. (For a discussion of the effects
The chemical potential is related to th@smotig pressured  of using different cutoff values ahto definer, see Ref. 75.
asu— uo=KkgT In(p/po), wherepy is the pressure at coexist-  During the decay process, we also compute the circularly
ence,T is the temperature, arkk is Boltzmann’s constant. averaged time-dependent structure fagm,t) and correla-
The order parameter conjugate tois the density(for d  tion function G(r,t). The time-dependent structure factor

=2: the coverage S(q,t) is defined in terms of the Fourier transform ft),
o= — 3 c(t)= 2[1+m(v)] 25 15
=— D, ci(t)==[1+m(t)]. . - e
LdF 2 se,(tFFi:Elsi(t) e ', 28
B. Stochastic dynamics as

The Ising lattice-gas Hamiltonian does not impose a par- > ey N i\ 2a.
ticular dynamic on the system. To study the approach to S(g,t) =(sg(t) S—g(t))—(m(t))“J45- (2.9
equilibrium under the influence of ther_mal quctu_aﬂpns, WeThe components of the reciprocal-lattice vectcﬁsare
use the stochastic Glauber dynarficThis dynamic is de- Q=2 /L [j=0,+1,%2 +(L2—1),L/2; a=xy
. o . Ja j— y— ey o y— L] ’ 1)
fined by the acceptance probability for a proposed fliiof "~ 1 andd; g is the Kronecker delta function. The brackets

( ) imply an ensemble average over independent simulation
(2.6)  runs.
The time-dependent two-point correlation functid(r ,t)
where AE is the energy change associated with the atis defined by
tempted spin flip, angB=1/kgT. The dynamic was imple- .
mented by the standard algorithm used for kinetic stutfies: G(r,t)=<si(t)sj(t)>—(m(t)>2, (2.10

exp(— BAE)

Ws= =Sl T e paE)
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WhereF:Fi_Fj Cltis Circu|ar|y Symmetric and was obtained van't Hoff-Arrhenius relation. The final form is shown by

as the inverse Fourier transform of E@.9). All Fourier field-theoretical argumerits®®®to be
transforms were computed with the fast-Fourier transform _
subroutine FOURN.’® With the normalizations used here, (T |H|)~B(T)|H|Kexp< 3 E(T)+0O(H?)
S(q=0, t)=L%Vam(t)], which is independent of. if ’ |HJ]9-1
G(r.t) is of finite range. Here, Vam(t)] is the time- (3.39
dependent variance of the system magnetization, evaluatgghere

over an ensemble of independent runs. The quantiigst)

and G(F,t) were circularly averaged to obtai®(q,t) and :(T):Qdag/ d-1 )d LQdUg{d—l)d '
G(r,t), respectively. B keT \ [Ms—mpd keT | 2mg,

In order to find a time-dependent characteristic length (3.3b
sca_le_,_the first moment oB(r,t) was computed using the In Eqg. (3.39, B(T) is a nonuniversal prefactor. There is
definition strong analyticd%*and numericaf*>® "> %vidence that the

exponen is 3 for the two-dimensional Ising model, and it
E r G(r,t) is believed to be—1/3 for the three-dimensional Ising
T model® The approximate form oE(T) in Eq. (3.3b is
r)y=—" (2.13 completely defined by quantities that for the two-
Z G(r,t) dimensional Ising model are either known exactby, (and

Mgy ,*>®or can be obtained through a Wulff construction by

The temperature in all our simulations was fixedTat numerical Integration = of exactly - known = quantities
P (Q).58%9898The O(H?) corrections in Eq(3.33 are rela-

=0.8T., which is sufficiently far belowl . that the thermal tively mino” and will be ignored

correlation lengths in both the stable and metastable phases The above calculations are b.ased on the continuum as-
are microscopic and the main contributions to the correlatior%umption that R, 1. From Eq.(3.2) one sees that this re-
function come from the random two-phase structure. Othehuires that o e

details about the simulations are given at the beginning o

Sec. IV. H<(d—1)ao(T)/Mgf T)=H s T). (3.4
This crossover field has been calltet mean-field spinodal

(MFSP), and the regime of stronger fields is called the
A. Nucleation theory of metastable decay strong-fieldregime’®#2 Note thatH sp depends off, but

IIl. THEORETICAL BACKGROUND

In order to obtain the characteristic times and lengths tha©t onL.
are important to our analysis, we here give a brief summary
of those aspects of the droplet theory of nucleation that are B. Continuum KJMA theory
necessary to analyze our numerical results. More complete
discussions can be found in Refs. 54,75,77. ]
Thermal fluctuations in the uniform metastable phase cre- The KIMA theory of metastable decay describes the pro-
ate droplets of the stable phase. In terms of the droplet radiu@ss of nucleation and growth in a large continuum system
R, the free-energy difference between a uniform metastabl#ith a nonconserved order parameter and a nondegenerate

1. One-point averages

system and one that contains a single such droplet is equilibrium phase(The precise meaning of “large” will be
elucidated below.It is assumed that the system is initially in
AF(R)=ngd’l)’defloo—Qde|H| M= mpnd a uniform metastable phase, in which critical droplets of the

stable phase nucleate with ratét) per unit volume and
grow with radial growth velocity (t) without substantially
whereQ4RY is the volume of a droplet of radilR o is the  altering their shapes. The two-phase structure of the system
surface tension along a primitive lattice vector, angls is s represented by a phase field or indicator function,
the magnetization of the uniform metastable phase. The criti-

cal radius Pt 1, if r is in the metastable phase at
u rl = .
(d—1) (d-1) 0, otherwise.
- (o - g,
= 0~ 2 (3.2 @9

C_|H|'|ms_mmsl - 2|H|msp

The simplest statistical quantity describing the structure of

corresponds to the maximum @&F(R). Droplets with R the system is the volume fraction of metastable phase,
<R, almost always decay, whereas droplets VRthR; al-  @#mdt), which is defined in terms ai(r,t) by

most always continue to grow. In this work we only consider

sufficiently strong fields thaR.<L. (The regimes of very _ 1 - d

weak fields, where this does not hold, are discussed in Refs. emdt)=(u(t)) = F (u(r,t)) d°r. (3.6
27-29,54,75,78.The nucleation rate per unit volume for

growing regions of the equilibrium phase is determined byAssuming that droplets of stable phase nucleate with con-
the free-energy cost of a critical droplétF (R.), through a stant nucleation ratk (the case discussed in Sec. Il And
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grow from an initial volume of zeroR.<L) without inter- 1 E(T)\Wd=D
acting and with constant radial growth velocityt) =v, the Hosd T.L)~| 5571 TnL

ensemble average a@f,{t) is given by

(3.10

Its exceedingly slow asymptotic convergence withesults
from Eqgs.(3.39 and(3.8). However, relatively large systems
(L=10*—10* for d=2) are required for the contribution
described by Eq(3.10 to be larger than the various correc-
tion terms(see Fig. 11 of Ref. 78

' (3.7 This discussion reveals three restrictions that pertain to

the applicability of the KIMA picture to real systems, as well
an expression often referred to as “Avrami’s law:® The a5 to the Ising lattice-gas model:

argument of the exponentidivhich grows without bound (1) It applies only in the MD reginfé>*">82¢f large

with time) is the “extended volume” of stable phase, ob- systems and/or intermediate fields. In this regime the decay
tained by adding the volume fractions of all droplets withoutproceeds through a large number of droplets which nucleate
correcting for overlaps. The exponential dependence on thgdependently at random times and positions and subse-
extended volume is a special case of a general result fajuently grow to fill the system.

randomly placed, polydisperse objettdn the approxima- (2) It describes nucleation and growth in a coarse-grained
tion considered here the distribution of droplet radii is uni-sense. This means that the results of the theory should agree
form betweenR.~0 andvt. In response to claims that it with those of the Ising model at length scales much larger
does not represent a correct solution for the stochastic prahan the critical droplet radiu®. and should disagree at
cess defined in Refs. 1-3, E@?) was recently rederived length scales on the order RE and shorter.

without reference to the the extended volutfidn Sec. (3) It does not take into account interfacial effects, except
I B 3 Eq. (3.7) will be used to provide explicit forms of the jnsofar as they determine the nucleation rate. When the vol-
parameters in Eq(1.1). Generalizations of Eq3.7), which  ume fraction of stable phase is large, the dynamics are domi-
consider complications such as finite-size effects, homogenated by droplet coalescence, which is accelerated by the

neous and heterogeneous nucleation, anisotropic growth, amgterface tension. We therefore expect the theory to disagree
diffusion, are discussed in Refs. 14,24,25,36,85,86. Effectgith the simulation results in this late-time regime.

of nonstationary nucleation rates and growth velocities that

depend on the droplet size are discussed in Refs. 53,86,87. 2. Two-point correlations
X , : _ dy - 1/(d+1) , . .

__ Equation(3.7) defines thel'gg(rjrl%scalq Alv?) i The connected two-point correlation function for the

in which A=[(d+1)In2/4] depends weakly o ble phasd(F btained in closed f b

throughQ 4. This time approximately equals the metastableMetastable phas (r,t), was obtained in closed form by

P : - Sekimoto under the assumption that the droplets are
lifetime 7 defined after Eq(2.7). An important length scale A : o o 46
is obtained front, and the growth velocity: d-dimensional sphered), =7, (13=4m/3):

emdt)= ex;{—lﬁdvdf(t—s)dds
0

F{ levdtd+l
—exg — ———

d+1

Ro=vto=Av(lp%) U~y 38 TEH=UEHUx+rD)=(ux)>
did
This characteristic length describes the mesoscopic structure (u(®){exd 1% ' Wy(r/2vt)] -1}, forr<2vt
of the decaying system. It gives the average diameter of a =)0, forr>2ut
droplet att~ 7 and can be seen as the average distance be-

tween independent droplets. The average number of droplets (3.1
that contribute to the decay is proportional 1o/R,)9. For .
Eq. (3.7 to describe the time evolution correctly, the systemwherer =|r| and
must contain a large number of independently nucleating and
growing droplets, i.e.,l(/Ry)9>1. This is the sense in which 2 I=y2+y? 1+y1-y?
the system must be large. Because of the large number of W(y) = 3 arccoy =2y 1=y +y~in y ’
droplets that contribute to the growth, the regime in which (3.123
KJIMA theory is expected to be valid is called thrultidrop-
let (MD) regime’>®2 Under these conditions the system is T 5
self-averagintf and behaves approximately deterministically Ps(y)=5(1-y)"(1+y). (3.12h
according to Eq(3.7).

In terms of the four characteristic lengths—the micro-The first moment of’(r,t) is defined by
scopic lattice constaritnity), the critical droplet radiug.,

the average droplet distan&gy, and the system size—the f (T(r Odr
domain of validity of the KIMA approximation can be sum- _
marized as (r(t))= : (3.13
f I'(r,t)dr
1<R.<Ry<L. (3.9

consistent with Eq(2.11). This is a time-dependent charac-
SettingRy~L, one obtains the crossover field that limits teristic length which describes the structure of the system.
the MD regime in the weak-field/small-system direction, One would expect its value &t 7 to be proportional tdR,,
called thedynamic spinoda({DSP):"*82 which is confirmed by our simulations.
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3. Relations between KJMA and Ising quantities where the function

Theoretical approximate expressions for the relaxation 1
function ¢(t) and the correlation functios(r,t) of the @d(x)=f yd - eVd¥)dy (3.20
Ising model can be derived from the corresponding quanti- 0

ties in the KJMA theory. The main assumption is that foris optained by numerical integration. Hegd is the isother-
sufficiently late times, when the mean size of the droplets Ofnal susceptibility in the equilibrium phase, agé® can be

tstablefptrr]]as:e Is mucg Ilarger thge, ttr;]e ”éiiﬂoscqp'tc Smflf;. interpreted as an analogous measure of the subcritical fluc-
uré of the Ising model resembles the PICtUre. NSy ations in the metastable phase.

assumption is also expected to break down at late times,
when droplet coalescence becomes important.
The time-dependent magnetization of the Ising model,

m(t), is approximately given in terms of the volume fraction  |n this section we present our simulation results for the

IV. NUMERICAL RESULTS

in the KIMA theory as two-dimensional Ising lattice-gas model and use them to ob-
tain the parameters in the theoretical predictions of the ex-
M) ~[Mmns—Mg] emd ) + My, (314 tended KIMA theory *%64"The relaxation function, which

wherem,,; andm, are the magnetizations of the domains ofiS @ one-point function, is discussed in Sec. IV A. Those
metastable and stable phase, respectively. From the defirfiuantities which also require knowledge of two-point corre-

tion of the relaxation functiom(t), Eq (27)’ one also has Iat|0n funCtior?S are treated in Se.CS. IV B—=IV D. In the re-
mainder of this paper we use units such thatkg=1 and

m(t) =[m(0)—mg] ¢(t)+mg (3.1 measure time in Monte Carlo steps per $NCSS.
All the results shown correspond To=0.8T., and most
of them are forL=256. Only for the two weakest fields,
|H|=0.15 and 0.12, did we use=1024 to ensure a suffi-
m.-—m ciently large value oL/R,. Results are averaged over 100
Pt~ ——— o) (3.1  independent realizations, except fif|=0.12, for which
m(0) —ms only 50 realizations were performed due to the long lifetime
for the relaxation functionp(t) of the Ising model in terms at this weak field. .
of emdt) in the KIMA theory. The right-hand side of Eq. ~ The evolution of the system geometry during the decay
(3.16) can be considered as a coarse-graining approximatioRf0Cess is illustrated in Fig. 1 by a series of typical simula-
for ¢(t), in which the local spins have been averaged over 4ion snapshots fofH|=0.15.

region which is large compared Ry, but small comparedto ~_Values at 0.8gTc~1.815(Ref. 65 of quantities for the
R, . Ising model, that are needed to compare the simulations with

At this level of coarse-graining, the correlation function theé KIMA predictions are as follows. The surface tension
of the Ising model is given in terms of the correspondingUoigoéZé‘?éﬁef- 65 and (tjhe zer(IJ-fleltjﬂmagr:jeEZ(i?rt;dnsp
L > ~0.954% The corresponding values &ty and Z(T) are
quantity in the KIMA theory}'(r,t), as Q,~3.153~ 7 and E~0.506%° This value of(2, gives the
> MO +6.(D +6F). (3. constant in the definitions (15. aljd Ry asA~0.870, and it
GO =[Mms= MIT(T,)+ Gmd 1)+ G(r). (317 implies that the average deviations of the droplets of stable
Here G,.{r) andG(r) are correlation functions describing Phase from the circular shape assumed by the KJMA theory
local fluctuations that are nonzero only in the metastable anghould be negligible at this temperature. Considering the ir-
stable phase, respectivelisee Appendix A. These correla- regular shapes of the individual droplets in Fig. 1, we find it

tion functions are of very short range comparedﬂ(cf,t), quite remarkable that the extended KIJMA theory neverthe-

and where they are different from zero they are proportiona|ess gives a very good statistical description of the decay
t0 @ and (1— @0, respectively. process, as we now proceed to demonstrate.

Equation(3.17) enables us to obtain a KIMA approxima- ) . o
tion for the variance of the Ising magnetization. The variance ~ A- Relaxation function and metastable magnetization

is obtained from the correlation function as Monte Carlo(MC) and fitted KIMA results for the relax-
ation function ¢(t) are shown together in Fig. 2 fdH)|

for the Ising model. Equation§3.14 and (3.15 together
yield

4 L . =0.2 and 0.4(both in the MD regimg and 0.8(slightly
Vaim(t)]=L 21 G(ri,b). (318  peyond the mean-field spinogiaThe results are shown on a
linear scale in Fig. @), while the linear dependence of
Combining Eqgs(3.11), (3.17, and(3.18, we obtairf’ In ¢(t) on (t/7)® predicted by Eq(3.7) is illustrated in Fig.
2(b). The KIMA expression fokp(t) contains two param-
LOVarf m(t) ]~[ Mps—mg]2dQ4(20t) Y7 d1) eters,m,s andlv?, which were determined by fitting to the
1 MC data as described below.
x| ©4(1v9d+1) — _} As discussed in Sec. Il B, the theoretical expression for
d ¢(t) follows from the assumption that for times when the

ms,rq_ s mean size of the domains of stable phase is much larger than
T emd ) KeTxT+[1 = emd O] keTx7, the critical droplet siz&.(H,T), the mesoscopic structure of
(3.19 the Ising model resembles the coarse-grained KIMA picture.
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FIG. 1. Snapshots showing the time evolution of the system configuration during a typical Monte (&josimulation for L
=250, T=0.8T., and|H|=0.15, for which the lifetimer~392 MCSS. Light gray represents the metastable spin direction and black the

stable spin direction. While supercritical droplets in one snapshot can also be identified in the next, the subcritical fluctuations are uncor-

related between snapshots. The two characteristic lenggs25 andR.~ 2.5, are shown by the long and short bar below each snapshot,
respectively.(a) t=80 MCSS. A few supercritical droplets are seen, but most of the black pixels represent subcritical fluctdations.
=260 MCSS. Many large supercritical droplets are growing against the metastable backgepird890 MCSS= 7. The magnetization

is close to zero, several of the supercritical droplets have coalesced, and the stable phase is close to percolating. Microscopic equilibrium

fluctuations appear as light specks inside the stable-phase regions. Figure courtesy of G. Korniss.

This assumption leads to E€.16), from which the follow-
ing two-parameter expression for dift) results:

In[$(t;a([H]),b(JH)]~ In[a(HDI—b(|H]) 3, 1

pected to make Ed4.1) invalid for m=<0, we used only data
for t<7(|H|) in the fits. We eliminated the early-time re-
gime of rapid approach to “metastable equilibriunjthe
“hooks™” most easily seen in Fig. (B)] by selecting the
lower limit of the fitting interval,t,(|H|). Two different

wherea(|H|) contains information about the magnetization criteria were used.

of the metastable phase and is given by

Mms— Mg

a(|H|)=n1(())——m’ (4.2
andb(|H|) is obtained from Eq(3.7) as
Qzlvz
b([H|)= 3 4.3

The theoretical results fot(t) were obtained by per-
forming unweighted linear least-squares fits of E41) to

(@ tmin(|H|) was selected to give a joint extremum for
a(|H|) andb(|H|), yielding lower bounds fom,,s andlv?.
This minimizes the sensitivity of the estimates to the cutoff.
(b) tmin(|H|) was selected to give a minimum or a plateau in
the y square per degree of freedom in the fit.

For small|H| the difference between the estimates resulting
from these two criteria is much smaller than their individual
statistical errors, indicating that the KIMA parameters are
well defined. FolH|=0.3, the time scales corresponding to
the fast relaxation towards the metastable quasiequilibrium
and the slow decay towards equilibrium are not well sepa-

the MC results for Inj(t). Since coalescence effects are ex-rated. This results in the disappearance of the extrema used
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L L to selectt,,(|H|) and a rapid loss of precision in the defi-
nition of the fitting parameters with further increase| .

(a) . We use unweighted fits because the valuesngf) at

differentt are not independent. The statistical errors in the

data in the intermediate-time regime expected to be most

compatible with Eq(4.1) are larger than those in the early-

=3 time “hook” regime (see discussion of Vam(t)] in Sec.
0.4 T IV C below). A weighted fitting procedure produced much
1 inferior agreement between the fitting function and the data
02 4 than the unweighted procedure. As seen from Figg). and
2(b), the agreement between the MC results and the predic-
0.0 N tions of the KIMA theory is excellent for intermediate times.

0 00 200 300 400 The progressive breakdown of the validity of the KIMA
prediction for ¢(t) at late times is illustrated in Fig.(@,
which shows the same data as Figh)2up tot=27(|H|).

For |[H|=0.2, the KIMA approximation agrees very well
with the MC data at intermediate times, whereas for long
times it decays more slowly than the MC results. This is
expected since the KIMA approximation does not incorpo-
rate the interface-tension effects which accelerate the decay
in the late-time regime where droplet coalescence becomes
important. ForH|=0.5, the KIMA approximation fog(t)
agrees well with the MC data at intermediate times, whereas
for late times it decay$asterthan the MC results, as illus-
trated by the data fdH|=0.8. This qualitative change in the
late-time behavior ofé(t) signals the breakdown of the
KJMA nucleation-and-growth picture dbl| approaches the
mean-field spinodalH \es~0.75 at 0.8.). In the strong-
field regime beyondHsp the nucleation of very small
droplets of stable phase becomes the dominant decay mecha-
nism, rather than the growth of larger domains. The almost
perfect agreement between the Ising and KIMA results for
|H|=0.4 we believe to be the result of an accidental cancel-
lation of corrections at late times.

Monte Carlo data forp(t) in the strong-field regime, at
|H|=0.8, 1.0, 2.0, and 3.0, are shown in Fig. 3. As expected,
the MC data are not well approximated by the KIMA result
in this regime. The solid curve is the exact limit faH |
—0; ¢(t) = exp(—t). The data fofH|=3.0 are close to this
limit.

For the two weakest field§H|=0.15 and 0.12, we no-
ticed a slight increase in the minimugmsquare per degree of
freedom in the fits. This may indicate that for even weaker
fields one may need to consider the “incubation time” for
) near-critical clusters, which is discussed by Shneidman and
co-workers>>#87|nvestigations for weaker fields are there-
fore desirable.

Using Eg. (4.2 together with the fitting parameters
a(|H]|), we obtained estimates for the metastable magnetiza-
tion my,s as a function oH. The equilibrium magnetizations
|H|=0.8 (O and dashed curygslightly beyond the mean-field ms for e_ach value oH, V.Vh'Ch are necessary Ian_Jts_ for this
spinodal. The lifetimes are~186 MCSS for|H|=0.2, ~41  calculation, were obtained by standard equilibrium MC
MCSS for |H|=0.4, and7~12 MCSS for|H|=0.8. (8 Linear S|mulat|on.. They are shown in the r'|ght-hand part of Fig. 4.
scale vst. Derivatives of data such as these provide estimates for 1he estimates fom,; are shown in the left-hand part of
transient currents in ferroelectric switchii@ef. 23 and electro- ~ Fig. 4. The statistical errors for these estima(@s for most
chemical potential-step experiment®efs. 39,40 (b) Semiloga-  Of the other estimates of nonequilibrium quantities presented
rithmic scale vs (/7)3. For clarity, the data fotH|=0.8 and 0.2  in this papey were calculated by dividing the set of indepen-
have been displaced by 0.2, respectively(c) Same agb), but ~ dent runs into five equal batches. They are everywhere
plotted fort/7<2 to show the expected deviations of the MC datasmaller than the symbol size and therefore not shown. The
from the KIMA approximation for later times. metastable magnetization is the quantity which is most sen-

In ¢(t)

In ¢(t)

FIG. 2. MC (pointy and fitted KIMA results(lines) for the
relaxation function of the Ising modeb)(t), for L=256 andT
=0.8T,. Results are shown fgH|=0.2 (¢ and solid curvgand
0.4 (O and dot-dashed curyeboth in the MD regime, and for
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FIG. 4. Stable magnetizatiom (<), and metastable magne-
tization, m,,s (O and ), shown vsH. The data points fom,,g
represented a® are based on the selection criterit® in Sec.

IV A, and those represented B§ on criterion(b). The data are for
L=256 except foH=—0.15 and—0.12, which correspond th
=1024. The thin solid curves are transfer-mati™) results. For
H>0 the curve represents the equilibrium magnetization as ob-
tained for anN X « system withN=9, which is seen to be in com-
plete agreement with the MC results. Fel0.2<H<O0 the curve
represents the metastable magnetization corresponding to “the first
lobe” (see Appendix Bfor N=9, while the solid circles represent
the maximum of this lobe foN=5,...,9 from left to right. For

H< —0.2 the curves and solid circles represent “the second lobe”
for N=5,...,9from left to right.

In ¢(t)

by Schulman and collaboratots.®” A brief description of
t (MCSS) the method with details of its application to the present prob-
FIG. 3. MC results fors(t) in the strong-field regime aH| lem is given in Appendix B. The transfer-matrix estimates

=0.8 (O and dashed curve, repeated from Fig. 2 for compayison for Mns, based oM X« Ising systems wittN=5,...,9, are

1.0 (), 2.0 @), and 3.0 (\). The lifetimes arer~8.42 MCSS  shown in Fig. 4 as solid black points. The agreement is grati-
for |H|=1.0, 7~2.70 MCSS for|H|=2.0, andr~1.42 MCSS for ~ fying and indicates that the metastable order-parameter esti-
|H|=3.0. The solid curves represent exponential relaxation, whichmates extracted from the dynamic MC simulations using the
is the exact result in the limjtH|—c. (a) Linear scale(b) In¢(t)  KIMA theory are consistent with a different theoretical ap-

vst, emThTSiZing the approach towards exponential decay with inproach which is completely independent of the dynamics.
creasing|H|.

sitive to the short-time cutoff,,(|H|) used in the fitting B. Growth velocity and nucleation rate

process. thﬂ|sO.25, the two estimates agree to withinthe  op the pasis of the relaxation function alone, one can
(sma_lll) ;tau_stlcal error. For stronger f|el_ds, the _estlmgtes d'f'obtain the combinationv? of the nucleation rate and the
f_er, |nd|cat|ng_that_rnm5(|H|) becom_es_lncreasm_gly il de- o gy growth velocity from the fitting parametb(|H|). To
fined as the field is increased. This is the main source o btain separate estimates foandv, one needs to compare

uncertainty in our estimates of the metastable magnetlzatm%51e MC results for the variance of the magnetization,

The metastable magnetizations shown in Fig. 4 approac : ) N .
S o . . arf m(t)], with the corresponding KIMA prediction given
th f lib tizat fashion that. .
© curve of equiibrium magnetizations in a fashion "ha Eq. (3.19. If we use the values ah,,s andlv? obtained

appears quite smooth and resembles an analytiE1 ) . ) :
continuatiore*58-61.79We find this resemblance quite re- from the fits to the relaxation function, and as obtained

markable, since these estimates are obtained from observ#0m the fluctuations in the equilibrium simulations, theh
tions of the time dependence of the decay process, effe@ndx7"° may be determined from a linear fit of EQ.19 to
tively using the theoretical KIMA result fap(t) to subtract the MC data for Vdm(t)] at each value ofH|. For the
those regions of the system which have already decayed intgame reasons discussed in the context of the fits to the relax-
the stable phase at any particular time. Somewhat fancifullyation function in Sec. IV A, we found that an unweighted
this might be called “analytic continuation on the fly*’ fitting procedure was more stable and yielded better overall
To check the KIMA estimates fan,,s, we choose the agreement than weighted fitting. For each valughbf, the
transfer-matrix(TM) method first suggested and developedvalues of Varm(t)] were fitted over the same time interval
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In order to further test the identification of|H|) with an
average interface velocity, we performed additional MC
simulations of the time evolution of plane interfaces driven
by an applied field* We started with 6% 64 systems with
all spins antiparallel to the applied field, except for one row
of overturned spins along one of the lattice edges, and peri-
odic boundary conditions in the direction parallel to the re-
sulting interface. We then let the systems evolve in an ap-
plied field according to the Glauber transition probability,
Eq. (2.6) with T=0.8T. as before, except for the following
essential modification. Nucleation in the bulk metastable
phase was suppressed by setting equal to zero the transition

500 [

L’ Var[m(t)]

L probability of any spin parallel to all of its nearest
200 300 400 neighbors? To distinguish them from the unconstrained
£ (MCSS) growing interfaces discussed elsewhere in this paper, we call

these interfaces “tame.” We performed 100 independent
simulations, continuing each until the interface touched the
opposite wall of the simulation box. The average interface
position in the growth direction was calculated from the
time-dependent magnetization ag(t)=[m(t)+1]L,/2,
wherelL,=64 is the extent of the simulation lattice in the
growth direction. Velocity estimates, obtained from linear

as the corresponding relaxation function, and error bars werls to y(t) and averaged over the 100 independent runs, are

fit is shown in Fig. 5. through the origin, of slope slightly less than that obtained

In Fig. 6 we show the fitted values of the radial growth from the fits to the KIMA theory. This is a reasonable result,
velocity v(|H|) for |[H| between 0.12 and 0.8. Since this since the absence of subcritical fluctuations in the “chilled
method is a rather indirect way to obtain the average velocitynetastable phase” in front of these “tame” interfaces
of a convoluted, driven interface, one may reasonably askhould slow down their progress and make their average ve-
whether the fitted) (|H|) is anything more than a phenom- locity a lower bound for the velocity of an interface growing
enological parameter. In order to answer this question, wéto a metastable phase with a thermal distribution of sub-
performed additional numerical and theoretical analyses agritical fluctuations.

FIG. 5. An example ol.?vVafm(t)] as obtained from a com-
parison of 100 independent MC simulationg J and from a least-
squares fit of the KIMA theoretical expression, E8.19, (solid
curve. This particular result corresponds|ts|=0.2. The thin ver-
tical lines mark the time intervdlt,,,, 7], over which the fitting
was performed.

discussed in the next two paragraphs.
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The interface of a growing Ising cluster is in the dynamic
universality class of the Kardar-Parisi-Zhdhg(KPZ)
model®*94The growth velocity of a planar interface is there-
fore expected to be linear iA for weak fields, as is also
predicted for large droplets by the Lifshitz-Allen-Cahn
theory!”%5% However, neither theory explicitly gives the
proportionality constant, which should depend on the aver-
age orientation of the interface, as well as on the specific
microscopic dynamic. Recently, Rikvold and Kolé€ikave
developed an approximate theory for the growth velocity of
“tame” Ising interfaces, based on the solid-on-so{B09
approximation for the equilibrium interface struct§fe®
This theory gives rise to the theoretical curves shown in Fig.
6. The corresponding analytic expressions are given in Ap-
pendix C. The agreement with the MC results for the
“tame” interfaces is excellent.

The theoretical and numerical evidence presented here
strongly supports the assertion thgtH|) obtained by fitting
KJIMA predictions to MC simulations is indeed a reasonable

FIG. 6. The average radial growth velocity of the domains of

stable phasey(T,[H|), vs |H|. The circles and squaresorre- estimate of the average propagation velocity for the convo-

. ! - ' . luted interfaces which separate the regions of stable and
sponding to the same selection criteria as in Figare the veloci- . X
metastable phase. The estimate appears satisfactory, even

ties obtained by fitting Eq.3.19 to the MC results for Vam(t)]. . . . .
The diamonds are the velocities obtained in MC simulations of athoth the nucleation rate in the metastable phase is too high

growing plane interface in which nucleation inside the single-phasd® Measure the growth velocity by more direct methods.
domains is suppressed—a “tame” interface. The thin dashed curve Exce_pt at very early times, _the magnitude of the term
and the solid curve represent the analytical linear-response arffoportional tox* in Eq. (3.19 is much smaller than the
nonlinear-response approximations for the “tame” interface veloci-first term. As a result, the fitted values of|H|) are quite

ties (Ref. 62, Eq. (C1). insensitive toxT°, which shows large error bars and large
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FIG. 7. The nucleation ratgT,|H|), computed using Eq4.3) FIG. 8. MC and KJMA results for the correlation function

with values ofb(|H|) andv(|H|) obtained from fits top(t) and ~ G(r,7(|H[)) for [H[=0.2 (¢, solid curve, [H|=0.4 (O, dot-
varm(t)], respectively. The dashed curve is a one-parameter fit tlashed curve and|H|[=0.8 (O, dashed curve
the exact asymptotic result, E(B.3).

illustrated by the time-dependent characteristic leqgth) ),

fluctuations with respect ttH|. Accurate determination of defined in Egs(2.11) and(3.13 for MC and KIJMA, respec-

xS evidently would require much larger data sets than use?vely' These quantities are shown together in Fig. 10 for
in this study. H|=0.2, 0.4, and 0.8. For early and intermediate times, the
With the separate estimates fb¢|H|) andv(|H|), we MC and theoretlc.al results fdr (t)) increase apprc_mmately
can easily calculate the nucleation ra(@,|H|) from Eq. linearly with t until they reach a maximum at a time some-
(4.3. The results are shown in Fig. 7. Adjusting the un-What beyondr. For late times, the MC and theoretical results
known coefficienB(T) in the exact asymptotic relation Eq. differ considerably. This is easily understood, since the long-

(3.3, such that the theoretical line goes through the datéime dynamical behavior of the Ising model is dominated by
point at|H|=0.15, we find good overall agreement. The cur-Interface tension effects which are not included in the KIMA

vature of the theoretical result is due to the prefactor expoth€0ry. The characteristic lengths obtained from the MC
nentK = 3. simulations are shorter than the KIMA estimates by varying
amounts, which are less than about 0.5 fferr(|H|). We
believe this reflects the short-range, in-phase correlations.
C. Correlation functions These are ignored in the KIMA estimates, whereas they are
present in the MC correlation functions, weighting the latter

In Sec. IV B we used Vam(t) ], which is proportional to slightly towards smaller.

the spatial integral of the correlation functidBl(ﬂ ), to
determine the radial growth velocity(|H|). We now pro-
ceed to obtain the circularly averaged KIJMA correlation
function G(r,t) from Egs.(3.11) and(3.17), using the MC
estimates fora(|H|), b(|H|), and v(|H]|). Since the in-

phase correlation function§&,{r) and G(r), are of very 0.8 |
short range, we here set them equal to zero for noneero

The results fotH|=0.2, 0.4 and 0.8 at=r(|H|) are shown

in Fig. 8, together with the corresponding MC results. The
agreement is quite good, except fee 0. This small discrep- i
ancy arises from the coarse-grained nature of the KIMA 04
theory and is consistent with the very short range of the
in-phase correlations. By comparing the theoretical and MC 02 [
correlation functions in Fig. 8, we infer that the ranges of the
in-phase correlation functions are on the order of one lattice

constant. The difference between the theoretical and simu- 0.0 [ .
0 1 2 3 4 5

1.0

G(r,7(IHI))

lated correlation functions at=0 gives an estimate of

Gd0)+G4(0). Monte Carlo results fos(r, 7(|H|)) in the r

strong-field regime are shown in Fig. 9 for comparison. Note k|G, 9. MC results for the correlation functic®(r, 7(|H|)) in
the very short range of the correlations in this regime. the strong-field regime fofH|=1.0 (¢), |[H|=2.0 (@), and

The time evolution of the correlations and the breakdownH|=3.0 (A). The lines connecting the data points are merely

of the agreement between the KIMA approximation and theuides to the eye. Note the very short ranges of these correlation
MC data for late times and for increasing fields are wellfunctions.
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FIG. 11. Field dependence of the characteristic lengths: the criti-
cal droplet diameter . (solid curve, the mean separation between
droplets of stable phad®, (¢, A, and dashed curyand twice
the maximum ofr(t)), 2r . (O). Two sets of estimates fdR,
are shown: A/(1v?)Y® (¢ with error bary and vr (A and
dashed curve The lengths that characterize the mesoscopic struc-
ture, Ry and r 5, remain proportional over the whole range of
fields studied. The two chains of solid circles relate the strip widths
N of the transfer matrices used to calculatgs (Sec. IV A and
Appendix B to the values oH for which m,s so calculated has a
maximum. The data points correspond to those shown by the same
symbols in Fig. 4. The chain betwedf|=0 and 0.1 represents the
first lobe, and the chain betweéH|=0.2 and 0.6 represents the
second lobe; in both cases=9, . .., 5from left to right. Compari-
son of N to the characteristic lengths indicate that the first lobe
samples only subcritical fluctuations, while the second lobe also
samples rare supercritical fluctuations in the constrained ensemble
represented by the TM eigenspaces.

In Fig. 11 we show thé1 dependence of the most impor-
tant lengths that characterize the system during the decay. As
expected, Ry and the maximum value of(r(t)),
rmad T,|H|), are proportional over the whole range of fields
studied. The diameter of a critical droplet,RdT,H)
~ael[mdH|], is everywhere smaller than these mesoscopic
characteristic lengths.

The expression foF (r,t), Eq.(3.11), can be recast in the
two-parameter scaling form,

I'(r,t)/T'(0})
{exf (ro/Rg)3W,(r/2rg)]—1}, for r<2rq
N 0, for r>2ryg,
(4.9

whererqy(t)=vt is proportional the average radius of the
growing domains of stable pha¥. This two-parameter

FIG. 10. MC and KIMA results for the first moment of SCaling behavior is illustrated in Fig. 12, which shows MC

G(r,t), (r(t)). Note the reasonable agreement at early and inter<

and KIJMA correlation functions vs/2r for two different

mediate times. The rapid decrease of the MC characteristic length £6ts OfH| andt in the MD regime, chosen such that they

late times reflects the acceleration of the decay of the metastab@Ve the same value % /R,. The functions are normalized
phase due to interface-tension effects during the dropletsuch that for both sets of parameters, the KIMA correlation

coalescence regime. In each panel the thin vertical line markfunction equals unity at=0. The dependence a /R, in
7(|H[). (@ [H|=0.2, (b) [H|=0.4,(c) [H[=0.8.

Eq. (4.4) may explain the breakdown with increasing volume
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FIG. 12. Two-parameter scaling plot of the normalized correla-
tion function G(r,7(|H|))/Gkima(0,7(|H|)). The data points are
MC results and the solid curve is the scaling form of the KIMA 100k
correlation functionl’(r,t), Eqg. (4.4). The MC results are shown
for |[H|=0.2 andt=185 MCSS (), and for |[H|=0.25 andt 2
=110 MCSS (). These fields and times are chosen such that i
ro/Ro~0.97 in both cases.

fraction of the one-parameter scaling in termsrof,, re-
cently used by Huangt al? for the experimentally obtained 10° b
domain correlation function of polymer films undergoing

phase transformation. _

S

10 5
D. Structure factors 107 |
The good agreement between the MC and KIJMA results
for the correlation functions in the MD regime should be 107 , ‘
accompanied by similar agreement for the structure factors 0.1 1.0
This is confirmed by Fig. 13, which shows the MC and q
KJMA results for the circularly averaged structure factor .
S(g, 7(|H|)) for [H|=0.2, 0.4, and 0.8. FIG. 13. The structure fact®(q, 7(|H|)). The data points cor-

respond to MC results and the curves to theoretical results calcu-

Fig. 13a), which shows the data on a linear scale. This is nofated by taking the Fourier transform of the }.(‘]MA results for
surprising, since it is exactly at these mesoscopic lengtie (). Restlts are shown fofH|=0.2 (0, solid curve, [H|

: - =0.4 (O, dot-dashed curyeand|H|=0.8 (O, dashed curve (a)
scales that the KIMA theory is expected to describe the SP&car scale.(b) Log-log scale. For clarity, the results foH|

tial structure. .
The behavior for large is best seen in the log-log plots in =0.2:and 0.8 have been offset by two decades, respectively.
Fig. 13b). The KIMA correlation functions are linear for
smallr and therefore agree with Porod’s laf#,which states ~density between a metastable and a stable phase. This pro-
that the structure factor for a two-phase system with intercess is a prototype of metastable decay in a wide range of
faces of negligible thickness should behave &) physical and chemical systems, which are commonly ana-
~q @D for large g. The small oscillations superimposed lyzed in terms of the KIMA theory or one of its many ex-
on theq 3 tails are due to the sharp cutoff Ihatr=2r,. tensions and generalizations. The model system used in the
For the MC data, the thermal fluctuations and the latticenumerical part of our study is a two-dimensional, kinetic
cutoff at the Brillouin-zone boundary causes marked devialsing lattice-gas model. This is one of the first detailed at-
tions from Porod’s law. Considerably weaker fields and contempts to verify the KIMA theory and identify the limita-
sequently larger values of,,, would be necessary to obtain tions to its validity, using a model system in which the el-
the separation of length scales necessary to observe Poro@gentary kinetic processes act on time and length scales

The extent of the agreement for smgllis best seen in

law in a substantial range of for the MC data. much smaller than those characteristic of the mesoscopic
stable-phase droplets. Since the model contains no impurities
V. DISCUSSION or free surfaces, the decay occurs via homogeneous, progres-

sive nucleation and subsequent growth of droplets of the

This paper reports a detailed theoretical and simulationastable phase. While homogeneous nucleation is less common

study of the transient spatial structures that evolve duringn nature than heterogeneous nucleation at impurities and
phase transformation driven by a difference in free-energwurfaces, the limitations to the KIMA picture that we iden-
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tify, should be valid also for these more complicated situadows (with the time variable suppressed for simplicity of

tions. notatior). We write the local spin variables as
Our numerical results confirm that the KIMA theory for
the volume fractions of stable and metastable phase, Si=[Mpmst Smd M JU(r) +[Met 8L I[1—u(r))],

one-point functiong together with Sekimoto’s extensions

that provide two-point correlation functions, give a remark- . .

ably accurate description of the decay process for a widavhere 5,,{r;) and d4r;), which both average to zero, are
range of system parameters. This regime extends surpritecal fluctuations in the metastable and the stable phase re-
ingly far towards strong field¢large supersaturationgind  gions, respectively. Assuming the local fluctuations in the
the correspondingly small nucleation barriers. The conditionswo phases are mutually uncorrelated and uncorrelated with

for the theory’s validity are essentially as follows. the phase fields, Eqg. (2.10 then gives Eq(3.17) with
(i) The critical droplets of stable phase must be larger than
the lattice constant, while at the same time much smaller Grnd 1) =(Snd X) Sd X+ DNUYUX 1)) (A2)

than the system itself.
(i) The system must be sufficiently large that the totaland analogously fo6(r). Further assuming that the corre-

number of droplets is large. lation lengths for the local fluctuations are much shorter than
(i) Due to the effects of droplet coalescence, the theor¥or the phase field,

breaks down for late times, when the remaining metastable

volume fraction becomes less than one half. éms(r*)~<5ms(§)5ms(§+ F))<u2(§)>
When these conditions are satisfied, there is a large sepa-
ration between the microscopic time scale and the mesos- = ( Sd X) Snd X+ 1) W U(X))
copic time scale characteristic of the phase separation. Under . o
these circumstances, we find the extended KJMA theory to =(Omd X) Snd X+ 1)) @ms (A3)

be sufficiently accurate that it enables us to measure non- - - . e

equilibrium thermodynamic quantities, including the orderfor allr such tha(émf(x) {ms(err)) is nonzero. As aresult,

parameter in the metastable phase, the droplet nucleatidhe spatial sum oveG(r) can be considered an “isother-

rate, and the average propagation velocity of the convolutethal susceptibility” for the metastable phase, weighted by the

interface between the two phases. We are able to verify theetastable volume fraction:

measured values by independent theoretical arguments. Due

to the relatively short lifetime of the metastable phase, these ..

quantities are not easy to measure directly by more tradi- 2 Grd )= onksTXT. (A4)

tional methods, and the methods developed here may there- =t

fore be useful for experimental measurements on systeniphe same reasoning is applied to the fluctuations in the equi-

undergoing phase transformation as well. librium phase, yielding Eq(3.19.

While we have demonstrated excellent agreement be-

tween _the exte_nded_KJMA theory and the kinetic _Ising APPENDIX B: TRANSEER-MATRIX ESTIMATES

model in two dimensions and for modera@ely strong fields, OE THE METASTABLE MAGNETIZATION

we believe it would be useful to perform similar studies for

weaker fields and in higher dimensions. A study det 3 is Here we summarize the transfer-mat(i®v) calculation

in progres$?® used to check the consistency of the KIMA estimates for

m,{(H) in Sec. IV A. The field-theoretical result for the
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tween the KIMA results and the TM estimates from the first
lobe for very weak fields and from the second lobe for stron-
ger fields. The values ah,,(H) extracted from the second
lobe for the different values dfl agree with the KIMA es-
timates to within the uncertainty in the latter. Estimates
based on the third and higher lobes give less satisfactory
agreement.

APPENDIX C: APPROXIMATE EXPRESSION
FOR THE INTERFACE VELOCITY

— (T/N) In[x,|

The analytic approximation used here for the propagation
velocity of a field-driven “tame” interface in a two-
dimensional, square-lattice Ising model with Glauber dynam-
ics will be described in detail elsewhéfelt uses the SOS
approximation for the equilibrium interface structymhich

FIG. 14. The 19 largest transfer-matrix eigenvalgs plotted remarkably giYeS the eX,aCt surface tension for interfapes Par'
vs H as — (T/N)In]n,| for N=6. The lowest-lying branchidot-  allel to the lattice dlre%tlons and an excellent approximation
dashed ling which corresponds to the dominant eigenvalye is ~ for inclined interface®9 to estimate the populations in the
the equilibrium free energy per spin. The metastable branch is regifferent spin classes used in tinefold way rejection-free
resented by the heavy curve segments. The solid circles represgitonte Carlo algorithm?® These class populations are used
the points along each segment, where the magnetizatigit,H)  together with the contributions to the average propagation
has its extremum. These points correspond to those similarlyelocity from spins in each class, which are easily obtained
marked in Figs. 4 and 11. from the transition rates, to calculate the overall average ve-

locity. For the special case of Glauber transition rates, iso-
Fig. 14. With each branch in the figure one can associate HOPpic interactions, and an interface which is on average par-
magnetization m,(T,H)=d[(T/N) In|\J}/dH=(a|M|a). allel to one of the symmetry directions of the lattice, the
The metastable branch corresponds to the union of theesult i$?
lowest-lying eigenvalue branches in the figure, which have a
magnetization whose sign is opposite that of the equilibrium tanh(BH) 1+X?
magnetization. It is marked with thick curve segments in Fig. v(TH)=——"—

- 2 ; 2
14. At specific values of the eigenvalues in the composite (1+X) 1+ [sinh(2BJ)/cost 5H)]
metastable bran(_:h undgrgq avoided crossings with oﬁher X2 [ 2(142X)
branches, at which their eigenvectors and magnetizations + 5 2+ - Sl (-
vary rapidly. The field corresponding to tiéh crossing f 1-X? " 1+[sinh(2B3)/cosh BH)]
=0 corresponds tél;=0) depends om and the strip width (C1)

N approximately asH,~2J/(N—n), with best agreement

for low T and smalin.®® The magnetization along the branch Here X= exp(—28J) corresponds to a linear-response-like
between therf{— 1)th andnth crossing is what we refer to as approximation, in which the average class populations are
the “nth lobe” in the caption of Fig. 4. The point on each approximated by their equilibrium values ldt=0, whereas
lobe, where the magnetization calculated from that lobe haX= exp(—28J)cosh{3H) yields a nonlinear-response ap-
its extremum, is marked as a solid black circle in Fig. 14.proximation which accounts for effects of the applied field
These points correspond to the points similarly marked iron the nonequilibrium class populations. In Fig{6(T,H))

Figs. 4 and 11. from Eq.(C1) is shown vgH| at T=0.8T.. The agreement
For this work we numerically diagonalized the TM for of the nonlinear-response result with the directly simulated
N=5,...,9,using the subroutineacos”’” in double preci- ‘“tame” interface velocities is excellent. Since the surface

sion on a DECalphaworkstation and a Cray J90 supercom- tension at 0.8 is very close to isotropic, results for inclined
puter. As seen in Fig. 4, we found excellent agreement beinterfaces are not needed here.
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