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Mean-field description of the phase string effect in thet-J model

Z. Y. Weng, D. N. Sheng, and C. S. Ting
Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204-5506

~Received 27 July 1998!

A mean-field treatment of the phase string effect in thet-J model is presented. Such a theory is able to unite
the antiferromagnetic~AF! phase at half-filling and the metallic phase at finite doping within a single theoret-
ical framework. We find that the low-temperature occurrence of the AF long-range ordering~AFLRO! at
half-filling and superconducting condensation in the metallic phase are all due to Bose condensations of
spinons and holons, respectively, on the top of a spin background described by bosonic resonating-valence-
bond pairing. The fact that both spinon and holon here are bosonic objects, as the result of the phase string
effect, represents a crucial difference from the conventional slave-boson and slave-fermion approaches. This
theory also allows an underdopedmetallic regime where the Bose condensation of spinons can still exist. Even
though the AFLRO is gone here, such a regime corresponds to a microscopic charge inhomogeneity with
short-ranged spin ordering. We discuss some characteristic experimental consequences for those different
metallic regimes. A perspective on broader issues based on the phase string theory is also discussed.
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I. INTRODUCTION

The t-J Hamiltonian is one of the simplest nontrivia
models describing how doped holes move on the antife
magnetic~AF! spin background and is widely used to cha
acterize the physics in the CuO2 layers of cuprates. A tre
mendous effort has been contributed to the investigation
the t-J model. The most popular approaches to the meta
phase are often based on the so-called slave-boson me1

in which the degrees of freedom associated with spins
described in terms offermionicdescription. There have bee
many proposals of mean-field ground states based on su
fermionic description of spins, ranging from the earlier fe
mionic resonating-valence-bond~RVB! states,2 gauge-theory
description,3,4 SU~2! formalism,5 to possible fractional
statistics.6,7 However, there is an inherent problem quite ge
eral to the fermionic description of spins: approaches ba
on it usually fail in faithfully producing correct AF correla
tions especially at small doping.

At half-filling, for example, the exact ground state
known to satisfy the Marshall sign rule8 ~for a bipartite lat-
tice! but a fermionic description of spins would show redu
dant signs: even exchanging two same spins will give ris
a sign change of wave function due to the fermionic sta
tics. Under strict enforcement of no double occupancy c
straint, those unphysical signs would not have any effect.
in mean-field approximations, this ‘‘sign problem’’ will al
ways show up and cause the serious problem of an ov
underestimate of AF correlations.

By contrast, the Marshall sign can be easily incorpora
into abosonicdescription of spin degrees of freedom, whe
no extra sign problem would be caused by the statistics
bosons. It is the reason contributing to the success of
bosonic RVB description9,10 and its mean-field version—th
Schwinger-boson mean-field approach11—in describing spin
properties at half-filling. A variational wave function base
on the bosonic RVB picture can produce9,10 an unrivaled
accurate ground-state energy (20.3344J per bond as com-
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pared to the exact numerical value of20.3346J per bond for
the Heisenberg model!, and a generalized description10 can
precisely produce not only the ground-state energy, s
gered magnetization, but also spin-excitation spectrum in
whole Brillouin zone. Therefore, a bosonic description
spins seems most natural at half-filling.

It is thus tempting for one to use the bosonic descript
of spins as a starting point and to try to get into the meta
phase by doping. The connection between antiferromagn
and metallic phases is commonly perceived important in
t-J model, and is also believed by many to be the key
search for the mechanism of superconductivity in cupra
Unfortunately, the mean-field study in the Schwinger-bos
slave-fermion approach12 of thet-J model, which is based on
the bosonic description of spins and has been quite succ
ful at half-filling,11 soon meets problematic consequenc
once holes are introduced—encountering the so-called s
phase and its derivatives.13,14 It seems that one could no
avoid such a spiral instability so long as a perturbative
proach is adopted.15 One of many problems with spira
phases involves an underestimated kinetic energy}d2(t2/J)
at weak dopingd!1, which is also accompanied by a ve
quick descent to ferromagnetic phase at slightly largerd.14

This implies that doped holes may have introduced so
singular doping effect which has been mistreated in t
mean-field approximations. Such a singular doping effect
been recently identified16,17 by reexamining the motion o
doped holes in the AF background. It has been found t
spin mismatches caused by the hopping of doped holes
not be completely ‘‘repaired’’ through spin flips at low en
ergy. Such a residual nonrepairable effect can be expre
by a path-dependent phase product known as phase stri16

Due to the phase string effect, a hole slowly moves throu
a closed path will acquire a nontrivial Berry’s phase. As th
phase string effect is very singular locally at a lattice co
stant scale, its topological effect can be easily lost if a c
ventional mean-field average is involved — a reason causing
the aforementioned spiral instability.
8943 ©1999 The American Physical Society
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8944 PRB 59Z. Y. WENG, D. N. SHENG, AND C. S. TING
In order to handle such a singular phase string effect h
den in the conventional Schwinger-boson-slave-ferm
scheme, a unitary transformation17 has been introduced t
regulate the Hamiltonian such that the local singularity
the phase string~at the scale of one lattice constant! is
‘‘gauged away,’’ while its large distance topological cons
quence is explicitly incorporated into the Hamiltonian. T
resulting exact reformulation17 of the t-J model is believed
to be more suitable for a perturbative treatment, in contras
the original slave-fermion formalism. The underlying phy
cal implication is that the ‘‘holon’’ and ‘‘spinon’’definedin
the slave-fermion scheme12,14 may not be really separabl
due to the hidden phase string effect, but those in the n
formalism may become truly elementary excitations. In
one-dimensional~1D! case, correct Luttinger-liquid behav
iors indeed can be reproduced17 after a mean-field decou
pling of the spin and charge degrees of freedom in t
scheme.

In this paper, we develop a generalized mean-field-t
theory based on this formalism of thet-J model in the two-
dimensional~2D! case. This theory recovers the well-know
Schwinger-boson mean-field state11 at half-filling while pre-
dicts a metallic phase at finite doping without encounter
any spiral instability. It offers a unified phase diagram for t
t-J model at small doping, in which an insulating AF lon
range-order~LRO! phase, an underdoped metallic phase w
the phenomena of pseudogap and charge inhomogeneit
well as a uniform metallic phase with ‘‘optimized’’ supe
conducting transition temperature, are all natural con
quences happening on a single spin background contro
by bosonic RVB order pairing. The phase string effect pla
a crucial role here to connect those different phases toge
within a single theoretical framework. A short version of th
work was published earlier.18

II. MEAN-FIELD THEORY BASED ON PHASE STRING
EFFECT

In the standard slave-fermion formalism of thet-J Hamil-
tonian, electron annihilation operatorcis is written as

cis5 f i
†bis~2s! i , ~2.1!

in which f i
† is fermionic ‘‘holon’’ creation operator andbis

is bosonic~Schwinger-boson! ‘‘spinon’’ annihilation opera-
tor, satisfying no double occupancy constraint

f i
†f i1(

s
bis

† bis51. ~2.2!

The t-J model, Ht-J5Ht1HJ , is composed of two terms
the hopping termHt is given by

Ht52t (
^ i j &s

~s! f i
†f jbj s

† bis1H.c., ~2.3!

and the superexchange term is

HJ52
J

2 (
^ i j &ss8

bis
† bj 2s

† bj 2s8bis8 . ~2.4!

Note that the staggered phase factor (2s) i in Eq. ~2.1! is
introduced17 to explicitly track the Marshall sign, which
leads to the negative sign in Eq.~2.4!. A sign s561 then
-
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appears in the hopping term~2.3! which is the origin of the
phase string effect16,17mentioned in the Introduction. Due t
such a sign, a hole moving from a sitea to an another siteb
will acquire a sequence of signs, i.e., a phase string as sh
in Fig. 1, which has been shown16,17 to be nonrepairable by
the spin-flip process governed byHJ . It implies that the
slave-fermion formalism of thet-J model cannot be treate
in a perturbative way in the doped case.

A. Phase string representation

It has been shown that the above singular effect of ph
string can be regulated after a unitary transformation.17 The
resulting formalism is known as the phase string represe
tion. The hopping termHt in this representation becomes17

Ht52t (
^ i j &s

~eiAi j
f
!hi

†hj~eisAji
h
!bj s

† bis1H.c. , ~2.5!

and the superexchange termHJ reads

HJ52
J

2 (
^ i j &ss8

~eisAi j
h
!bis

† bj 2s
† ~eis8Aji

h
!bj 2s8bis8 .

~2.6!

Note that the fermionic operatorf i now is replaced by a
bosonicholon operatorhi in this formalism. So one role o
the phase string effect is to turn holons from fermions in
bosons. Both holon and spinon are now described by bos
operators which still satisfy the following no double
occupancy constraint:

hi
†hi1(

s
bis

† bis51. ~2.7!

In this formalism, the singular phase string effect, as r
resented by the signs in the hopping term~2.3! of the origi-
nal slave-fermion representation, is ‘‘gauged away,’’ but
topological effect is left and exactly tracked by lattice gau
fields Ai j

f andAi j
h . These fields are defined as follows:

Ai j
f [Ai j

s 2f i j
0 ~2.8!

with

FIG. 1. A sequence of sign mismatches~with reference to a spin
background satisfying the Marshall sign rule! left by the hopping of
a hole from sitea to siteb on square lattice.
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Ai j
s 5

1

2 (
lÞ i , j

@u i~ l !2u j~ l !#S (
s

snls
b D , ~2.9!

f i j
0 5

1

2 (
lÞ i , j

@u i~ l !2u j~ l !#, ~2.10!

and

Ai j
h 5

1

2 (
lÞ i , j

@u i~ l !2u j~ l !#nl
h . ~2.11!

Here nls
b and nl

h are spinon and holon number operato
respectively.u i( l ) is defined as an angle

u i~ l !5 Im ln~zi2zl ! ~2.12!

with zi5xi1 iy i representing the complex coordinate of
lattice sitei.

The physical meaning ofAi j
s andAi j

h have been discusse
in Ref. 17:Ai j

s andAi j
h describe quantized flux tubes bound

spinons and holons, respectively~Fig. 2 illustrates the case
for Ai j

h ). Furthermore, the fieldf i j
0 describes a uniform flux

threading through the 2D plane with a strengthp per
plaquette:(hf i j

0 56p. It is also noted that ap-flux neutral
topological excitation has been previously discussed19 in the
pure Heisenberg model, which resembles a quantized
line in the mixed phase of a BCS superconductor. Here
flux quanta are bound to the doped holes due to the ph
string effect.

The electron operator in this representation becomes17

cis5hi
†bis~2s! ieiQ is

string
. ~2.13!

Here the nonlocal phase factoreiQ is
string

precisely keeps the
track of the singular part of the phase string effect and
defined by

Q is
string[

1

2
@F i

b2sF i
h#, ~2.14!

with

F i
b[(

lÞ i
u i~ l !S (

a
anla

b 21D , ~2.15!

and

F i
h[(

lÞ i
u i~ l !nl

h . ~2.16!

FIG. 2. Fictitiousp flux tubes bound to holons which can on
be seen by spinons and are described by the gauge fieldAi j

h defined
by Eq. ~2.11!.
,
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B. Mean-field approximation

For the sake of clarity, in the following we first conside
the superexchange termHJ and then include the hoppin
term Ht , due to different natures represented by them.

1. Generalized mean-field treatment of HJ

At half-filling, the mean-field theory based on the boson
RVB picture is known as the Schwinger-boson mean-fi
theory which was introduced by Arovas and Auerbach11

Such a mean-field is characterized by a bosonic RVB or
parameter

Ds5(
s

^bisbj 2s& ~2.17!

for the nearest-neighbor sitesi and j @ i 5NN( j )#.
The present formalism only differs from the Schwinge

boson, slave-fermion formalism in doped case, wh
a gauge fieldAi j

h emerges. Since spinons are subject
this gauge-fieldAi j

h in HJ , it is natural to incorporating

the link variablee2 isAi j
h

into the order parameter~2.17!.
Namely,

D i j
s 5(

s
^e2 isAi j

h
bisbj 2s&. ~2.18!

D i j
s defined here is then ‘‘gauge-invariant’’ under an ‘‘inte

nal’’ gauge transformation:Ai j
h→Ai j

h 1u i2u j , and bis

→biseisu i.
Based on such an order parameter, one may write do

the mean-field version ofHJ in Eq. ~2.6! in a standard pro-
cedure

Hs
J52

J

2 (
^ i j &s

~D i j
s !* e2 isAi j

h
bisbj 2s1H.c.

1
J

2 (̂
i j &

uD i j
s u21lS (

is
bs

†bis2~12d!ND ,

~2.19!

where the last term with a Lagrangian multiplierl is intro-
duced to enforce the condition of total spinon number, w
N denoting the total lattice number andd doping concentra-
tion. In order to diagonalizeHs

J , we introduce the following
Bogoliubov transformation:

bis5(
m

~ums~ i !gms2vms~ i !gm2s
† !, ~2.20!

and seek the solution

@Hs
J ,gms

† #5Emgms
† , ~2.21!

@Hs
J ,gms#52Emgms . ~2.22!

Heregms andgms
† are bosonic annihilation and creation o

erators, respectively, for an eigenstate with quantum num
m and spins. In terms of bosonic commutation relation
one easily finds thatums( i ) andvms( i ) satisfy
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(
m

@ums~ i !ums* ~ j !2vms~ i !vms* ~ j !#5d i j ~2.23!

and

(
m

@ums~ i !vm2s~ j !2vms~ i !um2s~ j !#50. ~2.24!

According to Eq.~2.19!, we have

@Hs
J ,bis#5

J

2 (
j 5NN~ i !

D i j
s e2 isAji

h
bj 2s

† 2lbis . ~2.25!

Then by using Eqs.~2.20!, ~2.21!, and ~2.22!, it is straight-
forward to derive the following relations from Eq.~2.25!:

2Emums~ i !52
J

2 (
j 5NN~ i !

D i j
s e2 isAji

h
vm2s* ~ j !2lums~ i !,

~2.26!

2Emvms~ i !5
J

2 (
j 5NN~ i !

D i j
s e2 isAji

h
um2s* ~ j !1lvms~ i !.

~2.27!

We can further expressums( i ) and vms( i ) by the ‘‘one-
particle’’ wave functionwms( i ) as follows:

ums~ i !5umwms~ i !, ~2.28!

vms~ i !5vmwms~ i !, ~2.29!

whereum andvm will be taken to be real and satisfy

um
2 2vm

2 51. ~2.30!

Thenwms( i ) is normalized following from Eq.~2.30!:

(
m

wms~ i !wms* ~ j !5d i j . ~2.31!

Equations~2.26! and ~2.27! then reduce to an eigenequatio
for the one-particle wave functionwms :

jmwms~ i !52
J

2 (
j 5NN~ i !

D i j
s e2 isAji

h
wm2s* ~ j !. ~2.32!

The eigenvaluejm in Eq. ~2.32! is related toEm andum and
vm as follows:

jm52~Em2lm!
um

vm
5~Em1lm!

vm

um
. ~2.33!

Herelm is the same as the Lagrangian multiplierl, but we
write it in a general form because later it will be modifie
once the hopping term is introduced. In terms of Eqs.~2.33!
and ~2.30!, one obtains

Em5Alm
2 2jm

2 , ~2.34!

and

uumu5
1

A2
S lm

Em
11D 1/2

, ~2.35!
uvmu5
1

A2
S lm

Em
21D 1/2

. ~2.36!

The signs ofum and vm are determined up to sgn (vm /um)
5 sgn(jm). As a convention we will always chooseum
5uumu andvm5uvmusgn(jm).

Thus Hs
J is diagonalized asHs

J5(msEmgms
† gms1const

according to Eqs.~2.21! and~2.22!. The order parameterD i j
s

can be self-consistently determined by the definition~2.18!
as

D i j
s 5(

ms
e2 isAi j

h
wms~ i !wm2s~ j !~2umvm!

3F11(
a

^gma
† gma&G . ~2.37!

In the following we will always consider the solution of
real order parameterD i j

s . In this case, it can be checke
self-consistently thatwms5wm2s* according to Eq.~2.32!
and (D i j

s )* 5D i j
s in terms of Eq.~2.37!. The order-paramete

equation may be further simplified if one multiplies E
~2.37! by (D i j

s )* and sums over̂i j & with using Eq.~2.32!:

(̂
i j &

uD i j
s u25(

m

jm
2

JEm
coth

bEm

2
, ~2.38!

with ^gms
† gms&51/(ebEm21) and b[1/kBT. Finally, the

condition

K (
is

bis
† bisL 5~12d!N, ~2.39!

which is enforced by the Lagrangian multiplier in Eq.~2.19!
and can be rewritten as

22d5
1

N (
mÞ0

lm

Em
coth

bEm

2
1nBC

b , ~2.40!

wherenBC
b is introduced to describe the contribution from th

Em50 state~denoted bym50) when the Bose condensatio
of spinons occurs.20 In comparison with the zero-dopin
Schwinger-boson mean-field theory, the abo
Bogoliubov–de Gennes scheme at finite doping mainly d
fers in the one-particle eigenequation~2.32! @and the result-
ing energy spectrumjm and wave functionwms( i )]. One
may simply recover the Schwinger-boson mean-field res
by setting Ai j

h 50 in Eq. ~2.32! and obtaining jk5

2JD0
s(coskxa1coskya) and the Bloch wave functionwks

5(1/AN)eisk•r i in the no-hole case.
So the doping effect has entered the above mean-fi

theory in two ways: one is through the particle number co
dition in Eq. ~2.39!; the other is through the gauge fieldAi j

h .
For the mean-field theory to work,Ai j

h has been implicitly
assumed as a time-independent field. But with holons m
ing around,Ai j

h will usually gain a dynamic effect. To se
this, let us consider the following gauge-invariant quantit

(
C

Ai j
h 5p (

l PC
nl

h , ~2.41!
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whereC is an arbitrary counterclockwise closed path. If o
redefines

nl
h5d1dnl

h ~2.42!

with dnl
h5nl

h2d, then correspondingly

Ai j
h 5Āi j

h 1dAi j
h , ~2.43!

where

(
C

Āi j
h 5pd

Sc

a2
[f̄

Sc

a2
, ~2.44!

(Sc denotes the area of a loopC anda is the lattice constant!
and

(
C

dAi j
h 5p (

l PC
dnl

h . ~2.45!

So the dynamics ofAi j
h is determined by the fluctuations o

the density of holons on lattice. But since spinons and hol
here are treated as independent degrees of freedom, one
neglect the dynamical effect ofdAi j

h on the spinon part at the
mean-field level and replace it by some random flux fluct
tions with a strength per plaquette equal todf @One may
estimatedf'pA(dnh)2]. This can be justified at low tem
perature when a Bose condensation of holons~which corre-
sponds to a superconducting condensation as shown l!
occurs, wheredAi j

h is expected to be substantially su
pressed. On the other hand, however, in the high-tempera
phase where the motion of holons is much less coherent
fluctuation effect ofdAi j

h can dominate overĀi j
h and the

separation of the latter fromAi j
h then becomes meaningles

In this case, one may approximately describe the effect ofAi j
h

as a collection of randomly distributedp flux quanta with
the number equal to that of holons. In both limits, the d
namics ofAi j

h may be neglected.

2. Including the hopping term Ht

First of all, we note that the wave functionwms( i ) as the
solution of the linear equation~2.32! is not unique, and it can
be always multiplied by an arbitrary global phase fac
eisxm: i.e.,

wms~ i !→eisxmwms~ i !, ~2.46!

without changing the order parameterD i j
s and the mean-field

state. Correspondingly the Bogoliubov transformation can
generally rewritten as

bis5(
m

~umgms2vmgm2s
† !eisxmwms~ i !. ~2.47!

In particular,eisxm can depend on theholon configurations
because the Hilbert space ofbis is only well defined at each
given holon configuration due to the no-double-occupa
constraint. The hopping term will mix the Hilbert space
bis at different holon configurations, and such a freedom
phase choice can be fixed by optimizing the hopping integ
of holons below.
s
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Now consider the hopping termHt in Eq. ~2.5!. By using
the Bogoliubov expression for spinon operators, a straig
forward calculation gives

K (
s

eisAji
h
bj s

† bisL 5(
ms

eisAji
h
wms* ~ j !wms~ i !e2 isDxm

3@vm
2 1~um

2 1vm
2 !^gms

† gms&#.

~2.48!

Note thatDxm in the above expression denotes the diffe
ence ofxm before and after the holon changes the position
one simply choosesDxm50, namely, the phases ofwms( i )
to be the same for all hole configurations, then the right-ha
side of Eq.~2.48! vanishes for the nearest-neighboringi and
j. This can be verified by noting thatwm̄s( i )[(21)iwms is
also a solution of Eq.~2.32! with an eigenvaluejm̄52jm
and the cancellation in Eq.~2.48! stems from the fact tha
those quantities likeum

2 and vm
2 only depend onEm in Eq.

~2.48! which is symmetric underjm→2jm . But such a can-
cellation is removable by a simple choice of the phase s
in eisxm at different holon configurations when each time
holon changes sublattice sites:

eisxm→@2sgn~jm!#3eisxm, ~2.49!

or

e2 isDxm52sgn~jm!. ~2.50!

Then, one finds

B0[
1

2N (
^ i j &s

^eisAji
h
bj s

† bis&

5
1

2N (
ms

Bm
0 @vm

2 1~um
2 1vm

2 !^gms
† gms&#, ~2.51!

where Bm
0 [(^ i j &e

isAji
h
wms* ( j )wms( i )@2 sgn(jm)# is given

by

Bm
0 52 sgn~jm!(̂

i j &
eisAji

h
wms* ~ j !wms~ i !

5 sgn~jm!~jm/2Js!(
i

wms* ~ i !wms~ i !5
ujmu
2Js

.0.

~2.52!

In obtaining the second line above, we have used Eq.~2.32!
with D i j

s 5Ds andJs[
1
2 DsJ.

Holons thus acquire a finite hopping integral without i
troducing anyextra order parameter. The effective holo
Hamiltonian is given by

Hh52th(̂
i j &

eiAi j
f
hi

†hj1H.c., ~2.53!

which is derived fromHt with an effective hopping integra

th[tB0 . ~2.54!

It is important to note that such afinite kinetic energy (th
;t) that each holon has gained on the present mean-
spin background cannot be similarly realized in the sla
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fermion-Schwinger-boson scheme, exactly due to the hid
phase string effect: the signs561 in Eq. ~2.3! will always
lead toth50 and make a spiral twist~an order parameter in
favor of hole hopping! necessary in any local mean-fie
treatment.

Finally, to be consistent, the hopping effecton spinons is
obtained fromHt as

Hs
t 52Jh (

^ i j &s
eisAji

h
bj s

† bis1H.c.14JhB0N, ~2.55!

in which Jh[^eiAi j
f
hi

†hj&t}dt measures the strength of ho
ping effect on the spinon part.@The constant in Eq.~2.55! is
introduced such that̂Hs

t &50.] Hence the total Hamiltonian
describing spinon degrees of freedom is composed of
terms

Hs5Hs
J1Hs

t , ~2.56!

whereHs
J in Eq. ~2.19! has been diagonalized at the mea

field level before.Hs
t can be expressed in terms of Eq.~2.47!

by noting that bj s
† and bis in Eq. ~2.55! should differ

by a phase shift Eq.~2.49! as a holon switches sublattic
sites. It then gives

Hs
t 52Jh(

ms
Bm

0 ~umgms
† 2vmgm2s!~umgms2vmgm2s

† !

1H.c.14JhB0N, ~2.57!

after using the orthogonal condition( iwms* ( i )wm8s( i )
5dm,m8 as well as Eq.~2.32!. On the other hand, one ha
Hs

J5(msEmgms
† gms1const ~note that lm5l inside Em

here!. ThenHs can be diagonalized in a straightforward wa
If we are still to useEm to denote the spinon spectrum for th
sake of compactness, thenHs can be finally written as

Hs5(
ms

Emgms
† gms1E0

s , ~2.58!

where

E0
s522(

m
Emn~Em!2

J

2(̂i j &
uD i j

s u2. ~2.59!

But here the spinon spectrum

Em5Alm
2 2jm

2 ~2.60!

is different from the previous one obtained in previous s
tion by a correction tolm due to the hopping effect:

lm5l2
Jh

Js
ujmu. ~2.61!

Therefore, the hopping effect on the spinon part issolely
represented by a shift froml to lm in Eq. ~2.61!. The Bo-
goliubov transformation~2.61! remains unchanged and so d
um andvm defined in Eqs.~2.35! and ~2.36!, so long as the
renormalizedlm is used. The Lagrangian mutiplierl in Eq.
~2.61! is still determined by Eq.~2.40! where bothlm and
Em should be replaced by the renormalized ones in E
n

o

-

.

-

s.

~2.60! and~2.61!. Finally, the self-consistent equation~2.38!
for the RVB pairing order parameter maybe rewritten as

Ds5
122d

4N (
m

jm
2

JsEm
coth

bEm

2
. ~2.62!

@Note that if the Bose condensation occurs, one may sepa
the contribution from the condensation part on the right-ha
side by DBC

s [(122d)uj0u2nBC
b /4Jsl0]. In obtaining Eq.

~2.62!, we have used an approximate relation

1/~2N!(^ i j &^~D i j
s !2&h'Ds2/~122d!

at d!0.5 limit. Such a relation can be obtained by assum
D i j

s 5D1
s wheni andj belongs to occupied sites andD i j

s 50 if
i or j is at hole site and by noting that each hole accounts
D i j

s 50 at four adjacent bonds at dilute-hole limit which lea
to Ds5(122d)D1

s .

III. PHASE DIAGRAM

A. Unified bosonic RVB phase

Our mean-field theory has been constructed based o
single bosonic RVB order parameterDs. Such an order pa-
rameter controls short-range spin-spin correlations inboth
the undoped and doped regime. Figure 3 shows a typ
region of DsÞ0 obtained by solving the mean-field equ
tions which has been briefly discussed in Ref. 18. It ob
ously covers the whole experimentally interested tempe
ture ~from T50 to T;0.520.9J/kB) and doping~from d
50 to d.0.3) regime. Several low-temperature regio
within this phase as marked in Fig. 3, including the sup
conducting phase, will be discussed in the following se
tions. The normal state within this phase will correspond t

FIG. 3. Phase diagram of the bosonic RVB state character
by the order parameterDs ~solid curve!. Within this phase, the
shaded curve sketches a region where a Bose condensatio
spinons~BC! occurs, which leads to the AFLRO in an insulatin
phase~dotted curve! but a charge inhomogeneity with short-rang
spin ordering in metallic region which defines an underdoped
gime. Superconducting condensation~SC! happens due to the Bos
condensation of holons andTc ~dashed curve! is determined under
an optimal condition~see the text!.
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‘‘strange metal’’ phase, where magnetic and transport pr
erties are expected to be different from conventional met
It is noted that in the bosonic RVB description of spin d
grees of freedom, the order parameterDs does not directly
correspond to an energy gap, in contrast to the fermio
RVB theory1 ~the latter is similar to the BCS theory in math
ematical structure!. Also note that the crossover fromDs

Þ0 phase toDs50 phase at high temperature is similar
the half-filling case11 which does not correspond to a re
phase transition.

In obtainingDs in Fig. 3 by solving Eq.~2.62!, one also
needs to determine the spectrumjm from Eq. ~2.32! and
decide the chemical potentiall in terms of Eq.~2.40!. We
have chosen the parameterJh5dJ ~which corresponds tot
;J) and solvedjm underAi j

h 5Āi j
h , but other choices ofJh

as well as including the fluctuating partdAi j
h do not change

significantly the range covered byDsÞ0. The effect ofdAi j
h

will be the subject of discussion in the next section, and
will always use the sameJh below.

Although DsÞ0 practically covers the whole doping re
gime, at a larger doping concentration, this mean-field the
may no longer be energetically favorable due to the com
tition between the hopping and superexchange energies.
tually, the phase string effect itself is an indication that t
bosonic description of spins leads to frustration of the mot
of doped holes, and vise versa. With the increase of dop
concentration, one possibility is that eventually a statisti
transmutation may occur to effectively turn bosonic spino
into fermionic ones as to be discussed in Sec. IV. Beyo
such a point, the present mean-field theory will break do
which may determine a crossover to the so-called overdo
regime. We will explore this issue elsewhere.

B. Bose condensation of spinons: AF ordering vs phase
separation

1. AFLRO and insulation phase

At half-filling, the spinon spectrumEm is known to be
gapless at zero doping and zero temperature which ens
a Bose condensation20 of spinons. Such a Bose condens
tion of spinons, as represented bynBC

b Þ0 in Eq. ~2.40!, de-
scribes a long-range AF spin ordering.20 The Bose conden
sation or long-range AF order can be sustained up to a fi
temperatureTN.0 if the three-dimensional effect~interlayer
coupling! is included. In the following, we consider how th
AFLRO picture evolves at finite doping.

Based on expression~2.13!, spin operators,Si
z and Si

6 ,
can be easily written down in terms of spinon operatorbis
after using the constraint~2.7!:

Si
z5

1

2 (
s

sbis
† bis , ~3.1!

and

Si
15bi↑

† bi↓~21! ieiF i
h

~3.2!

andSi
25(Si

1)†.
At d50, one hasF i

h50, and the Bose condensation lea
to
-
s.
-

ic

e

ry
e-
c-

e
n
g
l
s
d
,

ed

res
-

te

^Si
1&}~21! i , ~3.3!

i.e., an AFLRO. But atdÞ0, even when the spinons ar
Bose-condensed,̂Si

1& should generally vanish due to th
fact that

^eiF i
h
&50. ~3.4!

The proof here is straightforward. Note that in the definiti
of F i

h in Eq. ~2.16!, the angleu i( l ) @Eq. ~2.12!# can be trans-
formed as

u i~ l !→u i~ l !1f ~3.5!

for an arbitraryf without changing Ai j
h ,Ai j

f , and thus the

Hamiltonian. ButeiF i
h

@Eq. ~2.16!# changes accordingly

eiF i
h
→eiF i

h
3eifNh

. ~3.6!

HereNh is the total holon number. Thus the average of su
a phase must vanish at finite doping as given in Eq.~3.4!.
SinceF i

h describes vortices centered at holons, it is like
free-vortex phase as holons move around freely in meta
phase, which resembles a disordered phase in a Koste
Thouless-type transition.

Only in the case that holons are localized~i.e., in insulat-
ing phase! such that the frustration effect of phase stri
becomes ineffective, may the AFLRO be recovered. In t
insulating phase, holons are perceived by spinons as lo
ized vortices like in the mixed state of a type-II superco
ductor, and by forming ‘‘supercurrents’’ to screen those v
tices, F i

h in Si
1 can be effectively canceled out by th

opposite vorticities generated from spinons. After all, t
topological ~Berry’s phase! effect of the phase string is n
longer there if holes cannot complete a closed path at la
length scale. In this insulating phase, the phase string ef
may play a crucial rolecausingthe localization of holes. We
expect such an insulating phase to exist only at a very di
density of holons at the expense of the latter’s kinetic ener

2. Bose condensation of spinons in metallic phase: Underdopin

We have shown that the AFLRO must be absent in
metallic phase. One may naturally wonder if the Bose c
densation of spinons can still persist into the metallic pha
and if it does, then what is its physical meaning?

To answer these questions, let us first to inspect how
spinon spectrumEm is modified by doping. In Fig. 4, we
compare the spinon density of statesrs(E) at d51/7
'0.143~solid curve! with the d50 case~diamond curve in
the inset!. Herers(E) is defined by

rs~E!5
1

N (
m

d~E2Em!. ~3.7!

One notices that a unique peak structure is clearly exhib
at d50.143. This can be easily understood by noting that
spinon spectrumEm is basically determined byjm which, as
the solution of Eq.~2.40!, has a Hofstadter structure~or the
Landau levels in the continuum limit! due to a uniform flux
(f̄5pd per plaquette! represented by the vector potenti
Āi j

h threading through the square lattice. The broadening
the solid curve in Fig. 4 is due to the redistribution of eige
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states under the fluctuating fluxdAi j
h , which is treated as a

random flux~in the white-noise limit!, here with a maximum
strength chosen atdf50.3f̄ per plaquette. By contrast, th
dashed curve marks the positions of sharp peaks of den
of states in the limit ofdf50.

We find that the Bose condensation of spinons can
occur atd50.143 withdf50.3f̄ ~but not atdf50) as the
solution of Eq.~2.40!. Recall that the spinon Bose conde
sation stems from Eq.~2.40! with a nonzeronBC

b representing
the density of spinons staying at theEm50 state. In this
case, there would be no solution at low temperature unlel
takes a value to makeEm gapless such thatnBC

b Þ0 can bal-
ance the difference between the left and right side of
equation, similar to the half-filled case.20 In particular, such a
Bose condensation is found to be sustained up to a fi
temperatureTBC;0.21J even in the present 2D case. This
due to the vanishingly small weight nearE50 in the density
of states~in Fig. 4, there is a small tail in the solid curv
which extends toE50), where the spinon excitations at lo
temperature are not sufficient to destroy the Bose conde
tion as first pointed out in Ref. 21. It is noted that, in pri
ciple, the strengthdf of the random fluctuations ofdAi j

h

should be self-consistently determined by the density fl
tuations of holons. But here for simplicity we just treatdf as
a parameter and then study the qualitative characteristics
der different values ofdf. The actual strength of the fluc
tuations ofAi j

h will be only crucial in determining the loca
tion of the phase boundary.

Phase separation.Note that the Bose condensation mea
a thermodynamic number of spinons staying atEm50 — the
lowest energy state which corresponds to the band edge
the spectrumj̄m . So due to the Bose condensation, su
quantum states will acquire a macroscopic meaning.
these band-edge states ofjm are very sensitive to the fluc
tuations of Ai j

h and the density of holons. Physically, th

FIG. 4. Spinon density of states atd50.143 andT50. The solid

curve corresponds todf50.3f̄ and the dashed curve is fordf
50. Inset: the density of states at half-filling. The energy is in un
of J.
ity
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density of holons is fluctuating in real space~which is the
reason leading to the fluctuations ofAi j

h ) and there always
exist those configurations in which the density of holes
relatively dilute in some areas where the flux described
Ai j

h is reduced such that the band-edge energies ofjm can be
close to62Js . Since the probability would be small for suc
kinds of inhomogeneous hole configurations, the density
states generally looks like a tail — i.e., the Lifshitz tail—
near the band edges. Hence, the corresponding B
condensed state will generally appear as having a ch
inhomogeneity, or, phase separation, with spinons cond
ing into hole-deficient regions to form short-range spin
dering. The true AFLRO is absent here.

Pseudogap behavior.The Bose condensation of spinon
will also lead to a pseudogap phenomenon. In the magn
aspect, for example, the density of states shown in Fig
indicates the suppression of spinon density of states betw
zero and the lowest peak, which stabilizes the Bose cond
sation as mentioned earlier. Since in the Bose condensa
case there must be some residual density extending toEm
50, a pseudospin gap is thus present inrs(E). Its effect in
the dynamic spin susceptibility will be discussed later. In t
transport aspect, holons which are the charge carriers
scattered off by the gauge fieldAi j

s according to the holon
effective Hamiltonian~2.53!. Anomalies in transport proper
ties have been found in Ref. 21 with interesting experimen
features in the similar effective Hamiltonian, where fluctu
ing fluxes depicted byAi j

s play a central role. But the Bos
condensation of spinons will lead to a substantial supp
sion of Ai j

s and thus a reduction of scattering to holon
Hence, the Bose condensation also provides an explana
for the so-called pseudogap phenomenon shown in theun-
derdopedhigh-Tc cuprates, where the transport properti
deviate from the high-temperature ones below some cha
teristic temperature scale.

Therefore, if the Bose condensation of spinons happen
the metallic phase, it will result in a phase-separation or s
pseudogap phase without the AFLRO. With the increase
d, the reduction of the left-hand side of Eq.~2.40! will even-
tually make the Bose condensation term, if initially exis
disappear from the right-hand side. So the Bose condensa
in general may only exist at the small doping regime, wh
can be defined as the ‘‘underdoping’’ regime. In Fig. 3, t
shaded curve sketches such a region outside the true AF
phase which is in a much narrower region~dotted curve! at
finite doping.

C. Superconductivity

In the phase string representation, the operator of su
conducting order parameter

D̂ i j
SC[(

s
sciscj 2s ~3.8!

can be expressed in terms of Eq.~2.13! as follows:

D̂ i j
SC5D̂ i j

s ~hi
†e~ i /2!F i

b
!~hj

†e~ i /2!F j
b
!~21! i , ~3.9!

in which

s



is

st

se

tin

ki
s

tio
a

ll
im

he
t

p
e
rm

e
m

ni
-
O

e

ed
s
u

t

-
om

of
ra-

de-
ns
h

the
en-

the

ge

3

op-
s,
ing

at
r-

ct

er
ive

th a
e

s

e

hat

PRB 59 8951MEAN-FIELD DESCRIPTION OF THE PHASE STRING . . .
D̂ i j
s [(

s
e2 isAi j

h
bisbj 2s . ~3.10!

This is the basic expression to be used in the following d
cussion of superconducting condensation.

1. Mechanism

For the sake of simplicity, we will focus on the neare
neighboring pairing withi 5NN( j ) below. Since the whole
mean-field phase is built on

^D̂ i j
s &5DsÞ0, ~3.11!

the electron pairing order parameterD i j
SC5^D̂ i j

SC& can be
written as

D i j
SC5Ds^~hi

†e~ i /2!F i
b
!~hj

†e~ i /2!F j
b
!&~21! i . ~3.12!

We see that the spinons are always paired in the pre
phase, as described byDs, up to a temperature scale;J at
small doping. Thus, in order to have a real superconduc
condensation below a transition temperatureTc , the holon
part has to undergo a Bose condensation or, strictly spea
in 2D, a superfluid transition in the Kosterlitz-Thouless sen
~recall that both spinon and holon arebosonicin the present
representation!.

One may notice that this superconducting condensa
picture is somewhat similar to that in the slave-boson me
field theory.4 But there are two crucial differences.

First, the spinon pairing in the present case practica
covers the whole superconducting and normal-state reg
that we are interested in. In other words,DsÞ0 in the present
mean-field theory defines a ‘‘strange’’ metal, and t
normal-state anomalies of experimental measurements in
cuprates, including the magnetic properties and the trans
properties, are all supposed to happen within such a phas
contrast, in the slave-boson mean-field approach the fe
onic spinon pairing is directly related to thegap in the spinon
spectrum and has todisappearat a much lower temperatur
scale beyond which ‘‘strange’’ metallic properties presu
ably start to show up.

Second, the Kosterlitz-Thouless transition temperature
holons are believed to be much higher than the realTc in the
cuprates, and thus one has to introduce other mecha
~e.g., gauge-field fluctuations4! to bring down the tempera
ture scale in the slave-boson mean-field approximation.
the other hand, there is a unique feature in Eq.~3.12!,

namely, the presence of phases likee( i /2)F i
b
. HereF i

b repre-
sents a structure of vortices~antivortices! centered at↑(↓)
spinons. AtT50, all ↑ and↓ spinons are paired up at a finit
length scale and so are the vortices and antivortices inF i

b ,
which impliesD i j

SCÞ0 as long as holons are Bose condens
At finite temperature, even though the Kosterlitz-Thoule
transition temperature for hard-core bosons can be m
higher, the ‘‘phase coherence’’ inD i j

SC can be more quickly
destroyed at a lower temperature due to the dissolution of
vortices and antivortice bindings inF i

b after free spinons

appear. Here the argument for^e( i /2)F i
b
e( i /2)F j

b
&50 is similar

to the previous one for̂eiF i
h
&50 which corresponds the dis

appearance of the long-range AF order once holons bec
-
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mobile in the metallic phase. This provides us an estimate
the upper limit for the superconducting transition tempe
ture Tc below.

2. An estimate of Tc

The holon effective HamiltonianHh in Eq. ~2.53! deter-
mines the interaction between holons and those vortices
scribed byAi j

h . If free vortices are few, the condensed holo
may easily ‘‘screen’’ them by forming supercurrent, whic
will then effectively keepD i j

SC finite. But if the number of
free vortices, or excited spinons, becomes comparable to
number of holons themselves, one expects that the ‘‘scre
ing’’ effect collapses and thusD i j

SC50. It predicts thatTc will
be basically determined by the spinon energy scale in
following way:

2 (
mÞ0

lm

Em
n~Em!U

T5Tc

5kNd, ~3.13!

where k;1 and the left-hand side represent the avera
number of excited spinons in( isbis

† bis with the Bose-
condensed part~if exists! excluded. The dashed line in Fig.
represents theTc’s determined by Eq.~3.13! in the limit
df→0. This curve may be regarded as represents the ‘‘
timized’’ Tc , because with introducing the flux fluctuation
dfÞ0, there is a finite density of states of spinons emerg
at lower energy which effectively reducesTc defined in Eq.
~3.13!. In the ‘‘optimized’’ limit of df50, one may further
simplify Eq. ~3.13! by only retaining the contribution from
the lowest-peak~which has a degeneracydN/2) and obtains

Tc5
1

c
Es , ~3.14!

wherec is given by

c5 lnS 11
2

k
A11~js /Es!

2D.1. ~3.15!

HereEs andjs are the energies ofEm andjm , respectively,
corresponding to the lowest-energy peak shown in Fig. 4
df50. Therefore,Tc is indeed determined by the characte
istic energyEs of spinon excitations.

3. d-wave symmetry of the order parameter: Phase string effe

Finally, let us briefly discuss the symmetry of the ord
parameterD i j

SC. Basically, one needs to compare the relat

phase ofD i j
SC between j 5 i 1 x̂ and j 5 i 1 ŷ, or the phase

change of the quantityh̃ j
†[hj

†e( i /2)F j
b

in Eq. ~3.12!. Imagine

that we move a holon fromj 5 i 1 x̂ to i 1 ŷ via site i 1 x̂

1 ŷ. At each step the holon has to exchange positions wi
spinon with indexs j 8 at sitej 8 which leads to an extra phas

s j 8561 due toe( i /2)F j
b

in h̃ j
† . Even though other spinon

outside the path also contribute to, say,F i 1 x̂1 ŷ
b

2F i 1 x̂
b , but

their effect is canceled out ashj picks up the same phas
change but with opposite sign inHh . Therefore, in the end
h̃ j

† acquires a total phases i 1 ŷ•s i 1 x̂1 ŷ which is just the
phase stringon such a path. Its contribution is alwaysnega-
tive on average for a short-ranged AF state. Assuming t
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this is the dominant path, one then concludes thatD i j
SC has to

change sign fromj 5 i 1 x̂ to i 1 ŷ, namely, thed-wave sym-
metry. If only the nearest-neighbor-site electron pairing
considered, the order parameter in the momentum space
be written in the formDSC(k)}(coskxa2coskya). There-
fore, the nonrepairable phase string effect and AF corr
tions are directly responsible for thed-wave symmetry of the
superconducting condensation in the background ofDsÞ0.

D. Experimental implications: Dynamic spin susceptibility

1. Local spin dynamic susceptibility

The dynamic spin susceptibility functionxL9(v)
51/N( ixzz9 ( i ,i ;v) describes the on-site spin dynamics a
is derived in the Appendix as follows:

xL9~v!5
p

N ( 8
mm8

S (
is

uwms( i )u2uwm8s( i )u2D
3Fsgn~v!

2
~11n~Em!1n~Em8 !!

3~um
2 vm8

2
1vm

2 um8
2

!d~ uvu2Em2Em8!

1@n~Em!2n~Em8!#~um
2 um8

2
1vm

2 vm8
2

!

3d~v1Em2Em8!G , ~3.16!

where the summation(8 only runs over thosem’s with jm
,0 ~note thatEm is symmetric underjm→2jm). If there is
a Bose condensation of spinons, the contribution from
condensed part toxL9 may be explicitly sorted out as

xc9~v!5 sgn~v!S p

2
nBC

b D 1

N ( 8
m

K0m

lm

Em
d~v2Em!,

~3.17!

with K0m[N( isuw0s( i )u2uwms( i )u2 where the subscript 0
refers to theEm50 state.

Based on Eq.~3.16!, two kinds of mean-field solutions
with and without Bose condensation of spinons, will be stu
ied below. Without loss of generality, we consider these t
cases atd50.143 in which the corresponding density
states,rs(v), is already shown in Fig. 4 for both cases. L
us first focus on the lowest peak ofrs(E) shown in Fig. 4.
The contribution of such a peak toxL9(v) was previously
discussed in Ref. 18 and is illustrated in Fig. 5 by the low
sharp peak~dashed line! for df50 and the lowest twin
peaks~solid curve! for df50.3f̄, respectively. One see
two very distinct features here. For the case ofdf50.3f̄,
there is a Bose condensation contribution atT,TBC
;0.21J and it leads to a double-peak structure. But indf
50 case, the Bose condensation is absent and one finds
a single sharp peak at 2Es;0.4J. In other words,xL9(v) has
drastically different characteristics for cases with and wi
out a spinon Bose condensation.

The twin-peak splitting may be understood as follow
The second peak corresponds to a pair of spinons exc
from the RVB vacuum, while the first peak describes asingle
spinon excitation as the other branch of the spinon is in
s
an
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e
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.
ed

e

Bose-condensate state. Such a lowest peak basically m
out the lowest peak of the spinon density of statesrs(E) in
Fig. 4 according to Eq.~3.17!, and the second peak inxL9(v)
is located at an energy approximately twice larger than
first one. The latter one will be always around at low te
perature no matter whether there is a Bose condensatio
not. So there is a distinct behavior of those two peaks
different temperature as shown in Ref. 18, where the we
of the lowest one gradually diminishes as the tempera
approachesTBC.

In contrast, there is only one sharp ‘‘resonancelike’’ pe
left in the where the Bose condensation is absent. It co
sponds to a pair of spinon excitations located at the low
peak (Es;0.2J) of rs in Fig. 4 with df50 ~dashed curve!.
Note that this is the limit where the flux fluctuating partdAi j

h

is totally suppressed such that a real spinon gap is opene
at low energy as shown in Fig. 4. The location of the ‘‘res
nance’’ peak, 2Es , is slightly lowered in energy as com
pared to the corresponding~second! peak in the twin-peak
case atdf50.3f̄. The energy scale of this peak (2Es
;0.4J) at df→0 limit is roughly independent ofJh and
thus of t. This is because theJh term only shiftsl to lm by
a const if there is no dispersion injm near the lowest~high-
est! peak, which will not affectEm near the lowest peak asl
will readjust its value correspondingly.

2. Underdoping vs optimal doping

We have previously discussed the Bose condensatio
spinons and argued that it exists only in an ‘‘underdope
regime. We have also shown that holons as bosons can
perience a Bose condensation atTc , leading to the supercon
ducting condensation. If the Bose condensation tempera
for holons is higher thanTBC for spinons, i.e.,Tc.TBC, the
holons will become Bose condensed before spinons do a
will be generally auniformstate since there is no inhomog

FIG. 5. Local dynamic spin susceptibility versus energy atd

50.143. Solid curve:df50.3f̄ and the dashed curve:df50 at
T50. Note that the lowest peak of dashed curve splits into a tw
peak structure in the solid curve~see text!. The half-filled case is
shown in the inset for comparison.
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neous spin ordering aboveTBC. Thus one may haveAi j
h

'Āi j
h with df being much less than in the normal state.

this case, the Bose condensation of spinons can be e
tively prevented at lower temperature because a homo
neousĀi j

h generally leads to an opening of a real spinon g
as shown in Fig. 4 fordf50. So to be self-consistent, onc
Tc.TBC,TBC may no longer exist andTc becomes the only
meaningful temperature scale. Furthermore, we have alre
seen thatTc is also optimized underdf;0. Therefore, this
region may be properly defined as the ‘‘optimal-doping
regime in our theory in contrast to the previously defin
underdoped regime atTBC.Tc .

Such an optimal-doping phase is charge homogene
and the Bose condensation of spinons is absent. It is cha
terized, belowTc , by the ‘‘resonancelike’’ peak emerging i
xL9(v) at 2Es in Fig. 5. It is in accord with the 41 meV pea
found22 in the optimally doped YBa2Cu3O7 belowTc , if one
choosesJ5100 meV here. AboveTc , the ‘‘resonance’’
peak will quickly disappear as the motion of holons becom
incoherent and a different behavior ofAi j

h is involved as
discussed in Sec. II.

On the other hand, the underdoping regime withTBC
.Tc is characterized by a low-energy twin-peak structure
xL9(v) at T,TBC. In contrast to the ‘‘optimal-doping’’ case
such an energy structure may not be qualitatively chan
even whenT is belowTc , as holons are also expected to
condensedinhomogeneouslyin favor of the spinon energy. A
twin-peak feature has been observed recently in the un
doped YBa2Cu3O6.5 compound by neutron scattering23 in the
odd symmetry channel. In the experiment, the lowest pea
located near 30 meV and the second one is near 60 m
indeed about twice bigger in energy. Most recently, in
underdoped YBa2Cu3O6.6, a second energy scale near;70
meV has been also indicated24 besides the earlier report o
the lower energy peak near 34 meV.25 It is noted that the
energy scales shown in Fig. 5 are generally doping dep
dent, and those energies in YBa2Cu3O6.5 are expected to be
relatively smaller than the corresponding peaks
YBa2Cu3O6.6.

A word of caution about the comparison with the Y-B
Cu-O compound is that the latter is a double-layer sys
where two adjacent layer coupling is also important. But
do not expect the double-layer coupling to qualitative
change the above energy structure ofxL9 in the odd symmetry
channel. We point out that the fluctuating part of the gau
field dAi j

h usually makes the two adjacent layers difficult
couple together unless there are AF spin domains in
charge-deficient region where the totalAi j

h is suppressed, a
may be the case in phase separation. But in the unif
phase, withdAi j

h being suppressed belowTc due to the Bose
condensation of holons, the effective coupling between l
ers can also be greatly enhanced to gain interlayer-coup
spin energy. The Anderson’s confinement-deconfinem
phenomenon26 may become most prominently in th
optimal-doping regime, which needs to be further explore

3. Prediction

Figure 5 also showsxL9(v) in the whole energy regime a

df/f̄50 ~dashed curve! and 0.3~solid curve!, respectively.
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As compared to thed50 curve in the inset, a multipea
structure is present as well at high energies for such a do
case. For example, if the 41 meV peak in YBa2Cu3O7 is
explained by the lowest peak in the case ofdf50, then the
theory predicts a second ‘‘resonance’’ peak near 120 meV
be found. Those high-energy peaks in Fig. 5 become ra
closer in energy especially in the Bose-condensed case~solid
curve!, which could be very easily smeared out either by t
experimental solution~it may be further complicated by th
fact that the momentum dependence varies drastically am
those peaks! or by the dynamic broadening due to the fini
lifetime of spinons which is beyond the present mean-fi
treatment. Nevertheless, the multipeak structure, espec
the twin-peak feature at low energy in the spinon Bo
condensed case, should become observable by high sol
measurement at low temperature as the unique predictio
the present theory.

IV. DISCUSSIONS

In this paper, we have approached the doped antife
magnet from the half-filling side, where the bosonic RV
description is known to be very accurate for the antifer
magnetism. The crucial modification at finite doping com
from the phase string effect induced by doped holes.
example, doped holes are turned into bosonic holons by s
a phase string effect so that both the elementary spin
charge excitations are bosonic. The Bose condensatio
spinons in the insulating phase and the Bose condensatio
holons in the metallic phase determine the AFLRO and
perconducting phase transitions, respectively.

While the bosonic RVB pairing, representing short-ran
AF correlations, is always present and is the driving for
behind the antiferromagnetism and superconductivity, it
the combination with the phase string effect that decid
when and where they occur in the phase diagram. For
stance, the Bose condensation of spinons leads to
AFLRO only in the case that holes are localized. In the m
tallic phase where holes become mobile, the AFLRO will
destroyed by the phase string effect. But the Bose conde
tion of spinons may still persist into the weakly doped m
tallic region, leading to an ‘‘underdoping’’ metallic phas
with charge inhomogeneity ~phase separation! and
pseudogap phenomenon.

There still are many theoretical and experimental iss
which have not been dealt with in the present paper and
left for further investigation. Here we conclude by givin
several critical remarks. The first is about the phase diag
at larger doping. Recall that in our mean-field descriptio
the metallic phases are characterized by two tempera
scales:Tc andTBC, and we have argued thatTc.TBC deter-
mines an ‘‘optimal-doping’’ regime at low temperatur
whereTBC is no longer meaningful. But beyond this regim
there is a possibility that holons may tend to bealwaysBose
condensed even at thenormal statein favor of the hopping
energy. If this occurs, the gauge fieldAi j

f in HJ may have to
be ‘‘expelled’’ to the spinon part, leading to a statistics tran
mutation to turn spinons intofermionsand causing a collaps
of the bosonic RVB order parameter at the normal state
this picture, the normal state in the overdoped regime m
simply recover the fermionic uniform RVB state.4
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The second issue is about the time-reversal symme
Recall that the sharp peak structure in the spinon spect
below Tc is mathematically similar to a Landau-level stru
ture in a uniform magnetic field. One may naturally wond
if some kind of time-reversal symmetry would be apparen
broken like in the anyon theories.6 Below we point out that
this is not the case in the present theory. First of all, it is e
to see that there is no breaking of the time-reversal symm
in the holon HamiltonianHh ~2.53! in which the gauge field
Ai j

f 5Ai j
s 2f i j

0 . Here Ai j
s behaves like a fluctuating gaug

field with ^Ai j
s &50, andf i j

0 describes a uniformp-flux per
plaquette which does not break the time-reversal symm
either as a gauge transformation can easily changep flux
into 2p flux per plaquette. As for the spin part, eve
though spinons seeAi j

h which breaks the time-reversal sym
metry, one should remember that the physical obse
able quantity is the spin-spin correlation functions li
xL9 shown in Eq.~3.16!, which can be easily shown to b
invariant underAi j

h→2Ai j
h . It is also straightforward to

check that the spin chirality29 characterized bŷ S1•(S2

3S3)& is always zero by using the conditionwm2s* ( i )
5wms( i ).

Lastly, the sharp peak in the spinon spectrum in the u
form phase provides an explanation for the 41 meV pea
the neutron-scattering measurement of Y-Ba-Cu-O ‘‘90 K
sample, but it also means areal gap in the spinon spectrum
From a naive spin-charge separation picture, one would
pect the single-electron Green’s function to be a convolut
of spinon and holon propagators and the electron spect
may also show a finite gap as well in the superconduc
state which may be inconsistent withd-wave symmetry. But
we note that in the present spin-charge separation forma
~2.13!, there is an additional phase-shift fieldQ is

sting repre-
senting the phase string effect. It means that if a ‘‘bare’’ h
created bycis decays into a mobile spinon and holon,
nonlocal topological effect will be left behind which cou
cost a logarithmic-divergent energy. In other words,
phase string effect in the 2D case will serve as a confinem
force to prevent a newly doped hole from dissolving in
elementary excitations.~Of course, internal charge and sp
excitations without involving the change of the total electr
number are still described by the spin-charge separatio
the present mean-field theory.! In fact, even in the 1D case
the single-electron Green’s function looks quite differen
from a simple convolution of spinon and holon propagato
and recently Suzuura and Nagaosa27 have discussed the cru
cial role of the phase string effect in understanding the an
resolved photoemission spectroscopy in SrCuO2.28 The
phase-shift fieldQ is

sting also plays a role in recovering th
‘‘large’’ Fermi surface as discussed in Ref. 17 for 1D. O
preliminary investigation in 2D indicates that a bare ‘‘hole
wave packet injected into the background of the spin-cha
separation mean-field state will behave more like a conv
tional band-structure quasiparticle in a Fermi liquid with
large Fermi surface, which showsd-wave gap structure whe
the holons are Bose condensed and pseudogap stru
when spinons are Bose condensed. So experiments invo
injecting an electron or a hole into the system, like pho
emission spectroscopy, may no longer providedirect infor-
mation of elementary excitations like in the convention
y.
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Fermi-liquid theory, due to the confinement of the pha
string effect.
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APPENDIX: DYNAMIC SPIN SUSCEPTIBILITY
FUNCTION

Local spin susceptibility function is defined in the Ma
subara representation as follows:

xab~ i ,i ; ivn!5E
0

b

dteivnt^TtSi
a~t!Si

b~0!&, ~A1!

wherevn52pn/b. In the following we will determine the
dynamic spin susceptibility functionxab9 ( i ,i ;v) based on
the present mean-field theory.

Consider ^TtSi
a(t)Si

b(0)& in a5b5z case. In the
present mean-field formulation, one has

^TtSi
z~t!Si

z~0!&

5
1

4 (
ss8

ss8^Ttbis
† ~t!bis~t!bis8

†
~0!bis8~0!&

5
1

4 (
s

^Ttbis
† ~t!bis~0!&^Ttbis~t!bis

† ~0!&.

~A2!

In terms of Eqs.~2.47! and ~2.58!, one has

bis
† ~t![eHstbis

† e2Hst

5(
m

~umgms
† eEmt2vmgm2se2Emt!wms* ~ i !e2 isxm.

~A3!

Then by notingwm2s* 5wms and that for eachm with jm

,0, one always can find a statem̄ with jm̄52jm.0 with a
wave function

wm̄s~ i !5~21! iwms~ i !, ~A4!

according to Eq.~2.32!, we get

^Ttbis
† ~t!bj s~0!&t.0

52 ( 8
m

wms* ~ i !wms~ i !3$um
2 n~Em!eEmt

1vm
2 @11n~Em!#e2Emt%, ~A5!

where the summation(m8 only runs over those states wit
jm,0. Then it is straightforward to obtainxzz after integrat-
ing out t in Eq. ~A2!:
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xzz~ i ,i ; ivn!5xzz
~2 !~ i ,i ; ivn!1xzz

~1 !~ i ,i ; ivn!, ~A6!

wherexzz
(6) is defined by

xzz
~6 !~ i ,i ; ivn!5

1

2 ( 8
mm8

Kmm8
zz

~ i ,i !

3F ~pmm8
6

!2
n~Em8!2n~Em!

ivn1Em2Em8

1~ l mm8
6

!2@11n~Em!1n~Em8!#

3
1

2S 1

ivn1Em1Em8

2
1

ivn2Em2Em8
D G
~A7!

with

Kmm8
zz

~ i ,i ![(
s

uwms~ i !u2uwm8s~ i !u2. ~A8!
ity
.

Here the coherent factors,pmm8
6 and l mm8

6 are defined by

pmm8
6

5umum86vmvm8 ,

l mm8
6

5umvm86vmum8 . ~A9!

Finally, the dynamic spin susceptibility functionxzz9 ( i ,i ;v)
can be obtained as the imaginary part ofxzz after an analytic
continuationivn→v1 i01 is made:

xzz9 ~ i ,i ;v!5Fzz
~2 !~ i ,i ;v!1Fzz

~1 !~ i ,i ;v!, ~A10!

where

Fzz
~6 !~ i ,i ;v!5

p

4 ( 8
mm8

Kmm8
zz

~ i ,i !$@11n~Em!1n~Em8!#

3~ l mm8
6

!2 sgn~v!d~ uvu2Em2Em8!

12@n~Em!2n~Em8!#~pmm8
6

!2

3d~v1Em2Em8!%. ~A11!
ev.
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