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Mean-field description of the phase string effect in thet-J model
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A mean-field treatment of the phase string effect intfdemodel is presented. Such a theory is able to unite
the antiferromagnetiCAF) phase at half-filling and the metallic phase at finite doping within a single theoret-
ical framework. We find that the low-temperature occurrence of the AF long-range ord&fidrO) at
half-filling and superconducting condensation in the metallic phase are all due to Bose condensations of
spinons and holons, respectively, on the top of a spin background described by bosonic resonating-valence-
bond pairing. The fact that both spinon and holon here are bosonic objects, as the result of the phase string
effect, represents a crucial difference from the conventional slave-boson and slave-fermion approaches. This
theory also allows an underdopetetallicregime where the Bose condensation of spinons can still exist. Even
though the AFLRO is gone here, such a regime corresponds to a microscopic charge inhomogeneity with
short-ranged spin ordering. We discuss some characteristic experimental consequences for those different
metallic regimes. A perspective on broader issues based on the phase string theory is also discussed.
[S0163-182699)04213-1

I. INTRODUCTION pared to the exact numerical value-60.3348 per bond for
the Heisenberg modeland a generalized descriptiSrcan

The t-J Hamiltonian is one of the simplest nontrivial precisely produce not only the ground-state energy, stag-
models describing how doped holes move on the antiferrogered magnetization, but also spin-excitation spectrum in the
magnetic(AF) spin background and is widely used to char-whole Brillouin zone. Therefore, a bosonic description of
acterize the physics in the CuQayers of cuprates. A tre- Spins seems most natural at half-filling.
mendous effort has been contributed to the investigation of It is thus tempting for one to use the bosonic description
the t-J model. The most popular approaches to the metalli®f spins as a starting point and to try to get into the metallic
phase are often based on the so-called slave-boson methdghase by doping. The connection between antiferromagnetic
in which the degrees of freedom associated with spins arand metallic phases is commonly perceived important in the
described in terms dermionicdescription. There have been t-J model, and is also believed by many to be the key in
many proposals of mean-field ground states based on suchsgarch for the mechanism of superconductivity in cuprates.
fermionic description of spins, ranging from the earlier fer- Unfortunately, the mean-field study in the Schwinger-boson-
mionic resonating-valence-borfRVB) states’ gauge-theory Slave-fermion approachof thet-J model, which is based on
descriptior®* SU(2) formalism?® to possible fractional the bosonic description of spins and has been quite success-
statistics>” However, there is an inherent problem quite gen-ful at half-filling,** soon meets problematic consequences
eral to the fermionic description of spins: approaches basednce holes are introduced—encountering the so-called spiral
on it usually fail in faithfully producing correct AF correla- phase and its derivativé$!* It seems that one could not
tions especially at small doping. avoid such a spiral instability so long as a perturbative ap-

At half-filling, for example, the exact ground state is proach is adoptetf. One of many problems with spiral
known to satisfy the Marshall sign rfléfor a bipartite lat- phases involves an underestimated kinetic energ$(t%/J)
tice) but a fermionic description of spins would show redun-at weak dopingd<1, which is also accompanied by a very
dant signs: even exchanging two same spins will give rise tguick descent to ferromagnetic phase at slightly lagéf
a sign change of wave function due to the fermionic statis- This implies that doped holes may have introduced some
tics. Under strict enforcement of no double occupancy consingular doping effect which has been mistreated in the
straint, those unphysical signs would not have any effect. Butnean-field approximations. Such a singular doping effect has
in mean-field approximations, this “sign problem” will al- been recently identifi¢d!’ by reexamining the motion of
ways show up and cause the serious problem of an overalloped holes in the AF background. It has been found that
underestimate of AF correlations. spin mismatches caused by the hopping of doped holes can-

By contrast, the Marshall sign can be easily incorporatechot be completely “repaired” through spin flips at low en-
into abosonicdescription of spin degrees of freedom, whereergy. Such a residual nonrepairable effect can be expressed
no extra sign problem would be caused by the statistics oby a path-dependent phase product known as phase &tring.
bosons. It is the reason contributing to the success of thBue to the phase string effect, a hole slowly moves through
bosonic RVB descriptioht® and its mean-field version—the a closed path will acquire a nontrivial Berry’s phase. As this
Schwinger-boson mean-field appro&ehin describing spin  phase string effect is very singular locally at a lattice con-
properties at half-filling. A variational wave function based stant scale, its topological effect can be easily lost if a con-
on the bosonic RVB picture can proddc an unrivaled ventional mean-field average is involle— a reason causing
accurate ground-state energy Q.3344) per bond as com- the aforementioned spiral instability.
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In order to handle such a singular phase string effect hid-
den in the conventional Schwinger-boson-slave-fermion
scheme, a unitary transformatidrhas been introduced to + = =
regulate the Hamiltonian such that the local singularity of
the phase stringat the scale of one lattice constans
“gauged away,” while its large distance topological conse-
guence is explicitly incorporated into the Hamiltonian. The
resulting exact reformulatidh of the t-J model is believed + -
to be more suitable for a perturbative treatment, in contrast to
the original slave-fermion formalism. The underlying physi-
cal implication is that the “holon” and “spinon’definedin
the slave-fermion scherte'* may not be really separable
due to the hidden phase string effect, but those in the new
formalism may become truly elementary excitations. In the
one-dimensionall1D) case, correct Luttinger-liquid behav- FIG. 1. A sequence of sign mismatchesth reference to a spin
iors indeed can be reproducédafter a mean-field decou- background satisfying the Marshall sign ruleft by the hopping of
pling of the spin and charge degrees of freedom in thig hole from sitea to siteb on square lattice.
scheme.

In this paper, we develop a generalized mean-field-typ@ppears in the hopping ter(@.3) which is the origin of the
theory based on this formalism of the) model in the two-  phase string effett'’ mentioned in the Introduction. Due to
dimensional2D) case. This theory recovers the well-known such a sign, a hole moving from a sieo an another sité
Schwinger-boson mean-field stdtat half-filling while pre-  will acquire a sequence of signs, i.e., a phase string as shown
dicts a metallic phase at finite doping without encounteringn Fig. 1, which has been shoit’ to be nonrepairable by
any spiral instability. It offers a unified phase diagram for thethe spin-flip process governed By;. It implies that the
t-J model at small doping, in which an insulating AF long- slave-fermion formalism of thé-J model cannot be treated
range-ordefLRO) phase, an underdoped metallic phase within a perturbative way in the doped case.
the phenomena of pseudogap and charge inhomogeneity, as
well as a uniform metallic phase with “optimized” super- A. Phase string representation
conducting transition temperature, are all natural conse- .
quences happening on a single spin background controlled .It has been shown that the aboye singular effeq of phase
by bosonic RVB order pairing. The phase string effect p|aysstr|ng.can be re_gula}ted after a unitary transfqrma’c?oTlhe
a crucial role here to connect those different phases togethé‘?S“lt'”g formalism is known as the phase string representa-
within a single theoretical framework. A short version of this i0n- The hopping terni; in this representation becontés

work was published earliéf.

L f . h
He=—t X (e”i)hlh;(e“ib] b, +H.c., (2.5
Il. MEAN-FIELD THEORY BASED ON PHASE STRING (ijyo

EFFECT and the superexchange tekin reads

In the standard slave-fermion formalism of thé Hamil-

i inilati is wri J oAb A
tonian, electron annihilation operatoy, is written as Hy=—2 3 (e"’Aij)biTUb;r_U(e"’ Al)by_yibigr

Cia':finiO'(_o-)i! (21) (e (26)
in which fiT is fermionic “holon” creation operator and;

is bosonic(Schwinger-boson“spinon” annihilation opera-
tor, satisfying no double occupancy constraint

Note that the fermionic operatdr now is replaced by a
bosonicholon operatoih; in this formalism. So one role of
the phase string effect is to turn holons from fermions into
bosons. Both holon and spinon are now described by bosonic
f1f,+> bl b,=1. (2.2 operators which still satisfy the following no double-
4 occupancy constraint:
The t-J model,H;;=H;+Hj, is composed of two terms:

the hopping ternH, is given by hiThi""E biTabiU: 1. 2.7)

Me

Hy=—t f1f.bl b, +H.c., 2.3
i (%o’ (@) 7 @3 In this formalism, the singular phase string effect, as rep-

resented by the siga in the hopping tern{2.3) of the origi-

and the superexchange term is ) FETS )
nal slave-fermion representation, is “gauged away,” but its

J ot topological effect is left and exactly tracked by lattice gauge
Hy=~ 2 <ii>2 . Biobj - oBj - o7bigr - 24 fields Aifj andA{} . These fields are defined as follows:
Note that the staggered phase facterdf)' in Eq. (2.1) is AiijA;Sj_(ﬁin (2.9

introduced’ to explicitly track the Marshall sign, which
leads to the negative sign in E@.4). A signo=+1 then  with
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ﬂ B. Mean-field approximation

For the sake of clarity, in the following we first consider
| — ﬂ the superexchange terid; and then include the hopping
B O 3 termH,;, due to different natures represented by them.

s > S 1. Generalized mean-field treatment of H

At half-filling, the mean-field theory based on the bosonic
RVB picture is known as the Schwinger-boson mean-field
FIG. 2. Fictitiousw flux tubes bound to holons which can only theory which was introduced by Arovas and Auerb&kh.
be seen by spinons and are described by the gaugebﬂ?]ettéfined Such a mean-field is characterized by a bosonic RVB order

by Eq.(2.12). parameter
1 S
Aj=3 2, [O=6 1) 2 onf, | 29 A= (bi,b; o) (2.17
1 for the nearest-neighbor sitesndj [i =NN(j)].
qb?j =— > [6:()— 6;(1, (2.10 The present formalism only differs from the Schwinger-
2157 boson, slave-fermion formalism in doped case, where
and a gauge fleIdA emerges. Since spinons are subject to
this gauge- er|dA in Hy, it is natural to incorporating
h
Ah 1 E [6,(1)— 0(”]” (2.11) the link vanablee 'oAij into the order parametef2.17).
H Namely,
Here n® and n" are spinon and holon number operators, _
respectively.g;(1) is defined as an angle AZ =; <e*"’Ainigbj_U>. (2.18
Bi(l): |m|n(Zi_Z|) (212

ASJ defined here is then “gauge-invariant” under an “inter-
with z;=x;+iy; representing the complex coordinate of anal” gauge transformation: A“—>A +6,—06;, and b,
lattice sitei. —b; e,

The physical meaning oﬁ andAh] have been discussed Based on such an order parameter, one may write down
in Ref. 17: AS andAh describe quantized flux tubes bound to the mean-field version dfl; in Eq. (2.6) in a standard pro-
spinons and holons respectlve(lylg 2 illustrates the case cedure
for Ah) Furthermore, the fleltzb describes a uniform flux
threadmg through the 2D plane with a strength per
pIaquetteEDq')l- =+ . Itis also noted that a-flux neutral
topological excitation has been previously discusdedthe
pure Heisenberg model, which resembles a quantized flux AS |2 Th —(1—
line in the mixed phase of a BCS superconductor. Here the <E A % b,big = (1N,
flux quanta are bound to the doped holes due to the phase (2.19
string effect. '

The electron operator in this representation becdfmes  here the last term with a Lagrangian multiplieris intro-

duced to enforce the condition of total spinon number, with
(213 N denoting the total lattice number addoping concentra-

o string i tion. In order to diagonalizel?, we introduce the following
Here the nonlocal phase factefom precisely keeps the Bogoliubov transformation:

track of the singular part of the phase string effect and is

E '“Aub,gbj ,+H.C.
(Do

i 0 strlng

o=hibi,(—0)'e

defined by
. iy =2 (Umo() Yo~ Vma(1) ¥m-g), (220
O "= [07—o®]], (2.14
and seek the solution
with +
[Hs*'yma] EmYme (2.2
dP=> 6,(1 n —1], 2.1
I#i 3 )(g e ) (219 [HJu')’ma] EmYmo - (2.22
and Here y,,, and mi(, are bosonic annihilation and creation op-
erators, respectively, for an eigenstate with quantum number
d"=> g,(hHnf 219 M and sping. In terms of bosonic commutation relations,

3 ' one easily finds thatl,,,(i) andv (i) satisfy
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%[umau>u:w<j>—vmg<i>v*ma<j)]=5”- (2.23
and
; [Unme(DVm-o(i) = me(i)Um—o(1)]=0. (2.24
According to Eq.(2.19, we have
[H Io'] 2 AS —IrrA“bT (225)

Then by using Eqsﬁ2.20), (2.2]), and(2.22, it is straight-
forward to derive the following relations from E¢R.25:

J
“Enlno()==5 X Afe A (1) M),
(2.26
~Emtmo(i)= 2 (Afe AR () N

(2.27

We can further express,, (i) andv,(i) by the “one-
particle” wave functionw,,,(i) as follows:

Ume (1) =UpWe(1), (2.28
vm(r(i):Ume(r(i)i (229)

whereu,, andv,, will be taken to be real and satisfy
uz—v2=1. (2.30

Thenw,,,(i) is normalized following from Eq(2.30:

; Wing(DW,(1) = &; - (2.3))

Equations(2.26 and(2.27) then reduce to an eigenequation
for the one-particle wave functiow,,, :

>

J=NN(i)

EmWing ()=~ 5 Afje SioAiwg (). (232

J
2
The eigenvalué, in Eq. (2.32 is related toE,, andu,, and
v, as follows:

Um Um
‘fm: _(Em_)\m)_:(Em"_)\m)_- (233
Um Um
Here\, is the same as the Lagrangian multiplier but we
write it in a general form because later it will be modified
once the hopping term is introduced. In terms of HGs33

and(2.30, one obtains

Em= VA~ ém (2.39
and
1 )\m 1/2
|um|:E £ t1] (2.35
m
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(2.3

)\m 1/2
ol = —1) |

A
V2| Em
The signs ofu,, andv,, are determined up to sgo{/up,)
=sgn(,). As a convention we will always choose,
:|Um| andvm:|vm|sgn(§m)-

Thus H} is diagonalized a#i)=3,Emyh,¥me+const
according to Egs(2.21) and(2.22. The order parameteX;
can be self-consistently determined by the definitiari8
as

=> & 1A Wi (Wi () (= Upnr )

X 1+§ <7$a7ma>}- (2.37)

In the following we will always consider the solution of a
real order parameteAfj. In this case, it can be checked
self-consistently thatv,,,=wy,_, according to Eq.(2.32
and (A )* —AS in terms of Eq.(2.37). The order-parameter
equatlon may be further simplified if one multiplies Eq.
(2.37 by (A7)* and sums ovetij) with using Eq.(2.32:

Em
JEn

En
> A3 2= thB— (2.39
{in

with (')/L‘,ym(,):l/(eBEm—l) and B=1/kgT. Finally, the
condition

<Z bme> =(1-9H)N, (2.39

which is enforced by the Lagrangian multiplier in £8.19
and can be rewritten as

s

N mZo

Am_ BEm
—coth— +nde,

2= E,

o= (2.40

wherenf is introduced to describe the contribution from the
E,=0 state(denoted byn=0) when the Bose condensation
of spinons occuré? In comparison with the zero-doping
Schwinger-boson  mean-field theory, the above
Bogoliubov—de Gennes scheme at finite doping mainly dif-
fers in the one-particle eigenequati¢h32 [and the result-
ing energy spectrung,, and wave functionw,(i)]. One
may simply recover the Schwinger-boson mean-field results
by setting Aj=0 in Eg. (232 and obtaining &=
—JAZ(cosk, a+cosk ,a) and the Bloch wave functiom,,
—(1/\/—)e"rk i in the no-hole case.

So the doping effect has entered the above mean-field
theory in two ways: one is through the particle number con-
dition in Eq.(2.39; the other is through the gauge fie4¢‘]- .

For the mean-field theory to worlAihj has been implicitly
assumed as a time-independent field. But with holons mov-
ing around,Aﬂ will usually gain a dynamic effect. To see
this, let us consider the following gauge-invariant quantity:

}C} Al =7T|§C n', (2.41)
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whereC is an arbitrary counterclockwise closed path. If one  Now consider the hopping teri; in Eqg. (2.5. By using
redefines the Bogoliubov expression for spinon operators, a straight-
forward calculation gives

=5+ on! (2.42
. h . h . . —io
with 8nf'=nf'- 8, then correspondingly <§U: eIJAjibszrbio> =% €' 7AW, () Wing (i)@' 74xm
A=A+ AT, (243 X[Vt (UnF VR Ve Yma) -
where (2.48
Note thatAy,, in the above expression denotes the differ-
E AP = EEES (2.44) ence ofy,, before and after the holon changes the position. If
c a2 ' one simply chooseA y,,=0, namely, the phases @f,,,(i)

_ _ to be the same for all hole configurations, then the right-hand
(S; denotes the area of a loépandais the lattice constant  side of Eq.(2.49 vanishes for the nearest-neighboringnd
and j- This can be verified by noting that,,,(i)=(—1)'wy, is
also a solution of Eq(2.32 with an eigenvalug,,= — &,
S 5Aihj =7 onf. (2.45 and the can_c_ellat.ionzin Ec(2.248) stems from the ff'iCt that
those quantities likeuy,, and v, only depend ork,, in Eq.
. o . , (2.48 which is symmetric undef,,,— — &,,. But such a can-
So the dynamics oA;; is determined by the fluctuations of (q|ation is removable by a simple choice of the phase shift

the density of holons on lattice. But since spinons and holong, aioxm 4t different holon configurations when each time a
here are treated as independent degrees of freedom, one mayi,, changes sublattice sites:

neglect the dynamical effect mn on the spinon part at the _ _
mean-field level and replace it by some random flux fluctua- e'7Xm—[ —sgn( &) ] X e'7Xm, (2.49
tions with a strength per plaquette equaldé [One may

estimated¢~ m+/(6n")?]. This can be justified at low tem-

perature when a Bose condensation of hol@wisich corre- e 1oAXm= —sgném). (2.50
sponds to a superconductmg condensation as showrn) later
occurs, WhereéAJ is expected to be substantially sup- Then, one finds
pressed. On the other hand, however, in the high-temperature

phase where the motion of holons is much less coherent, the Bo= _N 2 el 7A) b;rabi()

fluctuation effect of(SA can dominate oveA and the (i

separation of the latter frorA then becomes meanlngless 1 5 2 2., %

In this case, one may apprOX|mater describe the effeé;hof 2N EU m[vm+ (Um+ Ui (Ymo Vo) ], (2.5

as a collection of randomly distributed flux quanta Wlth
the number equal to that of holons. In both limits, the dy-where B m=2(ij)€ 'UAJIWmU(J)WmU(I)[ sgné,) 1 is given
namics ofAh may be neglected. by

2. Including the hopping term H BO— _ sgr(gm)Z eiUAJhiW* ()W (i)
m mo [
(5

First of all, we note that the wave functiamn,,,(i) as the

solution of the linear equatiof2.32) is not unique, and it can |§m|
be always multiplied by an arbitrary global phase factor =sgn &) (gm/ZJs)E wm(,(|)wma(|)—
e'oxm: je.,
. - . (2.52
Wing(1)— €' 7Xmw, (i), (2.46

In obtaining the second line above, we have used(E§2
without changing the order paramere? and the mean-field with Af=AS andJ=3A%J.

state. Correspondingly the Bogollubov transformation can be Holons thus acquire a finite hopping integral without in-
generally rewritten as troducing anyextra order parameter. The effective holon
Hamiltonian is given by

bip=2 (UnYme—Um¥m- )€ ™Wime(i).  (2.47 A
m Hh=—tn>, €%ih/h;+H.c., (2.53

In particular,e'“*m can depend on thkolon configurations w

because the Hilbert space Iof, is only well defined at each which is derived fromH; with an effective hopping integral

given holon configuration due to the no-double-occupancy t.=tB (2.54

constraint. The hopping term will mix the Hilbert space of h o ’

b;, at different holon configurations, and such a freedom inlt is important to note that such faite kinetic energy {,

phase choice can be fixed by optimizing the hopping integrat-t) that each holon has gained on the present mean-field

of holons below. spin background cannot be similarly realized in the slave-



8948 Z.Y. WENG, D. N. SHENG, AND C. S. TING PRB 59

fermion-Schwinger-boson scheme, exactly due to the hidden 1.0
phase string effect: the sign=*1 in Eq. (2.3 will always
lead tot,,=0 and make a spiral twigan order parameter in
favor of hole hoppiny necessary in any local mean-field
treatment.

Finally, to be consistent, the hopping effext spinons is
obtained fromH, as

= 0.5

H;=—Jh<; e Alb] by, +H.c.+ 43,BoN, (2.59
ij)yo

in which th(eiAifihiThj)tocét measures the strength of hop-
ping effect on the spinon paiffThe constant in Eq.2.55 is
introduced such thatH})=0.] Hence the total Hamiltonian

describing spinon degrees of freedom is composed of two 0.0
terms

He=Hi+H., (2.56 , . ,
FIG. 3. Phase diagram of the bosonic RVB state characterized
whereH? in Eq. (2.19 has been diagonalized at the mean-by the order parametet® (solid curve. Within this phase, the
field level beforeH! can be expressed in terms of £8.47) shaded curve sketches a region where a Bose condensation of
by noting that b S and b,, in Eq. (2.55 should differ spinons(BC) occurs, which leads to the AFLRO in an insulating
jo io . .

by a phase shift Eq(2.49 as a holon switches sublattice phase(dotted curve but a charge inhomogeneity with short-ranged
sites. It then gives ) spin ordering in metallic region which defines an underdoped re-

gime. Superconducting condensati®&C) happens due to the Bose
condensation of holons ani, (dashed curveis determined under

Hi= _JhmE ng(UmYIw_Um?’m—a)(um?’ma_vm?’:rn—g) an optimal conditior(see the tejt
(o8

(2.60 and(2.61). Finally, the self-consistent equati¢.39

+H.cH+4dnBoN, (257 for the RVB pairing order parameter maybe rewritten as
after using the orthogonal conditio®;wy, (i)W (i) 5
=6mm as well as Eq(2.32. On the other hand, one has As:1_26 D & cothﬂEm (2.62
H) =3 Em¥h . ¥ms+const (note that\,=\ inside E, AN ‘% JEn 2 '

here. ThenH, can be diagonalized in a straightforward way.
If we are still to usek,,, to denote the spinon spectrum for the
sake of compactness, théh, can be finally written as

[Note that if the Bose condensation occurs, one may separate
the contribution from the condensation part on the right-hand
side by AS.=(1—26)|&o|?n5c/4Jsho]. In obtaining Eq.
(2.62, we have used an approximate relation

He=2 Em¥ho¥mstEg, (258
mo LCN)Z i ((AF) 2~ A%/ (1~ 20)
where at 5<0.5 limit. Such a relation can be obtained by assuming
] A7 =A7 wheni andj belongs to occupied sites and =0 if
ES=—2> En(En)— = A 2. (2.59  1orjisathole site and by noting that each hole accounts for
m 277 Aisj =0 at four adjacent bonds at dilute-hole limit which leads

S_(1_ s
But here the spinon spectrum to A*=(1-26)A;.

En=JN2— &2 (2.60 Ill. PHASE DIAGRAM

is different from the previous one obtained in previous sec- A. Unified bosonic RVB phase

tion by a correction to\,, due to the hopping effect: Our mean-field theory has been constructed based on a

single bosonic RVB order paramet&f. Such an order pa-

rameter controls short-range spin-spin correlationdath

the undoped and doped regime. Figure 3 shows a typical

region of AS#0 obtained by solving the mean-field equa-
Therefore, the hopping effect on the spinon pargately  tions which has been briefly discussed in Ref. 18. It obvi-

represented by a shift from to A, in Eq. (2.61). The Bo-  ously covers the whole experimentally interested tempera-

goliubov transformationi2.61) remains unchanged and so do ture (from T=0 to T~0.5—0.90/kg) and doping(from &

Uy andv,, defined in Egs(2.395 and(2.36), so long as the =0 to 6>0.3) regime. Several low-temperature regions

renormalized\ ,, is used. The Lagrangian mutipliarin Eq.  within this phase as marked in Fig. 3, including the super-

(2.6)) is still determined by Eq(2.40 where botha,,, and  conducting phase, will be discussed in the following sec-

E,, should be replaced by the renormalized ones in Egstions. The normal state within this phase will correspond to a

Jn
)\m:)\_J_lgm|- (2.61)
s
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“strange metal” phase, where magnetic and transport prop- (S )ec(—1), (3.3
erties are expected to be different from conventional metals. )

It is noted that in the bosonic RVB description of spin de-1-€.. an AFLRO. But até+#0, even when the spinons are
grees of freedom, the order paramefet does not directly Bose-condensed,S') should generally vanish due to the
correspond to an energy gap, in contrast to the fermioni¢act that

RVB theory (the latter is similar to the BCS theory in math- h

ematical structute Also note that the crossover froms (e'*i)=0. (3.9

#0 phase toA*=0 phase at high temperature is similar to The proof here is straightforward. Note that in the definition

the half-filling casé' which does not correspond to a real of ® in Eq. (2.16), the angles;(1) [Eq. (2.12] can be trans-
phase transition. formled as |

In obtainingA*® in Fig. 3 by solving Eq.(2.62), one also
needs to determine the spectrufp from Eq. (2.32 and 0,(H—6,(1)+ ¢ (3.5
decide the chemical potential in terms of Eq.(2.40. We
have chosen the parametgy= 6J (which corresponds tb

~J) and solved,, underAihj =Ki'} , but other choices ad,,
as well as including the fluctuating pa?A{} do not change
significantly the range covered i+ 0. The effect 01‘5Aihj
will be the subject of discussion in the next section, and weHereN" is the total holon number. Thus the average of such
will always use the samé&, below. a phase must vanish at finite doping as given in ).
Although AS#0 practically covers the whole doping re- Sinced)ih describes vortices centered at holons, it is like a
gime, at a larger doping concentration, this mean-field theoryree-vortex phase as holons move around freely in metallic
may no longer be energetically favorable due to the compephase, which resembles a disordered phase in a Kosterlitz-
tition between the hopping and superexchange energies. AGhouless-type transition.
tually, the phase string effect itself is an indication that the Only in the case that holons are localiz@., in insulat-
bosonic description of spins leads to frustration of the motioring phase¢ such that the frustration effect of phase string
of doped holes, and vise versa. With the increase of dopingecomes ineffective, may the AFLRO be recovered. In this
concentration, one possibility is that eventually a statisticainsulating phase, holons are perceived by spinons as local-
transmutation may occur to effectively turn bosonic spinondzed vortices like in the mixed state of a type-Il supercon-
into fermionic ones as to be discussed in Sec. IV. Beyondiuctor, and by forming “supercurrents” to screen those vor-
such a point, the present mean-field theory will break downtices, cpih in S" can be effectively canceled out by the
which may determine a crossover to the so-called overdopegpposite vorticities generated from spinons. After all, the

for an arbitrary¢ without changing A ,Af;, and thus the

Hamiltonian. Bute!®’ [Eq. (2.16)]] changes accordingly

S h S h .
el¢i—>e'¢ixe'¢Nh. (3.6)

regime. We will explore this issue elsewhere. topological (Berry’s phasg effect of the phase string is no
longer there if holes cannot complete a closed path at large
B. Bose condensation of spinons: AF ordering vs phase length scale. In this insulating phase, the phase string effect
separation may play a crucial roleausingthe localization of holes. We
) . expect such an insulating phase to exist only at a very dilute
1. AFLRO and insulation phase density of holons at the expense of the latter’s kinetic energy.

At half-filling, the spinon spectrunt,, is known to be
gapless at zero doping and zero temperature which ensured Bose condensation of spinons in metallic phase: Underdoping
a Bose condensati6hof spinons. Such a Bose condensa- e have shown that the AFLRO must be absent in the
tion of spinons, as represented by.#0 in Eq.(2.40, de-  metallic phase. One may naturally wonder if the Bose con-
scribes a long-range AF spin orderiffjThe Bose conden- densation of spinons can still persist into the metallic phase,
sation or long-range AF order can be sustained up to a finitand if it does, then what is its physical meaning?

temperaturd’ >0 if the three-dimensional effednterlayer To answer these questions, let us first to inspect how the

coupling is included. In the following, we consider how this spinon spectrunk,, is modified by doping. In Fig. 4, we

AFLRO picture evolves at finite doping. ) compare the spinon density of statpg(E) at 6=1/7
Based on expressiof2.13), spin operatorsS’ andS;,  ~0.143(solid curve with the 5=0 case(diamond curve in

can be easily written down in terms of spinon operdigr  the insel. Herepg(E) is defined by
after using the constrairi.?):

1
1 ps(E)=15 2 S(E—Ep). (3.7
S=5 2 obl,bi,, (3. "
7 One notices that a unique peak structure is clearly exhibited
and at §=0.143. This can be easily understood by noting that the
spinon spectrunk,,, is basically determined bg,, which, as
the solution of Eq(2.40, has a Hofstadter structufer the
Landau levels in the continuum limitlue to a uniform flux

andS =(SH". (¢=m4 per plaquette represented by the vector potential

At 5=0, one hasb!'=0, and the Bose condensation IeadsK!]- threading through the square lattice. The broadening of
to the solid curve in Fig. 4 is due to the redistribution of eigen-

SF=bl b (~ 1) (3.2
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density of holons is fluctuating in real spa@ehich is the
reason leading to the fluctuations Aﬂ-) and there always
exist those configurations in which the density of holes are
relatively dilute in some areas where the flux described by
A!‘j is reduced such that the band-edge energi€s,afan be
close tox 2J;. Since the probability would be small for such
y kinds of inhomogeneous hole configurations, the density of
states generally looks like a tail — i.e., the Lifshitz tail—
near the band edges. Hence, the corresponding Bose-
condensed state will generally appear as having a charge
inhomogeneity, or, phase separation, with spinons condens-
ing into hole-deficient regions to form short-range spin or-
dering. The true AFLRO is absent here.

Pseudogap behavioThe Bose condensation of spinons
] will also lead to a pseudogap phenomenon. In the magnetic
| aspect, for example, the density of states shown in Fig. 4
indicates the suppression of spinon density of states between
zero and the lowest peak, which stabilizes the Bose conden-
E sation as mentioned earlier. Since in the Bose condensation
case there must be some residual density extendirig,to
=0, a pseudospin gap is thus presenpifE). Its effect in
the dynamic spin susceptibility will be discussed later. In the
transport aspect, holons which are the charge carriers are
scattered off by the gauge fiel: according to the holon

) h o effective Hamiltonian(2.53. Anomalies in transport proper-

states under the fluctuating flus&;; , which is treated as a ties have been found in Ref. 21 with interesting experimental
random flux(in the white-noise limit, here with a maximum features in the similar effective Hamiltonian, where fluctuat-

strength chosen at¢=0.3¢ per plaquette. By contrast, the ing fluxes depicted by\ﬁ- play a central role. But the Bose

dashed curve marks the positions of sharp peaks of densigondensation of spinons will lead to a substantial suppres-

of states in the limit of6§¢=0. sion of Afj and thus a reduction of scattering to holons.
We find that the Bose condensation of spinons can stilHence, the Bose condensation also provides an explanation

occur até=0.143 with6¢=0.3¢4 (but not até¢=0) as the for the so-called pseudogap phenomenon shown iruthe
solution of Eq.(2.40. Recall that the spinon Bose conden- derdopedhigh-T. cuprates, where the transport properties

the density of spinons staying at th&,—0 state. In this (eristic temperature scale. _ _ _

case, there would be no solution at low temperature unless 1 herefore, if the Bose condensation of spinons happens in
takes a value to maké,, gapless such thmgcqﬁo can bal- the metallic phase, it will result in a phase-separation or spin
ance the difference between the left and right side of th@se#doggp phasef vr\:lthlo?ttr:he dAF.I&ROf' With the_”mcrease of
equation, similar to the half-filled ca2RIn particular, such a ¢+ the reduction of the left-hand side of Eg.40 will even-

Bose condensation is found to be sustained up to a finit&fa"y make the Bos_,e condens.ation term, if initially exists_,
temperaturel go~0.21] even in the present 2D case. This is disappear from the right-hand side. So the Bose condensation

due to the vanishingly small weight nefar=0 in the density in general may only exist at the Sma” doping reg"‘?e= which
of states(in Fig. 4, there is a small tail in the solid curve can be defined as the underdopl_ng regime. In Fig. 3, the
which extends t&E=0), where the spinon excitations at low shaded curve sketches such a region outside the true AFLRO

temperature are not sufficient to destroy the Bose condensgHase which is in a much narrower regitiotted curve at

—_
o

§=0.143

©
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FIG. 4. Spinon density of states & 0.143 andl' =0. The solid
curve corresponds té¢=0.3¢ and the dashed curve is fdi¢
=0. Inset: the density of states at half-filling. The energy is in units
of J.

tion as first pointed out in Ref. 21. It is noted that, in prin- Inite doping.

ciple, the strengthb¢ of the random fluctuations ofo"Aih]—

should be self-consistently determined by the density fluc- C. Superconductivity

tuations of holons. But here for simplicity we just tré&a as In the phase string representation, the operator of super-

a pargmeter and then study the qualitative characteristics UBbnducting order parameter

der different values ob¢. The actual strength of the fluc-

tuations ofAth- will be only crucial in determining the loca-

tion of the phase boundary. AﬁCEE 0Ci,Ci— (3.9
Phase separatiorNote that the Bose condensation means o

a thermodynamic number of spinons stayingegt=0 — the _

lowest energy state which corresponds to the band edges 6&n be expressed in terms of &8.13 as follows:

the spectrumé,,,. So due to the Bose condensation, such A A o . .

quantum states will acquire a macroscopic meaning. But Aﬁ°=AiSj(hfe("2>q’i)(h}re“’z)‘l’j)(—l)', (3.9

these band-edge states &f are very sensitive to the fluc-

tuations ofAir} and the density of holons. Physically, the in which
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. . mobile in the metallic phase. This provides us an estimate of
AiS,EE e '"Mibi,b;_, . (3.10  the upper limit for the superconducting transition tempera-
7 ture T, below.
This is the basic expression to be used in the following dis-
cussion of superconducting condensation. 2. An estimate of T
The holon effective Hamiltoniai,, in Eq. (2.53 deter-
mines the interaction between holons and those vortices de-
For the sake of simplicity, we will focus on the nearest-scribed byAihj . If free vortices are few, the condensed holons
neighboring pairing with =NN(j) below. Since the whole may easily “screen” them by forming supercurrent, which

1. Mechanism

mean-field phase is built on will then effectively keepAﬁ’C finite. But if the number of
~ free vortices, or excited spinons, becomes comparable to the
(Af)=A%#0, (3.1)  number of holons themselves, one expects that the “screen-

N SO (A5 ing” effect collapses and thus{;“=0. It predicts thall ; will
the electron pairing order parametar;“=(Aj") can be pe pasically determined by the spinon energy scale in the

written as following way:
ASC=A%(hfe12%) (hfe2P)) (~1)!.  (3.12 23 Ao NS (3.13
— m =K y .
We see that the spinons are always paired in the present 70 Em T=T¢

phase, as described iy, up to a temperature scateJ at
small doping. Thus, in order to have a real superconductin
condensation below a transition temperatlize the holon
part has to undergo a Bose condensation or, strictly speakin
in 2D, a superfluid transition in the Kosterlitz-Thouless sens
(recall that both spinon and holon asesonicin the present

where k~1 and the left-hand side represent the average
%umber of excited spinons iEi(,biT,,bi(, with the Bose-
ndensed pafif exists) excluded. The dashed line in Fig. 3
presents thé;'s determined by EQq(3.13 in the limit
6¢—0. This curve may be regarded as represents the “op-
representation timized” T, because with introducing the flux fluctuations,

One may notice that this superconducting condensatiof? 7 0: there is a finite density of states of spinons emerging

picture is somewhat similar to that in the slave-boson mean@t lower energy which effectively reducag defined in Eq.

field theory* But there are two crucial differences. (3.13. In the "optimized” limit of 5¢=0, one may further
First, the spinon pairing in the present case practically>MPlify EQ. (3.13 by only retaining the contribution from

covers the whole superconducting and normal-state regimif'® lowest-peakwhich has a degenera@N/2) and obtains

that we are interested in. In other wordsS# 0 in the present 1

mean-field theory defines a “strange” metal, and the T.=-Eq, (3.19

normal-state anomalies of experimental measurements in the c

cuprates, including the magnetic properti_e; and the transpoj{herec is given by

properties, are all supposed to happen within such a phase. In

contrast, in the slave-boson mean-field approach the fermi- 2

onic spinon pairing is directly related to tgapin the spinon c=In{ 1+ —V1+ (&/E9?|>1. (3.19

spectrum and has tdisappearat a much lower temperature

scale beyond which “strange” metallic properties presum-HereEg and{; are the energies &, and&,,, respectively,

ably start to show up. corresponding to the lowest-energy peak shown in Fig. 4 at
Second, the Kosterlitz-Thouless transition temperature ob¢=0. Therefore T, is indeed determined by the character-

holons are believed to be much higher than the Teah the  istic energyEg of spinon excitations.

cuprates, and thus one has to introduce other mechanism

(e.g., gauge-field quctuatiof'jsto bring down the tempera- 3. d-wave symmetry of the order parameter: Phase string effect

ture scale in the slave—poson m'ean—field app(oximation. On Finally, let us briefly discuss the symmetry of the order

the other hand, there is a unique feature in bEBIlZ, parameter 5¢. Basically, one needs to compare the relative

nan:ely, trt1e ptresen;:e oft_pgas?_s Iéf_éz)(;' H(ired;i rteT?ie)- phase ofASC betweenj=i+Xx andj=i+y, or the phase

sents a structure of vorticgantivortices centered a =~ oD .

spinons. AtT=0, all T and| spinons are paired up at a finite change of the quam'thh;ewlzypi n E.q. £3'1_2" I.me?glnAe

length scale and so are the vortices and antivorticebin ~ that we move a holon from=i+x to i+y via sitei+x

which impliesA%# 0 as long as holons are Bose condensed:+y. At each step the holon has to exchange positions with a

At finite temperature, even though the Kosterlitz-Thoulessspinon with indexo;, at sitej’ which leads to an extra phase

transition temperature for hard-core bosons can be mucbj,zil due toe(i/Z)‘I’Jb in EI.T_ Even though other spinons

higher, the “phase coherence” i;° can be more quickly ytside the path also contribute to, SQE/.PLF ®° - but

destroyed at a lower temperature due to the dissolution of thg . frect is canceled out s, picks upxt+hye sair;)é’ phase

vortices and antivortice bindings |§]>i aftber free spinons change but with opposite sign H, . Therefore, in the end
i12)dP ((112)0P\ _ ) ie cirmi ~ . S

appear. Here the argument (/2% el2%) =0 is similar hl" acquires a total phase;. - oi.x.; which is just the

to the previous one fofe'®i)=0 which corresponds the dis- phase stringon such a path. Its contribution is alwaysga-

appearance of the long-range AF order once holons becont&e on average for a short-ranged AF state. Assuming that



8952 Z.Y. WENG, D. N. SHENG, AND C. S. TING PRB 59

this is the dominant path, one then concludes #githas to & ' S - ;
change sign fromj=i+X to i +y, namely, thed-wave sym- 5= 0.143 § =0
metry. If only the nearest-neighbor-site electron pairing is 5 2r 14

considered, the order parameter in the momentum space ce
be written in the formAS(k)e(coska—cosk,a). There- 1
fore, the nonrepairable phase string effect and AF correla-
tions are directly responsible for tllewave symmetry of the
superconducting condensation in the background % 0.

X, (o)

D. Experimental implications: Dynamic spin susceptibility
1. Local spin dynamic susceptibility

The dynamic spin susceptibility functiony| () 1L
=1/NZ;x,[i,i;») describes the on-site spin dynamics and
is derived in the Appendix as follows:

SRR P OIEPNOT:

mm’ )
sgn ) FIG. 5. Local dynamic spin susceptibility versus energydat
! —
2 (1+n(Em) +n(Ey)) =0.143. Solid curved$=0.3¢ and the dashed curvé¢p=0 at
T=0. Note that the lowest peak of dashed curve splits into a twin-
><(uﬁ1ufn +u§1ui],)5(|w|— En—En) peak structure in the solid cur(gee text The half-filled case is

shown in the inset for comparison.
+[N(Em) —N(Em) 1(U2UZ, + 0202 )
Bose-condensate state. Such a lowest peak basically maps
out the lowest peak of the spinon density of staig€) in
Fig. 4 according to Eq3.17), and the second peak jf ()
is located at an energy approximately twice larger than the
first one. The latter one will be always around at low tem-
erature no matter whether there is a Bose condensation or
ot. So there is a distinct behavior of those two peaks at
different temperature as shown in Ref. 18, where the weight
- 1 A of the lowest one gradually diminishes as the temperature
Xe(@)= sgr(w)(gné’c)ﬁ > Komg8(0—En), approachedpc. _
m In contrast, there is only one sharp “resonancelike” peak
(3.17 left in the where the Bose condensation is absent. It corre-
with Kom=NZ;,|Wo,(i)|?|Wm,(i)|? where the subscript 0 sponds to a pair of spinon excitations located at the lowest
refers to theE,=0 state. peak E;~0.2]) of pg in Fig. 4 with ¢=0 (dashed curve
Based on Eq(3.16), two kinds of mean-field solutions, Note that this is the limit where the flux fluctuating péAihj
with and without Bose condensation of spinons, will be stud-is totally suppressed such that a real spinon gap is opened up
ied below. Without loss of generality, we consider these twaat low energy as shown in Fig. 4. The location of the “reso-
cases at6=0.143 in which the corresponding density of nance” peak, Eg, is slightly lowered in energy as com-
statesps(w), is already shown in Fig. 4 for both cases. Let pared to the correspondingecond peak in the twin-peak
us first focus on the lowest peak p§(E) shown in Fig. 4. case at6¢=0.3¢. The energy scale of this peak K2
The contribution of such a peak tg(w) was previously ~0.43) at 5¢—0 limit is roughly independent o8, and
discussed in Ref. 18 and is illustrated in Fig. 5 by the lowesthus oft. This is because thd, term only shifts\ to A, by
sharp peak(dashed ling for 5¢=0 and the lowest twin a const if there is no dispersion &, near the lowesthigh-
peaks(solid curve for §¢=0.3¢, respectively. One sees esh peak, which will not affecE,, near the lowest peak as

two very distinct features here. For the casedsgf=0.3¢,  Will readjust its value correspondingly.
there is a Bose condensation contribution B&Tge
~0.21] and it leads to a double-peak structure. Butsi
=0 case, the Bose condensation is absent and one finds only We have previously discussed the Bose condensation of
a single sharp peak aB2~0.4]. In other wordsy| (w) has  spinons and argued that it exists only in an “underdoped”
drastically different characteristics for cases with and with-regime. We have also shown that holons as bosons can ex-
out a spinon Bose condensation. perience a Bose condensationTat leading to the supercon-
The twin-peak splitting may be understood as follows.ducting condensation. If the Bose condensation temperature
The second peak corresponds to a pair of spinons excitefdr holons is higher thaff gc for spinons, i.e.T.>Tgc, the
from the RVB vacuum, while the first peak describesrayle  holons will become Bose condensed before spinons do and it
spinon excitation as the other branch of the spinon is in thevill be generally auniform state since there is no inhomoge-

X 8(w+Epn—Em)|, (3.16

where the summatioR’ only runs over thosen's with &,
<0 (note thatE,, is symmetric undeé,,— — &,,). If there is

a Bose condensation of spinons, the contribution from th
condensed part tg; may be explicitly sorted out as

2. Underdoping vs optimal doping
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neous spin ordering abovEgc. Thus one may hav@ihj As compared to thes=0 curve in the inset, a multipeak
”N} with 8¢ being much less than in the normal state. inStructure is present as well at high energies for such a doped

this case, the Bose condensation of spinons can be effe€ase. For example, if the 41 meV peak in Ba;0; is

tively prevented at lower temperature because a homogéa-)(pl"’linGd b_y the lowest peak in the casesgf=0, then the
. theory predicts a second “resonance” peak near 120 meV to

He found. Those high-energy peaks in Fig. 5 become rather
closer in energy especially in the Bose-condensed (adiel
urve, which could be very easily smeared out either by the
perimental solutiorit may be further complicated by the

as shown in Fig. 4 fo6¢$=0. So to be self-consistent, once
T.>Tgc, Tgec May no longer exist antdl, becomes the only
meaningful temperature scale. Furthermore, we have alrea

seen thafl; is also optimized undef¢~0. Therefore, this ¢yt that the momentum dependence varies drastically among
region may be properly defined as the “optimal-doping” y,nse peaksor by the dynamic broadening due to the finite
regime in our theory in contrast to the previously definedjitatime of spinons which is beyond the present mean-field
underdoped regime dtgc> T . . treatment. Nevertheless, the multipeak structure, especially
Such an optimal-doping phase is charge homogeneoyge tyin-peak feature at low energy in the spinon Bose-
and the Bose condensation of spinons is absent. It is charags hqensed case, should become observable by high solution

te”rized, belowT,, by the “resonancelike” peak emerging i measurement at low temperature as the unique prediction of
x| (w) at 2E¢in Fig. 5. Itis in accord with the 41 meV peak ne present theory.

found?in the optimally doped YBgCu,O, below T, if one
choosesJ=100 meV here. Abovel., the ‘“resonance”
peak will quickly disappear as the motion of holons becomes IV. DISCUSSIONS
incoherent and a different behavior éiﬂ is involved as

discussed in Sec. II. magnet from the half-filling side, where the bosonic RVB
On the other. hand, the “”defdop'”g regime withe . description is known to be very accurate for the antiferro-
>Tels characterized by a 'OW'e”ef}}Jy twin-peak structure Iy agnetism. The crucial modification at finite doping comes
x((w) atT<Tgc. In contrast to the “optimal-doping” case, from the phase string effect induced by doped holes. For
such an energy structure may not be qualitatively changegyample, doped holes are turned into bosonic holons by such
even when is belowT., as holons are also expected to bey phase string effect so that both the elementary spin and
condensedhhomogeneousli favor of the spinon energy. A charge excitations are bosonic. The Bose condensation of
twin-peak feature has been observed recently in the undegpinons in the insulating phase and the Bose condensation of
doped YBaCusOs s compound by neutron scatterfign the  nolons in the metallic phase determine the AFLRO and su-
odd symmetry channel. In the experiment, thg lowest peak iBerconducting phase transitions, respectively.
located near 30 meV and the second one is near 60 meV, \whjle the bosonic RVB pairing, representing short-range
indeed about twice bigger in energy. Most recently, in thear correlations, is always present and is the driving force
underdoped YB#Z;Og6, @ second energy scale neai70  pehind the antiferromagnetism and superconductivity, it is
meV has been also indicafécbesides the earlier report of the combination with the phase string effect that decides
the lower energy peak near 34 mé¥It is noted that the \yhen and where they occur in the phase diagram. For in-
energy scales shown in Fig. 5 are generally doping deperstance, the Bose condensation of spinons leads to the
dent, and those energies in Y504 5 are expected to be  AFLRO only in the case that holes are localized. In the me-
relatively smaller than the corresponding peaks intgllic phase where holes become mobile, the AFLRO will be
YBa,CuzOg . destroyed by the phase string effect. But the Bose condensa-
A word of caution about the comparison with the Y-Ba- tion of spinons may still persist into the weakly doped me-
Cu-O compound is that the latter is a double-layer systemgllic region, leading to an “underdoping” metallic phase
where two adjacent layer coupling is also important. But weyith charge inhomogeneity (phase separatipn and
do not expect the double-layer coupling to qualitatively pseudogap phenomenon.
change the above energy structurgpfin the odd symmetry There still are many theoretical and experimental issues
channel. We point out that the fluctuating part of the gaugewhich have not been dealt with in the present paper and are
field EA{} usually makes the two adjacent layers difficult to left for further investigation. Here we conclude by giving
couple together unless there are AF spin domains in theeveral critical remarks. The first is about the phase diagram
charge-deficient region where the tol%ﬂ is suppressed, as at larger doping. Recall that in our mean-field description,
may be the case in phase separation. But in the uniforrthe metallic phases are characterized by two temperature
phase, with5A]} being suppressed belof due to the Bose ~ scalesT andTgc, and we have argued thait> Tgc deter-
condensation of holons, the effective coupling between laymines an “optimal-doping” regime at low temperature
ers can also be greatly enhanced to gain interlayer-couplinghereTgc is no longer meaningful. But beyond this regime,
spin energy. The Anderson’s confinement-deconfinemerthere is a possibility that holons may tend todieaysBose
phenomenoff may become most prominently in the condensed even at thormal statein favor of the hopping
optimal-doping regime, which needs to be further explored.energy. If this occurs, the gauge fietkfij in H; may have to
be “expelled” to the spinon part, leading to a statistics trans-
3. Prediction mutation to turn spinons intiermionsand causing a collapse
) . ) of the bosonic RVB order parameter at the normal state. In
Figure 5 also showg/{ () in the whole energy regime at this picture, the normal state in the overdoped regime may
8¢l $=0 (dashed curveand 0.3(solid curve, respectively. simply recover the fermionic uniform RVB state.

In this paper, we have approached the doped antiferro-
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The second issue is about the time-reversal symmetryrermi-liquid theory, due to the confinement of the phase
Recall that the sharp peak structure in the spinon spectrusiring effect.
below T, is mathematically similar to a Landau-level struc-
ture in a uniform magnetic field. One may naturally wonder ACKNOWLEDGMENTS
if some kind of time-reversal symmetry would be apparently
broken like in the anyon theori@sBelow we point out that
this is not the case in the present theory. First of all, it is eas
to see that there is no breaking of the time-reversal symmetr
in the holon HamiltoniarH,, (2.53 in which the gauge field
A{jzA?j—¢ﬂ . Here A, behaves like a fluctuating gauge
field with (Af;)=0, and ¢i°j describes a uniformr-flux per
plaquette which does not break the time-reversal symmetry
either as a gauge transformation can easily changiux
into —ar flux per plaguette. As for the spin part, even
though spinons se.e!‘j which breaks the time-reversal sym-  Local spin susceptibility function is defined in the Mat-
metry, one should remember that the physical observsubara representation as follows:
able quantity is the spin-spin correlation functions like
Xx. shown in Eq.(3.16, which can be easily shown to be
invariant underAl——A[ . It is also straightforward to
check that the spin chiralify characterized by(S;-(S,

We have benefitted from helpful discussions with Yong-

ong Chen and T. K. Lee, H. F. Fong, and P. Bourges. The
>éresent work was supported by grants from the Texas ARP

0. 3652707 and Robert A. Welch foundation, and by the
State of Texas through Texas Center for Superconductivity
at University of Houston.

APPENDIX: DYNAMIC SPIN SUSCEPTIBILITY
FUNCTION

B .
Xaﬁ(i,i;iwn)zfo dre'n(T,S*(1)SP(0)), (A1)

% X | b . th ditiow*. (i where w,=27n/B. In the following we will determine the
Ss)) is always zero by using the conditiowy, (i) dynamic spin susceptibility function;4(i.i;») based on

= Wmo(1). - - - .the present mean-field theor
Lastly, the sharp peak in the spinon spectrum in the uni- p Y-

form phase provides an explanation for the 41 meV peak in Consider (T,S"(1)S7(0)) in a=p=z case. In the
the neutron-scattering measurement of Y-Ba-Cu-O “90 K Présent mean-field formulation, one has

sample, but it also meansraal gap in the spinon spectrum. . .

From a naive spin-charge separation picture, one would ex- (T.Si(n)Si(0))

pect the single-electron Green'’s function to be a convolution 1

of spinon and holon propagators and the electron spectrum =— 2 0‘0"<T7biTg(T)biU(T)biTo,(O)bior(O))
may also show a finite gap as well in the superconducting 4 5o

state which may be inconsistent withwave symmetry. But 1

we note that in the present spin-charge separation formalism == > (T.bl (1)b;,(0))(T,bi, ()b} (0)).
(2.13, there is an additional phase-shift fie®"% repre- 4%

senting the phase string effect. It means that if a “bare” hole (A2)
created byc;, decays into a mobile spinon and holon, a

nonlocal topological effect will be left behind which could !N terms of Eqs(2.47 and(2.58, one has

cost a logarithmic-divergent energy. In other words, the , | . _

phase string effect in the 2D case will serve as a confinemen®io(7)=€"bj,e" "

force to prevent a newly doped hole from dissolving into

elementary excitationgOf course, internal charge and spin = (UnYh €5 =0 Ym—s€ Em WX, (i)™ xm,
excitations without involving the change of the total electron m
number are still described by the spin-charge separation in (A3)

the present mean-field theoryn fact, even in the 1D case,

the single-electron Green’s function looks quite differently Then by notingwy,_,=w,, and that for eachn with &,
from a simple convolution of spinon and holon propagators <0, one always can find a statewith &= — &,>0 with a
and recently Suzuura and Naga%fskmve discussed the cru- wave function

cial role of the phase string effect in understanding the angle-

resolved photoemission spectroscopy in Srgitd® The Wiy ()= (—1)' W, (i), (A4)
phase-shift field®"? also plays a role in recovering the
“large” Fermi surface as discussed in Ref. 17 for 1D. Our
preliminary investigation in 2D indicates that a bare “hole”

according to Eq(2.32, we get

wave packet injected into the background of the spin-charge <beiTU( 7)0jo(0)) -0

separation mean-field state will behave more like a conven-

tional band-structure quasiparticle in a Fermi liquid with a :22' w;(r(i)wm(,(i)x{uzmn(Em)eEmT
large Fermi surface, which showlswave gap structure when

the holons are Bose condensed and pseudogap structure +v§1[1+ n(Ey)]e En7}, (A5)

when spinons are Bose condensed. So experiments involving

injecting an electron or a hole into the system, like photo-where the summatiofx ;, only runs over those states with
emission spectroscopy, may nho longer provitieect infor- £n<0. Then it is straightforward to obtaip,, after integrat-
mation of elementary excitations like in the conventionaling out 7 in Eq. (A2):
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iLiiwn) = x5 (Lo + x5 (Lisiw,),  (AB)
X241 Ton) = Xz, (11 Ten) + xz, (1415 @),
wherey!;) is defined by
xé?(i,i;iwn)— E K (i0)
. n(E,)—n(Ey)
X (p;m,)ZM
|(1)n+Em_Em/
+(10 A1+ n(Ep) +n(Em)]
1 1 1
2\iw,+En+Epy  iwy—Epn—Eqy
(A7)
with
Ky (1) = 25 (Wi (1) 2] Wiy ()2, (A8)
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Here the coherent factorp;,, andl ., are defined by

Pmm =UmUm' EUmUm

= +
Imm, mUmr_UmUmr .

(A9)

Finally, the dynamic spin susceptibility functiog, (i,i; w)
can be obtained as the imaginary pariyof after an analytic
continuationi w,— w—+i0" is made:

ZZ (|,|,w)+(1)

)(i,iw), (A10)

XAl w)=

where

DL )(I,I,w)— 2 K2 (i,0){[1+N(Ep)+N(Em)]

X ()2 SO @) 8(| 0] —
+2[N(Ep) —N(Em) 1Py )?
X 8(w+Epm—Em)}.

Em_ Em')

(A11)
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